
Multiple Candidates Coercion-Resistant
Blockchain-Based E-Voting Protocol With

Receipts

Riccardo Longo1 and Chiara Spadafora2

1 riccardolongomath@gmail.com
2 c.spadaf@libero.it

Department of Mathematics, University Of Trento, 38123 Povo, Trento, Italy

Abstract. This paper extends the two-candidate’s protocol of [11] to
the multi-candidate case, making it applicable to elections where each
voter expresses P preferences among M possible choices. The gener-
alized protocol still achieves coercion and vote-selling resistance while
being transparent, fully verifiable and receipt-based. The protocol relies
on a generic blockchain with standard properties, and we prove the se-
curity of the construction under the standard Decisional Diffie Hellman
assumption.

1 Introduction

Electronic voting can help speed up the whole election process and make it
safer, however this technology can also create complex challenges to election op-
erations. The advent of blockchain, with its nice properties such as transparency
and non-repudiation [14], and its application to e-voting, promises to enhance
the transparency, verifiability and security of the whole election process, but it
also opens the door to a brand new complex set of problems. The blockchain
layer may be a custom implementation (e.g. through the framework Hyperledger
Fabric [2]) or exploit an existing and widely used blockchain (e.g. Bitcoin [8])
and use specific protocols to maintain a consistent subchain on top of it (e.g. [7]).

Since an election is a sensitive matter, a secure voting scheme should be
robust against to both coercion and vote-selling. A protocol is coercion-resistant
if voters can cast their ballots as they want, even if someone tries to actively
force them to vote for a specific candidate. A protocol is vote-selling resistant
if it does not give a proof of vote that can be understood by everyone, so any
transaction that may involve a specific vote as a counterpart does not have a
proof, thus the voter actually maintains free choice.

The protocol presented in [11] satisfied these properties while being receipt-
based3 (so that voters can check the correct tallying of their votes), by exploiting
an underlying blockchain. However the protocol considers only elections with
3 We exploit cryptography to give receipts that allow voters to verify that their votes
were counted as cast, without revealing which candidates were voted for.



2 R. Longo, C. Spadafora

just two candidates, i.e. two possible choices. In this paper we propose a natural
generalization that allows for multiple candidates and more than one choice,
which can also be exploited to express blank or partial ballots.

Organization We present some preliminaries in Section 2, in particular in Sec-
tion 2.2 we state the protocol that we use to demonstrate the correctness of the
system, and in Section 2.4 we describe what we mean by the term blockchain and
which are the consistency rules that miners are needed to enforce. We describe
our protocol in Section 3 and we provide a proof of security in Section 4. Finally,
in Section 5 we draw some conclusions.

Related Work As of June 2021, according to the database of the International
Institute for Democracy and Electoral Assistance4, twelve countries allow for
internet voting. Estonia remains the pioneer state in the sector with the use of
Helios [1]. In Helios, voters do not need to be authenticated until they cast votes.
Under such a situation, anyone can participate and test the system.

On the other hand, many countries allow remote voting only under special
circumstances. France, New Zealand, Pakistan and Panama allow remote voting
for citizens living abroad, Armenia reserves this privilege only to military and
diplomats.

Different is the use of physical e-voting, which uses DRE voting machines,
optical scanners or punched cards. These systems are far more widespread, for
example they are widely used in the US, India, Mexico, Venezuela, and other
countries.

Far more interesting are blockchain-based e-voting protocols, and some states
are already trying to use this technology. For example, this is the case of West
Virginia in 2018 and Utah County in 2020: both used the voting application
Voatz [13]. Voatz [12] is based on an application which is able to perform biomet-
ric identifcation of the voter. The system runs on the Voatz blockchain which is
built using the Hyperledger framework. In 2020, the Japanese startup LayerX an-
nounced5 its collaboration with the Tsukuba city Council to build a blockchain-
based e-voting application. This applications has not yet been used in a real
election but has been used to vote for social development proposals. In Septem-
ber 2019, the city of Moscow allowed its voters to vote for the Parliamentary
election through the use of a blockhain-based platform. Before its deployment
a French researcher found two vulnerabilities in the system that made it com-
pletely insecure [4].

In [9] the authors intend to provide an overview of a current state of the art
and current trends in the field of blockchain-based electronic voting (as of 2021).

2 Preliminaries

In this section we recall some basic definitions that we will use later on.
4 The database is available at https://www.idea.int/data-tools/data/icts-elections.
5 https://layerx.co.jp/news/pr201105/

https://www.idea.int/data-tools/data/icts-elections
https://layerx.co.jp/news/pr201105/


Multi-Candidate Coercion-Resistant E-Voting 3

Definition 1 (Index Notation). To abbreviate notation for the various in-
dexes, we will write [n] to indicate the set of integers between 1 and n:

[n] = {i ∈ N : 1 ≤ i ≤ n}, (1)

consequently we define the following notations for a set and a tuple of indexed
elements respectively:

{ei}i∈[n] = {ei : i ∈ [n]} (2)
(tj)j∈[m] = (t1, . . . , tm). (3)

Definition 2 (Negligible Function). η : N → R is a negligible function in
k ∈ N if, for every c ∈ N and for every γ ∈ N there exists k0 ∈ N such that

|η(k)| <
∣∣∣∣ 1

ckγ

∣∣∣∣ , ∀k > k0.

2.1 Decisional Diffie-Hellman Assumption

We adopt the definition of the decisional Diffie–Hellman (DDH) problem and
the relative hardness assumption given in [6].

Let p be a prime. Let a, b, ξ ∈ Z∗p be chosen at random and g be a generator
of a cyclic group G of order p. The DDH problem consists in constructing an
algorithm

B
(
g,A = ga, B = gb, T

)
→ {0, 1} (4)

to distinguish between the tuples
(
g,A,B, gab

)
and

(
g,A,B, gξ

)
, outputting re-

spectively 1 and 0. The advantage of B in this case is written as:

AdvB =
∣∣P [B (g,A,B, gab) = 1

]
− P

[
B
(
g,A,B, gξ

)
= 1
]∣∣ , (5)

where the probability is taken over the random choice of the generator g, of
the exponents a, b, ξ ∈ Z∗p, and of the random bits possibly consumed by B to
compute the response.

Definition 3 (DDH Assumption). The Decisional Diffie-Hellman assump-
tion holds if no probabilistic polynomial-time algorithm B has a non-negligible
advantage in solving the DDH problem.

2.2 Zero-Knowledge Proofs

A Zero-Knowledge proof (ZKP) is a cryptographic protocol which allows one
party (the prover) to convince another party (the verifier) about the truth of
some statement, without revealing anything else to the verifier.

Given a language L and a common input x then the three basic properties
of a ZKP are:

Definition 4 (Completeness). If x ∈ L (i.e. the prover is honest) then the
verifier should accept the proof with probability 1.



4 R. Longo, C. Spadafora

Definition 5 (Soundness). If x 6∈ L (i.e. the prover wants to convince the
verifier to know something that it does not know or the validity of a property that
is actually false) then the verifier should only accept with negligible probability.

Definition 6 (Zero-Knowledge). For every verifier V there exists an effi-
cient simulator that can generate transcripts that are indistinguishable from real
interaction between a real prover and V .

The third property guarantees that the verifier learns nothing from the in-
teraction, except that x ∈ L.

Equality of discrete logarithms We recall the variation of the Schnorr inter-
active protocol [10] presented in [11], which will be used in the proof of security
described in Section 4.

Protocol 1. Let G be a cyclic group of prime order p, let u, ū be generators
of G, and let z, z̄ ∈ G, ω ∈ Zp. The prover knows ω and wants to convince the
verifier that:

uω = z and ūω = z̄, (6)

without disclosing ω. The values of u, z, ū and z̄ are publicly known.

1. The prover generates a random r and computes t = ur and t̄ = ūr, then
sends (t, t̄) to the verifier.

2. The verifier computes a random c ∈ {0, 1} and sends it to the prover.
3. The prover creates a response s = r + c · ω and sends s to the verifier.
4. The verifier checks that us = zc · t, ūs = z̄c · t̄. If the check fails the proof

fails and the protocols aborts.
5. The previous steps are repeated τ = poly(log2(p)) times, i.e. the number of

repetitions is polynomial in the length of p (the security parameter).

Proposition 1 (Properties of Protocol 1). Under the DDH assumption, the
Protocol 1 satisfies the completeness, soundness and zero-knowledge properties,
as per Definitions 4 to 6.

Proof. A complete proof can be found in [11].

We recall also the following corollary and lemma, that will be useful in the
security analysis. Again, the proof may be found in [11], while further discussion
on Zero-Knowledge proofs and simulations can be found in [5].

Corollary 1 (Simulation of a ZKP). Let S be a simulator that has to prove
the validity of an input (u, z, ū, z̄) to a verifier V that can be rewound. If the
DDH assumption holds, S can simulate the proof without knowing ω, and this
simulation is indistinguishable from a real Zero-Knowledge proof.

Lemma 1 (Extracting the Secret). If A has to prove to us the equality of
discrete logarithms with the protocol above, and we have the ability to rewind its
execution, then we can extract from A the secret exponent ω.



Multi-Candidate Coercion-Resistant E-Voting 5

2.3 Commitment Scheme

A commitment scheme [3] is composed by two algorithms:

– Commit(m, r): takes the message m to commit with some random value r as
input and outputs the commitment c and a decommitment value d.

– Verify(c,m, d): takes the commitment c, the message m and the decommit-
ment value d and outputs true if the verification succeeds, false otherwise.

A commitment scheme must have the following two properties:

– Binding: it is infeasible to find m′ 6= m and d, d′ such that
Verify(c,m, d) = Verify(c,m′, d′) = true.

– Hiding: Let [c1, d1] = Commit(m1, r1) and [c2, d2] = Commit(m2, r2) with
m1 6= m2, then it is infeasible for an attacker having only c1, c2, m1 and m2

to distinguish which ci corresponds to which mi.

As in [11], our construction uses commitments to enhance the security, but
in our analysis are only marginally involved in the proof.

2.4 Blockchain

Also this “primitive” is used exactly as in the two-candidates protocol, so we
refer once again to [11] for a more comprehensive review and here we only recall
the main properties that we require:

– public: the contents of are publicly readable, and no attacker is not able
to indefinitely negate access or pass off a counterfeit copy as the original
blockchain;

– append-only: the contents are immutable once published, but new data can
be added, no attacker is able to reorder, delete or modify past transactions

– transaction authorization: a user’s tokens cannot be spent by anybody
else;

– vote validation: only valid votes are accepted and registered on the block-
chain, i.e. users must spend all their tokens together, and send them to
different candidates (see Section 3);

– no double spending: each token can be used in only one valid transaction.

2.5 General Requirements for Remote Voting Systems

Since an election is a sensitive matter, remote voting systems should satisfy
certain requirements before being deployed. In [11] these properties are formally
defined, and then it is proven that the two-candidates protocol satisfies them.
The generalized protocol presented here satisfies the same properties, and in
particular the properties of Correctness, Fairness, Transparency, Privacy, and
Verifiability may be proven in the exact same way as in the original protocol, so
we do not include definitions and proofs here.



6 R. Longo, C. Spadafora

To take into account the changes due to the presence of multiple candidates
and choices, however, we have to adapt the proof of Vote-Selling and Coercion
Resistance. So we recall the definition here, and we will prove that our proposed
protocol satisfies them in Section 4.2.

Definition 7 (Vote-coercion resistance). Voters should be able to cast their
ballots as they want, even if someone tries to coerce them.

Voters may sell their voting credentials (in the case of remote electronic
voting) and there is no mathematical countermeasure to prevent it. However,
a mitigation is to require additional information to properly operate with said
credentials, and prevent the certification of correctness of this additional info.

Definition 8 (Vote-Selling Resistance). A voting system is vote-selling re-
sistant if any vote receipt that it provides and the credentials to cast a vote can
be respectively properly interpreted and properly used only knowing some addi-
tional information ζ. The value of ζ is randomly generated and specific to the
voter, who is the only one who knows it, and can easily construct a fake value ζ ′
indistinguishable from ζ (in particular there is no certificate for the real value of
ζ).

Note that this definition covers also Definition 7, if, given two candidate’s
choices C and C ′, for every coercer that wants to force the choice C ′, a voter
(that wishes to express the choice C) can fabricate a value ζ ′ (as before) such
that the vote it casts expresses the choice C ′ if the additional information is ζ ′,
while it expresses C if the additional information is ζ.

3 Multi-Candidate Voting System

This section presents our proposal for a remote e-voting protocol based on block-
chain technology that manages an election with N voters, where each one ex-
presses P preferences among M candidates (obviously P < M).

The basic idea is that every voter owns M voting tokens (v-tokens): P are
valid, the others are fake, but only the voter knows which is which. When vot-
ing, voters express their preferences assigning the valid v-tokens to the chosen
candidates and the fake ones to the others. The voter gets a vote receipt on
which the transaction of all the tokens will be displayed. In the final tally the
fake v-tokens are discarded6 and the whole process is publicly auditable. The
aim of this voting system is to be fully verifiable, and to prevent coercion and
vote selling, while being almost completely transparent and giving to the voter
ballot casting assurance.

The protocol is divided into five phases:
6 With discard we do not mean that the tokens are removed from the blockchain,
which is infeasible due to our assumptions, but that everyone can count the valid
tokens, among all the ones received by the candidate.



Multi-Candidate Coercion-Resistant E-Voting 7

– Setup. Three authorities, knowing a list of eligible voters, generate the val-
ues for the creation of both the v-tokens and the masks associated to the
candidates.

– Registrar. Each voter creates a wallet (over which no one else has control)
and registers it with the three authorities, which then proceed to create M
indistinguishable v-tokens, P valid and M − P fake, that will be controlled
by this wallet. During the creation the voter receives also the information on
which token is valid and which is fake, and the authorities prove with ZKPs
that the tokens are correct. We assume that the interaction between the
voter and any authority is private and untappable (even an authority does
not see what the others are telling the voter). The information on which v-
token is valid and which is fake is given without a receipt so the voter cannot
officially prove the validity of a v-token, in particular this means that the
ZKP must be interactive, so that any transcript of the proofs is worthless
for an outsider.

– Voting Phase. All M v-tokens of a voter must be spent together to have
a valid transaction, and they have to go to distinct candidates. After the v-
tokens have been spent, a receipt is given to the voter. Here we assume that
every candidate receives at least one legitimate vote (with a valid v-token),
otherwise it is trivial to discern the validity of some tokens from the election
results.

– Tallying. The v-tokens are processed (see Section 3.1) and the number of
valid and fake votes received by each candidate is published. In the same
time, the authorities publish a set of values that allows to check that there
have been no manipulations of the ballots. Every voter can check, by ex-
amining the history of transactions received by the candidate’s node, that
their v-tokens have been cast correctly. Finally anyone can request a series
of ZKPs to assure that the v-tokens have been correctly processed during
the tallying phase.

3.1 Protocol Description

The key components involved in the protocol are:

1. A finite set of voters V = {vi}i∈[N ], with N ∈ N the number of eligible
voters;

2. A finite set of candidates C = {cl}l∈[M ] with M ∈ N the number of candi-
dates;

3. Three trusted authorities7 A0, A1, and A2.
4. One ballot bi (comprising M v-tokens) for every i ∈ [N ], i.e. one for each

eligible voter.

Let us now present the details of the protocol phase by phase.

7 We use a weak concept of trust here, since the conduct of these authorities can be
checked by voters.



8 R. Longo, C. Spadafora

Setup The authority A0 selects a secure group G of prime order p in which the
DDH assumption holds (see Definition 3), along with a generator g ∈ G. Then
it publishes G, g, p.

Then A0 performs the following operations:

1. chooses uniformly at random two values k and λ in Z∗p. A0 knows that the
v-tokens computed using k are valid, while the ones computed using λ are
fake, but this information is kept secret;

2. chooses uniformly at random N ·M distinct values z̄i,l ∈ Z∗p, with i ∈ [N ],
l ∈ [M ];

3. finally, A0 commits (see Section 2.3) to the values gk, gλ, and for every
i ∈ [N ] it commits to

(
vi, (g

z̄i,l)l∈[M ]

)
.

It is important that all the values z̄i,l, k, λ remain private.

The authority A1 performs the following operations:

1. chooses uniformly at random M distinct values α′l ∈ Z∗p, with l ∈ [M ], these
will be the first half of the candidates’ masks;

2. chooses uniformly at random N distinct values x′i ∈ Z∗p, with i ∈ [N ];
3. chooses uniformly at random two sets of N ·M distinct values z′i,l, y

′
i,l ∈ Z∗p,

with i ∈ [N ], l ∈ [M ];
4. finally, A1 commits (see Section 2.3) to the values gα

′
l , ∀l ∈ [M ], and for

every i ∈ [N ] it commits to the tuple
(
vi, g

x′i , (gz
′
i,l)l∈[M ], (g

y′i,l)l∈[M ]

)
.

It is important that all the values α′l, x
′
i, z′i,l, y

′
i,l remain private.

The authority A2 performs the following operations:

1. chooses uniformly at random M distinct values α′′l ∈ Z∗p, with l ∈ [M ], these
will be the second half of the candidates’ masks;

2. chooses uniformly at random N distinct values x′′i ∈ Z∗p, with i ∈ [N ];
3. chooses uniformly at random N ·M distinct values y′′i,l ∈ Z∗p, with i ∈ [N ],
l ∈ [M ];

4. Finally A2 commits (see Section 2.3) to the values gα
′′
l , ∀l ∈ [M ], and for

every i ∈ [N ] it commits to the tuple
(
vi, g

x′′i , (gy
′′
i,l)l∈[M ]

)
.

It is important that all the values α′′l , x
′′
i , y′′i,l remain private.

Once that all the commitments have been published, the authorities can de-
commit the values:

– A0 publishes the decommitments for the values gk, gλ, and all the tuples(
vi, (g

z̄i,l)l∈[M ]

)
∀i ∈ [N ];

– A1 publishes the decommitments for the values gα
′
l∀l ∈ [M ], and the tuples(

vi, g
x′i , (gz

′
i,l)l∈[M ], (g

y′i,l)l∈[M ]

)
∀i ∈ [N ];



Multi-Candidate Coercion-Resistant E-Voting 9

– A2 publishes the decommitments for the values gα
′′
l ∀l ∈ [M ], and the tuples(

vi, g
x′′i , (gy

′′
i,l)l∈[M ]

)
∀i ∈ [N ].

To simplify notation we introduce the following definitions for aggregate val-
ues:

xi = x′i + x′′i ∀i ∈ [N ] (7)
αl = α′l · α′′l ∀l ∈ [M ] (8)
zi,l = z̄i,l · z′i,l ∀i ∈ [N ],∀l ∈ [M ] (9)

yi,l = y′i,l · y′′i,l ∀i ∈ [N ],∀l ∈ [M ] (10)

Registrar Phase In the description of this phase we omit the details of the
operations that involve the blockchain, focusing on the interactions between the
registering voter and the authorities.

For every voter vi ∈ V the following steps are performed:

1. Let Alice be the person associated to the voter vi, note that the authorities
do not need to know this association, and vi can be a pseudonymous id. She
creates her own new wallet, and goes in a safe and controlled environment
where she is identified and authenticated as the eligible voter vi. In this
environment she can interact with all three authorities without fear that
any adversary can eavesdrop or interfere.

2. Alice proves to the authorities that she controls her wallet (e.g. by signing a
challenge message with the wallet’s private key), and the authorities associate
her wallet address to vi in their respective voters lists.

3. A1 proves to Alice with a ZKP the knowledge of the exponent x′i correspond-
ing to the value gx

′
i , that had publicly decommitted at the end of the setup

phase;
4. A2 proves to Alice with a ZKP the knowledge of the exponent x′′i corre-

sponding to the value gx
′′
i , that had publicly decommitted at the end of the

setup phase;
5. chooses, for every i ∈ [N ], a random subset Vi ⊂ [M ] such that its cardinality

is exactly P , then sets:

σi,l =

{
k ⇐⇒ l ∈ Vi
λ ⇐⇒ l /∈ Vi

(11)

i.e. the random choice of the Vi determines which tokens will be valid and
which will be fake;

6. A0 takes the (publicly available) values gx
′
i and gx

′′
i and creates the step 0

of the ballot b̄0,i = (b̄0,i,l)l∈[M ] where:

b̄0,i,l =
(
gσi,l · gx

′
i · gx

′′
i

)z̄i,l
(12)

= gz̄i,l(σi,l+xi) ∀l ∈ [M ] (13)



10 R. Longo, C. Spadafora

and sends to A1 the initial ballot b̄0,i, and sends to Alice b̄0,i and Vi.
7. A0 proves the correctness of computations with the Schnorr ZKP presented

in Section 2.2:
(a) First A0 proves that the gz̄i,lx

′
i are correct using:

ω = z̄i,l, u = g, z = gz̄i,l , ū = gx
′
i , z̄ = gz̄i,lx

′
i ∀l ∈ [M ]. (14)

(b) Then A0 proves that the gz̄i,lx
′′
i are correct using:

ω = z̄i,l, u = g, z = gz̄i,l , ū = gx
′′
i , z̄ = gz̄i,lx

′′
i ∀l ∈ [M ]. (15)

(c) Finally A0 proves that the gz̄i,lσi,l are correct using:

ω = k, u = g, z = gk, ū = gz̄i,l , z̄ = gz̄i,lk ∀l ∈ Vi, (16)

and:

ω = λ, u = g, z = gλ, ū = gz̄i,l , z̄ = gz̄i,lλ ∀l ∈ [M ] \ Vi. (17)

8. A1 computes the step 1 of the ballot b̄1,i = (b̄1,i,l)l∈[M ] where:

b̄1,i,l =
(
b̄0,i,l

)z′i,l (18)

= gzi,l(σi,l+xi) ∀l ∈ [M ] (19)

and sends it to Alice and to A2.
9. A1 proves that the b̄1,i,l are correct using:

ω = z′i,l, u = g, z = gz
′
i,l , ū = b̄0,i,l, z̄ = b̄1,i,l ∀l ∈ [M ]. (20)

10. A2 chooses uniformly at random a permutation πi ∈ Sym([M ]) and computes
the step 2 of the ballot b̄2,i = (b̄2,i,l)l∈[M ] where:

b̄2,i,l =
(
b̄1,i,l

)y′′
i,π
−1
i

(l) (21)

= g
zi,ly

′′
i,π
−1
i

(l)
(σi,l+xi) ∀l ∈ [M ] (22)

and sends it to Alice and to A0, πi is sent to Alice and A1.
11. A2 proves that the b̄2,i,l are correct using:

ω = y′′
i,π−1

i (l)
, u = g, z = g

y′′
i,π
−1
i

(l) , ū = b̄1,i,l, z̄ = b̄2,i,l ∀l ∈ [M ].

(23)
12. A0 computes the step 3 of the ballot b̄3,i = (b̄3,i,l)l∈[M ] where:

b̄3,i,l =
(
b̄2,i,l

) 1
z̄i,l (24)

= g
z′i,ly

′′
i,π
−1
i

(l)
(σi,l+xi) ∀l ∈ [M ] (25)

and sends it to Alice and to A1.



Multi-Candidate Coercion-Resistant E-Voting 11

13. A0 proves that the b̄3,i,l are correct using:

ω =
1

z̄i,l
, u = gz̄i,l , z = g, ū = b̄2,i,l, z̄ = b̄3,i,l ∀l ∈ [M ]. (26)

14. A1 computes the final ballot bi = (bi,l)l∈[M ] where:

bi,l =
(
b̄3,i,πi(l)

) y′i,l
z′
i,πi(l) (27)

= gyi,l(σi,πi(l)+xi) ∀l ∈ [M ] (28)

and sends it to Alice and her wallet (where the value becomes final and
public).

15. A1 proves that the bi,l are correct using:

ω =
y′i,l

z′i,πi(l)
, u = gz

′
i,πi(l) , z = gy

′
i,l , ū = b̄3,i,πi(l), z̄ = bi,l ∀l ∈ [M ].

(29)

Note that Alice, thanks to the proofs and the knowledge of the intermediate
values, knows which ones are a valid token (the ones with σi,l = k), but thanks
to the random choices of Vi and πi the authorities cannot distinguish the tokens
unless they collude.

Voting Phase Voters express their preferences by sending the valid tokens to
their chosen candidates, and the fake tokens to the other candidates. The M
v-tokens are sent with a single transaction on the blockchain to the respective
candidates. As stated in Section 2.4, blockchain rules allow only votes that send
one token to each candidate, prevent voters to vote twice, and guarantee that
only registered voters can cast their ballots. Each voter receives the receipt of
the vote (which basically is the insertion of the transaction in the blockchain),
and the assumed properties of the blockchain guarantee that no vote is changed
or deleted.

Tallying Once the voting phase is over, the tallying can start.
In order to count the votes, the authorities have to process the tokens re-

ceived by each candidate, substituting the voter’s masks yi,l with the appropriate
candidate mask αl. Suppose that T ≤ N participants voted. Without loss of gen-
erality, we can assume that only the participants with index i ∈ [T ] voted, while
the remaining N − T abstained from voting. Note that the voting addresses can
be seen by everyone in the blockchain, and since the authorities have registered
the association of these addresses to the ids vi, they can correctly process each
token, but they do not know the real identities of the corresponding person.

For every i ∈ [T ] let φi : [M ] −→ [M ] be the bijective map that associates
to each candidate index l the index of the token bi,φi(l) that the voter vi sent to
the candidate Cl. Then, for every i ∈ [T ], l ∈ [M ], the authorities process the
token bi,φi(l) by performing the following steps:



12 R. Longo, C. Spadafora

1. A1 computes the preliminary vote t̄l,i as:

t̄l,i =
(
bi,φi(l)

) α′l
y′
i,φi(l) (30)

= gα
′
ly
′′
i,φi(l)

(σi,πi(φi(l))+xi), (31)

and registers it on the blockchain.
2. Any observer could ask for a proof that this computation is correct. A1

proves that t̄l,i is correct using:

ω =
α′l

y′i,φi(l)
, u = gy

′
i,φi(l) , z = gα

′
l , ū = bi,φi(l), z̄ = t̄l,i.

(32)
3. A2 then computes the final vote tl,i as:

tl,i = (t̄l,i)

α′′l
y′′
i,φi(l) (33)

= gαl(σi,πi(φi(l))+xi), (34)

and registers it on the blockchain.
4. Again, any observer could ask for a proof that this computation is correct.
A2 proves that tl,i is correct using:

ω =
α′′l

y′′i,φi(l)
, u = gy

′′
i,φi(l) , z = gα

′′
l , t̄ = bl,i, z̄ = tl,i. (35)

Once that all final votes have been computed, the actual tallying is performed.
Let Rl be the number of valid tokens given to the l-th candidate (i.e. the

number of preferences received by said candidate), and let Fl be the number of
fake tokens given to the l-th candidate. Clearly T = Rl + Fl ∀l ∈ [M ]. The
count Rl can be computed with the following steps:

1. A1 computes and publishes gαl =
(
gα
′′
l

)α′l
. Note that the same could be

done by A2 as:
(
gα
′
l

)α′′l
.

The correctness can be proved by A1 using:

ω = α′l, u = g, z = gα
′
l , ū = gα

′′
l , z̄ = gαl , (36)

and by A2 using:

ω = α′′l , u = g, z = gα
′′
l , ū = gα

′
l , z̄ = gαl . (37)

A practical approach could be that A1 publishes half of the values, and A2

the other half.



Multi-Candidate Coercion-Resistant E-Voting 13

2. A0 computes and publishes gαlk = (gαl)
k and gαlλ = (gαl)

λ. then proves
that gαlk is correct using:

ω = k, u = g, z = gk, ū = gαl , z̄ = gαlk, (38)

and that gαlλ is correct using:

ω = λ, u = g, z = gλ, ū = gαl , z̄ = gαlλ. (39)

3. A1 computes
∑T
i=1 x

′
i, and publishes gα1

∑T
i=1 x

′
i .

4. Note that any observer can compute g
∑T
i=1 x

′
i =

∏T
i=1 g

x′i , and then ask for
a proof that the authority’s computations are correct.
A1 proves that gαl

∑T
i=1 x

′
i is correct using:

ω =

T∑
i=1

x′i, u = g, z = g
∑T
i=1 x

′
i , ū = gαl , z̄ = gαl

∑T
i=1 x

′
i . (40)

5. Similarly, A2 computes
∑T
i=1 x

′′
i and publishes gα1

∑T
i=1 x

′′
i .

6. Again, any observer can compute g
∑T
i=1 x

′′
i =

∏T
i=1 g

x′′i , and then ask for a
proof that the authority’s computation is correct.
A2 proves that gαl

∑T
i=1 x

′′
i is correct using:

ω =

T∑
i=1

x′′i , u = g, z = g
∑T
i=1 x

′′
i , ū = gαl , z̄ = gαl

∑T
i=1 x

′′
i . (41)

7. Note that any observer can compute the value:

gαl(
∑T
i=1 xi+Rlk+Flλ) =

T∏
i=1

tl,i. (42)

Given that:

gαl
∑T
i=1 xi = gαl

∑T
i=1(x′i+x

′′
i ) = gαl

∑T
i=1 x

′
i · gαl

∑T
i=1 x

′
i , (43)

anyone can compute:

(
gαlk

)Rl · (gαlλ)Fl =
(
gαl

∑T
i=1 xi

)−1

· gαl(
∑T
i=1 xi+Rlk+Flλ). (44)

8. Finally, note that now Rl and Fl can be easily computed by brute force. In
fact, given a positive integer T ∈ N it is possible to represent it in T + 1
ways as a sum of two non-negative integers, and the number of valid and
fake votes must sum up to the number of actual voters T , so the effort is
linear in the number of actual votes.



14 R. Longo, C. Spadafora

4 Security Analysis

The goal is to prove that an adversary cannot distinguish between valid and fake
v-tokens and guess how voters cast their preferences. Since election results are
obviously public, we have to avoid some trivial cases in which the adversary can
deduce the votes by simply observing the results.

Therefore we assume that the adversary controls one authority and all but
two voters, and that these two voters express distinct preferences, in particular
we let the adversary select two distinct sets of preferences, but they are randomly
assigned to the two voters. The adversary wins the security game if it guesses
correctly which voter expressed which preferences.

4.1 Security Model

The security of the protocol will be proven in terms of vote indistinguishability
(VI), as detailed in Definition 10.

The security of the protocol will be proved in the presence of a malicious
authority, so the simulator in the proof will take on the roles of the two honest
authorities and the two voters that the adversary does not control.

To simplify our analysis we assume that the adversary-controlled author-
ity does not intentionally fail decommitments or ZKPs, so the protocol does
not abort. This is a reasonable assumption considering the application context,
however it is not necessary to attain the security. In fact, if the adversary wins
the security game with non-negligible advantage, then it must run the proto-
col smoothly with non-negligible probability (since it outputs its guess once the
protocol has correctly terminated).

Definition 9 (Security Game). The security game for the election protocol
proceeds as follows:

– Init. The adversary A chooses the authority and the N −2 users that it will
control. This means that the adversary knows which are the valid and fake
v-tokens of these users. The remaining two users are called free voters. The
challenger C takes the role of the other authorities and the free voters.

– Phase 0. A and C run the Setup and Registrar phases of the protocol,
interacting as needed.

– Phase 1. The adversary votes with some or all of the voters it controls.
– Challenge. A selects two distinct sets of preferences P̃0 6= P̃1, with P̃i ⊂

[M ], #P̃i = P for i = 0, 1. C flips a random coin µ ∈ {0, 1} to determine
which preference set the first free voter will use, i.e. P1 = P̃µ (the second one
uses the set P2 = P̃µ⊕1). Then, C constructs two random ballot assignment
maps φ̃1, φ̃2 : [M ] −→ [M ] such that φ̃i(l) is a valid token if and only if
l ∈ Pi, for i = 1, 2. Finally, C votes by sending to the candidate Cl the φ̃1(l)-
th token of the first free voter and the φ̃2(l)-th token of the second free voter,
∀l ∈ [M ].

– Phase 2. The adversary votes with some or all of the voters it controls
which did not vote in Phase 1.



Multi-Candidate Coercion-Resistant E-Voting 15

– Phase 3. A and C run the Tallying phase of the protocol, and the elec-
tion result is published. Note that the adversary can request the ZKPs of the
correctness of the computations performed by C, and vice versa.

– Guess. The adversary outputs a guess µ′ of the coin flip that randomly
assigned the voting preferences of the two free voters.

A wins if µ′ = µ.

Definition 10 (Vote Indistinguishability). An E-Voting Protocol with se-
curity parameter θ is VI-secure if, for every probabilistic polynomial-time adver-
sary A that outputs a guess µ′ of the coin flip µ (as described in the security
game of Definition 9), there exists a negligible function η such that:

P[µ′ = µ] ≤ 1

2
+ η(θ). (45)

In the following theorem we prove our voting protocol VI-secure under the
DDH assumption (Definition 3) in the security game defined above.

Theorem 1. If the DDH assumption of Definition 3 holds, then the protocol
described in Section 3.1 is VI-secure, as per Definition 10.

Proof. Suppose there exists a polynomial time adversary A, that can attack the
scheme with advantage ε. We claim that a simulator S can be built to play the
decisional DH game with advantage ε

2 . The simulator starts taking in a DDH
challenge:

(g,A = ga, B = gb, T ), (46)

with T = gab or T = R = gξ.
First we consider the case in which the adversary controls A0, where the

simulation proceeds as follows.

– Init. The adversary chooses the N − 2 users to control. Without loss of
generality we may assume that the two free voters are v1 and v2.

– Setup. S chooses uniformly at random in Z∗p the values x̃i for i ∈ [2], α̃l for
l ∈ [M ], and ỹi,l, z̃i,l for i ∈ [2], l ∈ [M ], and implicitly sets:

x′′i = x̃i + (−1)ib, ∀i ∈ [2], (47)
α′l = a · α̃l ∀l ∈ [M ], (48)
y′i,l = a · ỹi,l, ∀i ∈ [2], l ∈ [M ], (49)

z′i,l = a · ỹi,l, ∀i ∈ [2], l ∈ [M ]. (50)

S chooses the other values for the authorities A1 and A2 following the pro-
tocol. Notice that in the improbable case where a = 0 the DDH problem is
easily solvable (ga = gab = 1), otherwise since a and b come from an uniform
distribution, then also these implicit values are uniform distributed, so the



16 R. Longo, C. Spadafora

choices of the simulator are indistinguishable from a real protocol execu-
tion. Note also that S can compute all the values gx

′′
i , gα

′
l , gy

′
i,l , gz

′
i,l , either

normally (when the parameter has been explicitly chosen) or as follows:

gx
′′
i = gx̃i ·B(−1)i ∀i ∈ [2], (51)

gα
′
l = Aα̃l ∀l ∈ [M ], (52)

gy
′
i,l = Aỹi,l ∀i ∈ [2], l ∈ [M ], (53)

gz
′
i,l = Az̃i,l ∀i ∈ [2], l ∈ [M ]. (54)

Therefore, S can perfectly simulate the setup phase.
– Registrar Phase. For the voters vi with 3 ≤ i ≤ N , S can simulate this

phase following the protocol normally (since all relevant parameters have
been explicitly chosen), while for i ∈ [2] the simulation is carried on as
follows:
1. S proves the knowledge of x′i normally, and simulates the ZKP for x′′i ,

as per Corollary 1.
2. A computes the initial step of the ballot b̄0,i on behalf of A0 and proves

its correctness. From these proofs S extracts the values of k, λ, and z̄i,l
∀l ∈ [M ], as per Lemma 1. Moreover, since A0 communicates the set
of indexes of valid tokens Vi to the voter vi (that is controlled by the
simulator), S can reconstruct the values of the σi,l∀l ∈ [M ].

3. S computes step 1 of the ballot b̄1,i = (b̄1,i,l)l∈[M ] as:

b̄1,i,l = Az̄i,lz̃i,l(σi,l+x
′
i+x̃i) · T z̄i,lz̃i,l(−1)i (55)

∗
= gz̄i,laz̃i,l(σi,l+x

′
i+x̃i+(−1)ib) (56)

= gzi,l(σi,l+xi) ∀l ∈ [M ] (57)

where Equation (56) holds if and only if T = gab in the DDH challenge.
Notice that, since it controls the voter vi, S does not have to simulate
the ZKPs.

4. S can perform step 2 on behalf of A2 normally, then A computes step 3
on behalf of A0 and proves its correctness.

5. Finally S computes the final ballot bi = (bi,l)l∈[M ] as:

bi,l = Aỹi,ly
′′
i,l(σi,πi(l)+x

′
i+x̃i) · T ỹi,ly

′′
i,l(−1)i (58)

∗
= gaỹi,ly

′′
i,l(σi,πi(l)+x

′
i+x̃i+(−1)ib) (59)

= gyi,l(σi,πi(l)+xi) ∀l ∈ [M ] (60)

where again Equation (59) holds if and only if T = gab in the DDH
challenge, and the ZKPs can be omitted.

– Voting: Phase 1, the Challenge, and Phase 2 are performed as described
in Definition 9.

– Tallying. Without loss of generality, suppose that only the vi with i ∈ [T ]
have voted. For l ∈ [M ], S carries on with the simulation as follows:



Multi-Candidate Coercion-Resistant E-Voting 17

1. S computes the preliminary and final votes on behalf of A1 and A2

following the protocol without problems. In fact, for i ∈ [2], we have
that

α′l
y′
i,φ̃i(l)

=
aα̃l

aỹi,φ̃i(l)
=

α̃l
ỹi,φ̃i(l)

∀l ∈ [M ], (61)

and these values are known to S.
2. S computes and publishes the values gαl as:

gαl = Aα̃lα
′′
l ∀l ∈ [M ], (62)

and simulates the proofs of correctness.
3. Finally note that S can compute:

T∑
i=1

x′′i = x̃1 − b+ x̃2 + b+

T∑
i=3

x′′i = x̃1 + x̃2 +

T∑
i=3

x′′i , (63)

so for the rest of the tallying phase S can follow the protocol without
any problem.

– Guess Eventually the adversary will output a guess µ′ of the coin flip per-
formed by S during the Challenge. The simulator then outputs 0 to guess
that T = gab if µ′ = µ, otherwise it outputs 1 to indicate that T is a random
group element R ∈ G.

Now we consider the case in which the adversary controls A1. Focusing on the
differences from the previous case, the simulation proceeds as follows.

– Setup. S chooses uniformly at random in Z∗p the values x̃i for i ∈ [2], α̃l for
l ∈ [M ], and ỹi,l, z̃i,l for i ∈ [2], l ∈ [M ], and implicitly sets:

x′′i = x̃i + (−1)ib, ∀i ∈ [2], (64)
α′′l = a · α̃l ∀l ∈ [M ], (65)
y′′i,l = a · ỹi,l, ∀i ∈ [2], l ∈ [M ], (66)

z̄i,l = a · ỹi,l, ∀i ∈ [2], l ∈ [M ]. (67)

S chooses the other values for the authorities A0 and A2 following the proto-
col. As before, the choices of the simulator are indistinguishable from a real
protocol execution. Note also that S can compute all the values gx

′′
i , gα

′′
l ,

gy
′′
i,l , gz̄i,l , either normally (when the parameter has been explicitly chosen)

or as follows:

gx
′′
i = gx̃i ·B(−1)i ∀i ∈ [2], (68)

gα
′′
l = Aα̃l ∀l ∈ [M ], (69)

gy
′′
i,l = Aỹi,l ∀i ∈ [2], l ∈ [M ], (70)

gz̄i,l = Az̃i,l ∀i ∈ [2], l ∈ [M ]. (71)

Therefore, S can perfectly simulate the setup phase.



18 R. Longo, C. Spadafora

– Registrar Phase. For i ∈ [2] the simulation is carried on as follows:
1. A proves the knowledge of x′i on behalf of A1, and from this proof S

extracts the proven value.
2. S simulates the ZKP for x′′i on behalf of A2.
3. S computes on behalf of A0 the initial step of the ballot b̄0,i = (b̄0,i,l)l∈[M ]

as:

b̄0,i,l = Az̃i,l(σi,l+x
′
i+x̃i) · T z̃i,l(−1)i (72)

∗
= gaz̃i,l(σi,l+x

′
i+x̃i+(−1)ib) (73)

= gz̄i,l(σi,l+xi) ∀l ∈ [M ] (74)

where Equation (73) holds if and only if T = gab in the DDH challenge.
Notice that, since it controls the voter vi, S does not have to simulate
the ZKPs.

4. A performs the step 1 and proves its correctness. From the proof S ex-
tracts the value of z′i,l.

5. Since the output of step 2 is only seen by vi and A0 (both controlled by
the simulator), S does not have to simulate it, and computes directly the
step 3 b̄3,i = (b̄3,i,l)l∈[M ] (on behalf of A0) as:

b̄3,i,l = A
z′i,lỹi,π−1

i
(l)

(σi,l+x
′
i+x̃i) · T

z′i,lỹi,π−1
i

(l)
(−1)i

(75)

∗
= g

z′i,laỹi,π−1
i

(l)
(σi,l+x′i+x̃i+(−1)ib)

(76)

= g
z′i,ly

′′
i,π
−1
i

(l)
(σi,l+xi) ∀l ∈ [M ] (77)

where again Equation (76) holds if and only if T = gab in the DDH
challenge, and the ZKPs can be omitted.

6. A computes the final ballot and proves its correctness. From the proof S
extracts the values y′i,l

z′
i,πi(l)

, from which it derives the values y′i,l since the

z′i,l and πi are already known.
– Tallying. Without loss of generality, suppose that only the vi with i ∈ [T ]

have voted. For l ∈ [M ], S carries on the simulation as follows:
1. A computes the preliminary votes on behalf of A1 and proves their cor-

rectness. From the proofs S extracts the values α′l
y′
i,φ̃i(l)

, from which it

derives the values α′l since the y′i,l and φ̃i are already known.
2. S computes and proves the correctness of the final votes on behalf of A2

following the protocol without problems. In fact, for i ∈ [2], we have that

α′′l
y′′
i,φ̃i(l)

=
aα̃l

aỹi,φ̃i(l)
=

α̃l
ỹi,φ̃i(l)

∀l ∈ [M ], (78)

and these values are known to S.



Multi-Candidate Coercion-Resistant E-Voting 19

3. S may compute and publish the values gαl as:

gαl = Aα
′
lα̃l ∀l ∈ [M ], (79)

and simulates the proofs of correctness.
4. Finally note that S can compute:

T∑
i=1

x′′i = x̃1 + x̃2 +

T∑
i=3

x′′i , (80)

so for the rest of the tallying phase S can follow the protocol without
any problem.

Finally we consider the case in which the adversary controls A2. Focusing on
the differences from the previous cases, the simulation proceeds as follows.

– Setup. S chooses uniformly at random in Z∗p the values x̃i for i ∈ [2], α̃l for
l ∈ [M ], and ỹi,l for i ∈ [2], l ∈ [M ], and implicitly sets:

x′i = x̃i + (−1)ib, ∀i ∈ [2], (81)
α′l = a · α̃l ∀l ∈ [M ], (82)
y′i,l = a · ỹi,l, ∀i ∈ [2], l ∈ [M ], (83)

z′i,l = a · ỹi,l, ∀i ∈ [2], l ∈ [M ]. (84)

S chooses the other values for the authorities A0 and A1 following the pro-
tocol. Once again the choices of the simulator are indistinguishable from a
real protocol execution. Note also that S can compute all the values gx

′
i , gα

′
l ,

gy
′
i,l , gz

′
i,l , either normally (when the parameter has been explicitly chosen)

or as follows:

gx
′
i = gx̃i ·B(−1)i ∀i ∈ [2], (85)

gα
′
l = Aα̃l ∀l ∈ [M ], (86)

gy
′
i,l = Aỹi,l ∀i ∈ [2], l ∈ [M ], (87)

gz
′
i,l = Az̃i,l ∀i ∈ [2], l ∈ [M ]. (88)

Therefore, S can perfectly simulate the setup phase.
– Registrar Phase. For i ∈ [2] the simulation is carried on as follows:

1. S and simulates the ZKP for x′i on behalf of A1.
2. A proves the knowledge of x′′i on behalf of A2, and from this proof S

extracts the proven value.
3. Since the output of step 0 is only seen by vi and A1 (both controlled by

the simulator), S does not have to simulate it, and computes directly the
step 1 b̄1,i = (b̄1,i,l)l∈[M ] as:

b̄1,i,l = Az̄i,lz̃i,l(σi,l+x̃i+x
′′
i ) · T z̄i,lz̃i,l(−1)i (89)

∗
= gz̄i,laz̃i,l(σi,l+x̃i+(−1)ib+x′′i ) (90)

= gzi,l(σi,l+xi) ∀l ∈ [M ] (91)



20 R. Longo, C. Spadafora

where Equation (90) holds if and only if T = gab in the DDH challenge.
Notice that, since it controls the voter vi, S does not have to simulate
the ZKPs.

4. A performs the step 2 and proves its correctness. From the proof S ex-
tracts the value of y′′i,l. Notice also that A gives the permutations πi to
S.

5. Since the output of step 3 is only seen by vi and A1 (both controlled by
the simulator), S does not have to simulate it, and computes directly the
final ballot bi = (bi,l)l∈[M ] (on behalf of A1) as:

bi,l = Aỹi,ly
′′
i,l(σi,πi(l)+x̃i+x

′′
i ) · T ỹi,ly

′′
i,l(−1)i (92)

∗
= gaỹi,ly

′′
i,l(σi,πi(l)+x̃i+(−1)ib+x′′i ) (93)

= gyi,l(σi,πi(l)+xi) ∀l ∈ [M ] (94)

where again Equation (93) holds if and only if T = gab in the DDH
challenge, and the ZKPs can be omitted.

– Tallying. Without loss of generality, suppose that only the vi with i ∈ [T ]
have voted. For l ∈ [M ], S carries on the simulation as follows:
1. S computes and proves the correctness of the preliminary votes on behalf

of A1 following the protocol without problems. In fact, for i ∈ [2], we
have that

α′l
y′
i,φ̃i(l)

=
aα̃l

aỹi,φ̃i(l)
=

α̃l
ỹi,φ̃i(l)

∀l ∈ [M ], (95)

and these values are known to S.
2. A computes the final votes on behalf of A2 and proves their correctness.

From the proofs S extracts the values α′′l
y′′
i,φ̃i(l)

, from which it derives the

values α′′l since the y′′i,l and φ̃i are already known.
3. S may compute and publish the values gαl as:

gαl = Aα̃lα
′′
l ∀l ∈ [M ], (96)

and simulates the proofs of correctness.
4. Finally note that S can compute:

T∑
i=1

x′i = x̃1 + x̃2 +

T∑
i=3

x′i, (97)

so for the rest of the tallying phase S can follow the protocol without
any problem.

In all three cases, when T is not random the simulator S gives a perfect
simulation. This means that the advantage is preserved, so it holds that:

P[S(g,A,B, T = gab) = 0] =
1

2
+ ε. (98)



Multi-Candidate Coercion-Resistant E-Voting 21

On the contrary, when T is a random element R ∈ G, every token and vote
belonging to the free voters becomes independent from the values that would
have been computed by following the protocol (since they are simulated using
the random value R), so A can gain no information about the votes from them,
while the tallying is always correct. Since the security game is structured in such
a way that the tallying and the token and votes of the other voters (i.e. the values
where T is not used in the computation by S) do not give any information about
the coin flip µ, we have that:

P[S(g,A,B, T = R) = 0] =
1

2
. (99)

Therefore, S can play the DDH game with non-negligible advantage ε
2 .

4.2 General properties of the protocol

As already stated in Section 2.5, the general properties of a vote system intro-
duced in [11] can all be proved for the protocol described in Section 3.1 in the
exact same way as for the two-candidates protocol, with the sole exception of
vote-selling and coercion resistance, which are given by the following proposition.

Proposition 2 (Vote-Selling and Coercion Resistance). If the DDH as-
sumption holds, then the protocol is vote-selling and coercion resistant, as per
Definitions 7 and 8.

Proof. Thanks to Theorem 1, if the DDH assumption holds, the protocol has
vote-indistinguishability and the only way to distinguish the proper votes is
to distinguish valid and fake tokens. The voter vi can do so with the addi-
tional information ζi = {πi(l) : l ∈ Vi} (i.e. the the indexes of the valid to-
kens in the final ballot, randomly determined during the registrar phase). Vi is
chosen by A0, πi is chosen by A2 and communicated to A1, but supposing at
most one malicious/corrupted authority and that the ballot generation is per-
formed in a safe environment, then ζi is known only to the voter. Note that
ζi ∈MP = {X ⊂ [M ] : #X = P} and every subset of [M ] of cardinality P is ad-
missible and equiprobable as a possible ζi (since Vi ∈MP and πi ∈ Sym([M ]) are
chosen uniformly at random), thus the voter can easily fabricate a value ζ ′i that
possibly changes the vote to fake compliance with the coercer’s choices. Thus,
any value obtainable by a third party cannot certify that the voter expressed a
particular preference, disallowing both vote-selling and vote-coercion.

5 Conclusions

In this paper we have generalized the two-candidates-one-preference e-voting
protocol of [11] into anM -candidates-P -preferences protocol. We have preserved
the general construction which uses an underlying blockchain infrastructure and
a system of ZKPs to ensure transparency and full auditability of the whole pro-
cess. The protocol achieves also the same extensive security properties (proven



22 R. Longo, C. Spadafora

under the classical Decisional Diffie-Hellman Assumption), including coercion
and vote-selling resistance, while retaining receipts.

The same considerations about the auxiliary infrastructure still apply to
the generalized protocol, such as using an ad-hoc blockchain to contain the
transaction costs of casting ballots, and the hurdles of providing a safe and
authenticated environment for the registrar phase which remain, however, an
improvement over the traditional voting booths.

Our generalization introduces an additional authority, that is required in or-
der to properly mask the multiple valid and fake tokens in each ballot. However,
the generalization is sufficiently close to the original protocol, so the same con-
siderations about the authorities still apply. In particular, they can perform the
setup phase may be performed asynchronously, and possible DOS attacks may
be mitigated with a long-lasting Registrar phase.

We can also adopt the strategy of dividing the authorities in independent
triplets that manage restricted pools of voters (like a voting district). This ap-
proach limits the damage in case more than one authority is corrupted, speeds
up the final step of tallying (whose computational cost is linear in the number
of votes), and enhances the overall efficiency distributing the workload.

Many election systems allow voters to cast a blank ballot or to leave some of
the P possible preferences unexpressed. This feature can be easily added to the
protocol presented here by simply adding P dummy candidates that represent
blank choices. So, if Alice wants to cast a blank ballot, during the voting phase
she will send the valid tokens to the dummy candidates and the fake tokens to
the real candidates. Similarly, if she wants to express only P ′ < P preferences,
she will send P ′ valid tokens to the chosen candidates, and the remaining P −P ′
valid tokens to any subset of the dummy candidates.

Note, however, that it is impossible to allow blank ballots but not partial
votes. In fact, the design of the protocol specifically unlinks the tokens ex-
pressed by a single voter during the tallying. As a matter of fact, the vote-
indistinguishability property that makes the protocol secure, also makes it is
impossible to check if the tokens sent to the dummy candidates are either all
valid or all fake, unless the authorities collude.

Acknowledgments The core of this work is derived from the second author’s MSC
thesis that would like to thank her supervisor, prof. Massimiliano Sala. The first
author is a member of the INdAM Research group GNSAGA.

References

1. Adida, B.: Helios: Web-based open-audit voting. In: USENIX security symposium.
vol. 17, pp. 335–348 (2008)

2. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A.,
Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al.: Hyperledger fabric: a



Multi-Candidate Coercion-Resistant E-Voting 23

distributed operating system for permissioned blockchains. In: Proceedings of the
Thirteenth EuroSys Conference. pp. 1–15. ACM (2018)

3. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
Journal of computer and system sciences 37(2), 156–189 (1988)

4. Gaudry, P., Golovnev, A.: Breaking the encryption scheme of the moscow internet
voting system. In: International Conference on Financial Cryptography and Data
Security. pp. 32–49. Springer (2020)

5. Lindell, Y.: Tutorials on the Foundations of Cryptography, chap. How to Simulate
It – A Tutorial on the Simulation Proof Technique, pp. 277–346. Springer (2017).
https://doi.org/10.1007/978-3-319-57048-8_6

6. Longo, R.: Formal Proofs of Security for Privacy-Preserving Blockchains and other
Cryptographic Protocols. Ph.D. thesis, University Of Trento, Department of Math-
ematics (2018)

7. Longo, R., Podda, A.S., Saia, R.: Analysis of a consensus protocol for extending
consistent subchains on the bitcoin blockchain. Computation 8(3), 67 (2020)

8. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf (2008)

9. Pawlak, M., Poniszewska-Marańda, A.: Trends in blockchain-based electronic vot-
ing systems. Information Processing & Management 58(4), 102595 (2021)

10. Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology
4, 161–174 (1991). https://doi.org/10.1007/BF00196725

11. Spadafora, C., Longo, R., Sala, M.: A coercion-resistant blockchain-based E-voting
protocol with receipts (2021). In: Advances in Mathematics of Communications.
American Institute of Mathematical Sciences, doi:10.3934/amc.2021005 (2021).
https://doi.org/10.3934/amc.2021005

12. Specter, M.A., Koppel, J., Weitnzer, D.: The ballot is busted before the block-
chain: A security analysis of voatz, the first internet voting application used in
us federal elections. Preprint available at: https://internetpolicy. mit. edu/wp-
content/uploads/2020/02/SecurityAnalysisOfVoatz_Public. pdf (2020)

13. Specter, M.A., Koppel, J., Weitzner, D.: The ballot is busted before the blockchain:
A security analysis of voatz, the first internet voting application used in us federal
elections. In: 29th {USENIX} Security Symposium ({USENIX} Security 20). pp.
1535–1553 (2020)

14. Xiao, S., Wang, X.A., Wang, W., Wang, H.: Survey on blockchain-based electronic
voting. In: Barolli, L., Nishino, H., Miwa, H. (eds.) Advances in Intelligent Net-
working and Collaborative Systems. pp. 559–567. Springer (2020)

https://doi.org/10.1007/978-3-319-57048-8_6
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/BF00196725
https://doi.org/10.3934/amc.2021005

	Multiple Candidates Coercion-Resistant Blockchain-Based E-Voting Protocol With Receipts

