
Donner: UTXO-Based Virtual Channels Across Multiple Hops

Lukas Aumayr
TU Wien

lukas.aumayr@tuwien.ac.at

Pedro Moreno-Sanchez
IMDEA Software Institute
pedro.moreno@imdea.org

Aniket Kate
Purdue University

aniket@purdue.edu

Matteo Maffei
TU Wien

matteo.maffei@tuwien.ac.at

Abstract

Payment channel networks are a promising solution to the
scalability issues of current decentralized cryptocurrencies.
They allow arbitrarily many payments between any two users
connected through a path of intermediate payment channels
while minimizing interaction with the blockchain only to
open and close those channels. Yet, compromised intermedi-
aries may make payments unreliable, slower, expensive, and
privacy-invasive. Virtual channels mitigate these issues by
allowing the two endpoints of a path to create a channel over
the intermediaries such that after the channel is constructed,
the intermediaries are no longer involved in payments. Unfor-
tunately, existing UTXO-based virtual channel constructions
are either limited to a single intermediary or only recursively
build a virtual channel over multiple intermediaries. While
the former single-hop channels are overly restrictive, the lat-
ter recursive constructions introduce issues such as forced
closure and virtual griefing attacks.

This work presents Donner, the first virtual channel con-
struction over multiple intermediaries in a single round of
communication. We formally define the security and privacy
in the Universal Composability framework and show that
Donner is a realization thereof. Our experimental evaluation
shows that Donner reduces the on-chain number of transac-
tions for disputes from linear in the path length to a single one.
Moreover, Donner reduces the storage overhead from loga-
rithmic in the path length to constant. Donner is an efficient
virtual channel construction that is backward compatible with
the prominent, 50K channels strong Lightning network.

1 Introduction
The permissionless nature of the consensus algorithm that

governs cryptocurrencies today such as Bitcoin heavily limits
their transaction throughput to few transactions per second.
This contrasts with centralized approaches such as Visa where
a single server copes with peaks of 64000 transactions per
second. This scalability issue hinders thus permissionless
cryptocurrencies from serving a growing base of payments.

Payment channels. Among the different research efforts,
payment channels have emerged as one of the most promising
scalability solutions, with the Ligthning Network [21] being
the most popular realization in Bitcoin. A payment channel
enables arbitrarily many payments between two users while
requiring to commit only two transactions to the ledger: one
to open and one to close the channel. Alice and Bob can
create a payment channel by a single on-chain transaction that
locks bitcoins (also called collateral) into a multi-signature
address controlled by both users. After that, they can pay each
other off-chain (i.e., without interacting with the blockchain)
an arbitrary number of times by exchanging authenticated
messages that represent an update of their share of coins in
the multi-signature address. After they are done with it, any of
the two users can close the channel by submitting a transaction
on-chain with the last authenticated distribution of bitcoins.

Interestingly, it is possible to leverage a path of opened
payment channels with enough capacity between two users to
perform a payment between them, thereby creating a payment
channel network (PCN). Assume that Alice wants to pay to
Bob and assume that they do not share a direct payment chan-
nel, but rather they are connected by a path of channels going
through k intermediaries I1, . . . , Ik (i.e., through the channels
(Alice, I1), . . ., (Ik,Bob)). A payment from Alice to Bob re-
quires to update each channel on the path: the challenge is
to ensure atomicity, that is, either all channels are updated
consistently or none of them are. The most popular solution
is based on Hashed Timelock Contracts (HTLCs): channel
updates are conditioned to the receiver revealing the preimage
of a certain hash and locked for an amount of time that grows
linearly from the sender to the receiver (in the Lightning Net-
work, one day per hop), which requires users including the
intermediaries to be online. This approach has multiple disad-
vantages, including (i) making the payments less reliable (e.g.,
some intermediary might go offline); (ii) increasing the la-
tency of each payment; (iii) augmenting the transaction costs
(e.g., intermediaries typically charge a fee for the forwarding
service); and (iv) leaking sensitive data to intermediaries, e.g.,
partial information about who pays what to whom.

1



Note that solving these problems while retaining a decen-
tralized off-chain network is very hard. In fact, most off-chain
protocols suffer from similar problems. For instance, payment-
channel hubs [14, 24] assume a star topology, in which a
central hub is connected to all users, and all parties involved
in the payment (i.e., sender, receiver, and hub) to be online.
Atomic multiparty payments (e.g., Sprites [20], AMCU [12],
and payment trees [16]) assume all parties to be online and
make them interact with each other, consequently learning
the identities of all the users involved in a payment.
Virtual channels. Virtual channels [10] constitute the most
promising solution to the aforementioned problems of off-
chain protocols. To explain their basic functionality, let us
initially assume that Alice and Bob are connected by a single
intermediary Ingrid. First, Ingrid must collaborate with Alice
and Bob to coordinate the update of both payment channels
to fund the virtual channel, i.e., a collateral is locked for this
purpose. However, once the virtual channel is created, Alice
and Bob can pay each other arbitrarily many times without the
involvement of Ingrid. Finally, when Alice and Bob are done
with the virtual channel, they can close it, that is, they estab-
lish collaboratively with Ingrid their balance as an off-chain
update of their payment channels with Ingrid. The assumption
of a single intermediary is suitable in certain settings (e.g., a
hub topology where a user needs to have a payment channel
with the hub and can then create a virtual channel with the
many other users connected to the same hub), but restrictive
in a decentralized setting. Recursive constructions [11] solve
this issue allowing for creating virtual channels on top of
other virtual channels (or a pair composed of a virtual and a
payment channel), supporting arbitrary many intermediaries.
Dziembowski et al [9] further extended the expressiveness of
virtual channels proposing the notion of multi-party virtual
channels, where a set of n participants build an n-party chan-
nel recursively from their pair-wise payment/virtual channels.

In this manner, virtual channels overcome the drawbacks of
PCNs: (i) payments no longer rely on Ingrid being online; (ii)
the latency is reduced to a direct payment between two users;
(iii) Ingrid does not charge a fee for each payment (perhaps
only once to create and close the virtual channel); (iv) Ingrid
does not learn the amount of each single payment.

While all these constructions rely on the Turing-complete
scripting capabilities of Ethereum, Aumayr et al. [3] have later
shown, perhaps surprisingly, that it is possible to realize a
Bitcoin-compatible virtual channel construction through care-
fully crafted cryptographic protocols in the Unspent Trans-
action Output (UTXO) model, albeit this protocol supports
only one intermediary. Jourenko et al. [15] have recently intro-
duced the first Bitcoin-compatible recursive construction over
multiple intermediaries, named Lightweight Virtual Payment
Channel (LVPC).
Drawbacks of UTXO-based recursive virtual chan-
nels. In this work, we observe that the recursive construction
underlying LVPC [15] suffers from three fundamental draw-

Table 1: Comparison to other virtual channel schemes.

GSCN [11] MPVC [9] LVPC [15] Donner
Scripting req. Ethereum Ethereum Bitcoin Bitcoin
multi-hop recursive recursive recursive one round
Virtual griefing attack yes yes yes no
Forced closure attack no no yes no
Path privacy no no no yes

backs, which fundamentally undermine its security, privacy,
and efficiency. Indeed, we conjecture that these limitations
are not specific to this individual construction but are inherent
to the recursive paradigm when deployed in the context of
UTXO-based transactions.

• Since virtual channels in the UTXO-based model are
funded on top of each other, the end-point of a top-level vir-
tual channel has the possibility to perform what we call a
forced closure attack: by closing on-chain the virtual chan-
nel, the attacker forces the on-chain closure of all underly-
ing virtual and payment channels, as the respective owners
would otherwise lose money1. This attack makes the payment
channel network volatile and forces honest users to perform
additional on-chain transactions (paying the associated fees)
to re-establish their channels;

• Virtual channels at different recursion layers have associ-
ated an increasing (also called staggered) timelock to ensure
that the virtual channels can be closed in order, which opens
the door to virtual griefing attacks. Similar to griefing in
payment-channel networks [12], a user controlling two nodes
can open a virtual channel to itself at the top recursion layer
and keep it open until right before the timelock expires, ef-
fectively locking the funds used as collateral at each virtual
channel in the underlying recursion layers.

• Recursive virtual channel constructions do not achieve
the path privacy property guaranteed in the Lightning Net-
work (intuitively, each intermediary does not learn more infor-
mation than the one exposed by its own payment channels),
as intermediaries have to perform transactions with other par-
ties as well: for instance, if the sender constructs the virtual
channel recursively by integrating the payment channels one
by one from left to right, all intermediaries have to transact
with the sender, which clearly reveals its identity to all other
users in the path.

• The number of opening and offloading transactions grows
with the number of intermediaries, which translates into a
significant price to pay in terms of number of transactions and
associated fees.

Hence, it is an open question, of theoretical and practical
relevance, whether secure, privacy-preserving, and practical
virtual channels across multiple hops are possible in UTXO-
based cryptocurrencies featuring only a limited scripting lan-
guage like Bitcoin.

1Ethereum-based constructions do not necessarily suffer from this attack,
since it is possible to program in the smart contracts logical conditions that
avoid financial losses without involving the closure of a channel.

2



Contribution. In this work, we give a positive answer, by
advocating a radical paradigm shift in the design of virtual
channels over multiple intermediaries, dispensing for the first
time from a recursive construction. In particular,

• We present Donner, the first virtual channel construc-
tion that supports the creation of virtual channels over mul-
tiple intermediaries in one round of communication. As a
result, Donner prevents virtual griefing and forced closure
attacks, besides being more efficient and privacy-preserving
than the state-of-the-art LVPC [15]. Donner relies only on
digital signatures and a timelock functionality, without requir-
ing HTLCs: Donner is thus compatible with Bitcoin, and also
with cryptocurrencies that do not support HTLCs, such as
Ripple and Stellar.

• We conduct a formal security and privacy analysis of
Donner in the Universal Composability framework.

• We conduct an experimental evaluation, measuring the
on-chain and off-chain overhead of Donner and demonstrat-
ing that Donner requires significantly less transactions than
LVPC. Most notably, Donner requires only one on-chain trans-
action to offload the virtual channel in case of a dispute, while
honest channels can perform off-chain updates without (the
risk of) losing funds, compared to a linear number of on-chain
transactions in LVPC. Furthermore, the storage overhead per
payment channel is reduced from linear or logarithmic in
LVPC, depending on how the VC is constructed, to constant.

We summarize the comparison between Donner and other
virtual channel constructions in Table 1.

2 Background and notation
In this section we overview the background and present the

notation used throughout the paper.

2.1 UTXO based blockchains
In this work, we focus on blockchains that follow the un-

spent transaction output (UTXO) model, such as Bitcoin. We
adopt the notation for UTXO-based blockchains from [2],
which we shortly review next. In UTXO-based blockchains,
the units of currency, i.e., the coins, exist in outputs of trans-
actions. We define such an output as a tuple θ := (cash,φ);
θ.cash contains the amount of coins stored in this output,
while tx.φ defines the condition under which the coins can be
spent. The latter is done by encoding such a condition in the
scripting language supported by the underlying blockchain.
This can range from simple ownership, specifying which pub-
lic key can spend the output, to more complex conditions such
as time-locks, multi-signatures, or logical boolean functions.

Coins can be spent with transactions, resulting in the
change of ownership of the coins. A transaction maps a list
of outputs to a list of new outputs. For better readability, we
denote the former outputs as transaction inputs. Formally, we
define a transaction body as a tuple tx := (id, input,output).
The identifier tx.id ∈ {0,1}∗ is assigned as the hash of the

other attributes, tx.id := H (tx.input, tx.output). We model
H as a random oracle. The attribute tx.input is a non-
empty list of the identifiers of the transaction’s inputs and
tx.output := (θ1, ...,θn) a non-empty list of new outputs. To
prove that the spending conditions of the inputs are known,
we introduce full transactions, which contain in addition to
the transaction body also a witness. We define a full transac-
tion tx := (id, input,output,witness) or for convenience also
tx := (tx,witness). Valid transactions can be recorded on the
public ledger L called blockchain. A transaction is valid if
and only if (i) all its inputs are not spent by other transaction
on L ; (ii) provides a valid witness for the spending condition
φ of every input; and (iii) the sum of coins in the outputs is
equal (or smaller) than the sum of coins in the inputs.

In practice, transactions are aggregated in blocks. These
blocks are not immediately accepted to the blockchain but
only after they are accepted by the participants of a distributed
consensus mechanism (e.g., proof-of-work as in Bitcon). We
model this delay through ∆, which we define as an upper
bound on the time from when a transaction is broadcast to
when it is accepted to L .

To visualize how transactions are used in a protocol along
with complex spending conditions in a more readable way,
we use transaction charts. The arrows indicate that the charts
are to be read from left to right. Rounded rectangles represent
transactions, with incoming arrows being their inputs. The
boxes within the transactions are the outputs and the value
in them represents the amount of output coins. The arrow(s)
going from these output boxes show the conditions under
which an output can be spent.

More specifically, below an arrow we write who can spend
the coins. This is usually a signature that verifies w.r.t. one
or more public keys, which we denote as OneSig(pk) or
MultiSig(pk1,pk2, ...). Above the arrow, we write additional
conditions for how an output can be spent. This could be
any script supported by the scripting language of the under-
lying blockchain, but in this paper we only use relative and
absolute time-locks. For the former, we write RelTime(t) or
simply +t, which signifies that the output can be spent only if
at least t rounds have passed since the transaction holding this
output was accepted on L . Similarly, we write AbsTime(t)
or simply ≥ t for absolute time-locks, which means that the
transaction can be spent only if the blockchain is at least t
blocks long. A condition can be a disjunction of subcondi-
tions φ = φ1∨ ...∨φn, which we denote as a diamond shape
in the output box, with an outgoing arrow for each subcon-
dition. A conjunction of subconditions is simply written as
φ = φ1∧ ...∧φn. We illustrate this notation in Figure 1.

2.2 Payment channels
Two users can utilize a payment channel in order to perform

arbitrarily many payments, while putting only two transac-
tions on the ledger. On a high level, there are three operations
in a payment channel operation: open, update and close. First,

3



tx

x1

x2

B
≥ t1

pkB

+t2

pkA,pkB

tx′ x2

φ1

φ2

φ3 ∧φ4

Figure 1: (Left) Transaction tx has two outputs, one of value
x1 that can be spent by B (indicated by the gray box) with
a transaction signed w.r.t. pkB at (or after) round t1, and one
of value x2 that can be spent by a transaction signed w.r.t.
pkA and pkB but only if at least t2 rounds passed since tx was
accepted on the blockchain. (Right) Transaction tx′ has one
input, which is the second output of tx containing x2 coins
and has only one output, which is of value x2 and can be spent
by a transaction whose witness satisfies the output condition
φ1∨φ2∨ (φ3∧φ4). The input of tx is not shown.

to open a channel, both users have to lock up some money
in a shared output (i.e., an output that is spendable if both
users give their signature) in a transaction called the funding
transaction or txf . From this output, they can create a new
transaction called state that assigns each of them a balance.
Once the funding transaction is on the ledger, the users can
exchange arbitrarily many new states (balance updates) in a
peer-to-peer way, thereby realizing the update phase of the
channel. Once they are done, they can close the channel by
posting the final state to the ledger.

In this work, we use payment channels in a black-box
manner and refer the reader to [2, 18, 19] for more details.
We assume that there is a transaction txstate off-chain, which
contains the outputs representing the most recent payment
channel state. For simplicity, we assume that this is the only
state that the users can publish and abstract away from how
the dishonest behavior is handled. In practice, of course it is
possible that a dishonest user publishes a stale state of the
channel and current constructions come with a way to handle
this cases (e.g., through a punishment mechanism that gives
all the coins to the honest user [2]).

We model payment channels as tuples: γ :=
(id,users,cash,st). The attribute γ.id ∈ {0,1}∗ uniquely
identifies a channel; γ.users ∈ P 2 identifies the two parties
involved in the channel out of the set of all parties P . More-
over, γ.cash ∈R≤0 denotes the total monetary capacity of the
channel and the current state is stored as a vector of outputs
of txstate: γ.st := (θ1, ...θn). In this work, we use channels in
paths from a sender to a receiver. For simplicity, we say that
γ.left ∈ γ.users refers to the user closer to the sender, while
γ.right ∈ γ.users refers to the user closer to the receiver. The
balance of both users can always be inferred from the current
state γ.st. For convenience, we say that γ.balance(U) gives
the coins owned by U ∈ γ.users in this channel’s latest state
γ.st. Finally, we define a channel skeleton γ for a channel γ,
as γ := (γ.id,γ.users).

2.3 Payment channel networks
A payment-channel network (PCN) [18] is a graph where

the nodes represent the users and the edges represent the
payment channels. The Lightning Network [21] is the state-
of-the-art in both payment channels and PCNs for Bitcoin, and
the largest PCN in terms of coins locked within its channels.

In a PCN, any two users that are connected to each other
via a path of channels can perform what is called a multi-hop
payment (MHP). Assume that there is a sender U0 who wants
to pay α coins to a receiver Un, but they do not have a direct
channel. Instead, they are connected by a path of channels go-
ing through intermediaries {Ui}i∈[1,n−1], i.e., U0 and U1 have
a channel γ0, U1 and U2 have a channel γ1 and so on. A MHP
allows to transfer coins from U0 to Un through {Ui}i∈[1,n−1] in
a secure way, that is, ensuring that no intermediary is at risk of
losing money. The Lightning Network [19, 21] adopts a two-
round MHP protocol, where coins are locked along the path
from left to right and, after reaching the receiver, unlocked
from right to left. Besides requiring a two-round communi-
cation, this protocol introduces a collateral (intuitively, the
time coins have to be locked on the channels) that is linear on
the size of the path, which opens the door to denial-of-service
attacks, also called griefing attacks in the literature. More re-
cently, Blitz [4] improves on that by requiring only one round
of communication and a constant collateral.

2.4 Multi-hop virtual channels
A multi-hop virtual channel (VC) allows two users U0

and Un connected via a path of payment channels over some
intermediaries {Ui}i∈[1,n−1] to open and maintain a direct
channel between them without the need of (i) involving the
intermediaries in payments and (ii) performing any on-chain
operation. This type of channels is called virtual because their
funding output is not included in the blockchain but rather
built using underlying payment channels, which we call base
(or payment) channels from now on. In a sense, a VC can be
seen as a payment channel “on top of” other base channels.

On a high level, there are four operations in a VC: open,
update, close, and offload. First, U0 and Un, along with the
intermediaries, open a VC by somehow funding off-chain a
shared output. Depending on where the funding inputs for
such shared output come from, we say that a VC is either
(fully) rooted or decoupled from its underlying base channels,
depending on whether the VC spends inputs that are (directly
or indirectly) coming from the underlying base channels or
from somewhere else, respectively.

After it is opened, U0 and Un can update the balance in
their VC arbitrarily many times without any interaction with
the intermediaries. Finally, after U0 and Un are done using the
VC, in the optimistic case they can close it by establishing
the last balance in the VC into the underlying base channels.
Otherwise, the VC can be offloaded, transforming the VC into
a payment channel, putting the funding transaction on-chain.

4



3 Key idea
We identify three main challenges in the design of multi-

hop VCs for UTXO-based cryptocurrencies, as described
next.
C1: Secure, efficient, and decentralized opening. As pre-
viously mentioned, a VC has to be funded off-chain. Since
U0 and Un do not share a base channel, the intermediaries
have to be involved in the opening phase, allocating a col-
lateral (i.e., locking coins on the VC). This operation has
to fulfill a number of requirements: if the VC is offloaded
or closed, nobody should be at risk of losing its money or
having its money locked indefinitely (security); the opening
should require as little transactions and collateral as possible
(efficiency); the intermediaries should transact only with the
end-points of their channels, avoiding third-parties that may
constitute bottlenecks or multiparty computation protocols
that may reveal the identity of the involved users.
C2: Guaranteed closure. In the pessimistic case (i.e., in
case of a dispute on the balance or unresponsiveness), the
VC endpoints need a way to secure their balances. There are
three possible options: a party can by itself offload the VC,
a party can initiate an offload sequence and the others have
to react in order not to lose coins, or a party is guaranteed
to receive compensation if, by some agreed upon time, the
VC is not offloaded or honestly closed. Once a channel is
offloaded, both endpoints can close the VC with standard
payment channel techniques.

Note that the guaranteed closure property should hold for
intermediaries as well in order to prevent their balance from
being indefinitely locked. In practice, it is often desirable
to guarantee a duration validity for the virtual channel, after
which the intermediaries can get back their collateral: this
makes fee models potentially fairer, as the intermediaries
can charge exactly for the the amount they lock and for how
long. Additionally, this guarantees to the endpoints that no
intermediary offloads the VC during such time.
C3: Atomic closure. In the optimistic case (i.e., all parties
collaboratively close the VC), all base channels must be atom-
ically updated to reflect the final balance of the VC. This is
challenging as some of the malicious intermediaries might try
to maximize their profit at the expense of the other parties.
Recursive, rooted solutions. A possible approach to solve
these challenges is the recursive one, i.e., to let the sender
construct a VC over a single intermediary (such as [3, 15]),
subsequently construct a new VC funded on top of the pre-
vious VC and a contiguous base channel, or alternatively on
top of two VCs, and so on and so forth, until the receiver
is reached. Unfortunately, this approach suffers from three
fundamental drawbacks:

1. Forced Closure Attack In the UTXO setting, a fully
rooted, recursive channel is funded by outputs coming from
all base channels. The way existing constructions allow an
endpoint to initiate the offloading of the VC (cf. C2) is to give

this party a transaction that transfers all the money on the VC
to itself, unless within a certain time the intermediaries and
the other endpoint claim their balance on-chain. This way all
parties are incentivized to take part in the close. However, this
also means that an end-point can force all rational parties (i.e.,
those who do not want to lose money) to close their channels
on-chain. The fundamental problem is that the funding of the
VC is rooted into the base channels, which ultimately forces
their closure in the pessimistic case. We present the forced
closure attack in more detail in Appendix A.

2. Virtual Griefing Attack The time it takes to offload a
VC grows linearly in the number of layers, which coincides
with the number of intermediaries between the endpoints.
This means that an attacker can establish a virtual channel
with itself, locking the the collateral of the intermediaries for
an amount of time linear in the number of intermediaries. We
present the forced closure attack in more detail in Appendix B.

3. Lack of Scalability The number of on-chain transac-
tions to handle disputes among participants grows linearly
with the number of layers, which translates not only in off- and
on-chain storage consumption but also in on-chain fees. We
show the linear grow of on-chain transactions in Section 6.2.

3.1 Our solution
We now give a high-level overview of our protocol, high-

lighting how we solve the aforementioned challenges in the
design of VCs and, in particular, how we prevent the forced
closure and virtual griefing attacks as well as the lack of scala-
bility inherent to recursive constructions. For a more detailed
protocol description and security analysis, we defer the reader
to Section 4 and Appendix E, respectively.

Solving C1 and C2. To prevent forced closure attacks, we
decouple the funding of the VC from the one of the base
channels, letting the VC be funded only by the sender. The
funding transaction, let us call it txvc, originating from the
sender, can either spend an on-chain or an off-chain output.

Naturally, this brings two questions: how to allow interme-
diaries to allocate collateral (C1), which is necessary as sender
and receiver do not share a channel and therefore someone has
to borrow the money on behalf of the other endpoint, and how
to guarantee that the channel can be closed or offloaded by
the receiver (C2), which is crucial to ensure that the receiver’s
money is not locked forever.

We address both questions by letting (i) the sender insert
an additional output for every base channel into the funding
transaction txvc, (ii) a collateral (corresponding to the funding
amount) be paid in each base channel by the left endpoint to
the right one, and (iii) this collateral be refunded if and only
if the txvc transaction goes on-chain before a certain timeout
T . In other words, this mechanism synchronizes the collateral
on each base channel in a way that the sender is incentivized
to close or offload the channel before its validity, otherwise
the receiver gets the entire funding.

5



Interestingly enough, a similar synchronization mechanism
is used in the recently proposed Blitz MHP protocol [4], where
a transaction close in spirit to txvc serves the completely
different purpose of allowing the sender to withdraw the multi-
hop payment in an atomic way along the payment channels
in case the payment does not reach the receiver.
Solving C3. We now describe how to close the VC honestly,
that is without offloading or going on-chain at all and update
all underlying channels accordingly. For doing that, we rely
on an incentive-based approach. The first key observation
is that every intermediary can update the collateral on the
right channel to a value that is smaller than the previous
one without fear of losing money, as it can get the previous
higher collateral from the left channel. The second one is
that the final balance of the receiver in the VC cannot be
higher than the funding initially provided by the sender, which
corresponds to the collateral. Since the receiver Un knows that
if it does not initiate an honest closing, the sender will offload
the VC, it can go ahead and update the collateral in its channel
with Un−1 to the smaller amount that the receiver holds in the
VC (technically, this proceeds by replacing the transactions
reflecting the old balance in the base channels with fresh ones
reflecting the new one). The neighbor Un−1 can safely update
the right channel too, as it is still guaranteed the full amount
from its left channel. If Un−1 does not continue, the sender
will offload and trigger the refund on the payments, therefore
Un−1 is incentivized to continue, and so on and so forth until
the sender U0 is reached and the base channels are all updated
according to the final balance of the receiver in the VC. After
this is done, the payment will simply go through after the
timeout T expires.
Putting it together. We now describe the protocol in slight
more detail. The sender U0 chooses a lifetime T for the VC
and creates on its own the transaction txvc (see Figure 4),
which acts both as a funding for the VC and as a condition
for the refund of the collateral. In particular, txvc includes
one output to fund the VC θvc := (α,MultiSig(U0,Un)) and
one θεi := (ε,OneSig(Ui) +RelTime(tc +∆)) for each i ∈
[0,n−1]. The relative timelock ensures that there is enough
time for everyone to close the channel, before refunding the
collateral.

At this point, from left to right, the endpoints of each base
channel set up the collateral (see Figure 2). The amount of
the collateral is the full channel capacity α. While interme-
diaries might charge a fee for providing a base channel for a
VC, we omit it for easing the presentation and refer to Sec-
tion 4.4 for a discussion on this point. Technically, to set up
the collateral, the left user Ui in the channel between Ui and
Ui+1 creates a new state where α coins from its balance are
locked in an output (α,(MultiSig(Ui,Ui+1)∧RelTime(∆))∨
(OneSig(Ui+1)∧AbsTime(T ))).

This complex looking script simply stipulates that either
both channel users collaboratively spend the output with a
relative timelock of ∆, or after the absolute time T expires,

αi

xUi−αi

xUi+1

ε
αi + ε

pkUi,pkUi+1

pkUi +∆

≥ T
αi

pkUi+1

txstateUiUi+1

txvc

...

...

txri

txpi

pkUi+1

pkUi

+tc+∆

Ui

Ui+1

pkUi

pkUi+1

Ui

Ui+1

Figure 2: Contract to setup the collateral in each channel for
users Ui and Ui+1

U0 U1 U2 U3 U4≥ T ≥ T ≥ T ≥ T

txvc

Virtual channel

Fig. 2Fig. 4

Figure 3: Illustration of the Donner virtual channel construc-
tion: The contract in each channel is the same as in Blitz
(Figure 2), but references txvc (Figure 4) instead of txer.

Ui+1 can spend it on its own. Then, they create a transaction
txr

i that spends from this output and from the output θεi in txvc

designated for this channel back to the user Ui and Ui+1 gives
its signature to Ui. This way the refund txr

i is the only way
that Ui can on its own spend the collateral. Once the collateral
has been set up in the last base channel with the receiver, the
VC is open and can be used for payments. The whole scheme
is illustrated in Figure 3.

We point out that the receiver is guaranteed to get either
its money from the collateral or if the VC is offloaded. The
intermediaries do not lose money, as the txvc ensures that all

txvc

...

α pkU0
,pkUn

ε

ε

pkU0

pkUn−1

n · ε

txin

...

+tc+∆

+tc+∆

pkU0

Figure 4: Transaction txvc spending from an output under
U0’s control, funding the virtual channel (green output) and
linking to the collateral in each channel.

6



collateral is refunded atomically or not. Finally, the sender
can in any case post txvc to avoid losing money. To honestly
close, the base channels are sequentially updated from right
to left, as previously explained, such that the amount of the
collateral is reduced to the receiver’s final balance in the VC.

Channel life time. We point out, that our VC has a limited
life time T , chosen by the sender, during which the VC is
active. After this time, the VC is either honestly closed or
offloaded, otherwise the sender will lose its collateral. Having
a life time allows for a fairer fee model for the intermediaries.
The intermediaries now know exactly how many coins are
locked for how long and can charge an according fee for this
service. Moreover, the sender and the receiver are sure that
no intermediary can prematurely close the channel. We note
that, similarly to the way the channel is closed honestly by
updating the collateral amount in each base channel from
right to left, the life time of the channel could be prolonged
by sequentially updating the time in the collateral from right
to left (the intermediaries might then charge some more fees).

Unidirectionally funded. Similar to current payment chan-
nels in the Lightning Network, our VCs are only funded by
U0, whom we call the sending endpoint or sender. User Un is
the receiving endpoint or receiver and the intermediaries are
{Ui}i∈[1,n−1]. Even though the VC is only funded by U0, once
some money has been moved, they can use the channel also
in the other direction. Moreover, if they want to have a chan-
nel funded from both endpoints, they can simply construct
another channel from Un to U0.

Privacy. There occur no on-chain transactions in the opti-
mistic case throughout the protocol. Any two users connected
in the payment channel network can open a VC, and apart
from their open and close balance, the amount of the indi-
vidual transaction remains known only to them, even in the
pessimistic case. Moreover, in the optimistic case, the sender,
the receiver and the path through which the channel is routed
remains hidden, as the keys used in the txvc can be freshly
generated and unlinkable to previous transactions.

4 Protocol
In this section we present our security and privacy goals of

our construction, we list the required assumptions and prereq-
uisites, and finally detail our construction.

4.1 Security and privacy goals
We informally define three security and three privacy goals

for our virtual channel construction. We mark security goals
with an S and privacy goals with a P. For formal definitions
and proofs, we refer the reader to Appendix F.

(S1) Balance security. Honest intermediaries do not lose any
coins when participating in the virtual channel construction.

(S2) Endpoint security. No malicious users can steal the
sender’s rightful balance of the virtual channel. Additionally,

the receiver is always guaranteed to get at least its rightful
balance of the virtual channel.
(S3) Reliability. No malicious intermediary or colluding
malicious intermediaries can force two honest endpoints of a
virtual channel to close or offload the virtual channel before
the lifespan T of the virtual channel expires.
(P1) Endpoint anonymity. In case of an optimistic virtual
channel execution, malicious intermediaries cannot distin-
guish if their left (right) user is the sending (receiving) end-
point or merely an honest intermediary connected to the send-
ing (receiving) endpoint via other, non-compromised users.
(P2) Path privacy. In case of an optimistic virtual channel
execution, malicious intermediaries do not learn any identi-
fiable information about the other intermediaries, except for
their direct neighbors.
(P3) Value privacy. The users on the path learn only about
the initial and the final balance of the virtual channel, not the
value of the individual payments.

The careful reader may have noticed that, while the secu-
rity properties and P3 hold always, the properties P1 and P2
hold only for the optimistic case. Indeed, like in any other
off-chain protocol (e.g., the Lightning Network), the channels
have to go on-chain in order to resolve disputes in the worst
case. This means that anyone observing the blockchain can
reconstruct the path. Note, however, that this happens rarely,
as the optimistic case is less costly for the participants. De-
signing off-chain protocols that achieve privacy even in case
of disputes is an interesting future question.

4.2 Assumptions and prerequisites
Digital signatures. A digital signature scheme is a tuple
of algorithms Σ := (KeyGen,Sign,Vrfy). On a high level,
(pk,sk)←KeyGen(λ) is a PPT algorithm that on input a secu-
rity parameter λ generates a keypair (pk,sk). The public key
pk is publicly known, while the secret key sk is only known
to the user who generated that keypair. σ← Sign(sk,m) is
a PPT algorithm that on input a secret key sk and a mes-
sage m ∈ {0,1}∗ generates a signature σ of m. Finally,
{0,1} ← Vrfy(pk,σ,m) is a DPT algorithm that on input a
public key pk, a message m and a signature σ outputs 1 iff the
signature is a valid authentication tag for m w.r.t. pk. We use
a EUF-CMA secure [13] signature scheme Σ as a black-box
throughout this work.
Stealth addresses. In order to hide the underlying path, we
use stealth addresses [25] for the outputs in the transaction
txvc. On a high level, every user U controls two private keys a
and b. The respective public keys A and B are publicly known.
A sender can use these public keys controlled by U to create
a new public key P and a value R. The user U and only the
user U knowing a and b can use R, P together with a and b
to construct the private key p. In particular, also the sender is
unaware of p. This new one-time public key is unlinkable to
U by anyone observing only R and P [25].

7



Onion routing. Like in the Lightning Network, we rely on
onion routing [6] techniques like Sphinx [8] to allow users
communicate anonymously with each other. This allows users
to route the virtual channel correctly through the desired path,
while ensuring that intermediaries remain oblivious to the path
except for their direct neighbors. On a high level, an onion
is a layered encryption of routing information and a payload.
Each user in turn can peel off one layer, revealing the next
user on the path, the payload meant for the current user and
another onion, which is designated for the next user. For sim-
plicity, we use onion routing by calling the following two func-
tions: onion← CreateRoutingInfo({Ui}i∈[1,n],{msgi}i∈[1,n])
generates an onion using the public keys of users
{Ui}i∈[1,n] on the path, while GetRoutingInfo(onioni,Ui) re-
turns (Ui+1,msgi,onioni+1) when called by the correct user
Ui, or ⊥ otherwise.

Ledger and channels. We use the a ledger (or blockchain)
and a PCN (both introduced in Section 2) as black-boxes in
our construction. The ledger keeps a record of all transactions
and balances and is append-only. The PCN supports opening,
updating and closing of payment channels. For simplicity, we
assume the payment channels involved in VCs to be already
open. We interact with ledger and PCN through the following
procedures.

publishTx(tx): The transaction tx is appended to the
ledger after at most ∆ time, if it is valid.
updateChannel(γi, tx

state
i ): This procedure initiates an up-

date in the channel γi to the state txstate
i , when called by a user

∈ γi.users. The procedure terminates after at most tu time and
returns (update−ok) in case of success and (update−fail) in
case of failure to both users.

closeChannel(γi): This procedure closes the channel γi,
when called by a user ∈ γi.users. The latest state transaction
txstate

i appears on the ledger after at most tc time.

Assumptions. In our construction, we assume that every
user U has a public key pkU as well as a public key pair
(A,B). The former is used to receive transactions, the latter
is used for stealth address generation. Additionally, we say
that honest participants of the protocol stay online for the
duration of the protocol. A path finding algorithm to identify
a payment path can be called by pathList←GenPath(U0,Un).
This will return a path in the PCN from U0 to Un. Path finding
algorithms are orthogonal to the problem tackled in this paper
and we refer the reader to [22, 23] for more details. Finally,
for simplicity, we assume fee to be a publicly known value
representing the fee that every user charges. Note that in
practice, every user can charge an individual fee.

4.3 Detailed construction and pseudocode
Let us assume U0 and Un, connected via Ui for i∈ [1,n−1],

wish to open a bidirectional virtual channel with capacity α

fully funded by U0. We consider the different phases Open,
Update, Close and Respond. We show the used macros in

Figure 5, the procedure for updating individual payment chan-
nels for the open and close phase in Figure 6, and the whole
protocol in Figure 7.

Open. The sender U0 starts by creating a transaction txvc

that contains an output θvc spendable under the condition
MultiSig(U0,Un) holding α coins and n outputs θεi spendable
under the condition OneSig(Ui)+RelTime(tc +∆) holding ε

coins, one for every user Ui for i ∈ [0,n−1].
Spending from θvc, U0 and Un create commit-

ment transactions for the virtual channel with
γvc := preCreate(txvc,0,U0,Un). This function pre-creates
the virtual channel γvc, exchanging the initial state transac-
tions with the other user in γvc.users := (U0,Un) based on
the output identified by 0 of the funding transaction txf that
remains off-chain for now. It finally returns γvc.

Sender U0 presents its neighbor U1 with txvc and an update
of their channel to a state, where α coins of U0 are spend-
able under the condition φ = (OneSig(U1)∧AbsTime(T ))∨
(MultiSig(U0,U1)∧RelTime(∆)).

Before actually updating the channel, U1 gives U0 its sig-
nature for txr

0. txr
0 takes as inputs the output holding α of the

aforementioned proposed state update and the output holding
ε under U0’s control of txvc. After receiving the signature,
they perform this update and revoke their previous state. We
show this procedure in Figure 6 and illustrate the contract in
Figure 2.

In the same fashion, U1 continues this procedure with its
neighbor U2 and this continues with its neighbor until the
receiver has successfully updated its channel with its left
neighbor Un−1. In case of a dispute, the honest participants
merely go idle and watch the blockchain to observe if txvc

is published. After the successful update, the receiver Un for-
wards the transaction txvc presented to it by Un−1 to U0, who
checks if it is the same transaction U0 initially created.

Update. At this point the virtual channel γvc is considered to
be open and ready to be used. An update can be performed by
creating a new state txstate

i and calling preUpdate(γvc, tx
state
i ).

This function pre-updates the virtual channel γvc, updating
the latest state transaction to txstate

i . In case of a dispute, the
users wait until the virtual channel is offloaded. At this time,
the VC is closed.

In the beginning, the whole balance lies with U0, but once
the balance is redistributed, the channel is usable in both di-
rections. Should they wish to construct a channel where they
both hold some balance initially, they can start the construc-
tion in the other direction for a second time. When they have
rebalanced the money inside the virtual channel and definitely
before time T , they proceed to the next phase, the closing
phase.

Close. Let us say the final balance of the virtual channel
is α−α′ belonging to U0 and α′ to Un. To close the vir-
tual channel, Un starts the following update process with its
left neighbor Un−1. Un presents a state, where (instead of α)

8



only α′ coins from Ui−1 are spendable under the condition
φ = (OneSig(Un) ∧ AbsTime(T )) ∨ (MultiSig(Un−1,Un) ∧
RelTime(∆)). For this new state, Un creates a transaction
txr

n−1 spending this output and the output of txvc belonging to
Un−1 and gives its signature for this new txr

n−1 to Un−1. After
Un−1 checks that the new state and new txr

n−1 are correct, they
update their channel to this new state and revoke the previous
one. We show this procedure in Figure 6.

User Un−1 continues this process with its left neighbor
Un−2 and so on, until the sender U0 is reached. U0 checks that
the balance in the state update is actually the balance that U0
owes Un in the virtual channel, α′. If it is not the same, or
no such request reaches the sender, U0 simply publishes txvc

on-chain and claims txr
0 before the timeout T expires.

If such a request reaches U0 with the correct balance, the
sender has two options. First, the sender can wait until time T ,
at which the money α′ automatically moves from left to right
to the receiver, as the absolute timelock of the outputs holding
α′ in every channel on the path runs out. Alternatively, the
sender can ask U1 to update to a state, identical to the current
one, but for the α′ coins, which belong to U1 in this new
state. This procedure then continues from left to right until
the last channel is reached: again, if the intermediaries do not
collaborate, the money moves anyway from left to right after
time T .

Respond. To react in an appropriate way, we require the
participants to monitor the ledger if txvc is published. In case
it is published and its outputs are spendable before T , the
intermediary users need to claim the money they staked in
their right channel. They can either do this off-chain if their
right neighbor is cooperating or in the worst case, forcefully
on-chain via txr

i . Similarly, after time T has expired without
txvc being published on-chain, the intermediaries can claim
the money from their left channel. Again, this can happen
honestly off-chain or forcefully via txp

i .
We show the pseudocode for the full protocol in Figure 7.

Note that for better readability we simplify the protocol, e.g.,
we omit ids required for routing several virtual channels
through one node concurrently. For the formal protocol de-
scription in the Universal Composability framework, we defer
to Appendix E.5.

4.4 Discussion
We now discuss a few points regarding the practical de-

ployment of our virtual channel construction.

Fees for the intermediaries. To incentivize intermediaries
to participate in the protocol, a fee is typically paid to them.
For simplicity, let us assume that this is the same amount fee
for everyone. In practice, a different fee can be charged per
hop. During the open phase, when forwarding the contract
holding α coins from left to right, the intermediaries simply
deduct the amount fee. The sender starts with the amount
α0 := α+ fee · (n− 1). An intermediary Ui forwards αi :=

Macros (see Appendix D and [4]: )

checkTxIn(txin,n,U0):. If txin is well-formed and has enough
coins, returns >. checkChannels(channelList,U0):. If
channelList forms a valid path, returns the receiver Un, else
⊥. checkT(n,T ):. If T is sufficiently large, return >. Oth-

erwise, return ⊥ genTxVc(U0,channelList,tx
in):. Generates

txvc from txin along with a list of values rList to redeem their
stealth adresses and an onion containing the routing informa-
tion. genState(αi,T,γi):. Generates and returns a new chan-
nel state carrying transaction txstate

i from the given parameters.
checkTxVc(Ui,a,b,txvc, rList,onioni):. Checks if txvc is cor-
rect, Ui has a stealth address in it and onioni holds routing infor-
mation. If unsuccessful, returns ⊥. If Ui is the receiver, returns
(>,>,>,>,>). Else, returns (skŨi

,θεi ,Ri,Ui+1,onioni+1) con-
taining the output belonging to Ui θεi , the secret key to spend it
skŨi

, the next user and the next onion. genPay(txstate
i ). Returns

txp
i , which takes txstate

i .output[0] as input and creates a single
output := (αi,OneSig(Ui+1)). genRef(txstate

i ,txvc,θεi). Re-

turn txr
i , which takes as input txstate

i .output[0] and θεi ∈
txvc.output. The calling user Ui makes sure that this output be-
longs to a stealth address under Ui’s control. It creates a single
output txr

i .output := (αi+ε,OneSig(Ui)), where αi, Ui, Ui+1 are
taken from txstate

i .

Figure 5: Subprocedures used in the protocol

αi−1− fee. Similarly, in the closing phase, when the contract
is forwarded from right to left, each intermediary adds fee to
the total amount.

Outputs of txvc. Aside from the output funding the virtual
channel, the transaction txvc needs to hold outputs for every
user on the path except the receiver. The amount of coins
in an output cannot be zero and we argue that this can be
a small amount, such that losing this for the sender would
be insignificant compared to the on-chain fees that need to
be paid anyway. Note however, that due most Bitcoin node
implementations only accept transactions with outputs that are
larger than a dust, which is 546 satoshis, to prevent cluttering
the blockchain. Therefore, in practice one needs to put at least
546 satoshis in these outputs.

5 Security analysis
We first argue informally why the security and privacy

goals outlined in Section 4.1 hold in our construction and then
overview the main soundness result. A formal security mod-
elling and analysis is given in Appendix E and Appendix F.

5.1 Informal security analysis

Balance security. When the virtual channel is opened, every
intermediary establishes the contract shown in Figure 2 first
with their left neighbor and then with their right neighbor.

9



2pSetup(γi,tx
vc, rList,onioni+1,θεi ,αi,T ): (see [4])

Ui

1. txstate
i := genState(αi,T,γi)

2. txr
i := genRef(txstate

i ,θεi)
3. Send (txvc, rList,onioni+1,tx

state,txr
i ) to Ui+1 (= γi.right)

Ui+1 upon (txvc, rList,onioni+1,tx
state,txr

i ) from Ui

4. Check that checkTxVc(Ui+1,Ui+1.a,Ui+1.b,txvc, rList,
onioni+1) 6= ⊥, but returns some values
(skŨi+1

,θεi+1 ,Ri+1,Ui+2,onioni+2)

5. Extract αi and T from txstate and check txstate
i =

genState(αi,T,γi)
6. Check that for one output θεx ∈ txvc.output it holds that txr

i :=
genRef(txstate

i ,θεx). If one of these previous checks failed,
return ⊥.

7. txp
i := genPay(txstate

i )
8. Send (σUi+1(tx

r
i )) to Ui+1

Ui upon (σUi+1(tx
r
i ))

9. If σUi+1(tx
r
i ) is not a correct signature of Ui+1 for the txr

i cre-
ated in step 2, return ⊥.

10. updateChannel(γi,tx
state
i )

11. If, after tu time has expired, the message (update−ok) is re-
turned, return >. Else return ⊥.

Ui+1: Upon (update−ok), return
(txvc, rList,onioni+2,Ui+2,θεi+1 ,αi,T ). Else, upon
(update−fail), return ⊥

2pTeardown(γi,tx
vc,α′i):

Ui

1. txstate′
i−1 := genState(α′i,T,γi−1) //T is known from 2pSetup

2. txr′
i−1 := genRef(txstate′

i−1 ,θεi−1) //θεi−1 known as θεx from
2pSetup

3. Send (txstate′
i−1 ,txr′

i−1,σUi(tx
r′
i−1)) to Ui−1

Ui−1 upon (txstate′
i−1 ,txr′

i−1,σUi(tx
r′
i−1))

1. Extract α′i from txstate′
i−1 and check that α′i < αi and txstate′

i−1 =

genState(α′i,T,γi−1) //αi and T from 2pSetup
2. If Ui−1 =U0, ensure that α′i ≤ x+n · fee where x is the final

balance of Un in the virtual channel.
3. Check that txr′

i−1 = genRef(txstate′
i−1 ,θεi−1) //θεi−1 from

2pSetup
4. Check that σUi(tx

r′
i−1) is a correct signature of Ui for txr′

i−1
5. updateChannel(γi−1,tx

state′
i−1 )

6. If, after tu time has expired, the message (update−ok) is re-
turned, replace variables txstate

i−1 and txr
i−1 with txstate′

i−1 and
txr′

i−1, respectively. Return (>,α′i).
7. Else, return ⊥.

Ui: Upon (update−ok), replace variables txstate
i−1 , txr

i−1 and txp
i−1

with txstate′
i−1 , txr′

i−1 and txp′

i−1 := genPay(txstate′
i−1 ), respectively.

Figure 6: Protocol for 2-party channel update.

Open

U0 upon receiving (setup,channelList,txin,α,T )

1. If checkChannels(channelList,U0) =⊥, abort.
2. Let n := |channelList|. If checkT(n,T ) =⊥, abort.
3. If checkTxIn(txin,n,U0) =⊥, abort.
4. (txvc, rList,onion) := genTxVc(U0,channelList,tx

in)
5. γvc := preCreate (txvc, 0, U0, Un) together with Un
6. α0 := α+ fee · (n−1)
7. (skŨ0

,θε0 ,R0,U1,onion1) :=
checkTxVc(U0,U0.a,U0.b,txvc, rList,onion)

8. 2pSetup(γ0,tx
vc, rList,onion1,U1,θε0 ,α0,T )

Ui+1 upon receiving (txvc, rList,onioni+2,Ui+2,θεi+1 ,αi,T )

9. If Ui+1 is the receiver Un, send (confirm,σUn(tx
vc)) ↪−→U0

and go idle.
10. 2pSetup(γi+1,tx

vc, rList,onioni+2,Ui+2,θεi+1 ,αi− fee,T )

Finalize

U0: Upon (confirm,σUn(tx
vc))←−↩ Un, check that σUn(tx

vc) is
Un’s valid signature for the transaction txvc created in the Setup
phase. If not, or if txvc was changed, or no such confirmation was
received until T − tc−3∆, publishTx(txvc,σU ′0(tx

vc)).

Update
Either user Ui ∈ γvc.users can update the virtual channel γvc by
creating a new state txstate

i and calling preUpdate(γvc,tx
state
i ).

Close
Un: Let α′ be the final balance of Un in the virtual channel. Execute
2pTeardown(γi,tx

vc,α′)

Ui−1 upon (>,α′i)
1. If Ui−1 =U0, go idle.
2. Else, let α′i−1 := α′i + fee

3. 2pTeardown(γi−2,tx
vc,α′i−1)

Emergency-Offload

U0: If U0 has not successfully performed 2pTeardown until T −
tc−3∆, publishTx(txvc,σU ′0(tx

vc)).

Respond (executed by Ui for i ∈ [0,n] in every round)

1. If τx < T − tc − 2∆ and txvc on the blockchain,
closeChannel(γi) and, after txstate

i is accepted on the
blockchain within at most tc rounds, wait ∆ rounds.
Let σŨi

(txr
i ) be a signature using the secret key skŨi

.
publishTx(txr

i ,(σŨi
(txr

i ),σUi(tx
r
i ),σUi+1(tx

r
i ))).

2. If τx > T , γi−1 is closed and txvc and txstate
i−1 is on the

blockchain, but not txr
i−1, publishTx(txp

i−1,(σUi(tx
p
i−1))).

Figure 7: Pseudocode of the protocol.

10



Note that the refund transactions in both contracts are de-
pendent on the same transaction txvc and that the time-locks
on its outputs are the same. This means that if an honest
intermediary’s left neighbor can refund their collateral, the
intermediary itself can refund as well. If the intermediary
pays the collateral to its right user, this means that txvc was
not published before T and the intermediary itself will be paid
as well. In the close phase, the contract is updated to hold a
smaller value. Since this is done from right to left, an honest
intermediary is safe. In the refund case, nothing changes. In
the case where the collateral moves from left to right, the
intermediary will receive more money.

Endpoint security. An honest sender can always enforce
the virtual channel that holds its correct balance by posting
txvc and thereby offloading the virtual channel. By doing so,
the refunding of the collateral along the path is triggered,
including the one of the sender itself. This means, that in
case of a dispute or someone not cooperating, the sender can
always use the offloading before T to ensure its balance. An
honest receiver will get its rightful balance either when the
channel is offloaded or, if it is not, after time T through the
collateral, which is moved from left to right along the path.

Reliability. Only the sender is able to offload the virtual
channel. This means that if sender and receiver are honest, no
one can force them to offload the virtual channel before T .

Endpoint anonymity and path privacy. We require txvc to
use an input that is unlinkable to the sender. The addresses
used within the virtual channel are fresh and unlinkable ad-
dresses of the sender and the receiver as well. Further, the out-
puts of txvc are constructed as stealth addresses. This means
that an intermediary observing txvc will learn nothing about
the sender and the receiver. These properties hold only in the
optimistic case. In the pessimistic case, it might be possible to
link (parts of) the path to txvc and also link the virtual channel
to sender/receiver, which is also what happens in any other
off-chain protocol, including the Lightning Network.

Value privacy. Similar to how payments between users of a
payment channel are known only to those users, also virtual
channel updates are only known by the endpoints.

5.2 Security model
We rely on the synchronous, global universal composabil-

ity (GUC) framework [7] to model the Donner protocol. We
make use of some preliminary functionalities commonly used
in the literature [2, 3, 4, 9, 10]. The global ledger L is main-
tained by the functionality GLedger, which is parameterized
by a signature scheme Σ and a blockchain delay ∆, i.e., an
upper bound on number of rounds it takes for a valid trans-
action to appear on L , after it is posted. The notion of time
(or computational rounds) is modelled by Gclock and the com-
munication by FGDC. Finally, a functionality FChannel handles
the creation, update and closure of payment channels as well
as the preparation and update of the virtual channels.

We define an ideal functionality FVC that models the ide-
alized behavior of our VC protocol, stipulating input/output
behavior, impact on the ledger as well as possible attacks by
adversaries. In the ideal world, FVC is a trusted third party.
Additionally, we formally define the real world hybrid proto-
col Π and show that Π emulates (or realizes) FVC. For this,
we describe a simulator S that translates any attack of any
adversary on the protocol Π into an attack on FVC.

To show that the protocol Π realizes FVC, we need to show
that no PPT environment E can distinguish between interact-
ing with the real world and interacting with the ideal world
with a probability non-negligibly greater than 1

2 . This implies,
that any attack that is possible on the protocol is also possible
on the ideal functionality. Intuitively, it suffices to output the
same messages in the same rounds and add the same trans-
action to the ledger in the same rounds in both the real and
the ideal world. We refer to Appendix E for the preliminaries,
Appendix E.4 for the ideal functionality, Appendix E.5 for
the formal protocol and Appendix E.6 for the simulator and
the formal proof of the following theorem.

Theorem 1. Let Σ be an EUF-CMA secure signature scheme.
Then, for functionalities GLedger, Gclock, FGDC, FChannel and
for any ledger delay ∆ ∈ N, the protocol Π UC-realizes the
ideal functionality FVC.

6 Evaluation and comparison
6.1 Communication overhead

We implemented a small proof-of-concept that creates
the raw Bitcoin transactions necessary for the VC construc-
tion [1]. We use the library python-bitcoin-utils and
Bitcoin Script to build the transactions and tested their com-
patibility with Bitcoin by deploying them on the testnet. We
show the results for the operations Open, Update, Close, Of-
fload in Table 2. For transactions that go on-chain, we provide
additionally the expected cost in USD at the time of writing.
For this evaluation we assume generalized channels [2] as the
underlying payment channel scheme, but note that this could
be also done with Lightning channels (see Section 6.3).

For opening a virtual channel, each of the n underlying
payment channels needs to exchange 4 transactions: txvc, txr

i
and two transaction for updating the state. Since txvc has an
output for every intermediary and the sender, its size increases
with the number of channels on the path n and is 192+34 ·n
bytes. txr

i has a size of 306 bytes, and a channel update to a
state holding this contract is 742 bytes. Notice that txp

i does
not need to be exchanged, since the left user of a channel can
generate it independently. This totals to 1240+ 34 · n bytes
of off-chain commincation per channel for the open phase.
Additionally to that, we require to exchange the initial state of
the virtual channel, which is 2 transactions or 695 bytes. All in
all, this totals to 4 ·n+2 transactions or 34 ·n2+1240 ·n+695
bytes for the whole path.

For honestly closing a virtual channel, the payment needs

11



Table 2: Communication overhead of Donner for the whole
path (not per party) for the different operations, assuming a
virtual channel across n channels. In the pessimistic offload,
k ∈ [0,n] is the number of channels where there is a dispute.

# txs size (bytes) on-chain cost (USD)
Open 4 ·n+2 34 ·n2 +1240 ·n+695 0
Update 2 695 0
Close 3 ·n 1048 ·n 0
Offload (Optimistic) 1 192+34 0.62+0.04 ·n
Offload (Pessimistic) 3k+1 1048 · k+192+34 ·n 1.38 · k+0.62+0.04 ·n

to be updated from right to left. However, txvc does not need
to be exchanged anymore, so we only need to exchange 3
transactions or 1048 bytes for each of the n− 1 underlying
channels. To update a virtual channel, the two endpoints of
that virtual channel need to exchange 2 transactions with 695
bytes, the same as a payment channel update.

Finally, for offloading, only the transaction txvc needs to
be posted on-chain and nothing per channel. This means
192+34 ·n bytes and costs 0.62+0.04 ·n USD. Note that if
individual users on the path do not collaborate, regardless if
the virtual channel is offloaded or successfully closed, these
channels may need to be closed as well. We argue that this is
also the case during the normal payment channel execution,
e.g., when routing multi-hop payments. However, for every
channel that does need to be closed, the three transactions
exchanged in the close phase need to be posted additionally.
If there are k channels with such a dispute, this results in a
total of 3k+ 1 transactions or 1048 · k+ 192+ 34 · n bytes,
which costs 1.38 · k+0.62+0.04 ·n USD for the whole path.
We mark this as the pessimistic case in Table 2.

6.2 Efficiency comparison
In this section we compare our construction to LVPC [15]

(cf. Table 3). As already mentioned, LVPC is rooted and
needs to be constructed recursively. We construct a VC with
LVPC by applying the different operations (open, update,
close, offload) over one intermediary recursively. We compare
the number of off-chain and on-chain transactions to Donner
and conclude, that Donner is more efficient in every case.

Note that there are many different ways to combine virtual
channels with normal payment channels or even other virtual
channels, e.g., see Figure 8 or Figure 9. One can easily see,
that every combination leads to the same minimum number of
virtual channels required for a path of n base channels: One
for each of the n− 1 intermediaries. Before presenting the
differences for each operation, we point out that in recursive
solutions the storage overhead per intermediary is linear in
the number of layers on top of a user, which in turn is in the
worst case (Figure 8) linear in the path length and in the best
case (Figure 9) logarithmic in the path length.

In the open phase across the whole path, Donner requires 4 ·
n+2 off-chain transactions for the whole path. In LVPC, 7 off-
chain transactions per virtual channel are needed, so 7 ·(n−1).

Table 3: Comparison between recursive constructions and
Donner for a VC over from U0 to Un via n− 1 hops. 1In
the pessimistic offload in Donner, k ∈ [0,n] is the number of
channels where there is a dispute.

# txs off-chain
Open LVPC [15] 7 · (n−1) 3

Donner 4 ·n+2 3

Update LVPC [15] 2 3
Donner 2 3

Close LVPC [15] 4 · (n−1) 3
Donner 3 ·n 3

Offload LVPC [15] 5 ·n−5 7
(Optimistic) Donner 1 7

Offload LVPC [15] 5 ·n−5 7

(Pessimistic) Donner1 3 · k+1 7

Similar, for closing, we need to exchange 4 transactions per
virtual channel in LVPC, so 4 · (n−1). Donner requires the
close operation per underlying channel, so 3 ·n transactions.
The update phase is the same for both.

The interesting case again is the offload case. As we already
pointed out, a fully rooted, recursive VC construction requires
to close all underlying channels. This means in LVPC, we
require 2 transactions per underlying channel, of which we
have n payment channels and n−2 virtual channels (all but the
topmost one). Additionally, we need to publish n−1 funding
transactions of the virtual channels including the topmost
one. This results in 2 · (2n−2)+n−1 = 5 ·n−5 transactions
that have to be posted on-chain along with the fact that all
involved channels have to be closed in the case of a dispute .
In Donner, only 1 transaction has to be posted on-chain. For
the pessimistic offload, there need to be 3 · k+1 transactions
posted in Donner, where k is the number of channels where
there is a dispute.

Application scenario: Bootstrapping of new nodes. Ac-
cording to a recent Lightning Network (LN) snapshot, the
average number of channels per node is 7.8. This means that,
on average, the bootstrapping of a newly created node in the
LN costs (rounding up) 8 transactions posted on-chain, i.e.,
one funding transaction per channel. Additional 8 transactions
need to be posted on-chain when such channels are closed.
VCs can reduce the on-chain bootstrapping cost of a new node
in the LN. In particular, given that the LN is a connected com-
ponent and assuming that each channel has enough capacity
in both directions, one can open only one payment channel
holding all the funds of the user and leverage it then to open
a virtual channel to the other 7 nodes, thereby minimizing the
overhead on-chain.

The results of our back-of-the-envelop calculations are
shown in Table 4. Here we assume that there exists 4 interme-
diate channels to create each VC since the average shortest
path length in our snapshot of the LN is 3.4, and take the re-
sults from Table 3 to count the number of transactions. These
results show that VCs effectively move the on-chain overhead

12



to the off-chain setting for bootstrapping, making the PCNs an
attractive and cheap layer-2 solution: A user can use a single
but expensive on-chain operation to put all its funds over a
single channel to a well-connected node and then create many
and cheap virtual channels to any frequent counterparties over
the PCN topology. By doing that, the user additionally gains
in liveness and privacy guarantees as VCs in Donner are not
susceptible to the corresponding attacks by the intermediaries.

6.3 Compatibility with Lightning channels
To simplify the formalization of this work, we built our

virtual channel construction on top of generalized payment
channels (GC) [2], which have one symmetric channel state.
However, it is also possible to construct Donner on top of
LN channels, which have two asymmetric channel states. The
(one-hop) BCVC [3] constructions rely on GCs as well, while
the recursive LVPC [15] relies on simple channels that have
only one state, but each update reduces the limited lifetime of
the channel.

As LN channels are the only ones deployed in practice,
it is interesting to investigate the effect of building VCs on
top of LN channels. We point out that building Donner on
top of LN channel is not difficult, as the collateralization in
the underlying base channels is similar to a MHP. In fact,
the only two differences for implementing Donner on top
of LN channels instead of GCs is that (i) for each of the
two asymmetric states per channel we now need to create a
txr

i transaction, so two instead of one, and (ii) a punishment
mechanism has to be introduced per output instead of per state
(e.g., similar to how HTLCs are handled in LN).

The LVPC construction is not as straightforward to imple-
ment on top of LN channels. Similarly to Donner, we need to
introduce a punishment mechanism (ii). However, the more
difficult part is handling the two asymmetric states (i). Since
the VC needs to be able to be posted regardless of which of
the two states are posted, there needs to be a unique funding
transaction (called Merge in [15]) for each possible combina-
tion of states in the underlying channels. This implies that in a
LVPC like construction which is built on top of LN channels,
the storage overhead per party is exponential in the layers of
VCs that are constructed over this party. In fact, using chan-
nels with duplicated states this exponential growth is present
in every rooted, recursive VC construction. This follows from
the evaluation in [2].

To give an example, a VC that is rooted in two channels

Table 4: Bootstrapping cost comparison

no VCs LVPC [15] Donner
on-/off-chain on off on off on off
connecting to the network 8 16 1 147 1 126
disconnecting honestly 8 0 1 84 1 84
disconnecting forcefully 8 0 120 0 8 0

with two states each, needs to be copied four times: Once for
each of the ways of closing these two channels. On each of
these four combinations we have to build a copy of the VC,
and for each VC we need again two commitment transactions,
so eight. This growth continues for each layer. In addition,
for each of these exponentially many copies of the VC, com-
mitment transactions need to be exchanged for an update, so
there is an exponential communication overhead too. Note
that the storage overhead for Donner on top of LN channels
is constant as is the communication overhead for updates.

7 Conclusion
Payment channel networks (PCN) such as the Lightning

network have emerged as successful layer-2 solutions for
cryptocurrencies. However, the current path-based protocols
require active participation from all intermediaries, and every
employed intermediary introduces a single-point-of-failure,
which can make layer-2 payments unreliable, slow and expen-
sive. While virtual channels are already envisioned towards
mitigating these problems, the existing constructions are ei-
ther not compatible with Bitcoin offering only limited script-
ing capabilities, or restricted to single-hop virtual channels,
or vulnerable to forced closure and griefing attacks.

In this work, we have presented the first Bitcoin-compatible,
secure, privacy-preserving and efficient multi-hop virtual
channel construction. Donner is a provably secure, efficient
single-round (or non-recursive), decoupled, multi-hop virtual
channel construction. Our performance analysis demonstrated
Donner is efficient during the disputes and in terms of storage:
it only requires a single on-chain transaction during a dispute
(as compared to linear in the path length for the state-of-the-
art); moreover, the storage overhead also becomes indepen-
dent of the path length.

Overall, Donner offers an easy-to-adopt, scalable virtual
channel construction for PCNs such as the Lightning Net-
work. We find that Donner makes PCNs attractive layer-2
solutions: the users can put all of their cryptocurrency over a
single channel to a well-connected node and then create cheap
virtual channels to any frequent counterparty over the strongly
connected PCN topology. Unlike the underlying PCNs, the
virtual channels are not susceptible to liveness and privacy
attacks by the intermediaries.

Acknowledgements. This work has been supported by the
European Research Council (ERC) under the Horizon 2020
research (grant 771527-BROWSEC); by the Austrian Science
Fund (FWF) through the projects PROFET (grant P31621)
and the project W1255-N23; by the Austrian Research Pro-
motion Agency (FFG) through the Bridge-1 project PR4DLT
(grant 13808694) and the COMET K1 SBA; by the Vienna
Business Agency through the project Vienna Cybersecurity
and Privacy Research Center (VISP); by CoBloX Labs; by
the National Science Foundation (NSF) under grant CNS-
1846316.

13



References
[1] Donner virtual channel evaluation of the communication

overhead, 2021. https://github.com/donner-vc/
overhead.

[2] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Se-
bastian Faust, Kristina Hostáková, Matteo Maffei, Pe-
dro Moreno-Sanchez, and Siavash Riahi. Generalized
bitcoin-compatible channels. Cryptology ePrint Archive,
Report 2020/476, 2020. https://eprint.iacr.org/
2020/476.

[3] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Se-
bastian Faust, Kristina Hostáková, Matteo Maffei, Pe-
dro Moreno-Sanchez, and Siavash Riahi. Bitcoin-
Compatible Virtual Channels. In IEEE Symposium on
Security and Privacy, 2021.

[4] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate,
and Matteo Maffei. Blitz: Secure Multi-Hop Payments
Without Two-Phase Commits. In USENIX Security Sym-
posium, 2021.

[5] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and
Vassilis Zikas. Bitcoin as a transaction ledger: A com-
posable treatment. In Advances in Cryptology CRYPTO,
volume 10401, pages 324–356, 2017.

[6] Jan Camenisch and Anna Lysyanskaya. A formal treat-
ment of onion routing. In Advances in Cryptology
CRYPTO, pages 169–187, 2005.

[7] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi
Walfish. Universally composable security with global
setup. In Theory of Cryptography TCC, volume 4392,
pages 61–85, 2007.

[8] G. Danezis and I. Goldberg. Sphinx: A compact and
provably secure mix format. In 2009 30th IEEE Sympo-
sium on Security and Privacy, pages 269–282, 2009.

[9] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia
Hesse, and Kristina Hostáková. Multi-party Virtual State
Channels. In Advances in Cryptology - EUROCRYPT,
pages 625–656, 2019.

[10] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and
Daniel Malinowski. Perun: Virtual payment hubs over
cryptocurrencies. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 106–123. IEEE, 2019.

[11] Stefan Dziembowski, Sebastian Faust, and Kristina
Hostáková. General State Channel Networks. In Com-
puter and Communications Security, CCS, pages 949–
966, 2018.

[12] Christoph Egger, Pedro Moreno-Sanchez, and Matteo
Maffei. Atomic multi-channel updates with constant
collateral in bitcoin-compatible payment-channel net-
works. In Computer and Communications Security CCS,
page 801–815, 2019.

[13] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest.
A digital signature scheme secure against adaptive

chosen-message attacks. SIAM Journal on computing,
17(2):281–308, 1988.

[14] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi,
Alessandra Scafuro, and Sharon Goldberg. Tumblebit:
An untrusted bitcoin-compatible anonymous payment
hub. In 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego, California,
USA, February 26 - March 1, 2017. The Internet Society,
2017.

[15] Maxim Jourenko, Mario Larangeira, and Keisuke
Tanaka. Lightweight Virtual Payment Channels. In 19th
International Conference on Cryptology and Network
Security (CANS), 2020.

[16] Maxim Jourenko, Mario Larangeira, and Keisuke
Tanaka. Payment Trees: Low Collateral Payments for
Payment Channel Networks. In Financial Cryptography
and Data Security, 2021.

[17] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vas-
silis Zikas. Universally composable synchronous com-
putation. In Amit Sahai, editor, Theory of Cryptography
TCC, volume 7785, pages 477–498, 2013.

[18] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate,
Matteo Maffei, and Srivatsan Ravi. Concurrency and pri-
vacy with payment-channel networks. In Computer and
Communications Security CCS, page 455–471, 2017.

[19] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schnei-
dewind, Aniket Kate, and Matteo Maffei. Anonymous
multi-hop locks for blockchain scalability and interop-
erability. In Network and Distributed System Security
Symposium, NDSS, 2019.

[20] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Ku-
maresan, and Patrick McCorry. Sprites and state chan-
nels: Payment networks that go faster than lightning.
In Ian Goldberg and Tyler Moore, editors, Financial
Cryptography and Data Security - 23rd International
Conference, FC 2019, Frigate Bay, St. Kitts and Nevis,
February 18-22, 2019, Revised Selected Papers, volume
11598 of Lecture Notes in Computer Science, pages 508–
526. Springer, 2019.

[21] Joseph Poon and Thaddeus Dryja. The Bitcoin
Lightning Network: Scalable Off-Chain Instant Pay-
ments, January 2016. Draft version 0.5.9.2, avail-
able at https://lightning.network/lightning-
network-paper.pdf.

[22] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and
Ian Goldberg. Settling payments fast and private: Effi-
cient decentralized routing for path-based transactions.
In Network and Distributed System Security Symposium
NDSS, 2018.

[23] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakr-
ishnan, Kathleen Ruan, Parimarjan Negi, Lei Yang, Rad-
hika Mittal, Giulia C. Fanti, and Mohammad Alizadeh.
High throughput cryptocurrency routing in payment

14

https://github.com/donner-vc/overhead
https://github.com/donner-vc/overhead
https://eprint.iacr.org/2020/476
https://eprint.iacr.org/2020/476
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf


channel networks. In Networked Systems Design and
Implementation NSDI, pages 777–796, 2020.

[24] E. Tairi, P. Moreno-Sanchez, and M. Maffei. A2l:
Anonymous atomic locks for scalability in payment
channel hubs. In 2021 2021 IEEE Symposium on Secu-
rity and Privacy (SP), pages 1919–1936, Los Alamitos,
CA, USA, may 2021. IEEE Computer Society.

[25] Nicolas Van Saberhagen. Cryptonote v 2.0 (2013). URL:
https://cryptonote. org/whitepaper. pdf. White Paper. Ac-
cessed, pages 04–13, 2018.

A Forced closure attack
We now illustrate the forced closure attack in more detail.

Assume a virtual channel between users U0 and U4 recursively
constructed using the LVPC protocol [15] in the fashion of
Figure 8. A malicious user U0 can unilaterally force the clo-
sure of all underlying channels, that is, (U0,U1), (U1,U2),
(U2,U3) and (U3,U4) as well as the virtual channels (U0,U2),
(U0,U3) and the offloading of (U0,U4).

First, U0 closes the channel (U0,U1), which it can do on its
own. In LVPC, the output in the state of (U0,U1) which is used
to fund the virtual channel (U0,U2) goes to U0, unless it is first
consumed by the virtual channel. This means that an honest
U1 will lose money in the channel (U0,U1) to U0 by means of
the Punish transaction, unless it closes the channel (U1,U2)
and claims its money by posting the transaction funding the
VC (i.e., offloading) (U0,U2), dubbed Merge transaction.

This process is repeated: Now that the funding of (U0,U2)
is on-chain, U0 can close the channel (U0,U2), which again
puts the output that is used to fund (U0,U3) on-chain. Same
as before, now U2 has to close (U0,U3) with the Merge trans-
action, otherwise it will lose the money to U0 via the Punish
transaction. So U2 is forced to close the channel (U2,U3) and
then publish the funding transaction of (U0,U3).

Now, one more time, U0 repeats this process by clos-
ing (U0,U3), which forces U3 to close (U3,U4) and offload
(U0,U4). One can see that, similarly, U4 can force the closure
of all these channels. In fact U4 only needs to close (U3,U4)
to achieve the same effect. In an analogous fashion, this attack
can be applied also when the VC is constructed by different
underlying channels, like in Figure 9.

Let us clarify that by closing the underlying payment chan-
nels we mean that at least one transaction per payment channel
has to be put on-chain. Due to the fact that LVPC first splits
the channel before funding the VC, closing the initial chan-
nel simultaneously spawns a new channel that has a capacity
reduced by the amount put in the collateral funding the VC.

While we show this attack only for LVPC, we conjecture
that it is a more general problem with all Bitcoin compatible
virtual channels that are rooted in the underlying payment
channels. The intuition for this is that at least one user has
to have a way of offloading the virtual channel to avoid lock-
ing funds forever. However, to offload a fully rooted VC, all

channels in which the VC is rooted need to be closed. So if
the VC is rooted in all underlying channels, all of them need
to be closed.

B Virtual griefing attack
Here, we present the virtual griefing attack in more detail.

We already detailed the offloading/closing sequence that can
be initiated by an endpoint of a virtual channel constructed
using LVPC [15] in Appendix A. Note that the closure is
done in a sequential way, i.e., U0 starts by closing its channel
with U1, who continues to close its channel with U2 and so on.
Each step takes a certain time to be executed. Additionally,
the next user that has to react needs enough time to take the
appropriate action in order not to lose coins.

In LVPC, this fact is represented by setting the timelock of
each Merge transaction to be the maximum of the timelock of
the two underlying channel plus a time ∆, i.e., the blockchain
delay. This implies, that the timelock on the outermost VC is
linear in the number of layers beneath it. The number of layers
is linear in the path length in case of Figure 8 and logarithmic
in case of Figure 9.

For the virtual griefing attack, however, a sender sets up a
VC with itself following Figure 8. It follows that the collateral
of the intermediaries is locked for a time linear in the path
length. As for the forced closure attack, we conjecture that
this is a more general problem that is affecting all virtual
channels that are constructed recursively and tear down this
structure in a sequential way. In particular, it affects also the
Ethereum based construction [11]. The intuition here is that
the different layers need to be closed sequentially, and each
closure takes a certain time.

C Example graphs for recursive VC
In this section, we show in Figure 8 and Figure 9 two

example graphs that illustrate the different ways that one
could recursively create a multi-hop VC using VC with a
single intermediary as a building block.

D Extended macros
In this section, we give extended pseudo-code for the used

subprocedures used in our protocol, both in the pseudocode
definition given in Section 4 and in the formal model in Ap-
pendix E.4, Appendix E.5 and Appendix E.6.

Subprocedures

checkTxIn(txin,n,U0,α):

1. Check that txin is a transaction on the ledger L .
2. If txin.output[0].cash ≥ n · ε + α and txin.output[0].φ =

OneSig(U ′0), that is spendable by an unused address of U0,
return >. Otherwise, return ⊥. When using this transaction (to

15



U0 U1 U2 U3 U4

γv0

γv1

γv2

Figure 8: Recursive virtual channel: Example A

U0 U1 U2 U3 U4

γv0 γv1

γv2

Figure 9: Recursive virtual channel: Example B

fund txvc), the sender will pay any superfluous coins back to a
fresh address of itself.

checkChannels(channelList,U0):

Check that channelList forms a valid path from U0 via some
intermediaries to a receiver Un and that no users are in the path
twice. If not, return ⊥. Else, return Un.

checkT(n,T ):

Let τ be the current round. If T ≥ τ+n(3+2tu)+3∆+ tc+2+ to,
return >. Otherwise, return ⊥.

genTxVc(U0,channelList,tx
in):

1. Let outputList := /0 and rList := /0

2. For every channel γi in channelList:
• (pkŨi

,Ri)← GenPk(γi.left.A,γi.left.B)

• outputList := outputList ∪ (ε,OneSig(pkŨi
) ∧

RelTime(tc +∆))

• rList := rList∪Ri
3. Let P := {γi.left,γi.right}γi∈channelList and let nodeList be a

list, where P is sorted from sender to receiver. Let n := |P |.
4. Shuffle outputList and rList.
5. Let txvc := (txin.output[0],outputList)
6. Create a list [msgi]i∈[0,n], where msgi := H (txvc)

7. onion← CreateRoutingInfo(nodeList, [msgi]i∈[0,n])

8. Return (txvc, rList,onion)

genState(αi,T,γi):

1. For the users Ui := γi.left = and Ui+1 := γi.right, create the
output vector~θi := (θ0,θ1,θ2), where
• θ0 := (αi,(MultiSig(Ui,Ui+1) ∧ RelTime(T )) ∨
(OneSig(Ui+1)∧AbsTime(T )))

• θ1 := (xUi −αi,OneSig(Ui))

• θ2 := (xUi+1 ,OneSig(Ui+1))
where xUi and xUi+1 is the amount held by Ui and Ui+1 in the
channel, respectively.

2. Let txstate
i be a channel transaction carrying the state with

txstate.output=~θi. Return txstate
i .

checkTxVc(Ui,a,b,txvc, rList,onioni):

1. x := GetRoutingInfo(onioni,Ui). If x = ⊥, return ⊥. If Ui is
the receiver and x = H (txvc) , return (>,>,>,>,>). Else, if
x 6= (Ui+1,H (txvc),onioni+1), return ⊥.

2. For all outputs (cash,φ) ∈ txvc.output except output with in-
dex 0 it must hold that:
• cash= ε

• φ =OneSig(pkx)∧RelTime(tc +∆) for some identity pkx

3. For exactly one output θεi := (ε,OneSig(Ũi) ∧
RelTime(tc +∆)) ∈ txvc.output and one element Ri ∈ rList
it must hold that

• Let pkŨi
be the corresponding public key of OneSig(Ũi)

• skŨi
:=GenSk(a,b,pkŨi

,Ri) must be the corresponding
secret key of pkŨi

4. If the checks in 2 or 3 do not hold, return ⊥
5. Return (skŨi

,θεi ,Ri,Ui+1,onioni+1)

Subprocedures used exclusively in UC model

createMaps(U0,nodeList,tx
in,α):

1. For every Ui ∈ nodeList\Un do:
• (pkŨi

,Ri)← GenPk(Ui.A,Ui.B)

• outputMap(Ui) := (ε,OneSig(pkŨi
)∧RelTime(tc +∆))

• rMap(Ui) := Ri

2. rList= rMap.values().shuffle()

3. Let θvc := (α,MultiSig(U0,Un))

4. txvc := (txin.output[0], [θvc,outputMap.values()
.shuffle()])

5. Create a map stealthMap that stores for every user Ui that is
a key in outputMap the corresponding output of txvc corre-
sponding to outputMap(Ui)

6. Create two empty lists /0 named msgList,userList
7. For every Ui ∈ nodeList from Un to U0 (in descending order):

• Append [H (txvc)] to msgList

• Prepend [Ui] to userList.
• onioni := CreateRoutingInfo(userList,msg)

• onions(Ui) := onioni

8. Return (txvc,onions, rMap, rList,stealthMap)

genStateOutputs(γi,αi,T ):

1. Let~θ′i := γi.st be the current state of the channel γi.
2. Let Ui := γi.left= and Ui+1 := γi.right.

16



3. ~θ′i consists of the outputs θ′Ui
:= (xUi ,OneSig(Ui)) and

θ′Ui+1
:=(xUi+1 ,OneSig(Ui+1)) holding the balances of the two

usersa. If xUi < αi, return ⊥
4. Create the output vector~θi := (θ0,θ1,θ2), where

• θ0 := (αi,(MultiSig(Ui,Ui+1) ∧ RelTime(T )) ∨
(OneSig(Ui+1)∧AbsTime(T )))

• θ1 := (xUi −αi,OneSig(Ui))

• θ2 := (xUi+1 ,OneSig(Ui+1))

5. Return~θi.

genNewState(γi,α
′
i,T ):

1. Let~θi := γi.st.

2. Let αi :=~θi[0].cash

3. Set θ0 := (α′i,
~θi[0].φ)

4. Set θ1 := (~θ[1].cash+αi−α′i,
~θi[1].φ)

5. Set θ2 :=~θi[2]

6. Return vector~θ′i := (θ0,θ1,θ2)

genRefTx(θ,θεi ,Ui):
1. Create a transaction txr

i with txr
i .input := [θ,θεi ] and

txr
i .output := (θ.cash+θεi .cash,OneSig(Ui)).

2. Return txr
i

genPayTx(θ,Ui+1):

1. Create a transaction txp
i with txp

i .input := [θ] and
txp

i .output := (θ.cash,OneSig(Ui+1)).
2. Return txp

i

aPossibly other outputs {θ′j} j≥0 could also be present in this state.
They, along with the off-chain objects there (e.g., other payments) would
have to be recreated in the new state while adapting the index of the output
these objects are referring to. For simplicity, we say this here in prose and
omit it in the protocol, only handling the two outputs mentioned.

E UC modeling
For our formal security analysis, we utilize the global UC

framework (GUC) [7]. In contrast to the standard Universal
Composability (UC) framework, the GUC allows for a global
setup, which in turn we use for modelling the blockchain as a
global ledger. In this section, we go over some preliminaries
and notation before presenting the ideal functionality. Note
that our formal model follows closely [2, 3, 4, 9, 10, 11].

E.1 Preliminaries, communication model and
threat model

A protocol Π is executed between a set of parties P and
runs in the presence of an adversary A , who receives as input
a security parameter λ ∈ N along with an auxiliary input z ∈
{0,1}∗. A can corrupt any party Pi ∈ P at the beginning of the
protocol execution, i.e., a static corruption model. Corrupting
a party Pi means that A takes control over Pi and learns its
internal state. The parties and the adversary A take their input
from the environment E , a special entity which represents
everything external to the protocol execution. Additionally,

E observes the messages that are output by the parties of the
protocol.

In our model, we assume a synchronous communication
network with computation happening in rounds, which allows
for a more natural arguing about time. This abstraction of
computational rounds is formalized in the ideal functionality
Gclock [17], which represents a global clock, that proceeds to
the next round if all honest parties indicate that they are ready
to do so. This means that every entity always knows the given
round.

Further, we assume that parties communicate via authenti-
cated channels with guaranteed delivery after precisely one
round. This is modeled by the ideal functionality FGDC: If a
party P sends a message to party Q in round t, then Q receives
that message in the beginning of round t +1 and knows that
the message was sent by P. Note that the adversary A is capa-
ble of reading the content of every message that is sent and
can reorder messages that are sent in the same round, but can-
not drop, modify or delay messages. For a formal definition
of FGDC we refer to [9].

In contrast to this communication between parties of P
which takes one round, all other communication, that involves
for instance the adversary A or the environment E , takes
zero rounds. Further, every computation that a party executes
locally takes zero rounds as well.

E.2 Ledger and channels
We use the global ideal functionality GLedger to model a

UTXO based blockchain, parameterized by ∆, an upper bound
on the number of rounds it takes for a valid transaction to
be accepted (the blockchain delay) and a signature scheme
Σ. GLedger communicates with a fixed set of parties P . The
environment E first initializes GLedger by setting up a key pair
(skP,pkP) for every party P ∈ P and registers it to the ledger
by sending (sid,REGISTER,pkp) to GLedger. Then, E sets the
initial state of L , a publicly accessible set of all published
transactions. Any party P ∈ P can always post a transaction
on L via (sid,POST, tx). If a transaction is valid, it will be
appear on L after at most ∆ round, the exact number is chosen
by the adversary. Recall that a transaction is valid, if all its
inputs exist and are unspent, there is a correct witness for each
input and a unique id.

We point out that this model is simplified: We fix the set of
users instead of allowing them to join or leave dynamically.
Further, transactions are in reality bundled in blocks, which
are submitted by parties and A . For a more accurate formal-
ization, we refer to works such as [5]. To increase readability,
we opted for these simplifications.

Channels are handles by the functionality FChannel [3],
which is an extension of [2] and builds on top of GLedger.
FChannel allows to to create, update and close a payment chan-
nel between two users, as well as handling channels (pre-
create and pre-update) that are funded off-chain, i.e., a virtual
channel. We define tu as an upper bound on rounds it takes to

17



update and tc as an upper bound on rounds it takes to close
a channel (regardless of whether or not there is cooperation).
We say that updating a channel takes at most tu rounds and
closing a channel, regardless if the parties are cooperating or
not, takes at most tc rounds. Finally, to is an upper bound it
takes to pre-create a channel.

We assume that for our constructions, all parties in the pro-
tocol have been registered with L , and all relevant channels
between them are already open. We present an API along with
an explanation of FChannel and GLedger below. For increased
readability, we hide the calls to Gclock and FGDC in our no-
tation. Instead of explicitly calling these functionalities, we
write (msg)

t
↪−→ X to denote sending message (msg) to X in

round t and (msg)
t←−↩ X to denote receiving message (msg)

from X at time t. The sending/receiving entity as well as X
are either a party P ∈ P , the environment E , the simulator S
or another ideal functionality.

Interface of FChannel(T,k) [2]

Parameters:
T : upper bound on the maximum number of consecutive

off-chain communication rounds between channel
users

k: number of ways the channel state can be published
on the ledger

API:
Messages from E via a dummy user P:

• (sid,CREATE,γ,tidP)
τ←−↩ P:

Let γ be the attribute tuple (γ.id,γ.users,γ.cash,γ.st), where
γ.id ∈ {0,1}∗ is the identifier of the channel, γ.users ⊂ P are
the users of the channel (and P ∈ γ.users), γ.cash ∈ R≥0 is the
total money in the channel and γ.st is the initial state of the
channel. tidP defines P’s input for the funding transaction of
the channel. When invoked, this function asks γ.otherParty to
create a new channel.

• (sid,UPDATE, id,~θ)
τ←−↩ P:

Let γ be the channel where γ.id = id. When invoked by P ∈
γ.users and both parties agree, the channel γ (if it exists) is
updated to the new state ~θ. If the parties disagree or at least
one party is dishonest, the update can fail or the channel can be
forcefully closed to either the old or the new state. Regardless
of the outcome, we say that tu is the upper bound that an up-

date takes. In the successful case, (sid,UPDATED, id,~θ)
≤τ+tu
↪−−−→

γ.users is output.

• (sid,CLOSE, id)
τ←−↩ P:

Will close the channel γ, where γ.id= id, either peacefully or
forcefully. After at most tc in round ≤ τ+ tc, a transaction tx
with the current state γ.st as output (tx.output := γ.st) appears
on L (the public ledger of GLedger).

• (sid,PRE-CREATE,γ,txf , i, tofl)
τ←−↩ P:

Does the same as CREATE, with the following difference. In-
stead of the an input for the funding transaction, the funding
transaction txf along with an index i, defining which output
of txf is used to fund the channel. The parameter tofl defines
the maximum number of rounds it takes to put txf on-chain.
If successfully invoked by both users of the channel, FChannel
returns (sid,PRE-CREATED,γ.id) after at most to rounds.

• (sid,PRE-UPDATE, id,~θ)
τ←−↩ P:

Does the same as UPDATE for a pre-created channel, however, in
case of a dispute, FChannel waits for txf to appear on the ledger
within tofl rounds. If it does, the channel is closed.

• Additionally, FChannel checks every round if the txf of a pre-
created channel is put on the ledger. If it is, the pre-created
channel is handled just as a normal channel from that time
forward.

Interface of GLedger(∆,Σ) [2]

This functionality keeps a record of the public keys of parties.
Also, all transactions that are posted (and accpeted, see below)
are stored in the publicly accessible set L containing tuples of all
accepted transactions .

Parameters:
∆: upper bound on the number of rounds it takes a valid

transaction to be published on L
Σ: a digital signature scheme

API:
Messages from E via a dummy user P ∈ P :

• (sid,REGISTER,pkP)
τ←−↩ P:

This function adds an entry (pkP,P) to PKI consisting of the
public key pkP and the user P, if it does not already exist.

• (sid,POST,tx)
τ←−↩ P:

This function checks if tx is a valid transaction and if yes,
accepts it on L after at most ∆ rounds.

E.3 The UC-security definition
Closely following [4], we define Π as a hybrid protocol that

accesses the ideal functionalities Fprelim consisting of FChannel ,
GLedger, FGDC and Gclock. An environment E that interacts
with Π and an adversary A will on input a security parameter
λ and an auxiliary input z output EXEC

Fprelim

Π,A ,E (λ,z). Moreover,
φFVC denotes the ideal protocol of ideal functionality FVC,
where the dummy users simply forward their input to FVC. It
has access to the same functionalities Fprelim. The output of
φFVC on input λ and z when interacting with E and a simulator

S is denoted as EXEC
Fprelim

φFVC ,S ,E (λ,z).

If a protocol Π GUC-realizes an ideal functionality FVC,
then any attack that is possible on the real world protocol Π

can be carried out against the ideal protocol φFVC and vice
versa. Our security definition is as follows.

Definition 1. A protocol Π GUC-realizes an ideal function-
ality FVC, w.r.t. Fprelim, if for every adversary A there exists
a simulator S such that we have{

EXEC
Fprelim

Π,A ,E (λ,z)
}

λ∈N,
z∈{0,1}∗

c
≈
{
EXEC

Fprelim

φFVC ,S ,E (λ,z)
}

λ∈N,
z∈{0,1}∗

where ≈c denotes computational indistinguishability.

E.4 Ideal functionality
In this section we explain our ideal functionality (IF) FVC

in prose. Note that the IF is capable of outputting an ERROR

18



message, e.g., when a transaction does not appear on the
ledger after instructing the simulator. We remark that the only
protocols that realize this IF that are of interest to us are
the ones that never output ERROR. The cases where ERROR is
output are not meaningful to us and any guarantees are lost.
We use the extended macros defined in Appendix D. The IF
is split into different parts: (i) Open-VC, (ii) Finalize-Open,
(iii) Update-VC, (iv) Close-VC, (v) Emergency-Offload and
(vi) Respond. We remark the similarity of (i), (ii) and (vi) to
the IF in [4].

Open-VC. This part starts with the setup phase, in which the
sender U0 invokes the IF to open a VC. In it, FVC takes care
of creating all necessary object, such as txvc, the onions, the
stealth addresses, etc. and calls PRE-CREATE of FChannel to
set up the VC with Un. Afterwards, FVC continues to do the
following. If the next neighbor on the path is honest, it takes
care of creating the objects and updating the channel with
that neighbor, which is captured in the subprocedure Open.
If the next neighbor is instead dishonest, FVC instructs the
simulator S to simulate the view of the attacker. Additionally,
FVC exposes the functionality to the simulator, which was
asked to continue the open phase with a legitimate request,
the simulator can perform Check to see if an id is already in
use and Register to register the channel that was updated with
the adversary. If the subsequent neighbor is again honest, the
IF will continue handling the opening, else the simulator will
do it. This continues until the receiver Un is reached and all
channels along with their created objects are stored in the IF
for each channel that contains at least one honest user. If Un
is honest, but not U0, the last step of the Open-VC phase is
actually to instruct S to send a confirmation to U0. At this
point, the Finalize-Open starts.

Finalize-Open. If U0 is honest, the IF will either know that
Un completed the opening within a certain round if Un is also
honest. Or, if Un is dishonest, FVC expects a confirmation
from Un via S . If an incorrect or no confirmation was received
in the correct round, the IF instructs the simulator to publish
txvc, offloading the VC.

Update-VC. While the VC is open, the two endpoints can
use PRE-UPDATE of FChannel to update the VC. The IF simply
forwards these messages.

Close-VC. This phase is similar to the Open-VC phase, but it
is initiated by Un, conducted from right to left and the requires
fewer objects to be created. Similar to the Open-VC phase,
the IF distinguishes if the left neighbor is honest or not. If it
is, then FVC takes care of updating the channel, reducing the
collateral to Un’s final balance in the VC plus its according
fee. If it is dishonest, it instructs S to simulate the view of
the adversary. If the simulator is invoked by the adversary to
continue the closing with a legitimate request, the IF continues
with the closure, until the sender is reached.

Emergency-Offload. If the sender of a payment is honest,
the IF will expect the Close-VC request to be concluded for

that payment in a certain round. If it is not, FVC instructs S to
offload the VC.
Respond. This phase is executed in every round and in it,
FVC observes if a transaction txvc is posted on the ledger L ,
which is used in channels that have an honest user and are
registered as pending in the IF. If it is published early enough
to refund the collateral, FVC closes the channels and instructs
the simulator to publish the refund transaction. Else, if the
lifetime of the VC T has already expired and the neighbor
closes the channel, FVC instructs the simulator to publish the
payment transaction.

Ideal Functionality FVC(∆)

Parameters:
∆ : Upper bound on the time it takes a transaction to

appear on L .
Local variables:

idSet : A set of containing pairs of ids and users (pid,Ui)
to prevent duplicate ids to avoid loops in payments.

Φ : A map, storing for a given key (pid,U0) of an id
pid and a user U0, a tuple (τf ,tx

vc,Un), where τf

is the round in which the payment confirmation is
expected from the receiver, the transaction txvc and
the receiver Un. The map is initially empty and read
write access is written as Φ(pid,U0). Φ.keyList()
returns a set of all keys.

Γ : A set of tuples (pid,γi,~θi,tx
vc,T,θεi ,Ri) for chan-

nels with opened payment construction, containing
a payment id pid, the channel γi, the state the pay-
ment builds upon~θi, the time T , the output used in
the refund by γi.left and value Ri to reconstruct the
secrect key of the stealth address used. It is initially
empty.

Ψ : A set of tuples (pid,txvc) containing payments, that
have been opened and where the receiver is honest.

tu,
tc, to : Time it takes at most to update, close or (pre-)open

a channel.

Init (executed at initialization in round tinit.)

Send (sid,init)
tinit
↪−→ S and upon (sid,init-ok, tu, tc, to)

tinit←−↩ S set tu, tc, to accordingly.

Open-VC

Let τ be the current round.
Setup:

1. Upon (sid,pid,SETUP,channelList,txin,α,T,γ0)
τ←−↩ U0, if

(pid,U0) ∈ idSet go idle. idSet := idSet∪{(pid,U0)}
2. Let x := checkChannels(channelList,U0). If x =⊥, go idle.

Else, let Un := x. If γ0 is not the full channel between U0
and his right neighbor U1 := γ0.right (corresponding to the
channel skeleton γ0 in channelList), go idle. Let nodeList be
a list of all the users on the path sorted from U0 to Un.

3. Let n := |channelList|. If checkT(n,T ) =⊥, go idle.

19



4. If checkTxIn(txin,n,U0,α) =⊥, go idle.
5. (txvc,onions, rMap, rList,stealthMap) := createMaps(U0,

nodeList,txin,α).

6. Send (sid,pid,pre-create-vc,γvc,tx
vc,T )

τ
↪−→ S and wait 1

round.

7. Send (ssidC,PRE-CREATE,γvc,tx
vc,0,T − τ)

τ+1
↪−−→ FChannel

8. If not (ssidC,PRE-CREATED,γvc.id)
τ+1+to←−−−−↩ FChannel , go idle.

9. Set α0 := α+ fee · (n−1).
10. Set Φ(pid,U0) := (τf := τ+n · (2+ tu)+2+ to,txvc,Un).
11. If U1 honest, execute

Open(pid,nodeList,txvc,onions, rMap,
rList,stealthMap,α0,T,γ0).

12. Else, let onion1 := onions(U1) and θε0 := stealthMap(U0).
Send (sid,pid,open,txvc, rList,onion1,α0,T,⊥,γ0,⊥,θε0)
τ+1+to
↪−−−−→ S .

Continue: //Continue after a dishonest user
1. Upon (sid,pid,continue,nodeList,txvc,onions, rMap,

rList,stealthMap, αi−1,T,γi−1)
τ←−↩ S

2. Open(pid,nodeList,txvc,onions, rMap, rList,stealthMap,
αi−1,T,γi−1).

Check: //Sim. can check that id was not yet used

1. Upon (sid,pid,check-id,txvc,θεi ,Ri,Ui−1,Ui,Ui+1,αi,T )
τ←−↩ S

2. If (pid,Ui) 6∈ idSet, let idSet := idSet∪{(pid,U)} and send
the message (sid,pid,OPEN,txvc,θεi ,Ri,Ui−1,Ui+1,αi−1,T )

τ
↪−→Ui

3. If (sid,pid,OPEN-ACCEPT,γi)
τ←−↩Ui, (sid,pid,ok,γi)

τ
↪−→ S .

VC-Open: //Mark VC as opened

1. Upon (sid,pid,vc-open,txvc)
τ←−↩ S , let Ψ :=

Ψ∪{(pid,txvc)}.
Register: //Sim. can register a channel

1. Upon (sid,pid,register,γi,~θi,tx
vc,T,θεi ,R)

τ←−↩ S
2. Γ := Γ∪{(pid,γi,~θi,tx

vc,T,θεi ,R)}
Open(pid,nodeList,txvc,onions, rMap, rList,stealthMap,αi−1,
T,γi−1):
Let τ be the current round and Ui := γi−1.right

1. If (pid,Ui) ∈ idSet, go idle.
2. idSet := idSet∪{(pid,Ui)}
3. If an entry after Ui in nodeList exists and is ⊥, go idle.
4. If Ui = Un (i.e., last entry in nodeList), set Ui+1 := >. Else,

get Ui+1 from nodeList (the entry after Ui).
5. Ri := rMap(Ui) and θεi := stealthMap(Ui)

6. ~θi−1 := genStateOutputs(γi−1,αi−1,T ). If ~θi−1 = ⊥, go
idle. Else, wait 1 round.

7. (sid,pid,OPEN,txvc,θεi ,Ri,Ui−1,Ui+1,αi−1,T )
τ+1
↪−−→Ui

8. If not (sid,pid,OPEN-ACCEPT,γi)
τ+1←−−↩Ui, go idle. Else,wait

1 round.

9. (ssidC,UPDATE,γi−1.id,~θi−1)
τ+2
↪−−→ FChannel

10. (ssidC,UPDATED,γi−1.id)
τ+2+tu←−−−−↩ FChannel , else go idle.

11. Γ := Γ∪ (pid,γi,~θi,tx
vc,T,θεi ,Ri)

12. If Ui =Un:
• Ψ := Ψ∪{(pid,txvc)}

• (sid,pid,VC-OPENED,txvc,T,αi−1)
τ+2+tu
↪−−−−→Ui

• If U0 is dishonest, send (sid,pid,finalize,txvc)
τ+2+tu
↪−−−−→

S
13. Else:

• (sid,pid,OPENED)
τ+2+tu
↪−−−−→Ui

• If Ui+1 honest, execute
Open(pid,nodeList,txvc,onions, rMap,
rList,stealthMap,αi−1− fee,γi)

• Else, send (sid,pid,open,txvc, rList,onioni+1,αi−1 −
fee,T,γi−1,γi,θεi−1 ,θεi)

τ
↪−→ S , where onioni+1 :=

onions(Ui+1) and θεi−1 := stealthMapUi−1

Finalize-Open (executed at every round)

For every (pid,U0) ∈Φ.keyList() do the following:

1. Let (τf ,tx
vc,Un) = Φ(pid,U0). If for the current round τ it

holds that τ = τ f , do the following.
2. If Un honest, check if (pid,txvc) ∈ Ψ. If yes, let Ψ := Ψ \
{(pid,txvc)} and go idle.

3. If Un dishonest and (sid,pid,confirmed,txer
x ,σUn(tx

er
x ))

τf←−↩
S , such that txer

x = txvc and σUn(tx
er
x ) is Un’s valid signature

of txvc, go idle.

4. Send (sid,pid,offload,txvc,U0)
τf
↪−→ S and remove key and

value for key (pid,U0) from Φ. txvc must be on L in round

τ′ ≤ τf +∆. Otherwise, output (sid,ERROR)
t1
↪−→U0.

Update-VC

While VC is open, the sending and the receiving endpoint can
update the VC using PRE-UPDATE of FChannel just as they would
a ledger channel.

Close-VC

Let τ be the current round.
Start:

1. Upon (sid,pid,SHUTDOWN,α′n−1)
τ←−↩ Un, for parameter

pid, fetch entry (pid,γn−1,~θi,tx
vc,T,θεi ,Ri) from Γ, s.t.

γn−1.right=Un. If there is no such entry, go idle.
2. Let Un−1 := γn−1.left.
3. If Un is not the endpoint in VC pid, go idle.
4. If Un−1 honest, execute Close(pid,γn−1,α

′
n−1)

5. Else, send (sid,pid,close,α′n−1,γn−1)
τ
↪−→ S

Continue-Close: //Continue after a dishonest user

1. Upon (sid,pid,continue-close,γi−1,α
′
i−1)

τ←−↩ S
2. Close(pid,γi−1,α

′
i−1).

Close(pid,γi,α
′
i): Let τ be the current round and Ui := γi.left

1. For the parameters pid and γi, fetch entry
(pid,γi,~θi,tx

vc,T,θεi ,Ri) from Γ. If there is no entry
where the parameters pid and γi match, go idle.

20



2. If γi.st 6=~θi, go idle.

3. Let αi :=~θi[0].cash. If not 0≤ α′i ≤ αi, go idle.

4. ~θ′i := genNewState(γi,α
′
i,T ). If~θ′i =⊥, go idle. Else, wait 1

round.

5. (sid,pid,CLOSE,α′i)
τ+1
↪−−→Ui

6. If not (sid,pid,CLOSE-ACCEPT)
τ+1←−−↩Ui, go idle.

7. (ssidC,UPDATE,γi.id,~θ
′
i)

τ+1
↪−−→ FChannel

8. If not (ssidC,UPDATED,γi.id)
τ+1+tu←−−−−↩ FChannel , go idle.

9. Γ := Γ\ (pid,γi,~θi,tx
vc,T,θεi ,Ri)

10. Γ := Γ∪ (pid,γi,~θ
′
i,tx

vc,T,θεi ,Ri)

11. If Ui =U0:

• (sid,pid,VC-CLOSED)
τ+1+tu
↪−−−−→Ui

• Remove key and value for key (pid,U0) from Φ.
12. Else:

• Retrieve γi−1 from Γ matching pid and s.t. γi−1.right=Ui

• (sid,pid,CLOSED)
τ+1+tu
↪−−−−→Ui

• If Ui−1 honest, execute Close(pid,α′i + fee,γi−1)

• Else, send (sid,pid,close,α′i + fee,γi−1)
τ
↪−→ S .

Replace: //Update the state currently saved by the IF

1. Upon (sid,pid,replace,γi,~θ
′
i)

τ←−↩ S , let Ui := γi.left

2. For parameters pid and γi, fetch entry
(pid,γi,~θi,tx

vc,T,θεi ,R) ∈ Γ

3. Γ := Γ\{(pid,γi,~θi,tx
vc,T,θεi ,R)}

4. Γ := Γ∪{(pid,γi,~θ
′
i,tx

vc,T,θεi ,R)}
5. If Ui =U0, remove key and value for key (pid,U0) from Φ.

Emergency-Offload (executed at every round)

Let τ be the current round. For every (pid,U0) ∈ Φ.keyList()
do the following:
1. For pid and a channel γ0 where γ0.left = U0, fetch entry

(pid,γ0,~θ0,tx
vc,T,θε0 ,R0) ∈ Γ

2. If τ < T − tc−3∆, continue with next loop iteration.
3. Else, let (τf ,tx

vc,Un) = Φ(pid,U0). Send

(sid,pid,offload,txvc,U0)
τ
↪−→ S . txvc must be on L

in round τ′ ≤ τ+∆. Otherwise, output (sid,ERROR)
t1
↪−→U0.

4. Remove key and value for key (pid,U0) from Φ.

Respond (executed at the end of every round)

Let t be the current round. For every element
(pid,γi,~θi,tx

vc,T,θεi ,Ri) ∈ Γ, check if γi.st = ~θi and txvc

is on L . If yes, do the following:
Revoke: If γi.left honest and t < T − tc−2∆ do the following.
• Set Γ := Γ\{(pid,γi,~θi,tx

vc,T,θεi ,Ri)}.

• (ssidC,CLOSE,γi.id)
t
↪−→ FChannel

• At time t + tc, a transaction tx with tx.output = γi.st has to
be on L . If not, do the following. If (ssidC,PUNISHED,γi.id)
τ<T←−−↩ FChannel , go idle. Else, send (sid,ERROR)

T
↪−→ γi.users.

• Wait for ∆ rounds and send (sid,pid,post-refund,γi,θεi ,Ri)
t ′<T−∆
↪−−−−→ S

• At time t ′′ < T , check whether a transaction tx′ appears
on L with tx′.input = [θεi , tx.output[0]] and tx′.output =
[(tx.output[0].cash+ θεi .cash,OneSig(Ui))]. If it does, send

(sid,pid,REVOKED)
t ′′
↪−→ γi.left. If not, send (sid,ERROR)

T
↪−→

γi.users.
Force-Pay: Else, if a transaction tx with tx.output= γi.st is on-
chain and tx.output[0] is unspent (i.e., there is no transaction on
L , that uses is as input), t ≥ T and Ui+1 is honest, do the following.
• Set Γ := Γ\{(pid,γi,~θi,tx

vc,T,θεi ,Ri)}.

• Send (sid,pid,post-pay,γi)
t
↪−→ S

• In round t +∆ transaction tx′ with tx′.input = [tx.output[0]]
and tx′.output = (tx.output[0].cash,OneSig(Ui+1)) must

have appeared on L . If yes, (sid,pid,FORCE-PAY)
t+∆
↪−−→

γi.right. Otherwise, (sid,ERROR)
t+∆
↪−−→ γi.users.

E.5 Protocol
In this section we give the formal protocol Π along with

a short description of it. We note that for simplicity, we as-
sume that users do not update or close the channels involved
with virtual channels2 Also, a user knows if it is an endpoint
(sender/receiver) or an intermediary of a VC as well as its
direct neighbors on the path. Following, the simulator simu-
lating an honest user knows that also.

The protocol is similar to the simplified pseudo-code pre-
sented in Section 4. The main differences lie in having VC
ids that allow handling multiple different VCs, the notion of
time and the environment E . Briefly, the protocol starts with
E invoking U0 to set up the initial objects and pre-create the
VC with Un. Then U0 asks its neighbor U1 to exchange the
necessary transactions and update their channel to hold the
collateral. This is continued until the receiver Un is reached.
In the finalize phase, Un sends a confirmation to U0, indicating
that the VC is open. In the Update VC phase, the channel
can be used. The Close VC phase updates the collateral from
right to left to hold Un’s final balance in the VC. The Respond
phase is there, for users to react to txvc being posted on the
ledger, and triggers either a refund or claim of the collateral.
We point to the similarities of Open VC, Finalize and Respond
with the formal protocol description in [4].

Protocol Π

Let fee ∈ N be a system parameter known to every user.
Local variables of Ui (all initially empty):

2In reality, they can take part in multiple VCs, update, close or use their
channels in some other fashion while a VC is open. For this, they recreate
the output used for the collateral and txr

i , but we omit this for readability.

21



pidSet : A set storing every payment id pid that a user
has participated in to prevent duplicates.

paySet : A map storing tuples (pid,τf ,Un) where pid
is an id, τf is the round in which a confirma-
tion is expected from the receiver Un for the
payments that have been opened by this user.

local : A map, storing for a given pid Ui’s local copy
of txvc and T in a tuple (txvc,T ).

left : A map, storing for a given pid a tuple
(γi−1,~θi−1,tx

r
i−1) containing channel with its

left neighbor Ui−1, the state and the transaction
txr

i−1 for Ui’s left channel in the payment pid.
right : A map, sotring for a given pid a tuple

(γi,~θi,tx
r
i ,skŨi

) containing the channel with
its right neighbor, the state, the transaction txr

i
and the key necessary for signing the refund
transaction in the payment pid.

rightSig : A map, storing for a given pid the signature
for txr

i of the right neighbor σUi+1(tx
r
i ) in the

payment pid.

Open VC

Setup: In every round, every node U0 ∈ P does the following. We
denote τ0 as the current round.

U0 upon (sid,pid,SETUP,channelList,txin,α,T,γ0)
τ0←−↩ E

1. If pid ∈ pidSet, abort. Add pid to pidSet.
2. Let x := checkChannels(channelList,U0). If x = ⊥, abort.

Else, let Un := x. If γ0 is not the full channel between U0
and his right neighbor U1 := γ0.right (corresponding to the
channel skeleton γ0 in channelList), go idle. Let nodeList be
a list of all the users on the path sorted from U0 to Un.

3. Let n := |channelList|. If checkT(n,T ) =⊥, abort.
4. If checkTxIn(txin,n,U0,α) =⊥, abort
5. (txvc,onions, rMap, rList,stealthMap) := createMaps(U0,

nodeList,txin,α).
6. (txvc, rList,onion0) := genTxVc(U0,channelList,tx

in)

7. paySet := paySet∪{(pid,τf := τ+n · (2+ tu)+2+ to,Un)}
8. (skŨ0

,θε0 ,R0,U1,onion1) :=
checkTxVc(U0,U0.a,U0.b,txvc, rList,onion0)

9. Set local(pid) := (txvc,T ).

10. Send (sid,pid,pre-create-vc,γvc,tx
vc,T )

τ0
↪−→Un and wait

1 round.

11. Send (ssidC,PRE-CREATE,γvc,tx
vc,0,T−τ0)

τ0+1
↪−−−→FChannel

12. If not (ssidC,PRE-CREATED,γvc.id)
τ0+1+to←−−−−−↩ FChannel , go

idle.
13. Set α0 := α+ fee · (n−1) and compute:

• ~θ0 := genStateOutputs(γ0,α0,T )

• txr
0 := genRefTx(~θ0,θε0 ,U0)

14. Set right(pid) := (γ0,~θ0,tx
r
0,skŨ0

).

15. Send (sid,pid,open-req,txvc, rList,onion1,~θ0,tx
r
0)

τ0+1+to
↪−−−−−→U1.

Un upon (sid,pid,pre-create-vc,γvc,tx
vc,T )

τ←−↩U0

1. (ssidC,PRE-CREATE,γvc,tx
vc,0,T − τ)

τ
↪−→ FChannel

2. If not (ssidC,PRE-CREATED,γvc.id)
τ+to←−−↩ FChannel , mark VC

as unusable.

Open: In every round, every node Ui+1 ∈ P does the following.
We denote τx as the current round.

Ui+1 u. (sid,pid,open-req,txvc, rList,onioni+1,~θi,tx
r
i )

τx←−↩Ui

1. Perform the following checks:
• Verify that pid 6∈ pidSet. Add pid to pidSet

• Let x := checkTxVc(Ui+1,Ui+1.a,Ui+1.b,txvc, rList,
onioni+1). Check that x 6= ⊥, but instead
x = (skŨi+1

,θεi+1 ,Ri+1,Ui+2,onioni+2).

• Set αi =~θi[0].cash and extract T from~θi−1[0].φ (the param-
eter of AbsTime()).

• Check that there exists a channel between Ui
and Ui+1 and call this channel γi. Verify that
~θi = genStateOutputs(γi,αi,T ).

• Check that txr
i := genRefTx(~θi,θεx ,Ui), where θεx is an out-

put of txvc, s.t. θεx 6= θεi+1 .
2. If one or more of the previous checks fail, abort. Otherwise,

send (sid,pid,OPEN,txvc,θεi+1 ,Ri,Ui,Ui+2,αi,T )
τx
↪−→ E .

3. If (sid,pid,OPEN-ACCEPT,γi+1)
τx←−↩ E , generate σUi+1(tx

r
i ).

Otherwise stop.

4. Set local(pid) := (txer
i ,T ), left(pid) := (γi,~θi,tx

r
i ) and

(sid,pid,open-ok,σUi+1(tx
r
i ))

τx
↪−→Ui.

Ui upon (sid,pid,open-ok,σUi+1(tx
r
i ))

τi+2
←−−↩Ui+1

(The round τi given Ui and pid is defined in Setup or in Open step
(6), the round when the update is successful.)

5. Check that σUi+1(tx
r
i ) is a valid signature for txr

i . If yes,
set rightSig(pid) := σUi+1(tx

r
i ) and (ssidC,UPDATE,γi.id,~θi)

τi+2
↪−−→ FChannel .

Ui+1 upon (ssidC,UPDATED,γi.id,~θi)
τx+1+tu←−−−−−↩ FChannel

6. Define τ(i+1) := τx +1+ tu.
7. If Ui+1 is not the receiver, using the values of step 1:

• Send (sid,pid,OPENED)
τi+1
↪−−→ E .

• (skŨi+1
,θεi+1 ,Ri+1,Ui+2,onioni+2) :=

checkTxVc(Ui+1,Ui+1.a,Ui+1.b,txer
i , rList,onioni+1)

• ~θi+1 := genStateOutputs(γi+1,αi− fee,T )

• txr
i+1 := genRefTx(~θi+1,θεi+1 ,Ui+1)

• Set right(pid) := (γi+1,~θi+1,tx
r
i+1,skŨi+1

)

• Send (sid,pid,open-req,txvc, rList,onioni+2,~θi+1,tx
r
i+1)

τi+1
↪−−→Ui+2.

8. If Ui+1 is the receiver:
• msg := GetRoutingInfo(onioni+1,Ui+1)

22



• Create the signature σUn(tx
er
i ) as confirmation and send

(sid,pid,finalize,txvc,σUn(tx
vc))

τi+1
↪−−→ U0. Send the

message (sid,pid,VC-OPENED,txvc,T,αi)
τi+1
↪−−→ E .

Finalize

U0 in every round τ

For every entry (pid,τf ,Un) ∈ paySet do the following if τ = τf :

1. Upon receiving (sid,pid,finalize,txvc,σUn(tx
vc))

τ←−↩ Un,
continue if σUn(tx

vc) is a valid signature for txvc. Otherwise,
go to step (3).

2. Let (x,T ) = local(pid). If x = txvc, go idle. Otherwise, con-
tinue with the next step.

3. Sign txvc yielding σU0(tx
vc) and set txvc :=

(txvc,(σU0(tx
vc))). Send (ssidL,POST,txvc)

τ
↪−→ GLedger and

remove (pid,τf ,Un) from paySet.

Update VC

While VC is open, the sending and the receiving endpoint can
update the VC using PRE-UPDATE of FChannel just as they would
a ledger channel.

Close VC

Shutdown: In every round, every node Un ∈ P does the following.
We denote τ0 as the current round.

Un upon (sid,pid,SHUTDOWN,α′n−1)
τn←−↩ E

1. If pid 6∈ pidSet, abort.
2. If Un is not the receiving endpoint in the VC, abort.

3. Retrieve (γn−1,~θn−1,tx
r
n−1) := left(pid)

4. Extract θεn−1 ∈ txr
n−1.input

5. Extract T from~θn−1[0].φ

6. Let αi :=~θn−1[0].cash. If not 0≤ α′i ≤ αi, abort. Compute:
• ~θ′n−1 := genNewState(γn−1,α

′
n−1,T )

• txr′
n−1 := genRefTx(~θ′n−1,θεn−1 ,Un−1)

7. Create the signature σUn(tx
r′
n−1)

8. Send (sid,pid,close-req,~θ′n−1,tx
r′
n−1,σUn(tx

r′
n−1))

τ0
↪−→

Un−1.

Close: In every round, every node Ui ∈ P does the following. We
denote τx as the current round.

Ui upon (sid,pid,close-req,~θ′i,tx
r′
i ,σUi+1(tx

r′
i ))

τx←−↩Ui+1

1. If pid 6∈ pidSet, abort.
2. Retrieve (γi,~θi,tx

r
i ,skŨi

) := right(pid)

3. If γi.right 6=Ui+1, abort. If~θi[0] 6∈ txr
i .input, abort.

4. Extract θεi ∈ txr
i .input

5. Extract T from~θi[0].φ and αi :=~θi[0].cash

6. Extract T ′ from~θ′i[0].φ and α′i :=~θ′i[0].cash

7. If T ′ 6= T , abort. If not 0≤ α′i ≤ αi, abort.

8. If~θ′i 6= genNewState(γi,α
′
i,T ), abort.

9. If txr′
i 6= genRefTx(~θ′i,θεi ,Ui), abort.

10. If σUi+1(tx
r′
i ) is not a valid signature for txr′

i , abort.

11. Send (sid,pid,CLOSE,α′i)
τx
↪−→ E

12. If not (sid,pid,CLOSE-ACCEPT)
τx←−↩ E , abort.

13. (ssidC,UPDATE,γi.id,~θ
′
i)

τx
↪−→ FChannel .

Ui+1 upon (ssidC,UPDATED,γi.id,~θ
′
i)

τi+1+tu←−−−−↩ FChannel

14. Set left(pid) := (γi,~θ
′
i,tx

r′
i )

Ui upon (ssidC,UPDATED,γi.id,~θ
′
i)

τx+tu←−−−↩ FChannel

15. Let τi := τx + tu
16. Set rightSig(pid) := σUi+1(tx

r′
i ) and set right(pid) :=

(γi,~θ
′
i,tx

r′
i ,skŨi

).

17. If Ui is not the sending endpoint:
• Retrieve (γi−1,~θi−1,tx

r
i−1) := left(pid)

• Extract θεi−1 ∈ txr
i−1.input

• ~θ′i−1 := genNewState(γi−1,α
′
i + fee,T )

• txr′
i−1 := genRefTx(~θ′i−1,θεi−1 ,Ui−1)

• Create the signature σUi(tx
r′
i−1)

• Send (sid,pid,close-req,~θ′i−1,tx
r′
i−1,σUi(tx

r′
i−1))

τi
↪−→

Ui−1.

• (sid,pid,CLOSED)
τi
↪−→ E

18. If Ui is the sending endpoint:

• (sid,pid,VC-CLOSED)
τi
↪−→ E

Emergency-Offload

U0 in every round τ

For every entry (pid,τf ,Un) ∈ paySet do the following:

1. Let (txvc,T ) := local(pid).
2. If τ < T − tc−3∆, continue with next loop iteration.
3. Remove (pid,τf ,Un) from paySet.
4. Sign txvc yielding σU0(tx

vc) and set txvc :=

(txvc,(σU0(tx
vc))). Send (ssidL,POST,txvc)

τ
↪−→ GLedger.

Respond

Ui at the end of every round

Let t be the current round. Do the following:

1. For every pid in right.keyList(), let (γi,~θi,tx
r
i ,skŨi

) :=
right(pid), let (txvc,T ) := local(pid) and do the following.
If t < T − tc− 2∆, txvc is on the ledger L and γi.st =~θi, do
the following:

23



• Remove the entry for pid from right, send

(ssidC,CLOSE,γi.id)
t
↪−→ FChannel .

• If a transaction tx with tx.output =~θi is on L in round
t1 ≤ t + tc wait ∆ rounds.

• Sign txr
i yielding σUi(tx

r
i ) and use skŨi

to sign txr
i yielding

σŨi
(txr

i )

• Set txr
i := (txr

i ,(σUi(tx
r
i ), rightSig(pid),σŨi

(txr
i ))) and

send (ssidL,POST,txr
i )

t1+∆
↪−−→ GLedger. When it appears on

L in round t2 < T , send (sid,pid,REVOKED)
t2
↪−→ E

2. For every pid in left.keyList(), let (γi−1,~θi−1,tx
r
i−1) :=

left(pid), let (txvc,T ) := local(pid) and do the following. If
t ≥ T and a transaction tx with tx.output =~θi−1 is on the
ledger L , but not txr

i−1, do the following:
• Remove the entry for pid from left and create txp

i−1 :=
genPayTx(γi−1.st,Ui).

• Sign txp
i−1 yielding σUi(tx

p
i−1).

• Set txp
i−1 := (txp

i−1,σUi(tx
p
i−1)) and send

(ssidL,POST,tx
p
i−1)

t
↪−→ GLedger.

• If it appears on L in round t1 ≤ t + ∆, send

(sid,pid,FORCE-PAY)
t1
↪−→ E

E.6 Simulation
In this section we provide the code for the simulator S ,

which can simulate the protocol in the ideal world, and give
the proof that the protocol (see Appendix E.5) UC-realizes
the ideal functionality FVC shown in Appendix E.4.

Simulator

Local variables:
left A map, storing the channel γi−1 and output θεi−1

for a given keypair consisting of a payment id
pid and a user Ui, or (⊥,⊥) if Ui is the sending
endpoint.

right A map, storing the transaction txr
i for a given

keypair consisting of a payment id pid and a
user Ui.

rightSig A map, storing the signature of the right neighbor
for the transaction stored in right for a given
keypair consisting of a payment id pid and a
user Ui.

Simulator for init phase

Upon (sid,init)
tinit←−↩ FVC and send (sid,init-ok, tu, tc, to)

tinit
↪−→ FVC.

Simulator for Open-VC phase

Pre-create VC

1. Upon (sid,pid,pre-create-vc,γvc,tx
vc,T )

τ←−↩U0 if U0 dis-

honest, go to step (3).

2. Upon (sid,pid,pre-create-vc,γvc,tx
vc,T )

τ←−↩ FVC if U0
honest, do the following. If Un honest go to step (3). If Un dis-
honest, send (sid,pid,pre-create-vc,γvc,tx

vc,T )
τ
↪−→ Un

and go idle.

3. (ssidC,PRE-CREATE,γvc,tx
vc,0,T − τ)

τ
↪−→ FChannel .

4. If not (ssidC,PRE-CREATED,γvc.id)
τ+to←−−↩ FChannel , mark VC

as unusable.

a) Case Ui is honest, Ui+1 dishonest

1. Upon (sid,pid,open,txvc, rList,onioni+1,αi,T,γi−1,γi,

θεi−1 ,θεi)
τ←−↩ FVC or upon being called by the

simulator S itself in round τ with parameters
(pid,txvc, rList,onioni+1,αi,T,γi−1,γi,θεi−1 ,θεi).

2. Let Ui := γi.left and Ui+1 := γi.right.

3. ~θi := genStateOutputs(γi,αi,T )

4. txr
i := genRefTx(~θi,θεi ,Ui)

5. (sid,pid,open-req,txvc, rList,onioni+1,~θi,tx
r
i )

τ
↪−→Ui+1

6. Upon (sid,pid,open-ok,σUi+1(tx
r
i ))

τ+2←−−↩ Ui+1, check that
σUi+1(tx

r
i ) is a valid signature for txr

i . If not, go idle.
7. Set rightSig(pid,Ui) := σUi+1(tx

r
i ), right(pid,Ui) := txr

i

8. Send (ssidC,UPDATE,γi.id,~θi)
τ+2
↪−−→ FChannel .

9. If not (ssidC,UPDATED,γi.id,~θi)
τ+2+tu←−−−−↩ FChannel , go idle.

10. Set left(pid,Ui) := (γi−1,θεi−1)

11. Send(sid,pid,register,γi,~θi,tx
vc,T,θεi ,R)

τ
↪−→ FVC.

b) Case Ui is honest, Ui−1 dishonest

1. Upon (sid,pid,open-req,txvc, rList,onioni,~θi−1,tx
r
i−1)

τ←−↩
Ui−1. Let αi−1 :=~θi−1[0].cash and extract T from~θi−1[0].φ
(the parameter ofAbsTime()). Let γi−1 be the channel between
Ui−1 and Ui

2. Let x := checkTxVc(Ui,Ui.a,Ui.b,txvc, rList,onioni). Check
that x 6=⊥, but instead x = (skŨi

,θεi ,Ri,Ui+1,onioni+1). Oth-
erwise, go idle.

3. Check that there exists a channel between Ui
and Ui+1 and call this channel γi. Verify that
~θi−1 = genStateOutputs(γi−1,αi−1,T ) and txr

i :=
genRefTx(~θi−1,θεi−1 ,Ui), where θεi−1 ∈ txvc and θεi−1 6= θεi .

4. (sid,pid,check-id,txvc,θεi ,Ri,Ui−1,Ui,Ui+1,αi,T )
τ
↪−→

FVC

5. If not (sid,pid,ok,γi)
τ←−↩ FVC, go idle. Let Ui+1 := γi.right.

6. Sign txr
i−1 on behalf of Ui yielding σUi(tx

r
i−1) and

(sid,pid,open-ok,σUi(tx
r
i−1))

τ
↪−→Ui−1.

7. Upon (ssidC,UPDATED,γi−1.id,~θi−1)
τ+1+tu←−−−−↩ FChannel , send

(sid,pid,register,γi−1,~θi−1,tx
vc,T,⊥,⊥) τ

↪−→ FVC. Other-
wise, go idle.

8. Set left(pid,Ui) := (γi−1,θεi−1).

24



9. If Ui =Un (if (skŨi
,θεi ,Ri,Ui+1,onioni+1) = (>,>,>,>,>)

holds), and U0 is honest,a send (sid,pid,vc-open,txvc)
τ+1+tu
↪−−−−→ FVC. If U0 is dishonest, create signature σUn(tx

vc) on
behalf of Un and send (sid,pid,finalize,txvc,σUn(tx

vc))
τ+1+tu
↪−−−−→U0. In both cases, send via FVC to the dummy user Un

the message (sid,pid,VC-OPENED,txvc,T,αi−1)
τ+1+tu
↪−−−−→Un.

Go Idle.
10. Send via FVC to the dummy user Ui the message

(sid,pid,OPENED)
τ+1+tu
↪−−−−→Ui.

11. If Ui+1 honest, call process(sid,pid,txvc,γi−1,γi,Ri,
onioni,αi,T ).

12. If Ui+1 dishonest, go to step Simulator Ui honest, Ui+1 dishon-
est step 1 with parameters (pid,txvc, rList,onioni+1,αi−1−
fee,T,γi−1,γi,θεi−1 ,θεi).

process(sid,pid,txvc,γi−1,γi,Ri,onioni,αi−1,T )

Let τ be the current round.
1. Initialize nodeList := {Ui} and onions, rMap,stealthMap as

empty maps.
2. (Ui+1,msgi,onioni+1) := GetRoutingInfo(onioni)

3. stealthMap(Ui) := θεi

4. rMap(Ui) := Ri
5. While Ui and Ui+1 honest:

• x := checkTxVc(Ui+1,Ui+1.a,Ui+1.b,txvc, rList,onioni+1):
– If x =⊥, append Ui+1 and then ⊥ to nodeList and break

the loop.
– If x = (>,>,>,>,>), append Ui+1 to nodeList and

break the loop.
– Else, if x = (skŨi+1

,θεi+1 ,Ui+2,onioni+2), do the follow-
ing.

• Append Ui+1 to nodeList

• onions(Ui+2) := onioni+2
• rMap(Ui+1) := Ri+1
• stealthMap(Ui+1) := θεi+1

• If Ui+2 is dishonest, append Ui+2 to nodeList and break the
loop.

• Set i := i+1 (i.e., continue loop for Ui+1 and Ui+2)
6. Send (sid,pid,continue,nodeList,txvc,onions, rMap,

rList,stealthMap, αi−1,T,γi−1)
τ
↪−→ FVC

aFor simplicity, assume that the Un (and in the case it is honest, the sim-
ulator) knows the sender. As the payment is usually tied to the exchange
of some goods, this is a reasonable assumption. Note that in practice, this
is not necessary, as the sender can be embedded in the routing information
onionn.

Simulator for finalize and emergency-offload phase

a) Publishing txvc

Upon receiving a message (sid,pid,offload,txvc,U0)
τ←−↩

FVC and U0 honest, sign txvc on behalf of U0 yielding σU0(tx
vc).

Set txvc := (txvc,σU0(tx
vc)) and send (ssidL,POST,txvc)

τ
↪−→

GLedger.

b) Case Un honest, U0 dishonest

Upon message (sid,pid,finalize,txvc)
τ←−↩ FVC,

sign txvc on behalf of Un yielding σUn(tx
vc). Send

(sid,pid,finalize,txvc,σUn(tx
vc))

τ
↪−→U0.

c) Case Un dishonest, U0 honest

Upon message (sid,pid,finalize,txvc,σUn(tx
vc))

τ←−↩Un, send

(sid,pid,confirmed,txvc,σUn(tx
vc))

τ
↪−→ FVC.

Simulator for Close-VC phase

a) Case Ui is honest, Ui−1 dishonest

1. Upon (sid,pid,close,α′i−1,γi−1)
τ←−↩ FVC or upon being

called by the simulator S itself in round τ with parameters
(pid,α′i−1,γi−1).

2. Retrieve (γi−1,θεi−1) := left(pid,Ui).
3. Extract T from γi−1.st[0].
4. Let Ui := γi.left and Ui+1 := γi.right.

5. ~θ′i−1 := genNewState(γi−1,α
′
i,T )

6. txr
i := genRefTx(~θ′i−1,θεi−1 ,Ui−1)

7. Create the signature σUi(tx
r′
i−1) on Ui’s behalf.

8. Send (sid,pid,close-req,~θ′i−1,tx
r′
i−1,σUi(tx

r′
i−1))

τ
↪−→Ui−1.

9. If (ssidC,UPDATED,γi−1.id,~θ
′
i−1)

τ+1+tu←−−−−↩ FChannel , send

(sid,pid,replace,γi−1,~θ
′
i−1)

τ+1+tu
↪−−−−→ FVC.

b) Case Ui is honest, Ui+1 dishonest

1. Upon (sid,pid,close-req,~θ′i,tx
r′
i ,σUi+1(tx

r′
i ))

τ←−↩ Ui+1, let
γi the channel between Ui and Ui+1.

2. Let txr
i := right(pid,Ui). If no such entry exists, go idle.

3. Let~θi := γi.st and check that~θi[0] ∈ txr
i .input. If not, go idle.

4. Extract θεi ∈ txr
i .input

5. Extract T from~θi[0].φ and αi :=~θi[0].cash

6. Extract T ′ from~θ′i[0].φ and α′i :=~θ′i[0].cash
7. If T ′ 6= T , abort. If not 0≤ α′i ≤ αi, abort.

8. If~θ′i 6= genNewState(γi,α
′
i,T ), abort.

9. If txr′
i 6= genRefTx(~θ′i,θεi ,Ui), abort.

10. If σUi+1(tx
r′
i ) is not a valid signature for txr′

i , abort.

11. Via FVC to the dummy user Ui send (sid,pid,CLOSE,α′i)
τ
↪−→

Ui and expect the answer (sid,pid,CLOSE-ACCEPT)
τ←−↩ Ui,

otherwise go idle.

12. Send (ssidC,UPDATE,γi.id,~θ
′
i)

τ
↪−→ FChannel .

13. Expect (ssidC,UPDATED,γi.id,~θ
′
i)

τ+tu←−−↩ FChannel , else go idle.

14. Send (sid,pid,replace,γi,~θ
′
i)

τ
↪−→ FVC.

15. Set right(pid,Ui) := txr′
i

16. Retrieve (γi−1,θεi−1) := left(pid,Ui).

25



17. If Ui =U0, send via FVC to the dummy user Ui the message

(sid,pid,VC-CLOSED)
τ+tu
↪−−→Ui. Go idle.

18. Send via FVC to the dummy user Ui the message

(sid,pid,CLOSED)
τ+tu
↪−−→Ui.

19. If Ui−1 honest, send (sid,pid,continue-close,γi−1,α
′
i +

fee)
τ+tu
↪−−→ FVC

20. If dishonest, go to step Simulator Ui honest, Ui+1 dishonest
step 1 with parameters (pid,α′i + fee,γi−1).

Simulator for respond phase

In every round τ, upon receiving the following two messages,
react accordingly.

1. Upon (sid,pid,post-refund,γi,tx
vc,θεi ,Ri)

τ←−↩ FVC.
• Extract αi and T from γi.st.output[0].
• If Ui+1 is honest, create the transaction txr

i :=
genRefTx(γi.st[0],θεi ,Ui). Else, let txr

i := right(pid,Ui)

• Extract pkŨi
from the output θεi of txvc and let skŨi

:=
GenSk(Ui.a,Ui.b,pkŨi

,Ri).

• Generate signatures σUi(tx
r
i ) and, using skŨi

, σŨi
(txr

i ) on
behalf of Ui.

• If Ui+1 := γi.right is honest, generate signature σUi+1(tx
r
i )

on behalf of Ui+1. Else, let σUi+1(tx
r
i ) := rightSig(pid,Ui)

• Set txr
i := (txr

i ,(σUi(tx
r
i ),σUi+1(tx

r
i ),σŨi

(txr
i ))).

• Send (ssidL,POST,txr
i )

τ
↪−→ GLedger.

2. Upon (sid,pid,post-pay,γi)
τ←−↩ FVC

• Extract αi and T from γi.st.output[0]. Create the trans-
action txp

i := genPayTx(γi.st,Ui+1).
• Generate signatures σUi+1(tx

p
i ) and set

txp
i := (txp

i ,(σUi+1(tx
p
i ))).

• Send (ssidL,POST,tx
p
i )

τ
↪−→ GLedger.

Proof.
We proceed to show that for any environment E an interac-

tion with φFVC (the ideal protocol of ideal functionality FVC)
via the dummy parties and S (ideal world) is indistinguish-
able from an interaction with Π and an adversary A . More
formally, we show that the execution ensembles EXECFVC ,S ,E
and EXECΠ,A ,E are indistinguishable for the environment E .

We use the notation m[τ] to denote that a message m is
observed by E at round τ. We interact with other ideal func-
tionalities. These functionalities might in turn interact with
the environment or parties under adversarial control, either
by sending messages or by impacting public variables, i.e.,
the ledger L . To capture this impact, we define a function
obsSet(m,F ,τ), returning a set of all by E observable ac-
tions which are triggered by calling F with message m in
round τ.

In this proof, we do a case-by-case analysis of each cor-
ruption setting. We start with the view of the environment in
the real world and follow with the view in the ideal world,

simulated by S . Due to the similarities of the Open-VC, the
Finalize well as the Respond phase and the Pay, Finalize and
Respond phase in [4], parts of the corresponding proofs are
taken verbatim from there.

Lemma 1. Let Σ be an EUF-CMA secure signature scheme.
Then, the Open-VC phase of Π GUC-emulates the Open-VC
phase of functionality FVC.

Proof. We compare the execution ensembles for the open
phase in the real and the ideal world. In Table 5 we match the
sequence of the Open-VC phase of the ideal and the real world
and point to which code is executed. We divide this phase
in setup and open. For readability, we define the following
messages:

• m0 := (sid,pid,pre-create-vc,γvc, tx
vc,T )

• m1 := (sid,pid,PRE-CREATE,γvc, tx
vc,0,T − τ)

• m2 := (sid,pid,PRE-CREATED,γvc.id)

• m3 := (sid,pid,open-req, txvc, rList,onioni+1,~θi, tx
r
i)

• m4 := (sid,pid,OPEN, txvc,θεi+1 ,Ri,Ui,Ui+2,αi,T )

• m5 := (sid,pid,OPEN-ACCEPT,γi+1)

• m6 := (sid,pid,open-ok,σUi+1(tx
r
i))

• m7 := (ssidC,UPDATE,γi.id,~θi)

• m8 := (ssidC,UPDATED,γi.id,~θi)

• m9 := (sid,pid,OPENED) or, if sent by the receiver,
m9 := (sid,pid,VC-OPENED, txvc,T,αi)

Setup.
Real world: An honest U0 performs SETUP in τ0 to set up

the initial objects and to pre-create the VC with Un. In
round τ0, U0 sends m0 to Un (which E sees in round
τ0 +1 only if Un is corrupted) and then, after waiting 1
round, m1 to FChannel . Note that an honest Un receiving
m0 in some round τ, sends also a message m1 to FChannel .
If FChannel received two valid messages m1 from U0 and
Un, it returns m2. Depending on the corruption setting,
the ensemble

• EXECΠ,A ,E := {m0[τ0 + 1]} ∪
obsSet(m1,FChannel ,τ0 + 1) for U0 honest,
Un corrupted

• EXECΠ,A ,E := obsSet(m1,FChannel ,τ0 + 1) ∪
obsSet(m1,FChannel ,τ0 + 1) for U0 honest, Un
honest, where m1 is sent by each user.

• EXECΠ,A ,E := obsSet(m1,FChannel ,τ) for U0 cor-
rupted, Un honest

Ideal world: For an honest U0, FVC performs SETUP in τ0
to set up the initial objects and to pre-create the VC. In
round τ0, FVC asks S to send m0 to a dishonest Un (who
receives it in round τ0 +1), or, if Un is honest send m1
to FChannel in τ0 +1 on behalf of Un. In both cases, FVC
sends m1 to FChannel in τ0 +1. If U0 is dishonest and Un

26



Table 5: Explanation of the sequence names used in Lemma 1 and where they can be found in the ideal functionality (IF),
Protocol (Prot) or Simulator (Sim).

Real World Ideal World Output Description
Ui honest, Ui+1 corrupted Ui honest, Ui+1 honest Ui corrupted, Ui+1 honest

SETUP Prot.OpenVC.Setup 1-15

IF.OpenVC.Setup 1-6,
Sim.OpenVC.PrecreateVC 1-4,

IF.OpenVC.Setup 7-10,12,
Sim.OpenVC.a 1-5

IF.OpenVC.Setup 1-6,
Sim.OpenVC.PrecreateVC 1-4,

IF.OpenVC.Setup 7-11
Sim.OpenVC.PrecreateVC 1-4

m0,
2 ·m1,

m3

Pre-Creates VC, performs setup and
contacts next user

CREATE_STATE Prot.OpenVC.Open 6-8
IF.OpenVC.Open 12,13 ,

Sim.OpenVC.a 1-5 IF.OpenVC.Open 12, 13 Sim.OpenVC.b 8-12
m9,
m3

Upon m8, sends message m9 to E .
Then, ceates the objects to send in m3
and sends it to next user (or finalize).

CHECK_STATE Prot.OpenVC.Open 1-4 n/a IF.OpenVC.Open 1-8

Sim.OpenVC.b 1-4
IF.Check

Sim.OpenVC.b 5-7
IF.Register

m4,
m6

Checks if objects in m3 are correct,
sends m4 to E and on m5, sends
m6 to Ui

CHECK_SIG Prot.OpenVC.Open 5 Sim.OpenVC.a 6-11 IF.OpenVC.Open 9-11 n/a m7 Checks if signature of txr
i is correct

honest, S waits for a message m0 from U0 in some round
τ and sends m1 to FChannel . If FChannel received two valid
messages m1 from U0 and Un, it returns m2. Depending
on the corruption setting, the ensemble

• EXECFVC ,S ,E := {m0[τ0 + 1]} ∪
obsSet(m1,FChannel ,τ0 + 1) for U0 honest,
Un corrupted

• EXECFVC ,S ,E := obsSet(m1,FChannel ,τ0 + 1) ∪
obsSet(m1,FChannel ,τ0 + 1) for U0 honest, Un
honest, where m1 is sent for each user.

• EXECFVC ,S ,E := obsSet(m1,FChannel ,τ) for U0 cor-
rupted, Un honest

Open. 1. Ui honest, Ui+1 corrupted.

Real world: After Ui performs either SETUP or
CREATE_STATE, it sends m3 to Ui+1 in the cur-
rent round τ. The environment E controls A and
therefore Ui+1 and will see m3 in round τ + 1. Iff
Ui+1 replies with a correct message m6 in τ + 2,
Ui will perform CHECK_SIG and call FChannel with
message m7 in the same round. The ensemble is
EXECΠ,A ,E := {m3[τ+1]}∪obsSet(m7,FChannel ,τ+2)

Ideal world: After FVC performs either SETUP or simula-
tor performs CREATE_STATE, the simulator sends m3 to
Ui+1 in the current round τ. E will see m3 in round
τ+1. Iff Ui+1 replies with a correct message m6 in τ+2,
the simulator will perform CHECK_SIG and call FChannel
with message m7 in the same round. The ensemble
is EXECFVC ,S ,E := {m3[τ+1]}∪obsSet(m7,FChannel ,τ+
2)

2. Ui honest, Ui+1 honest.
Real world: After Ui performs either SETUP or

CREATE_STATE, it sends m3 to Ui+1 in the current
round τ. Ui+1 performs CHECK_STATE and sends m4
to E in round τ+ 1. Iff E replies with m5, Ui+1, Ui+1
replies with m6. Ui receives this in round τ+2, performs
CHECK_SIG and sends m7 to FChannel . Ui+1 expects the
message m8 in round τ+2+ tu and will then send m9 to
E . Afterwards it continues with either CREATE_STATE
or FINALIZE. The ensemble is EXECΠ,A ,E :=

{m4[τ+1],m9[τ+2+ tu]}∪obsSet(m7,FChannel ,τ+2)

Ideal world: After FVC performs either SETUP or is invoked
by itself (in step Open.13) or by the simulator (in step
process.6) in the current round τ, FVC perform the pro-
cedure Open. This behaves exactly like CREATE_STATE,
CHECK_STATE and CHECK_SIG. However, since every ob-
ject is created by FVC, the checks are omitted. The pro-
cedure Open outputs the messages m4 in round τ+ 1
and iff E replies with m5, calls FChannel with m7 in τ+2.
Finally, if m8 is received in round τ+2+ tu, outputs m9
to E . The ensemble is EXECFVC ,S ,E := {m4[τ+1],m9[τ+
2+ tu]}∪obsSet(m7,FChannel ,τ+2)

3. Ui corrupted, Ui+1 honest.
Real world: After Ui+1 receives the message m3 from Ui, it

performs CHECK_STATE and sends m4 to E in the current
round τ. Iff E replies with m5, Ui+1 sends m6 to Ui. If
Ui+1 receives the message m8 from FChannel in round τ+
1+ tu, it sends m9 to E . The ensemble is EXECΠ,A ,E :=
{m4[τ],m6[τ+1],m9[τ+1+ tu]}

Ideal world: After the simulator receives m3 from Ui, it per-
forms CHECK_STATE together with FVC and FVC sends
m4 to E . Iff E replies with m5, FVC asks the simula-
tor to send m6 to Ui. All of this happens in the current
round τ. If the simulator receives m8 in round τ+1+ tu,
it sends m9 to E . The ensemble is EXECFVC ,S ,E :=
{m4[τ],m6[τ+1],m9[τ+1+ tu]}

Note that we do not care about the case were both Ui and
Ui+1 are corrupted, because the environment is communicat-
ing with itself, which is trivially the same in the ideal and the
real world. We see that for the setup and open phase in all
three corruption cases, the execution ensembles of the ideal
and the real world are identical, thereby proving Lemma 1.

Lemma 2. Let Σ be a EUF-CMA secure signature scheme.
Then, the Finalize phase of protocol Π GUC-emulates the
Finalize phase of functionality FVC.

27



Proof. Again, we consider the execution ensembles of the
interaction between users Un and U0 for three different cases.
We match the sequences and where they are used in the ideal
and real world in Table 6. We define the following messages.

• m10 := (sid,pid,finalize, txvc,σUn(tx
vc))

• m11 := (ssidL,POST, txvc)

1. Un honest, U0 corrupted.
Real world: After performing FINALIZE in the current

round τ, Un sends m10 to U0, which E sees in τ + 1.
The ensemble is EXECΠ,A ,E := {m10[τ+1]}

Ideal world: After either FVC or the simulator performs
FINALIZE in the current round τ, the simulator sends
m10 to U0, which E sees in τ + 1. The ensemble is
EXECFVC ,S ,E := {m10[τ+1]}

2. Un honest, U0 honest.
Real world: After performing FINALIZE in the current

round τ, Un sends m10 to U0. In the meantime, U0 per-
forms CHECK_FINALIZE and should it not receive a cor-
rect message m10 in the correct round, will send m11
to GLedger in round τ′. The ensemble is EXECΠ,A ,E :=
obsSet(m11,GLedger,τ

′)

Ideal world: Either FVC or the simulator performs
FINALIZE in the current round τ. In the meantime,
FVC performs CHECK_FINALIZE and will, if the
checks in FINALIZE failed or it was performed in a
incorrect round τ′, FVC will instruct the simulator to
send m11 to GLedger in rounds τ′. The ensemble is
EXECFVC ,S ,E := obsSet(m11,GLedger,τ

′)

3. Un corrupted, U0 honest.
Real world: U0 performs CHECK_FINALIZE and should it

not receive a correct message m10 in the correct round,
will send m11 to GLedger in round τ′. The ensemble is
EXECΠ,A ,E := obsSet(m11,GLedger,τ

′)

Ideal world: The simulator and FVC perform
CHECK_FINALIZE and should the simulator not receive
a correct message m10 in the correct round, FVC will
instruct the simulator to send m11 to GLedger in round τ′.
The ensemble is EXECFVC ,S ,E := obsSet(m11,GLedger,τ

′)

Lemma 3. Let Σ be a EUF-CMA secure signature scheme.
Then, the Update phase of protocol Π GUC-emulates the
Update phase of functionality FVC.

Proof. Trivially, this the update phase is the same, as the pre-
update messages are simply forwarded to FChannel in both the
real and the ideal world.

Lemma 4. Let Σ be a EUF-CMA secure signature scheme.
Then, the Close phase of protocol Π GUC-emulates the Close
phase of functionality FVC.

Proof. Again, we consider the execution ensembles of the
interaction between users Ui+1 and Ui for three different cases.
We match the sequences and where they are used in the ideal
and real world in Table 7. We define the following messages.

• m12 := (sid,pid,close-req,~θ′i−1, tx
r′
i−1,σUi(tx

r′
i−1))

• m13 := (sid,pid,CLOSE,α′i)

• m14 := (sid,pid,CLOSE-ACCEPT)

• m15 := (ssidC,UPDATE,γi.id,~θ
′
i)

• m16 := (ssidC,UPDATED,γi.id,~θ
′
i)

• m17 := (sid,pid,CLOSED) or, if sent by the sender,
m17 := (sid,pid,VC-CLOSED)

1. Ui+1 honest, Ui corrupted.
Real world: After Ui+1 performs either SHUTDOWN or

PROCEED_CLOSE, it sends m12 to Ui in the current round
τ. The environment E controls A and therefore Ui
and will see m12 in round τ + 1. The ensemble is
EXECΠ,A ,E := {m12[τ+1]}

Ideal world: After FVC performs either SHUTDOWN or simu-
lator performs PROCEED_CLOSE, the simulator sends m12
to Ui in the current round τ. E will see m12 in round
τ+1. The ensemble is EXECFVC ,S ,E := {m12[τ+1]}

2. Ui+1 honest, Ui honest.
Real world: After Ui+1 performs either SHUTDOWN or

PROCEED_CLOSE, it sends m12 to Ui in the current round
τ. Ui receives this message in τ + 1 and carries out
CLOSE, sending m13 to E in τ + 1 and, upon m14 in
τ+ 1, sends m15 in τ+ 1 to FChannel . After a success-
ful update (m16 is received), Ui sends m17 to E in
τ+ 1+ tu and continues with Ui−1, if it exists. The en-
semble is EXECΠ,A ,E := {m13[τ+ 1],m17[τ+ 1+ tu]}∪
obsSet(m15,τ+1,FChannel).

Ideal world: After FVC performs either SHUTDOWN or is in-
voked by itself (in step Close.12) or by the simulator
(in step b.19 and then IF.Continue-Close) in the current
round τ, FVC perform the procedure Close. This behaves
exactly like CLOSE and PROCEED_CLOSE. However, since
every object is created by FVC, the checks are omitted.
The procedure Close outputs the messages m13 in round
τ+1 and iff E replies with m14, calls FChannel with m15
in τ+1. Finally, if m16 is received in round τ+1+tu, out-
puts m17 to E and continues for Ui−1, if it exists. The en-
semble is EXECFVC ,S ,E := {m13[τ+1],m17[τ+1+ tu]}∪
obsSet(m15,τ+1,FChannel)

3. Ui+1 corrupted, Ui honest.
Real world: After Ui receives the message m12 from Ui+1

in round τ, it performs CLOSE and sends m13 to E in
τ. Iff E replies with m14 in the same round, Ui sends

28



Table 6: Explanation of the sequence names used in Lemma 2 and where they can be found.

Real World Ideal World Output Description
Un honest, U0 corrupted Un honest, U0 honest Un corrupted, U0 honest

FINALIZE Prot.OpenVC.Open 8
IF.OpenVC.12 and
Sim.Finalize.b or
Sim.OpenVC.b 9

IF.OpenVC.12 or
Sim.OpenVC.b 9,

IF.VCOpen
n/a m10 Sends finalize message to U0

CHECK_FINALIZE Prot.Finalize 1-3 n/a
IF.Finalize 1,2,4
Sim.Finalize.a

Sim.Finalize.c
IF.Finalize 1,3,4
Sim.Finalize.a

m11
Checks if txvc is the same, if not,
publishes it to ledger with m11.

Table 7: Explanation of the sequence names used in Lemma 4 and where they can be found.

Real World Ideal World Output Description
Ui+1 honest, Ui corrupted Ui+1 honest, Ui honest Ui+1 corrupted, Ui honest

SHUTDOWN Prot.CloseVC.Shutdown 1-8
IF.CloseVC.Start 1-3,5,

Sim.CloseVC.a 1-8 IF.CloseVC.Start 1-4 n/a m12
Shutdown starts with Un, creates
objects, contacts next user

CLOSE Prot.CloseVC.Close 1-14 n/a IF.CloseVC.Close 1-10 Sim.CloseVC.b 1-12 m13,
m15

Checks if objects in m12 are correct,
sends m13 to E and on m14, sends
m15 to FChannel

PROCEED_CLOSE Prot.CloseVC.Close 15-18
IF.CloseVC.Close 11,12,

Sim.CloseVC.a IF.CloseVC.Close 11,12
Sim.CloseVC.b 13,14,
IF.CloseVC.Replace,

Sim.CloseVC.B 14-20
m17

On m16, sends m17 to E and
continues with next user (if exists).

m15 to FChannel in τ. After receiving m16 in τ+ tu, per-
forms PROCEED_CLOSE, sending m17 to E and continues
with Ui−1, if it exists. The ensemble is EXECΠ,A ,E :=
{m13[τ],m17[τ+ tu]}∪obsSet(m15,τ,FChannel).

Ideal world: After the S receives m12 from Ui+1 in round
τ, performs the steps CLOSE, sending m13 to E in τ.
Iff E replies with m14 in the same round, S sends
m15 to FChannel in τ. After receiving m16 in τ + tu,
S performs PROCEED_CLOSE together with FVC, send-
ing m17 to E and continues for Ui−1, if it exists.
The ensemble is EXECFVC ,S ,E := {m13[τ],m17[τ+ tu]}∪
obsSet(m15,τ,FChannel).

Lemma 5. Let Σ be a EUF-CMA secure signature scheme.
Then, the Emergency-Offload phase of protocol Π GUC-
emulates the Emergency-Offload phase of functionality FVC.

Proof. Again, we consider the execution ensembles, but
this time only for an honest U0. We use message m11 :=
(ssidL,POST, txvc) from before.

Real world: An honest U0 checks every round and each of
its VCs (with a certain pid), if the VC has already been
closed, see Prot.EmergencyOffload 1-4. If it has not
within a certain round τ, U0 sends m11 to GLedger in τ.
The ensemble is EXECΠ,A ,E := obsSet(m11,GLedger,τ).

Ideal world: FVC checks every round and every VC (with
a certain pid), if the VC has already been closed. If
it has not within a certain round τ, FVC instructs S
to send m11 to GLedger, see IF.EmergencyOffload 1-4
and Sim.Finalize.a. The ensemble is EXECFVC ,S ,E :=
obsSet(m11,GLedger,τ).

Lemma 6. Let Σ be a EUF-CMA secure signature scheme.
Then, the Respond phase of protocol Π GUC-emulates the
Respond phase of functionality FVC.

Proof. Again, we consider the execution ensembles. This
time only for the case were a user Ui is honest, however we
distinguish between the case of revoke and force-pay. We
match the sequences and where they are used in the ideal and
real world in Table 8. We define the following messages.

• m18 := (ssidC,CLOSE,γi.id)

• m19 := (ssidL,POST, txr
i)

• m20 := (sid,pid,REVOKED)

• m21 := (ssidL,POST, tx
p
i−1)

• m22 := (sid,pid,FORCE-PAY)

Ui honest, revoke.
Real world: In every round τ, Ui performs RESPOND, which

provides a decision on whether or not to do the fol-
lowing. If yes, Ui performs REVOKE, which results in
message m18 to FChannel in round τ. If the channel
that is sent in m18 is closed, Ui sends m19 to GLedger
in round τ+ tc +∆. Finally, if the transaction sent in
m19 appears on L in τ + tc + 2∆, Ui sends m20 to E .
The ensemble is EXECΠ,A ,E := {m20[τ + tc + 2∆]} ∪
obsSet(m18,FChannel ,τ) ∪ obsSet(m19,GLedger,τ + tc +
∆)

Ideal world: In every round τ, FVC performs RESPOND,
which provides a decision on whether or not to do
the following. If yes, FVC instructs the simulator
to perform REVOKE, which results in the message
m18 to FChannel in round τ. If the channel that is
sent in m18 is closed, the simulator sends m19 to

29



Table 8: Explanation of the sequence names used in Lemma 6 and where they can be found.

Real World Ideal World Output Description
Ui honest

RESPOND Prot.Respond IF.Respond n/a Checks every round if response in order.

REVOKE Prot.Respond.1
IF.Respond.Revoke

Sim.Respond.1

m18,
m19,
m20

Carries out the revokation.

FORCE_PAY Prot.Respond.2
IF.Respond.Revoke

Sim.Respond.2
m21,
m22

Carries out the force-pay.

GLedger in round τ + tc + ∆. Finally, if the transac-
tion sent in m19 appears on L , FVC sends m20 to E .
The ensemble is EXECFVC ,S ,E := {m20[τ+ tc + 2∆]} ∪
obsSet(m18,FChannel ,τ) ∪ obsSet(m19,GLedger,τ + tc +
∆)

Ui honest, force-pay.
Real world: In every round τ, Ui performs RESPOND, which

provides a decision on whether or not to do the fol-
lowing. If yes, Ui performs FORCE_PAY, which results
in the messages m21 to GLedger in round τ and, if the
transaction sent in m21 appears on L , the message m22
to E in round τ + ∆. The ensemble is EXECΠ,A ,E :=
{m22[τ+∆]}∪obsSet(m21,GLedger,τ)

Ideal world: In every round τ, FVC performs RESPOND,
which provides a decision on whether or not to do the
following. If yes, FVC instructs the simulator to perform
FORCE_PAY, which results in the messages m21 to GLedger
in round τ and, if the transaction sent in m21 appears on
L , the message m22 to E in round τ+∆. The ensemble is
EXECFVC ,S ,E := {m22[τ+∆]}∪obsSet(m21,GLedger,τ)

Thereom 1. (again) Let Σ be an EUF-CMA secure signature
scheme. Then, for functionalities GLedger, Gclock, FGDC,
FChannel and for any ledger delay ∆ ∈ N, the protocol Π

UC-realizes the ideal functionality FVC.

This theorem follows directly from Lemma 1, 2, 3, 4, 5 and
Lemma 6.

F Discussion on security and privacy goals
We state our security and privacy goals informally in Sec-

tion 4.1. In this section we formally define these goals as
cryptographic games on top of the ideal functionality FVC
described in Appendix E.4 and then show that FVC fulfills
each goal. Due to the same assumptions and similarities in
some of the security and privacy goals, parts of this section
are taken verbatim from [4].

F.1 Assumptions
For the theorems in this section, we have the following

assumptions: (i) stealth addresses achieve unlinkability and
(ii) the used routing scheme (i.e., Sphinx extended with a
per-hop payload) is a secure onion routing process.

Unlinkability of stealth addresses. Consider the following
game. The challenger computes two pair of stealth addresses
(A0,B0) and (A1,B1). Moreover, the challenger picks a bit
b and computes Pb,Rb ← GenPk(Ab,Bb). Finally, the chal-
lenger sends the tuples (A0,B0), (A1,B1) and Pb,Rb to the
adversary.

Additionally, the adversary has access to an oracle that
upon being queried, it returns P∗b ,R

∗
b to the adversary.

We say that the adversary wins the game if it correctly
guesses the bit b chosen by the challenger.

Definition 2 (Unlinkability of Stealth Addresses). We say
that a stealth addresses scheme achieves unlinkability if for
all PPT adversary A , the adversary wins the aforementioned
game with probability at most 1/2+ ε, where ε denotes a
negligible value.

Secure onion routing process. We say that an onion routing
process is secure, if it realizes the ideal functionality defined
in [6]. Sphinx [8], for instance, is a realization of this. We
use it in Donner, extended with a per-hop payload (see also
Section 4.2).

F.2 Balance security
Given a path channelList := γ0, . . . ,γn−1 and given a

user U such that γi.right = U and γi+1.left = U , we say
that the balance of U in the path is PathBalance(U) :=
γi.balance(U) + γi+1.balance(U). Intuitively then, we say
that a virtual channel (VC) protocol achieves balance security
if the PathBalance(U) for each honest intermediary U does
not decrease..

Formally, consider the following game. The adversary
selects a channelList, a transaction txin, a virtual channel
capacity α and a channel lifetime T such that the output
txin.output[0] holds at least α+ n · ε coins, where n is the
length of the path defined in channelList. The adversary sends
the tuple (channelList, txin,α,T ) to the challenger.

30



The challenger sets sid and pid to two random identi-
fiers. Then, the challenger simulates opening a VC from the
OpenVC phase on input (sid, pid, SETUP, channelList, txin,
α, T, γ0). Every time a corrupted user Ui needs to be con-
tacted, the challenger forwards the query to the attacker and
waits for the corresponding answer, thereby giving the at-
tacker the opportunity to stop opening and trigger the offload
and thereby refunding the collateral or let them be successful.
If the opening was successful, an attacker can instruct the
simulator to either perform updates, honestly close the VC or
do nothing. In the case of an honest closure, the queries to
corrupted users are forwarded to the attacker, who again can
let the closure be successful or force an offload.

We say that the adversary wins the game if there exists
an honest intermediate user U , such that PathBalance(U) is
lower after the VC execution.

Definition 3 (Balance security). We say that a VC proto-
col achieves balance security if for every PPT adversary A ,
the adversary wins the aforementioned game with negligible
probability.

Theorem 2 (Donner achieves balance security). Donner vir-
tual channel executions achieve balance security as defined
in Definition 3.

Proof. Assume that an adversary exists, can win the bal-
ance security game. This means, that after the balance se-
curity game, there exists an honest intermediate user U , such
PathBalance(U) is lower after the VC exeuction.

An intermediary Ui potentially has coins locked up in the
state stored in FChannel with its left neighbor Ui−1 and its
right neighbor Ui+1. Depending on if and where an adversary
potentially disrupts the VC execution there are amount locked
up differs. We analyze below all different cases and show that
no honest intermediary Ui exists, such that PathBalance(Ui)
is lower after the execution.

1. The adversary disrupts the VC execution before it
reaches Ui. In this case, Ui has no coins locked up and there-
fore the balance does not change.

2. The adversary disrupts the VC execution after Ui and
Ui−1 have updated their channel for opening. In this case,
Ui−1 has a non-negative amount of coins locked up with Ui.
Regardless of the outcome, the balance of Ui can only increase
or stay the same, since the locked up coins come from Ui−1.

3. The adversary disrupts the VC execution after Ui and
Ui+1 have updated their channel for opening. In this case,
Ui−1 has a non-negative amount αi−1 of coins locked up with
Ui. Ui has the same amount (minus a fee) αi locked up with
Ui+1.

4. The adversary disrupts the VC execution after Ui and
Ui+1 have updated their channel for closing. In this case,
Ui−1 has a non-negative amount αi−1 of coins locked up with
Ui. Ui has the smaller amount α′i locked up with Ui+1.

5. The adversary disrupts the VC execution after Ui and
Ui+1 have updated their channel for closing. In this case,
Ui−1 has a non-negative amount α′i−1 of coins locked up with
Ui. Ui has the same amount (minus a fee) α′i locked up with
Ui+1.

To sum up, in all cases the money that Ui locks up Ui+1 is
always either the same or less than what Ui−1 locks up with Ui.
Now in each of these five cases, there are two possible things
that can happen. Either txvc is posted before T−3∆−tc or it is
not. In the former case, FVC ensures with the Respond phase,
that Ui is refunding itself, thereby keeping a neutral path
balance. In the case that txvc is not posted before T −3∆− tc,
Ui always gets the collateral from Ui−1 via the Respond phase
of FVC, keeping either a neutral or positive path balance.

F.3 Endpoint security
Intuitively, a VC protocol achieves endpoint security, if the

endpoints can either enforce their VC balance on-chain, or,
they are compensated with an amount that is at least as large as
their VC balance within an agreed upon time. More concretely
in our construction, we ensure that the sender can always
enforce its VC balance on-chain. For the receiver, we ensure
that either the sender puts the VC funding on-chain (allowing
the receiver to enforce its balance) or, it gets the full capacity
of the VC after the life time T . We extend our definition of
PathBalance(U) for the sender U0 and the receiver Un. For
each endpoint, this is the balance that it holds in the VC, if
the VC is offloaded or 0, if the VC is not offloaded, plus its
respective balance in its channel with its direct neighbor on
the path.

Formally, consider the following game. The adversary se-
lects a channelList, a transaction txin, a virtual channel ca-
pacity α and a channel lifetime T , such that the output of
txin.output[0] holds at least α+ n · ε coins, where n is the
length of the path defined in channelList. The adversary sends
the tuple (channelList, txin,α,T ) to the challenger.

The challenger sets sid and pid to two ran-
dom identifiers. Then, the challenger simulates
opening a VC from the OpenVC phase on input
(sid,pid,SETUP,channelList, txin,α,T,γ0). Every time
that a corrupted user Ui needs to be contacted, the challenger
forwards the query to the attacker and waits for the corre-
sponding answer, thereby giving the attacker the opportunity
to stop opening and trigger the offload and thereby refunding
the collateral or let them be successful. If the opening was
successful, an attacker can instruct the simulator to either
perform updates, honestly close the VC or do nothing. In the
case of an honest closure, the queries to corrupted users are
forwarded to the attacker, who again can let the closure be
successful or force an offload.

Define xU0 and xUn as the latest balance of the sender and
receiver in the VC, respectively. We say that the adversary
wins the game if for an honest sender PathBalance(U0) is
lower (by an amount greater than the combined fees (n−

31



1) · fee) after the VC execution or if for an honest receiver,
PathBalance(Un) is lower after T , compared balance with
their respective neighbors before the VC execution plus xU0

or xUn , respectively.

Definition 4 (Endpoint security). We say that a VC proto-
col achieves endpoint security if for every PPT adversary A ,
the adversary wins the aforementioned game with negligible
probability.

Theorem 3 (Donner achieves endpoint security). Donner vir-
tual channel executions achieve endpoint security as defined
in Definition 5.

Proof. For an honest sender, there are two possible scenarios.
Either, FVC has updated (or registered an update via S in) the
channel between U0 and U1 to exactly the final balance α′i
(= xU0 minus fees) in the CloseVC phase before the round
T − 3∆− tc. Or, if not, FVC has instructed the simulator to
publish txvc, allowing the balance to be enforcable on-chain.
In both cases, PathBalance(U0) is not lower than its initial
balance with U1 plus xU0 minus the sum of all fees (n−1) · fee.

For an honest receiver, there are also two possible scenar-
ios. Either, the VC was offloaded, allowing Un to enforce
its balance on-chain, or it is not. If VC is not offloaded, Un
either gets the full VC capacity, if the channel with Un−1 was
not updated in the CloseVC phase or, its actual balance if it
was updated in the CloseVC phase. The PathBalance(Un) is
therefore not lower.

F.4 Reliability
Intuitively, we say that a VC protocol achieves reliability,

if after successfully opening the VC, no (colluding) malicious
intermediaries can force two honest endpoints to close or
offload the virtual channel before the lifespan T of the VC
expires. Note that in this intuition we write before T , when
technically the offloading process has to be initiated some
time before, i.e., at time T −3∆− tc.

Formally, consider the following game. The adversary se-
lects a channelList, a transaction txin, a virtual channel ca-
pacity α and a channel lifetime T , such that the output of
txin.output[0] holds at least α+ n · ε coins, where n is the
length of the path defined in channelList. The adversary sends
the tuple (channelList, txin,α,T ) to the challenger.

The challenger sets sid and pid to two ran-
dom identifiers. Then, the challenger simulates
opening a VC from the OpenVC phase on input
(sid,pid,SETUP,channelList, txin,α,T,γ0). Every time
that a corrupted user Ui needs to be contacted, the challenger
forwards the query to the attacker and waits for the corre-
sponding answer, thereby giving the attacker the opportunity
to stop opening and trigger the offload and thereby refunding
the collateral or let them be successful. If the opening was
successful, an attacker can instruct the simulator to either
perform updates, honestly close the VC or do nothing. In the

case of an honest closure, the queries to corrupted users are
forwarded to the attacker, who again can let the closure be
successful or force an offload.

We say that the adversary wins the game if after suc-
cessfully opening the VC, i.e., the OpenVC and Finalize
phases are completed successfully, the VC is offloaded before
T −3∆− tc.

Definition 5 (Reliability). We say that a VC protocol
achieves reliability if for every PPT adversary A , the adver-
sary wins the aforementioned game with negligible probabil-
ity.

Theorem 4 (Donner achieves reliability). Donner virtual
channel executions achieve reliability as defined in Defini-
tion 5.

Proof. This follows directly from FVC. Note that after a suc-
cessful OpenVC and Finalize phase, the only way for a VC
to be offloaded is if the close phase is not reaching the sender
until time T −3∆− tc.

F.5 Endpoint anonymity
A VC protocol achieves endpoint anonymity, if it achieves

sender anonymity and receiver anonymity. Intuitively, we say
that a VC protocol achieves sender anonymity if an adversary
controlling an intermediary node cannot distinguish the case
where the sender is its left neighbor in the path from the case
where the sender is separated by one (or more) intermediaries.
For receiver anonymity, an intermediary has to be unable to
distinguish that the right neighbor is the receiver from the
case that the intermediary and the receiver are separated by
one (or more) intermediaries.

A bit more formally, consider the following game. The ad-
versary controls node U∗ and selects two paths channelList0
and channelList1 that differ on the number of intermediary
nodes between the sender and the adversary. In particular,
the path channelList0 is formed by U1,U∗,U2,U3 whereas
the path channelList1 contains the users U0,U1,U∗,U2.
Note that we force both queries to have the same path
length to avoid a trivial distinguishability attack based
on path length. Additionally, the adversary picks trans-
action txin, a VC capacity α as well as a channel life
time T such that the output txin.output[0] holds at least
α + n · ε coins, where n is the length of the path defined
in channelListb. Finally, the adversary sends two queries
(channelList0, tx

in,α,T ) and (channelList1, tx
in,α + fee,T )

to the challenger. The challenger sets sid and pid to two
random identifiers. Moreover, the challenger picks a bit
b at random and simulates the OpenVC phase on input
(sid,pid,SETUP,channelListb, tx

in,α,T,γ0), followed by the
Finalize, Update and CloseVC phases. Every time that the
corrupted user U∗ needs to be contacted, the challenger for-
wards the query to the attacker and waits for the corresponding
answer.

32



We say that the adversary wins the game if it correctly
guesses the bit b chosen by the challenger.

Definition 6 (Sender anonymity). We say that a VC protocol
achieves sender anonymity if for every PPT adversary A , the
adversary wins the aforementioned game with probability at
most 1/2+ ε, where ε denotes a negligible value.

Theorem 5 (Donner achieves sender anonymity). Donner vir-
tual channel executions achieve sender anonymity as defined
in Definition 6.

Proof. The message (sid,pid,open, txvc, rList,onioni+1,αi,
T,γi−1,γi,θεi−1 ,θεi) that FVC sends to the simulator in the
OpenVC phase, is leaked to the adversary. By looking at γi−1,
γi and opening onioni+1, U∗ knows its neighbors U1 and U2.
We know that U∗ cannot learn any additional information
about the path from T , γi−1 and γi. Since the amount to be
sent was increased fee for the path channelList1, the amount
αi for Ui is identical for both cases. This leaves txvc, rList,
θεi−1 , θεi and onioni+1. Let us assume, that there exists an
adversary that can break sender anonymity. There are two
possible cases.
1. The adversary finds out by looking at txvc, rList, θεi−1

and θεi . By design, the adversary knows that outputs θεi−1 be-
longs to its left neighbor U1 and θεi to itself. We defined that
the output, that serves as input for txvc, has never been used
and is unlinkable to the sender and check this in checkTxIn.
Looking at the outputs of txvc, the adversary knows to whom
all but one output belongs. Since our adversary breaks the
sender anonymity, it needs to be able to reconstruct, to whom
this final output of txvc belongs observing rList. This contra-
dicts our assumption of unlinkable stealth addresses.
2. The adversary finds out by looking at onioni+1. The
adversary controlling U∗ is able to open onioni+1 revealing
U2, a message m and onioni+2. Since our adversary breaks
the sender anonymity, he has to be able to open onioni+2 to
reveal if U2 is the receiver or not, thereby learning who is the
sender. This contradicts our assumption of secure anonymous
communication networks.

These two cases lead to the conclusion, that a PPT adver-
sary that can win the sender anonymity game with a prob-
ability non-negligibly better than 1/2, can also break our
assumptions of unlinkability of stealth addresses or secure
anonymous communication networks. Note that the both re-
ceiver anonymity and its proof are analogous to the sender
anonymity.

F.6 Path privacy
Intuitively, we say that a VC protocol achieves path privacy

if an adversary controlling an intermediary node does not
know what other nodes are part of the path other than its own
neighbors.

A bit more formally, consider the following game. The ad-
versary controls node U∗ and selects two paths channelList0

and channelList1 that differ on the nodes other than the adver-
sary neighbors. In particular, the path channelList0 is formed
by U0,U1,U∗,U2,U3 whereas the path channelList1 contains
the users U ′0,U1,U∗,U2,U ′3. Note that we force both queries
to have the same path length to avoid a trivial distinguisha-
bility attack based on path length. Further note that we force
that in both paths, the adversary has the same neighbors as
otherwise there exists a trivial distinguishability attack based
on what neighbors are used in each case.

Additionally, the adversary picks transaction txin, a VC
capacity α as well as a life time T such that the output
txin.output[0] holds at least α + n · ε coins. Finally, the
adversary sends two queries (channelList0, tx

in,α,T ) and
(channelList1, tx

in,α,T ) to the challenger.
The challenger sets sid and pid to two random iden-

tifiers. Moreover, the challenger picks a bit b at ran-
dom and simulates the setup and open phases on input
(sid,pid,SETUP,channelListb, tx

in,α,T,γ0). Every time that
the corrupted user U∗ needs to be contacted, the challenger
forwards the query to the attacker and waits for the corre-
sponding answer.

We say that the adversary wins the game if it correctly
guesses the bit b chosen by the challenger.

Definition 7 (Path privacy). We say that a VC protocol
achieves path privacy if for every PPT adversary A , the adver-
sary wins the aforementioned game with probability at most
1/2+ ε, where ε denotes a negligible value.

Theorem 6 (Donner achieves path privacy). Donner virtual
channel executions achieve path privacy as defined in Defini-
tion 7.

Proof. As this proof is analogous to the proof for
sender privacy, refer to that proof and reiterate the idea
here. Again, the simulator leaks the same message
(sid,pid,open, txvc, rList,onioni+1,αi, T,γi−1,γi,θεi−1 ,θεi)
to the adversary. Again, the adversary can find out the cor-
rect bit b by looking at (i) txvc and rList or (ii) at onioni+1.
If there exists an adversary that breaks the path privacy of
Donner, then it also can be used to break (i) unlinkability of
stealth addresses or (ii) secure anonymous communication
networks.

F.7 Value privacy
Intuitively, a VC protocol achieves value privacy, if no in-

termediaries gains information about the VC payments of two
honest endpoints other than the opening and closing balances
of each endpoint. In particular, no intermediary learns about
number of transactions being exchanged and their amount.
Formally, consider the following game. The adversary selects
a channelList, a transaction txin, a virtual channel capacity α

and a channel lifetime T such that the output txin.output[0]
holds at least α+ n · ε coins, where n is the length of the
path defined in channelList. The adversary sends the tuple
(channelList, txin,α,T ) to the challenger.

33



The challenger sets sid and pid to random identifiers and
simulates the opening of the virtual channel for the given
parameters, forwarding queries that a corrupted intermediary
would receive to the adversary. After the VC has been opened
successfully, we denote the current round in the simulation
as τ the challengers asks the adversary to select two list of
payments p0 and p1 with a length in range [0,k], containing
VC payments between the endpoints and their order. k de-
notes the maximum number of transactions that are possible
within the time period between τ and when the VC needs to be
honestly closed. The adversary can select arbitrary payments
in an arbitrary direction with an amount between 0 and the
balance of the respective sending user at the time the payment
is performed. Additionally, performing either list of payments
has to result in the same end balance, to avoid trivial distinc-
tion by looking at the final balance. That is, U0’s final balance
is α−α′ and Un’s final balance is α′, with 0 ≤ α′ ≤ α. The
adversary sends p0 and p1 to the challenger.

The challenger picks a random bit b ∈ {0,1}, and then per-
forms the payments specified in pb. After the payments, the
challenger initiates the honest closing such, that if successful,
the closing will be completed 1 round before T − tc− 3∆,
forwarding queries to corrupted intermediaries again to the
adversary. This gives the chance to the adversary, to let either
VC close honestly or force to offload.

We say that an adversary wins the game, if it correctly
guesses the bit b chosen by the challenger.

Definition 8 (Value privacy). We say that a VC protocol
achieves path value if for every PPT adversary A , the adver-
sary wins the aforementioned game with probability at most
1/2+ ε, where ε denotes a negligible value.

Theorem 7 (Donner achieves path privacy). Donner virtual
channel executions achieve value privacy as defined in Defi-
nition 8.

Proof. This property follows directly from FVC and FChannel .
The only information regarding the VC updates are sent by ei-
ther VC endpoint to FVC (in the Update phase) and forwarded
to FChannel , other than that, the two simulations of the chal-
lenger are identical. The adversary sees only the messages
that the challenger forwards to the corrupted intermediaries,
which means that the adversary knows neither about the con-
tent nor the existence of these VC update messages in both
scenarios. Additionally, the functionality FChannel does not
expose the internal state of a channel to anyone but the two
users of it, in the case of the VC, the two endpoints.

The adversary has two options, either letting the VC close
honestly or, forcing the VC to offload. In the former case, the
adversary will see only the final balance α′ being forwarded
in the close request. In the latter case, the adversary will
learn about the final balance in the VC, after it is offloaded
and it is closed. It follows, that an adversary cannot guess
b correctly with a probability better than 1/2+ ε, where ε

denotes a negligible value.

34


	Introduction
	Background and notation
	UTXO based blockchains
	Payment channels
	Payment channel networks
	Multi-hop virtual channels

	Key idea
	Our solution

	Protocol
	Security and privacy goals
	Assumptions and prerequisites
	Detailed construction and pseudocode
	Discussion

	Security analysis
	Informal security analysis
	Security model

	Evaluation and comparison
	Communication overhead
	Efficiency comparison
	Compatibility with Lightning channels

	Conclusion
	Forced closure attack
	Virtual griefing attack
	Example graphs for recursive VC
	Extended macros
	UC modeling
	Preliminaries, communication model and threat model
	Ledger and channels
	The UC-security definition
	Ideal functionality
	Protocol
	Simulation

	Discussion on security and privacy goals
	Assumptions
	Balance security
	Endpoint security
	Reliability
	Endpoint anonymity
	Path privacy
	Value privacy


