
Amun: Securing E-Voting Against
Over-the-Shoulder Coercion

Riccardo Longo1[0000−0002−8739−3091] and Chiara
Spadafora2[0000−0003−3352−9210]

1 riccardolongomath@gmail.com
2 c.spadaff@gmail.com

Department of Mathematics, University Of Trento, 38123 Povo, Trento, Italy

Abstract. In an election where each voter may express P preferences
among M possible choices, the Amun protocol allows to secure vote
casting against over-the-shoulder adversaries, retaining privacy, trans-
parency, end-to-end verifiability, and receipt-freeness.
Before the election, each voter receives a ballot containing valid and fake
tokens: only valid tokens contribute in the final tally, but they remain
indistinguishable from the fake ones. Since the voter is the only one who
knows which tokens are valid (without being able to prove it to a coercer),
over-the-shoulder attacks are thwarted.
We prove the security of the construction under the standard Decisional
Diffie Hellman assumption.

Keywords: E-Voting · Over-the-Shoulder Attack · Coercion-Resistance
· End-to-End Verifiability · Diffie-Hellman Assumption · Cryptography ·
Formal Proof of Security.

1 Introduction

Remote voting, thanks to advanced cryptographic techniques, may guarantee
higher levels of security with respect to classical paper-based voting. However,
being able to vote from home is a double-edged sword: on one hand it may
improve turnout by easing the voting process, on the other hand it comes at the
expense of the loss of privacy that only a voting booth can guarantee.

Although many systems protect against various adversaries trying to bribe
electors, we found that it is more difficult to counter opponents that closely
monitor voters during the voting phase (over-the-shoulder attacks). The main
mitigation technique against coercion is the usage of fake credentials, which are
indistinguishable from real ones but that do not produce valid votes. However,
if the adversary keeps under control the voter until the end of the voting period,
it becomes impossible to re-vote with the valid credential.

Here we present the Amun3 protocol, which hides the real choice expressed
by a ballot even if an adversary is physically monitoring the elector during

3 Amun was a major ancient Egyptian deity. The name Amun meant something
like “the hidden one” or “invisible”.



2 R. Longo et C. Spadafora

vote casting. This feature protects the elector against over-the-shoulder attacks
without the need to re-vote.

The Amun protocol aims to achieve end-to-end verifiability (also obtaining
the cast-as-intended, recorded-as-cast, and tallied-as-recorded properties), trans-
parency, privacy, receipt-freeness, vote-selling and coercion resistance. The base
idea beneath the protocol is a generalization of [22], adding support for multiple
candidates and more than one choice (which can be exploited to express blank
or partial ballots), and forsakes the blockchain infrastructure in favor of a more
traditional bulletin board.

In Amun, three authorities share the administration of the election: they
setup the parameters, manage voters’ registration, and compute the final tally
at the end of the voting phase. Privacy is preserved even if an attacker colludes
with one authority, limiting their power. Votes are cast by assigning some “vot-
ing tokens”, generated during the registration, to the candidates. Among these
tokens, only a few are valid and express the real preference of the voter, but they
are indistinguishable from the other, fake, tokens. This trick disguises the actual
choice made by the elector, even if the adversary is watching.

1.1 Related Work

Protocols for electronic election systems have been abundantly proposed in re-
cent years, an incomplete selection may include Caveat Coercitor [9], sElect [16],
JCJ [13], Helios [1], Votor [10], Ordinos [15], VoteAgain [18], Remotegrity [23],
Pretty Good Democracy [21], Prêt à Voter [19].

Many protocols have addressed the problem of vote selling, and many def-
initions of coercion resistance have been given [7,11,13,14,17]. Civitas [4] deals
with coercion by allowing voters to vote multiple times via a mechanism of real
and fake credentials. Selene [20] associates to every vote a unique tracker, the
idea is that every voter, in case of attack, is able to open up its commitment to a
fake tracker in order to mock the adversary. Bingo voting [2,8] tries to mitigate
coercion by using a trusted random number generator. Belenios [6] itself is not
coercion resistant: voters can keep the randomness used to encrypt the ballot to
prove how they voted. This limitation has been overcome with the deployment
of BeleniosRF [3,5].

1.2 Organization

We present some preliminaries in Section 2, in particular in Section 2.1 we de-
scribe what we mean by the term bulletin board. We describe our protocol in Sec-
tion 3 and we provide a proof of security in Section 4. Finally, in Section 5 we
draw some conclusions.



Amun: Securing E-Voting Against Over-the-Shoulder Coercion 3

2 Preliminaries

The algebraic preliminaries we need to build the protcol are the Decisional Diffie-
Hellmann Assumption, the Equality of discrete logarithms ZKP and a commit-
ment scheme formalized in [22].

For the sake of compactness we use the following notation for the indexes:
[n] = {i ∈ N : 1 ≤ i ≤ n}, (tj)j∈[m] = (t1, . . . , tm).

2.1 Bulletin Board

The concept of (Web) Bulletin Board (BB) is well established in literature, as
its use in e-voting. A BB can be thought of as an append-only secure broadcast
mechanism: published information cannot be modified or removed, and everyone
has a consistent view. A more detailed discussion could be found in [12].

2.2 General Requirements for Remote Voting Systems

A secure remote voting systems should satisfy certain requirements before being
deployed. In [22] the properties of Correctness, Fairness, Transparency, Privacy,
and Verifiability are formally defined. Concerning Coercion-Resistance, in [11]
there is a critical analysis of various definitions. In this first version, the Amun
protocol protects against coercers that wish to sway elections towards specific
candidates, but is not very effective against the more subtle randomization and
forced abstention attacks. In this simplified model, we adapt the definition of
Coercion Resistance as follows:

Definition 1 (Vote-Coercion Resistance). Let A be a coercer, Vc the set of
coerced voters, and (ci,1, . . . , ci,P ) the choices that A wants to impose to vi ∈ Vc.
Let Ψ1 be the scenario in which A has access only to the final tally. Let Ψ2 be
the scenario in which A has access to the whole Bulletin Board, and can see all
the actions performed by the voters in Vc, with the exception of the ones carried
out in a protected environment (or through an untappable channel). A voting
protocol is Vote-Coercion Resistant if the probability of A detecting that a voter
in Vc has not followed its instruction is the same in Ψ1 and Ψ2.

3 Multi-Candidate Voting System

This section presents our proposal for a remote e-voting protocol that manages
an election with N voters, where each one expresses P preferences among M
candidates (obviously P < M).

The basic idea is that every voter owns M voting tokens (v-tokens): P are
valid, the others are fake, but only the voter knows which is which. When vot-
ing, voters express their preferences assigning the valid v-tokens to the chosen
candidates and the fake ones to the others. The voter gets a transcript that re-
ports the assignment of the v-tokens to the candidates. The protocol allows for



4 R. Longo et C. Spadafora

re-voting, before tallying duplicate ballots (i.e. ballots with the same v-tokens
regardless of their order) are discarded, keeping only the most recent. After the
voting phase, when counting the votes, the fake v-tokens do not contribute to the
tally, so only valid v-tokens are counted. The whole process is publicly auditable
and fully verifiable, and preserves privacy as long as at most one authority is
corrupt.

3.1 Protocol Description

The key components involved in the protocol are:

1. A finite set of voters V = {vi}i∈[N ] (where vi is a pseudonymous id), with
N ∈ N the number of eligible voters;

2. A finite set of candidates C = {c`}`∈[M ] with M ∈ N the number of candi-
dates;

3. Three trusted authorities4 A0, A1, and A2.
4. One ballot bi (comprising M v-tokens) for every i ∈ [N ], i.e. one for each

eligible voter.

Throughout the protocol we implicitly assume that every public value (in-
cluding a description of the key components presented above) are published in
the BB. The protocol is divided into four phases:

Setup The authority A0 selects a secure group G of prime order p in which
the DDH assumption holds, along with a generator g ∈ G. Then it publishes
G, g, and p. In this phase the authorities use a commitment scheme to commit
to their values before publishing them, in order to improve security. We refer to
[22] for more details on this primitive and its properties.

Then A0 performs the following operations:

1. chooses uniformly at random two values k and λ in Z∗p. A0 knows that the
v-tokens computed using k are valid, while the ones computed using λ are
fake, but this information is kept secret;

2. chooses uniformly at random N ·M distinct values z̄i,` ∈ Z∗p, with i ∈ [N ],
` ∈ [M ];

3. finally, A0 commits to the values gk, gλ, and for every i ∈ [N ] it commits to(
vi, (g

z̄i,`)`∈[M ]

)
.

It is important that all the values z̄i,`, k, λ remain private.

The authority A1 performs the following operations:

1. chooses uniformly at random M distinct values α′` ∈ Z∗p, with ` ∈ [M ], these
will be the first half of the candidates’ masks;

4 We use a weak concept of trust here, since the conduct of these authorities can be
checked by voters.



Amun: Securing E-Voting Against Over-the-Shoulder Coercion 5

2. chooses uniformly at random N distinct values x′i ∈ Z∗p, with i ∈ [N ];
3. chooses uniformly at random two sets of N ·M distinct values z′i,`, y

′
i,` ∈ Z∗p,

with i ∈ [N ], ` ∈ [M ];
4. finally, A1 commits to the values gα

′
` , ∀` ∈ [M ], and for every i ∈ [N ] it

commits to the tuple
(
vi, g

x′i , (gz
′
i,`)`∈[M ], (g

y′i,`)`∈[M ]

)
.

It is important that all the values α′`, x
′
i, z′i,`, y

′
i,` remain private.

The authority A2 performs the following operations:

1. chooses uniformly at randomM distinct values α′′` ∈ Z∗p, with ` ∈ [M ], these
will be the second half of the candidates’ masks;

2. chooses uniformly at random N distinct values x′′i ∈ Z∗p, with i ∈ [N ];
3. chooses uniformly at random N ·M distinct values y′′i,` ∈ Z∗p, with i ∈ [N ],
` ∈ [M ];

4. Finally A2 commits to the values gα
′′
` , ∀` ∈ [M ], and for every i ∈ [N ] it

commits to the tuple
(
vi, g

x′′i , (gy
′′
i,`)`∈[M ]

)
.

It is important that all the values α′′` , x
′′
i , y′′i,` remain private.

Once that all the commitments have been published, the authorities can de-
commit the values:

– A0 publishes the decommitments for the values gk, gλ, alongside all the
tuples

(
vi, (g

z̄i,`)`∈[M ]

)
∀i ∈ [N ];

– A1 publishes the decommitments for the values gα
′
`∀` ∈ [M ], and the tuples(

vi, g
x′i , (gz

′
i,`)`∈[M ], (g

y′i,`)`∈[M ]

)
∀i ∈ [N ];

– A2 publishes the decommitments for the values gα
′′
` ∀` ∈ [M ], and the tuples(

vi, g
x′′i , (gy

′′
i,`)`∈[M ]

)
∀i ∈ [N ].

To simplify notation we introduce the following definitions for aggregate val-
ues for all i ∈ [N ] and ` ∈ [M ]:

xi = x′i + x′′i , α` = α′` · α′′` , zi,` = z̄i,` · z′i,`, yi,` = y′i,` · y′′i,`. (1)

Registrar Phase For every voter vi ∈ V the following steps are performed:

1. Let Alice be the person associated to the voter vi, note that the authorities
do not need to know this association. She goes in a safe and controlled
environment where she is identified and authenticated as the eligible and
not yet registered voter vi. In this environment she can interact with all
three authorities without fear that any adversary can eavesdrop or interfere.

2. Alice creates a signing key-pair (si,Ki) and gives Ki to the authorities prov-
ing the knowledge of si (e.g. by signing a challenge message), and the au-
thorities associate Ki to vi in their respective voters lists.



6 R. Longo et C. Spadafora

3. A1 and A2 prove to Alice with a ZKP the knowledge of the exponents x′i and
x′′i respectively, corresponding to the values gx

′
i and gx

′′
i , that were publicly

decommitted at the end of the setup phase;
4. A0 chooses, for every i ∈ [N ], a random subset Vi ⊂ [M ] such that its

cardinality is exactly P , then sets:

σi,` =

{
k ⇐⇒ ` ∈ Vi
λ ⇐⇒ ` /∈ Vi

(2)

i.e. the random choice of the Vi determines which tokens will be valid and
which will be fake;

5. A0 takes the (publicly available) values gx
′
i and gx

′′
i and creates the step 0

of the ballot b̄0,i = (b̄0,i,`)`∈[M ] where:

b̄0,i,` =
(
gσi,` · gx

′
i · gx

′′
i

)z̄i,`
= gz̄i,`(σi,`+xi) ∀` ∈ [M ]. (3)

Then A0 sends to A1 the initial ballot b̄0,i and sends to Alice b̄0,i and Vi.
6. A0 proves the correctness of computations with the Schnorr ZKP presented

in [22]:
(a) A0 proves that the gz̄i,`σi,` are correct (using σi,` = k or σi,` = λ) with:

ω = σi,`, u = g, z = gσi,` , ū = gz̄i,` , z̄ = gz̄i,`σi,` ∀` ∈ Vi,
(4)

(b) then A0 proves that the b̄0,i,` are correct using for all ` ∈ [M ]:

ω = z̄i,`, u = g, z = gz̄i,` , ū = gσi,` · gx
′
i · gx

′′
i , z̄ = b̄0,i,`. (5)

7. A1 computes the step 1 of the ballot b̄1,i = (b̄1,i,`)`∈[M ] where:

b̄1,i,` =
(
b̄0,i,`

)z′i,` = gzi,`(σi,`+xi) ∀` ∈ [M ] (6)

and sends it to Alice and to A2.
8. A1 proves that the b̄1,i,` are correct using:

ω = z′i,`, u = g, z = gz
′
i,` , ū = b̄0,i,`, z̄ = b̄1,i,` ∀` ∈ [M ]. (7)

9. A2 chooses uniformly at random a permutation πi ∈ Sym([M ]) and computes
the step 2 of the ballot b̄2,i = (b̄2,i,`)`∈[M ] where:

b̄2,i,` =
(
b̄1,i,`

)y′′
i,π
−1
i

(`) = g
zi,`y

′′
i,π
−1
i

(`)
(σi,`+xi) ∀` ∈ [M ] (8)

and sends it to Alice and to A0, πi is sent to Alice and A1.
10. A2 proves that the b̄2,i,` are correct using:

ω = y′′
i,π−1

i (`)
, u = g, z = g

y′′
i,π
−1
i

(`) , ū = b̄1,i,`, z̄ = b̄2,i,` ∀` ∈ [M ]. (9)



Amun: Securing E-Voting Against Over-the-Shoulder Coercion 7

11. A0 computes the step 3 of the ballot b̄3,i = (b̄3,i,`)`∈[M ] where:

b̄3,i,` =
(
b̄2,i,`

) 1
z̄i,` = g

z′i,`y
′′
i,π
−1
i

(`)
(σi,`+xi) ∀` ∈ [M ] (10)

and sends it to Alice and to A1.
12. A0 proves that the b̄3,i,` are correct using:

ω =
1

z̄i,`
, u = gz̄i,` , z = g, ū = b̄2,i,`, z̄ = b̄3,i,` ∀` ∈ [M ]. (11)

13. A1 computes the final ballot bi = (bi,`)`∈[M ] where:

bi,` =
(
b̄3,i,πi(`)

) y′i,`
z′
i,πi(`) = gyi,`(σi,πi(`)+xi) ∀` ∈ [M ] (12)

and sends it to Alice and publishes on the BB the pair (Ki, bi).
14. A1 proves that the bi,` are correct using:

ω =
y′i,`

z′i,πi(`)
, u = gz

′
i,πi(`) , z = gy

′
i,` , ū = b̄3,i,πi(`), z̄ = bi,` ∀` ∈ [M ]. (13)

Note that Alice, thanks to the proofs and the knowledge of the intermediate
values, knows which ones are a valid token (the ones with σi,` = k), but thanks
to the random choices of Vi and πi the authorities cannot distinguish the tokens
unless they collude. Moreover the properties of the ZKP allow Alice to forge the
transcript changing which tokens are valid, making them useless for proving the
validity of a token.

A coercer could bypass the privacy given by the ZKP by forcing Alice to
use a predetermined randomness, so that the transcripts are no longer falsifiable
and she cannot disguise the valid tokens. For this reason it is advisable to source
the randomness from the authorities not normally involved in the ZKP so that
a coercer cannot force its choice. For example in Step 6 the randomness for the
ZKP challenge should be the XOR of two random strings provided by A1 and
A2 (note that the challenge remains random even if one of them is corrupt). If
this mitigation is in place, it is effectively impossible for Alice to reliably prove
the validity of her tokens.

Voting Phase Voters express their preferences by assigning the valid tokens to
their chosen candidates, and the fake tokens to the others. This assignment is
then signed by voter vi with si, and sent to be published on the BB. Once the
voting phase ends, duplicate, incomplete, and forged (i.e. not published by the
authorities on the BB during the registration phase or with invalid signatures)
ballots are discarded while the remaining are published on the BB, so voters can
check that their votes have been correctly registered.



8 R. Longo et C. Spadafora

Tallying Once the voting phase is over, the tallying can start.
In order to count the votes, the authorities have to process the tokens re-

ceived by each candidate, substituting the voter’s masks yi,` with the appropriate
candidate mask α`. Suppose that T ≤ N participants voted. Without loss of gen-
erality, we can assume that only the participants with index i ∈ [T ] voted, while
the remaining N − T abstained from voting.

For every i ∈ [T ] let φi : [M ] −→ [M ] be the bijective map that associates
to each candidate index ` the index of the token bi,φi(`) that the voter vi sent to
the candidate C`. Then, for every i ∈ [T ], ` ∈ [M ], the authorities process the
token bi,φi(`) by performing the following steps:

1. A1 computes and publishes the preliminary vote t̄`,i as:

t̄`,i =
(
bi,φi(`)

) α′`
y′
i,φi(`) = gα

′
`y
′′
i,φi(`)

(σi,πi(φi(`))+xi). (14)

2. Any observer could ask for a proof that this computation is correct. A1

proves that t̄`,i is correct using:

ω =
α′`

y′i,φi(`)
, u = gy

′
i,φi(`) , z = gα

′
` , ū = bi,φi(`), z̄ = t̄`,i. (15)

3. A2 then computes and publishes the final vote t`,i as:

t`,i = (t̄`,i)

α′′`
y′′
i,φi(`) = gα`(σi,πi(φi(`))+xi). (16)

4. Again, any observer could ask for a proof that this computation is correct.
A2 proves that t`,i is correct using:

ω =
α′′`

y′′i,φi(`)
, u = gy

′′
i,φi(`) , z = gα

′′
` , t̄ = b`,i, z̄ = t`,i. (17)

Once that all final votes have been computed, the actual tallying is performed.
Let R` be the number of valid tokens given to the `-th candidate (i.e. the

number of preferences received by said candidate), and let F` be the number of
fake tokens given to the `-th candidate. Clearly T = R` + F` ∀` ∈ [M ]. The
count R` can be computed with the following steps:

1. Both A1 and A2 can compute gα` (as (gα
′′
` )α

′
` and (gα

′
`)α
′′
` respectively).

The correctness can be proved by A1 using:

ω = α′`, u = g, z = gα
′
` , ū = gα

′′
` , z̄ = gα` , (18)

and by A2 using:

ω = α′′` , u = g, z = gα
′′
` , ū = gα

′
` , z̄ = gα` . (19)

Practically, each authority publishes half of the values.



Amun: Securing E-Voting Against Over-the-Shoulder Coercion 9

2. A0 computes and publishes gα`k = (gα`)
k and gα`λ = (gα`)

λ. then proves
that gα`k is correct using:

ω = k, u = g, z = gk, ū = gα` , z̄ = gα`k, (20)

and that gα`λ is correct using:

ω = λ, u = g, z = gλ, ū = gα` , z̄ = gα`λ. (21)

3. A1 computes
∑T
i=1 x

′
i, and publishes gα`

∑T
i=1 x

′
i .

4. Note that any observer can compute g
∑T
i=1 x

′
i =

∏T
i=1 g

x′i , A1 can prove that
gα`

∑T
i=1 x

′
i is correct using:

ω =

T∑
i=1

x′i, u = g, z = g
∑T
i=1 x

′
i , ū = gα` , z̄ = gα`

∑T
i=1 x

′
i . (22)

5. Similarly, A2 computes
∑T
i=1 x

′′
i and publishes gα`

∑T
i=1 x

′′
i .

6. Again, any observer can compute g
∑T
i=1 x

′′
i =

∏T
i=1 g

x′′i , and A2 can prove
that gα`

∑T
i=1 x

′′
i is correct using:

ω =

T∑
i=1

x′′i , u = g, z = g
∑T
i=1 x

′′
i , ū = gα` , z̄ = gα`

∑T
i=1 x

′′
i . (23)

7. Note that any observer can compute the value:

gα`(
∑T
i=1 xi+R`k+F`λ) =

T∏
i=1

t`,i. (24)

Given that:

gα`
∑T
i=1 xi = gα`

∑T
i=1(x′i+x

′′
i ) = gα`

∑T
i=1 x

′
i · gα`

∑T
i=1 x

′
i , (25)

anyone can compute:(
gα`k

)R` · (gα`λ)F` =
(
gα`

∑T
i=1 xi

)−1

· gα`(
∑T
i=1 xi+R`k+F`λ). (26)

8. Finally, note that now R` and F` can be easily computed by brute force. In
fact, given a positive integer T ∈ N it is possible to represent it in T + 1
ways as a sum of two non-negative integers, and the number of valid and
fake votes must sum up to the number of actual voters T , so the effort is
linear in the number of actual votes.

4 Security Analysis

The goal is to prove that an adversary cannot distinguish between valid and fake
v-tokens and guess how voters cast their preferences. Since election results are



10 R. Longo et C. Spadafora

obviously public, we have to avoid some trivial cases in which the adversary can
deduce the votes by simply observing the results.

Therefore we assume that the adversary controls one authority and all but
two voters, and that these two voters express distinct preferences, in particular
we let the adversary select two distinct sets of preferences, but they are randomly
assigned to the two voters. The adversary wins the security game if it guesses
correctly which voter expressed which preferences.

4.1 Security Model

The security of the protocol will be proven in terms of vote indistinguishability
(VI), as detailed in Definition 3.

The security of the protocol will be proved in the presence of a malicious
authority, so the simulator in the proof will take on the roles of the two honest
authorities and the two voters that the adversary does not control.

To simplify our analysis we assume that the adversary-controlled author-
ity does not intentionally fail decommitments or ZKPs, so the protocol does
not abort. This is a reasonable assumption considering the application context,
however it is not necessary to attain security. In fact, if the adversary wins
the security game with non-negligible advantage, then it must run the proto-
col smoothly with non-negligible probability (since it outputs its guess once the
protocol has correctly terminated).

Definition 2 (Security Game). The security game for the election protocol
proceeds as follows:

– Init. The adversary A chooses the authority and the N −2 users that it will
control. This means that the adversary knows which are the valid and fake
v-tokens of these users. The remaining two users are called free voters. The
challenger C takes the role of the other authorities and the free voters.

– Phase 0. A and C run the Setup and Registrar phases of the protocol,
interacting as needed.

– Phase 1. The adversary votes with some or all of the voters it controls.
– Challenge. A selects two distinct sets of preferences P̃0 6= P̃1, with P̃i ⊂

[M ], #P̃i = P for i = 0, 1. C flips a random coin µ ∈ {0, 1} to determine
which preference set the first free voter will use, i.e. P1 = P̃µ (the second one
uses the set P2 = P̃µ⊕1). Then, C constructs two random ballot assignment
maps φ̃1, φ̃2 : [M ] −→ [M ] such that φ̃i(`) refers to a valid token if and only
if ` ∈ Pi, for i = 1, 2. Finally, C votes by sending to the candidate C` the
φ̃1(`)-th token of the first free voter and the φ̃2(`)-th token of the second free
voter, ∀` ∈ [M ].

– Phase 2. The adversary votes with some or all of the voters it controls
which did not vote in Phase 1.

– Phase 3. A and C run the Tallying phase of the protocol, and the elec-
tion result is published. Note that the adversary can request the ZKPs of the
correctness of the computations performed by C, and vice versa.



Amun: Securing E-Voting Against Over-the-Shoulder Coercion 11

– Guess. The adversary outputs a guess µ′ of the coin flip that randomly
assigned the voting preferences of the two free voters.

A wins if µ′ = µ.

Definition 3 (Vote Indistinguishability). An E-Voting Protocol with secu-
rity parameter θ is VI-secure if, for every probabilistic polynomial-time adversary
A that outputs a guess µ′ of the coin flip µ (as described in the security game
of Definition 2), there exists a negligible function η such that:

P[µ′ = µ] ≤ 1

2
+ η(θ). (27)

In the following theorem we prove our voting protocol VI-secure under the
DDH assumption in the security game defined above.

Theorem 1. If the DDH assumption holds, then the protocol described in Sec-
tion 3.1 is VI-secure, as per Definition 3.

Proof. Suppose there exists a polynomial time adversary A, that can attack the
scheme with advantage ε. We claim that a simulator S can be built to play the
decisional DH game with advantage ε

2 . The simulator starts taking in a DDH
challenge:

(g,A = ga, B = gb, T ), (28)

with T = gab or T = R = gξ.
First we consider the case in which the adversary controls A0, where the

simulation proceeds as follows.

– Init. The adversary chooses the N − 2 users to control. Without loss of
generality we may assume that the two free voters are v1 and v2.

– Setup. S chooses uniformly at random in Z∗p the values x̃i, α̃`, ỹi,`, and z̃i,`
for all i ∈ [2], ` ∈ [M ], and implicitly sets for all i ∈ [2], ` ∈ [M ]:

x′′i = x̃i + (−1)ib, α′` = a · α̃`, y′i,` = a · ỹi,`, z′i,` = a · ỹi,`.
(29)

S chooses the other values for the authorities A1 and A2 following the pro-
tocol. Notice that in the improbable case where a = 0 the DDH problem is
easily solvable (ga = gab = 1), otherwise since a and b come from an uniform
distribution, then also these implicit values are uniform distributed, so the
choices of the simulator are indistinguishable from a real protocol execu-
tion. Note also that S can compute all the values gx

′′
i , gα

′
` , gy

′
i,` , gz

′
i,` , either

normally (when the parameter has been explicitly chosen) or as follows:

gx
′′
i = gx̃i ·B(−1)i , gα

′
` = Aα̃` , gy

′
i,` = Aỹi,` , gz

′
i,` = Az̃i,` . (30)

for all i ∈ [2], ` ∈ [M ]. Therefore, S can perfectly simulate the setup phase.



12 R. Longo et C. Spadafora

– Registrar Phase. For the voters vi with 3 ≤ i ≤ N , S can simulate this
phase following the protocol normally (since all relevant parameters have
been explicitly chosen), while for i ∈ [2] S does the following:
1. S proves the knowledge of x′i, and simulates the ZKP for x′′i (see [22]),
2. A computes the initial step of the ballot b̄0,i on behalf of A0 and proves

its correctness. From these proofs S extracts the values of k, λ, and z̄i,`
∀` ∈ [M ] (see [22]). Moreover, since A0 communicates the set of indexes
of valid tokens Vi to the voter vi (that is controlled by the simulator), S
can reconstruct the values of the σi,`∀` ∈ [M ].

3. S computes step 1 of the ballot b̄1,i = (b̄1,i,`)`∈[M ] as:

b̄1,i,` = Az̄i,`z̃i,`(σi,`+x
′
i+x̃i) · T z̄i,`z̃i,`(−1)i ∗= gzi,`(σi,`+xi) ∀` ∈ [M ]

(31)

where ∗= of Equation (31) holds iff T = gab in the DDH challenge. Since
it controls the voter vi, S does not have to simulate the ZKPs.

4. S can perform step 2 on behalf of A2 normally, then A computes step 3
on behalf of A0 and proves its correctness.

5. Finally S computes the final ballot bi = (bi,`)`∈[M ] as:

bi,` = Aỹi,`y
′′
i,`(σi,πi(`)+x

′
i+x̃i) · T ỹi,`y

′′
i,`(−1)i ∗= gyi,`(σi,πi(`)+xi) (32)

where again ∗= of Equation (32) holds if and only if T = gab in the DDH
challenge, and the ZKPs can be omitted.

– Voting: Phases 1, 2, and the Challenge are performed as in Definition 2.
– Tallying. Without loss of generality, suppose that only the vi with i ∈ [T ]

have voted. For ` ∈ [M ], S carries on with the simulation as follows:
1. S computes the preliminary and final votes on behalf of A1 and A2

following the protocol without problems. In fact, for i ∈ [2], we have
that

α′`
y′
i,φ̃i(`)

=
aα̃`

aỹi,φ̃i(`)
=

α̃`
ỹi,φ̃i(`)

∀` ∈ [M ], (33)

and these values are known to S.
2. S computes and publishes the values gα` = Aα̃`α

′′
` ∀` ∈ [M ], and simu-

lates the proofs of correctness.
3. Finally note that S can compute:

T∑
i=1

x′′i = x̃1 − b+ x̃2 + b+

T∑
i=3

x′′i = x̃1 + x̃2 +

T∑
i=3

x′′i , (34)

so for the rest of the tallying phase S can follow the protocol.
– Guess Eventually A will output a guess µ′ of the coin flip performed by

S during the Challenge. S then outputs 0 to guess that T = gab if µ′ = µ,
otherwise it outputs 1 to indicate that T is a random group element R ∈ G.



Amun: Securing E-Voting Against Over-the-Shoulder Coercion 13

The case in which the adversary controls A1 and the case in which the adversary
controlsA2, proceed similarly. A complete proof can be found in [citation omitted
for double-blind review ].

Essentially, in all three cases when T is not random the simulator S gives a
perfect simulation. This means that the advantage is preserved, so it holds that:

P[S(g,A,B, T = gab) = 0] =
1

2
+ ε. (35)

On the contrary, when T is a random element R ∈ G, every token and vote
belonging to the free voters becomes independent from the values that would
have been computed by following the protocol (since they are simulated using
the random value R), so A can gain no information about the votes from them,
while the tally is always correct. Since the security game is structured in such a
way that the tally and the tokens of the other voters (i.e. the values where T is
not used in the computation by S) do not give any information about the coin
flip µ, we have that:

P[S(g,A,B, T = R) = 0] =
1

2
. (36)

Therefore, S can play the DDH game with non-negligible advantage ε
2 .

4.2 General properties of the protocol

The general properties of a vote system introduced in [22] (see Section 2.2), can
all be proved for the protocol described in Section 3.1 in a very similar way, since
many assumptions on the blockchain made in [22] are covered by our assumptions
on the BB (see Section 2.1). Due to space reasons, we include here only the proof
that the Amun protocol satisfies Vote-Coercion Resistance as per Definition 1.

Proposition 1 (Vote-Coercion Resistance). If the DDH assumption holds,
then the protocol is vote-selling and coercion resistant, as per Definition 1.

Proof. In order to comply with the coercer’s request, a voter vi ∈ Vc has to
order the tokens so that the valid ones correspond to (ci,1, . . . , ci,P ). Since the
Registrar Phase is performed in a protected environment, only vi knows which
tokens are valid, and cannot prove it to A as discussed in Section 3.1.

Thanks to Theorem 1, if the DDH assumption holds, the protocol has vote-
indistinguishability and the only way to determine if a vote expresses a specific
choice is to distinguish valid and fake tokens. Since A cannot do so, all the
information that can be gained from the votes is given by the final tally. This
means exactly that the probability of A detecting that a voter in Vc has not
followed its instruction is the same in Ψ1 and Ψ2.

5 Conclusions

In this paper we have generalized the two-candidates-one-preference e-voting
protocol of [22] into anM -candidates-P -preferences protocol. We have preserved



14 R. Longo et C. Spadafora

the general construction which uses a system of ZKPs to ensure transparency
and full auditability of the whole process, but we have abandoned the blockchain
infrastructure in favor of a more traditional bulletin board. The protocol achieves
also the same extensive security properties of [22] (proven under the classical
Decisional Diffie-Hellman Assumption), including coercion resistance.

The notion of coercion resistance is rather intricate, and the differences be-
tween definitions are subtle. In its strongest form, coercion resistance includes
protection against forced abstention attacks and randomized voting. Although
our definition seems weaker, we remark that the most prominent e-voting pro-
tocols with stronger defence against coercion assume that there is a moment
during the voting phase when the voter is not under control of the attacker. The
Amun protocol, instead, protects the voter even if there is constant surveillance
from the coercer, thus may be preferable when the voting period is limited. In
fact, in this scenario, it is more likely for the attacker to maintain continuous
control. Moreover, we believe that randomized vote attacks are the least effec-
tive coercion for swaying an election result, a forced abstention may be more
effective, but it would require the coercer a considerable effort, considering that
more voters have to be controlled in order to achieve an impacting result. In
fact, the attacker should identify every coerced voter by requesting a signature,
in order to link the voter’s identity with a public key and its ballot, as published
in the BB.

Compared with the two-candidates protocol, our generalization introduces
an additional authority, that is required in order to properly mask the multiple
valid and fake tokens in each ballot, so that the system remains secure even if
one authority is corrupt. Note that the authorities can perform the setup phase
asynchronously, and possible DOS attacks may be mitigated with a long-lasting
Registrar phase. We can also adopt the strategy of dividing the authorities in
independent triplets that manage restricted pools of voters (much like how large-
scale elections are divided in voting districts). This approach limits the damage
in case more than one authority is corrupted, speeds up the final step of tallying
(whose computational cost is linear in the number of votes), and enhances the
overall efficiency by distributing the workload.

Many election systems allow voters to cast a blank ballot or to leave some of
the P possible preferences unexpressed. This feature can be easily added to the
protocol presented here by simply adding P dummy candidates that represent
blank choices.

References

1. Adida, B.: Helios: Web-based open-audit voting. In: USENIX security symposium.
vol. 17, pp. 335–348 (2008)

2. Bohli, J.M., Müller-Quade, J., Röhrich, S.: Bingo voting: Secure and coercion-free
voting using a trusted random number generator. In: International Conference on
E-Voting and Identity. pp. 111–124. Springer (2007)



Amun: Securing E-Voting Against Over-the-Shoulder Coercion 15

3. Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: Beleniosrf: A non-interactive
receipt-free electronic voting scheme. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1614–1625 (2016)

4. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.
In: IEEE Symposium on Security and Privacy. pp. 354–368 (2008)

5. Cortier, V., Fuchsbauer, G., Galindo, D.: Beleniosrf: A strongly receipt-free elec-
tronic voting scheme. IACR Cryptol. ePrint Arch. p. 629 (2015)

6. Cortier, V., Gaudry, P., Glondu, S.: Belenios: a simple private and verifiable elec-
tronic voting system. In: Foundations of Security, Protocols, and Equational Rea-
soning, pp. 214–238. Springer (2019)

7. Gardner, R.W., Garera, S., Rubin, A.D.: Coercion resistant end-to-end voting.
In: International Conference on Financial Cryptography and Data Security. pp.
344–361. Springer (2009)

8. Giustolisi, R., Bruni, A.: Privacy-preserving dispute resolution in the improved
bingo voting. In: International Joint Conference on Electronic Voting. pp. 67–83.
Springer (2020)

9. Grewal, G.S., Ryan, M.D., Bursuc, S., Ryan, P.Y.: Caveat coercitor: Coercion-
evidence in electronic voting. In: 2013 IEEE Symposium on Security and Privacy.
pp. 367–381. IEEE (2013)

10. Haines, T., Boyen, X.: Votor: conceptually simple remote voting against tiny
tyrants. In: Proceedings of the Australasian Computer Science Week Multicon-
ference. pp. 1–13 (2016)

11. Haines, T., Smyth, B.: Surveying definitions of coercion resistance. Cryptology
ePrint Archive (2019)

12. Heather, J., Lundin, D.: The append-only web bulletin board. In: International
Workshop on Formal Aspects in Security and Trust. pp. 242–256. Springer (2008)

13. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Towards Trustworthy Elections, pp. 37–63. Springer (2010)

14. Krips, K., Willemson, J.: On practical aspects of coercion-resistant remote voting
systems. In: International Joint Conference on Electronic Voting. pp. 216–232.
Springer (2019)

15. Küsters, R., Liedtke, J., Müller, J., Rausch, D., Vogt, A.: Ordinos: a verifiable
tally-hiding e-voting system. In: 2020 IEEE European Symposium on Security and
Privacy (EuroS&P). pp. 216–235. IEEE (2020)

16. Küsters, R., Müller, J., Scapin, E., Truderung, T.: select: A lightweight verifiable
remote voting system. In: 2016 IEEE 29th Computer Security Foundations Sym-
posium (CSF). pp. 341–354. IEEE (2016)

17. Kusters, R., Truderung, T., Vogt, A.: A game-based definition of coercion-
resistance and its applications. In: 2010 23rd IEEE Computer Security Foundations
Symposium (2010)

18. Lueks, W., Querejeta-Azurmendi, I., Troncoso, C.: VoteAgain: A scalable coercion-
resistant voting system. In: 29th USENIX Security Symposium. pp. 1553–1570
(2020)

19. Ryan, P.Y.: A variant of the chaum voter-verifiable scheme. In: Proceedings of the
2005 Workshop on Issues in the Theory of Security. pp. 81–88 (2005)

20. Ryan, P.Y., Rønne, P.B., Iovino, V.: Selene: Voting with transparent verifiability
and coercion-mitigation. In: International Conference on Financial Cryptography
and Data Security. pp. 176–192. Springer (2016)

21. Ryan, P.Y., Teague, V.: Pretty good democracy. In: International Workshop on
Security Protocols. pp. 111–130. Springer (2009)



16 R. Longo et C. Spadafora

22. Spadafora, C., Longo, R., Sala, M.: A coercion-resistant blockchain-based E-voting
protocol with receipts (2021). In: Advances in Mathematics of Communications.
American Institute of Mathematical Sciences, doi:10.3934/amc.2021005 (2021)

23. Zagórski, F., Carback, R.T., Chaum, D., Clark, J., Essex, A., Vora, P.L.: Re-
motegrity: Design and use of an end-to-end verifiable remote voting system. In:
International Conference on Applied Cryptography and Network Security. pp. 441–
457. Springer (2013)


	Amun: Securing E-Voting Against Over-the-Shoulder Coercion

