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Abstract. In building boomerang distinguishers, Murphy indicated that
two independently chosen differentials for a boomerang may be incom-
patible. In this paper, we find that similar incompatibility also happens
to key-recovery phase. When generating quartets for the rectangle attack
on linear key-schedule ciphers, we find that the right quartets which may
suggest key candidates have to satisfy some nonlinear relationships. How-
ever, some quartets generated always violate these relationships, so that
they will never suggest any key candidates. We call those quartets as
nonlinearly incompatible quartets. Inspired by previous rectangle frame-
works, we find that guessing certain key cells before generating quartets
may reduce the number of nonlinearly incompatible quartets. However,
guessing a lot of key cells at once may lose the benefit from the guess-
and-filter or early abort technique, which may lead to a higher overall
complexity. To get better tradeoff from the two aspects, we build a new
rectangle attack framework on linear key-schedule ciphers with the pur-
pose of reducing the overall complexity or attacking more rounds.

The first application is on SKINNY. In the tradeoff model, there are many
parameters affecting the overall complexity. We build a uniform auto-
matic model on SKINNY to identify all the optimal parameters, which
includes the optimal rectangle distinguishers for key-recovery phase, the
number and positions of key guessing cells before generating quartets,
the size of key counters to build that affecting the exhaustive search step,
etc. Based on the automatic model, we identify a 32-round key-recovery
attack on SKINNY-128-384 in related-key setting, which extend the best
previous attack by 2 rounds. For other versions with n-2n or n-3n, we also
achieve one more round than before. In addition, using the previous rect-
angle distinguishers, we achieve better attacks on reduced ForkSkinny,
Deoxys-BC-384 and GIFT-64. At last, we discuss the conversion of our
rectangle framework from related-key setting into single-key setting and
give new single-key rectangle attack on 10-round Serpent.
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1 Introduction

The boomerang attack [49] proposed by Wagner, is an adaptive chosen plaintext
and ciphertext attack derived from differential cryptanalysis [14]. Wagner con-
structed the boomerang distinguisher on Ey by splitting the encryption function

into two parts Eq = Fy0FEj as shown in Figure 1, where two differentials o Lo, 153

with probability p and ~ 1y 5 with probability g are combined into a boomerang
distinguisher. The probability of a boomerang distinguisher is estimated by:

PriE;N(B(z) ®0) @ By (E(x @ ) ®6) = o] = p*¢>. (1)

Fig. 1: Boomerang attack.

The adaptive chosen plaintext and ciphertext of boomerang attack can be
converted into a chosen-plaintext attack that is known as amplified boomerang
attack [34] or rectangle attack [12]. In rectangle attack, only « and § are fixed
and the internal differences S and v can be arbitrary values as long as [ # ~.
Hence, the probability would be increased to 277232, where

p= \/ZB Pr2(a— ;) and §= \/Z% Pr2(y; —9). (2)

The boomerang attack and rectangle attack have been successfully applied
to numerous block ciphers, including Serpent [12,11], AES [16,13], IDEA [10],
KASUMI [28], Deoxys-BC [22], etc. Recently, a new variant of boomerang attack
was developed and applied to AES, named as retracing boomerang attack [26].

There are two steps when applying the boomerang and rectangle attack,
i.e., building distinguishers and performing key-recovery attacks. In building
distinguishers, Murphy [39] pointed out that two independently chosen differ-
entials for the boomerang can be incompatible. He also showed that the depen-
dence between two differentials of the boomerang may lead to larger probability,
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which is also discovered by Biryukov et al. [15]. To further explore the depen-
dence and increase the probability of boomerang, Biryukov and Khovratovich
[16] introduced the boomerang switch technique including the ladder switch and
S-box switch. Then, those techniques were generalized and formalized by Dunkel-
man et al. [27,28] as the sandwich attack. Recently, Cid et al. [21] introduced
the boomerang connectivity table (BCT) to clarify the probability around the
boundary of boomerang and compute its probability more accurately. Later,
various improvements or further studies [17,5,46,50,23] on the BCT technique
enrich the boomerang attacks.

Given a distinguisher, we usually need more complicated key-recovery al-
gorithms to identify the right quartets [34,12] when performing the rectangle
attack than the boomerang attack. Till now, a series of generalized key-recovery
algorithms [12,11,13] for the rectangle attacks are introduced. In this paper,
we focus on further exploration on the generalized rectangle attacks. Undoubt-
edly, generalizing the attack algorithms is very important in the development of
cryptanalytic tools. On the one hand, it usually allows to determine the security
margin of a given cipher more accurately or semi-automatically. On the other
hand, more clear understanding on what happens in each step of the algorithm
and why such steps are included will come into mind, which will possibly leads
to new improvement ideas, such as impossible differential attacks [19,18], linear
attacks [29], invariant attacks [8], and meet-in-the-middle attacks [20,25], etc.

Our contributions.

In building boomerang distinguishers, Murphy [39] pointed out that two inde-
pendently chosen differential characteristics can be incompatible, thus the prob-
ability of generating a right quartet can be zero. We find similar incompatibili-
ties in the key-recovery phase of the rectangle attack on ciphers with linear key
schedule. When performing rectangle attacks, we usually append several rounds
before and after the rectangle distinguisher. Then, the input and output differ-
ences (a, 0) of the rectangle distinguisher propagate to certain truncated form
(', &) in the plaintext and ciphertext. Similar with differential attack, in rectan-
gle attack we may collect data and generate quartets whose plaintext difference
and ciphertext difference meet (o, §"). Then guess-and-determine or early-abort
technique [37] is applied to determine key candidates for each quartet. However,
for ciphers with linear key schedule, we find that many quartets meet (a/, 6")
never suggest key candidates. In further study, we find the right quartets that
suggest key candidates have to meet certain nonlinear relationships. However,
many quartets meeting (o, §’) always violate those nonlinear relationships, and
thereby never suggest any key candidates. We call those quartets as nonlinearly
incompatible quartets.

Inspired from the previous rectangle attacks [12,11,51], we find that guessing
certain key cells before generating quartets may avoid many nonlinearly incom-
patible quartets in advance. However, guessing a lot of key cells as a whole may
lose the advantage of guess-and-determine or early-abort technique [37], which
may lead to higher complexity. In addition, we have to take the exhaustive search
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step into consideration. Hence, to get a tradeoff between so many factors affect-
ing the complexity, we introduce a new generalized rectangle attack framework
on ciphers with linear key schedule.

As the first application, we apply the new framework to SKINNY [7]. When
evaluating dedicated cipher with the tradeoff framework, we have to identify
many attack parameters, such as finding a rectangle distinguisher which is opti-
mal for our new key-recovery attack framework, determining the number and po-
sitions of cells of the guessed key before generating quartets, the size of key coun-
ters, etc. Hence, in order to launch the optimal key-recovery attack on SKINNY
with our framework, we build a uniform automatic model, which is based on a se-
ries of automatic tools [23,30,40] on SKINNY proposed recently, to determine a set
of optimal parameters affecting the attack complexity or attacked rounds. Note
that in the field of automatic cryptanalysis, there are many works focusing on
searching distinguishers [38,48,43,35], but only a few works [24,45,40] deal with
the uniform automatic models that take the distinguisher and key-recovery as
a whole optimization model. Thanks to our uniform automatic model, we iden-
tify a 32-round key-recovery attack on SKINNY-128-384, which attacks two more
rounds than the best previous attacks [40,30]. In addition, for other versions of
SKINNY with n-2n or n-3n, one more round is achieved.

As the second application, we perform our new key-recovery framework on
reduced ForkSkinny [1], Deoxys-BC-384 [32] and GIFT-64 [4] with some previous
proposed distinguishers. All the attacks achieve better complexities than before.
At last, we discuss the conversion of our attack framework from related-key
setting to single setting. Since our related-key attack framework is on ciphers
with linear key-schedule, it is trivial to be converted into a single-key attack by
assigning the key difference as zero. We then apply the new single-key framework
to the 10-round Serpent and achieve slightly better complexity than the previous
rectangle attack [11]. We summarize our main results in Table 1.

2 Generalized Key-Recovery Algorithms for the
Rectangle Attacks

There have been several key-recovery frameworks of rectangle attack [12,11,13]
introduced before. We briefly recall them with the symbols from [11]. Let E be
a cipher which is described as a cascade ¥ = E¢ o E4 0 Ej, as shown in Figure 2.
The probability of the Ng-round rectangle distinguisher E; is given by Eq. (2).
E, is surrounded by the Np-round Ej, and Ny-round E¢. Then the difference o
of the distinguisher propagates to a truncated differential form denoted as o’
by E;l, and d propagates to ¢’ by E. Denote the number of active bits of the
plaintext and ciphertext as r, and 7 , respectively. Denote the subset of subkey
bits which is involved in E} as kp, which affects the difference of the plaintexts by

5In [11], the authors also introduced the set of plaintext differences that may cause
the difference « after Ej,. However, the set highly depends on the differential property
of Sbox. For generality and succinctness, we only use the active bits in this paper.
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Table 1: Summary of the cryptanalytic results.
SKINNY

Version Rounds Data Time Memory Approach Setting Ref.

22 2635 9l109 9635 Rectangle RK [36]
23 262.47 212531 2124 D RK [36]
23 20247 gl2d gTTAT D RK [41]
64-128 23  27h4 9T 9640 D RK 3]

23 20054 91207 960.9  Rectangle RK [30
24 206167 996:83 984 Rectangle RK [40]
25 96167 9l1843 96426 Rectangle RK  Sect. C.2

27 2635 21655 980 Rectangle RK [36]

64.192 20 20292 91817 980 Rectangle RK [30]

i 30 20287 16311 968.05  Rectangle RK [40]
31 20278 9182.07 96279 Rectangle RK  Sect. C.1

22 2127 22856 o127 Rectangle RK [36]

93 912447 9251.47 5248 D RK [36]

o 23 2124,41 224&41 2155,41 D RK [41]

24 2125,21 220.‘%85 2125,54 Rectangle RK [30}

25 12448 9226.38 9168 Rectangle RK [40]
25  2120:259193.91 9136 Rectangle RK  Sect. C.3
26 2126:53 92644 912844 Roctangle RK  Sect. C.4

27 2128 9331 9155 Rectangle RK [36]
28 2122 931525 912232 Rectangle RK (53]
128-384 30 212529936168 91258 Rectangle RK [30]
30 2122 934L.11 9128.02 Rectangle RK [40]

32 2123:54 935499 9123.54 Rectangle RK Sect. 5.1

ForkSkinny

26 2125 92546 9l60 D RK 6]

128-256 26 2127 22303 9l60 1D RK 6]

(256-bit key) 28 211888 9246.98 9136 Rectangle RK [40]
28  2118:88 922476 911888 Roctangle RK  Sect. E

Deoxys-BC

13 9127 9270 2144 Rectangle RK [22]
logass 14 277 222 2% Rectangle RK  [51]
14 21232 92827 o3 Rectanole RK (52]
14 2122 9260 9l40  Rectangle RK  Sect. F

GIFT

25 20378 912092 9641 Rectangle RK (33]
64-128 26 20096 212323 910286 yifferential RK [47]
26 20378 l12.78 90378  Rectangle RK  Sect. G
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decrypting the pairs of internal states with difference . Then denote my = |ks|.
Let ks be the subset of subkey bits involved in E; and my = |ky/|.

Fig. 2: Framework of rectangle attack on F.

Related-key boomerang and rectangle attacks were proposed by Biham et al.
n [13]. Assume one has a related-key differential « — 8 over Ej under a key
difference AK with probability p and another related-key differential v — ¢ over
FE4 under a key difference VK with probability §. If the master key K is known,
the other three keys are all determined, where Ko = K1 @ AK, K3 = K1 @ VK
and Ky = K1 @ AK @ VK. A typical example of the successful application of
a boomerang attack is the best known related-key attack on the full versions of
AES-192 and AES-256, presented by Biryukov and Khovratovich [16].

As shown by Biham et al. [10], when the key schedule is linear, the related-key
rectangle attacks is the similar to (with very slightly modification) the single-
key rectangle framework. Different from non-linear key schedule, for linear key
schedule, the differences between the subkeys of Ki, Ko, K3 and K4 are all
determined in each round. Hence, if we guess parts of the subkeys of K, all the
corresponding parts of subkeys of K5, K3 and K, are determined by xoring the
fixed differences between the subkeys.

In this paper, we focus on the rectangle frameworks on ciphers with linear
key schedules. We list the previous frameworks below.

2.1 Attack I: Biham-Dunkelman-Keller’s attack from EUROCRYPT
2001

At EUROCRYPT 2001, Biham, Dunkelman and Keller introduced the rectangle
attack [12] and applied it to the single-key attack on Serpent [9]. We trivially
convert it to a related-key model with linear key schedule. The procedures are
summarized below:

1. Collect and store y structures of 2™ plaintexts each, by traversing the active
bits in each structure.

2. For structure, query the 2" plaintexts under K7, Ko, K3 and K.

3. Initialize the key counters for the (ms 4 my)-bit subkey involved in Ej and
E;. For each (my, + my)-bit subkey, do:
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(a) For each structure, partially encrypt plaintext P; under K; to the po-
sition of «a by the guessed my-bit subkey, and partially decrypt it with
K> to the plaintext P, after xoring the known difference «.

(b) With my-bit subkey, decrypt Ci to the position of § of the rectangle
distinguisher and encrypt it to the ciphertext Cs after xoring §. Similarly,
we find Cy4 from Cy and generate the quartet (Cq,Cq, Cs3, Cy).

(¢) Check whether ciphertexts (Cs, Cy) exist in our data. If these ciphertexts
exist, we partially encrypt corresponding plaintexts (Ps, Py) under Ej
with my-bit subkey, and check whether the difference is «. If so, increase
the corresponding counter by 1.

Complexity. Choose
y =52V g, (3)
we get about
(y . 22rb)2 . 2727";, . 2777,132(?2 —3 (4)
quartets for the right (my + my)-bit. Therefore, the total data complexity for
the 4 oracles with K7, Ky, K3 and Ky is

dy -2 = /5222 [pg. (5)

In Step 3, the time complexity is about 2705 .4y.27 = 2metmys . /5.91n/2+2 /555,
The memory complexity is 4y - 2™ + 2™>+™s to store the data and key counters.

2.2 Attack II: Biham-Dunkelman-Keller’s attack from FSE 2002

At FSE 2002, Biham, Dunkelman and Keller introduced a more generic algo-
rithm to perform the rectangle attack [11] in single-key setting. Later, Liu et
al. [36] converted the model into related-key setting for ciphers with linear key
schedule. The high-level strategy of this model is to generate quartets by birth-
day paradox without key guessing, whose plaintexts and ciphertexts meet the
truncated difference o’ and ', respectively. Then, recover the key candidates for
each quartet. The procedures are briefly summarized below and for more details
please refer to [11]:

1. Create and store y structures of 2" plaintexts each, and query the 2" plain-
texts under Ky, K, K3 and Kjy.

2. Initialize an array of 2™ ™/ counters, where each corresponds to a (my +
my)-bit subkey guess.

3. Insert the y - 2" ciphertexts into a hash table H indexed by the n — ¢
inactive ciphertext bits. For each index, there are 2™ - 2"/~ plaintexts and
corresponding ciphertexts for each structure, which collide in the n —7y bits.

4. In each structure S, we search for a ciphertext pair (C7,C5), and choose a
ciphertext C's by the n—r; inactive ciphertext bits of C; from hash table H.
Choose a ciphertext C4 indexed by the n — 7 inactive ciphertext bits of Cs
from hash table H, where the corresponding plaintexts Py and Pj are in the
same structure. Then we obtain a quartet (Py, Ps, P3, Py) and corresponding
ciphertexts (C1, Ca, Cs, Cy).
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5. For the quartets obtained above, determine the key candidates involved in
Ey and Ey using hash tables and increase the corresponding counters.

Complexity. The data complexity is the same to Eq. (12) given at Attack I,
with the same y given by Eq. (10).

» Time I: The time complexity to generate quartets in Step 3 and 4 is about
y2 . 22rb LQTETT g (y . 22rb+rffn)2 =g- 2”/]32(?2 45 22rb+2rffn/ﬁ2(22

and y? - 24 +2rs=n — 5. 92 +2ry =1 /15242 quartets remain.
» Time II: The time complexity to deduce the right subkey and generate the
counters in Step 5 is

y2 . 24rb+2r‘f72n . (thfrb + me,,,‘f> —3- 2rb+rf7n . (2mb+rf + me+rh)/]32(j2-

2.3 Attack III: Zhao et al.’s related-key attack

For block ciphers with linear key-schedule, Zhao et al. [51,53] proposed a new
generalized related-key rectangle attacks as shown below:

1. Construct y structures of 2™ plaintexts each. For structure, query the 2™
plaintexts under K, Ko, K3 and Kj.
2. Guess the my-bit subkey involved in Fj:

(a) Initialize a list of 2™/ counters.

(b) For each structure, partially encrypt plaintext P; with K; to obtain the
intermediate values at the position of a, and xor the known difference «,
and then partially decrypt it to the plaintext P under K5 (within the
same structure). Construct the set S; in the following:

S1={(P1,C1, P2, C2) : By (P1) © By, (P2) = a}.
Similarly, build
Sy = {<P3,03,P4,C4> : EbK3 (Pg) D EbK4 (P4) = a}.

(c) The size of S; and Sy is y- 2™~ L. Insert S; into a hash table H; indexed
by the n —r inactive bits of C; and n —r¢ inactive bits of Cy. Similarly
build Hy. Under the same 2(n —r¢)-bit index, randomly choose (C4, C2)
from H; and (Cs5, Cy) from Hj to construct the quartet (C,Ca, Cs, Cy).

(d) We use all the quartets obtained above to determine the key candidates
involved in E; and increase the corresponding counters. This phase is a
guess and filter procedure, whose time complexity is denoted as €.
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Complexity. The data complexity is the same to Eq. (12) given by Attack I,
with the same y given by Eq. (10).

» Time I: The time complexity to generate S7 and Sy is about 2™ - g - 275,
» Time II: We generate

me . (y27‘b)2 . 2—2(H—T‘f) — 27”1, . y2 . 227"17—2(%—7']‘) =3s- 2mb—n+2rf /ﬁZCjQ

quartets from Step 2(c). The time to generate the key counters is

(S . 2mb—n+2rf/ﬁ2qA ) e

3 Key-Guessing Strategies in the Rectangle Attack

n’T Ey 0 Eq4 X| Ef TX/
p ..
| |

Fig. 3: Differential key-recovery attack on block cipher E.

In the differential cryptanalysis using structures, we collect plaintext-ciphertext
pairs by traversing the active bits of plaintext (r; gray bits in Figure 3) as a
structure. Store the structure indexed by the inactive bits of ciphertext (n —ry
white bits in Figure 3) in a hash table H. Thereafter, we generate (Py, C1, P2, C5)
by randomly picking (P;,C7) and (P, Cy) from H within the same index. For
each structure, with the birthday paradox, we expect to get 227 ~1=("=7s) plain-
text pairs, and the differences of plaintexts and ciphertexts in each pair conform
to the truncated form 7’ and x’, respectively. Using the property of truncated
differential of the ciphertext to filter wrong pairs in advance is an efficient and
generic way in differential attack and its variants, such as impossible differential
attack, truncated differential attack, boomerang attack, rectangle attack, etc.

In Attack I of the rectangle attack, Biham, Dunkelman and Keller [11] also
generated the quartets using birthday paradox. For each quartet (Py, Py, P3, Py),
the plaintexts and ciphertexts also conform to the truncated forms (o/,¢" in
Figure 2), i.e., P, ® P, and P3 & Py are of truncated form o/, C1 @& C3 and
Cy & Cy are of truncated form ¢’. However, when deducing the key candidates
for each of the generated quartets, we find rectangle attack enjoys a very big
filter ratio. In other words, the ratio of right quartets which satisfy the input and
output differences of the rectangle distinguisher (a,d in Figure 2) and suggest
key candidates is very small, when compared to the number of the quartets
satisfy the truncated differential (o’,¢’) in the plaintext and ciphertext.

For the differential attack, given a pair conforming to (n',x’), it will only
suggest 2metms (v +75) key candidates”. However, for the rectangle attack, given

"Assume that after partially encrypting the (Pi, P) of truncated form 7’ by Ej,
the difference of the corresponding internal states is n with probability of 27". The
same assumption is given for the partial decryption with Ey.
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a quartet conforming to (o, '), it will suggest 27 +ms=2("v+71) key candidates
due to the filter in both sides of the boomerang. Hence, if 2(r, + 7) is bigger
than my + my, some of quartets conforming to (o, 8") may never suggest key
candidates.

Here is an example of F} part in Figure 4. Since we are considering linear key
schedule, we have kop = k1, ® A, k3p = k1, ®V and kg, = k1p ® AD V with fixed
(A, V). Hence, when k1;, is known, all other kop, k3p and kg, are determined. Let
S be an Sbox. Then we have

S(k1p ® P1) & Sk ® P2) = v, (6)

S(ksp ® P3) @ S(kapy ® Py) = . (7)

For a quartet (Py, P2, Ps, Py), when (Py, P2) is known, together with ki, @ kop =
A, we can determine a value for ky;, and kop by Eq. (6) on average. Then ksp,
k4p are determined. Hence, by Eq. (7), Py is determined by P;. Hence, Py is
fully determined by (Pp, P2, P3) within a good quartet, which may suggest a
key. For certain quartets, (Py, P2, P3, P;) may violate the nonlinearly relation-
ships (e.g., Eq. (6) and (7)) will never suggest a key. We call those quartets as
nonlinearly incompatible quartets. Similar with the incompatibilities in building
boomerang distinguishers discovered by Murphy [39], incompatibilities may also
happen in the key-recovery phase of the rectangle attack on ciphers with linear
key-schedule.

Fig. 4: Nonlinear incompatibility in key-recovery phase.

According to the analysis of the rectangle attack models Attack I and
Attack III in Section 2, both of them guess (part of) key bits before gener-
ating the quartets, i.e., (mp + my)-bit and my-bit key are guessed in Attack I
and Attack III, respectively. For example in Figure 4, if we guess ky; in Ep,
we can deduce kop, ksp, kgp. Then, for given P; and Pj3, we compute P, and
P, with Eq. (6) and (7), respectively. Thereafter, a quartet (P, Py, P3, Py) is
generated under guessed key kyj, which meets the input difference «. In this
way, we can avoid some nonlinearly incompatible quartets that never suggest a
key in advance.

However, if we guess all the key bits (k; in Ej and ky in Ef) at once and
then construct quartets as Attack I, we may lose the benefit from the guess-
and-filter or early abort technique [37], which tests the key candidates out step
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by step, by reducing the size of the remaining possible quartets at each time,
without (significantly) increasing the time complexity. Guessing a lot of key bits
at once may reduce the number of nonlinearly incompatible quartets, but may
also lead to higher overall complexity

To get a better tradeoff, we try to guess all m; and part of k;, denoted as
k} whose size is m'f. With partial decryption and encryption, we may gain more
inactive bits (or bits with fixed differences) from the internal state, which are
used to build similar equations as Eq. (6) and (7), to avoid some nonlinearly
incompatible quartets in advance.

3.1 On the success probability and exhaustive search phase

The success probability given by Selguk [44] is evaluated by

VsSy — &7 (1 —27h)
VSy +1

where Sy = p2G2/27" is the signal-to-noise ratio, with an h-bit or higher ad-
vantage. This equation is used by previous rectangle attacks [36,53] to estimate
the success probability. In the above attack models (Attack I, II, III), after
generating the k.-bit key counters, we have to select the top 2¢<~" hits in the
counters to be the candidates, which delivers an h-bit or higher advantage, and
determine the right key by exhaustive search.

In Attack I and Attack II, the size of key counters is 2™ T™s. Hence, we
have to prepare a memory with size of 2™*+™s to store the counters. Then the
complexity of exhaustive search is 20metms—h) o ok—(mutmys) — 9k=h where
h < my + my. Hence, this step costs at least 2k—=(motmys) with h = my + my.

In Attack III, the sizes of key counters are 2™/, which is smaller than
Attack I and Attack II. Then the complexity of the exhaustive search is 2 x
oms—h x gk=(metmys) — 9k=h (b < m; due to the size of key counters is 2)
for Attack III. So the exhaustive search step costs at least 2577/, In certain
cases, this cost of exhaustive search step may bound the total time complexity.

Pszé( )7 (8>

3.2 Related-key rectangle attack with linear key schedule

With the above analysis, we derive a new tradeoff of the rectangle attack frame-
work with linear key schedule, which tries to obtain better attacks by the overall
consideration on various factors affecting the complexity and attacked rounds.
As shown in Figure 5, we guess part of ky to compute some internal states as
filters. We display the new tradeoff of the rectangle attack in Algorithm 1.

Complexity. Choose
y=s-2"27" /g, (10)

we get about
(y . 227‘(,)2 . 2—27‘1, . 2—nﬁ2q/\2 =3 (11)
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Algorithm 1: Related-key rectangle attack with linear key schedule
(Attack VI)

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16

17
18
19

20
21
22
23

24

25

26
27
28
29

30

Construct y structures of 2 plaintexts each
For structure 7 (1 < ¢ < y), query the 2™ plaintexts by encryption under K7,
K5, K3 and K4 and store them in Lq[i], L2[i], Ls[é] and La[i]

for each of the x-bit key, which is a part of (my + m';)-bit key do
Initialize a list of 2™ 1™s =% counters
for each of (my + m} — z)-bit key involved in E, and E; do
S1 =[], Sz« []
for i from 1 to y do
for (Pl,Cl) c Ll[i] do

The corresponding plaintext P» € Ls[i] under K5 is computed

by
E; ' (my @ AKy, Ey(my, P) ® o) = Pa

51 < (Pl, Cl, PQ, Cz)
end
for (P3,C3) € Ls[i] do

‘ Do similar steps as Line 9 and 10 and Sy < (Ps,Cs3, Ps, Cy)

end

end
/* 81={(P1,C1,P,C2): (P1,C1) € L1,(P5,C2) € Lo, B g (P1) B B (P2) =0t}
S2={(P5CsPs,C4): (P5,C3) € L3,(P5,C4) € La, Ep g (P3) D Ep g (Pa) =} */

H«+[]

for (1:’1,611,]327 02) € 5; do

Partially decrypt (C1,C2) to get two hy-bit internal state (X1, X2).

Assuming they are the first hy-bit, i.e.:

Xi[l,---  hyg] = Ef (K}, Ch) ©)
Xa[L, - hy] = B (K @ AKf,Ca)

Assume the inactive bits of ¢’ are first n — ry bits. Let
T= (X1[17 : '7hf]’X2[17' ) '7hf}7 Cl[la' s — T'f], 02[17' s — rfD

H[T} — (P1,01,P2702)

nd

or (P3,C3,P4, C4) € Ss do

Partially decrypt (Cs,C4) to get X3[1,---,hs] and X4[1, --,hs] as
Eq. 9 but under different subkeys of K3 and Ka.

Let Tl:(X3[].,~ cohg], Xall,e - hy], Col, - on — rg], Ca[l,e - -m — 75])
Access H[r'] to find (Py, C1, P2, C2) to generate quartet
(C1,C2,C3,Cy).

Determine the key candidates involved in Ey and increase

= 0

corresponding counters /* Denote the time as €. x/
end
end
/* Exhaustive search step */

Select the top 2™ ™5 ~2=h hits in the counter to be the candidates, which
delivers a h-bit or higher advantage. Guess the remaining k — (my + my)
bit keys and combined with the guessed = subkey bits to check the full
key.

end
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Fig. 5: Filter with internal state.

quartets for the right (my 4+ my)-bit. Therefore, the total data complexity for
the 4 oracles with K1, Ky, K3 and Ky is

4y - 2" = /527212 /pg. (12)
‘ mp ‘ ‘ my ‘
‘ mp ‘ ‘ m’f ‘
Guessed in Line 4 <—{ T ‘ ‘ my+my—z }_} Key counter
‘ x ‘ ‘ my +my — }—> Guessed in Line 6

Fig. 6: Diagram for the guessed key in Algorithm 1.

» Time I (771): In Line 7 to 21 of Algorithm 1, the time complexity is about
T1 — 2m+mb+m’f—z . y . 27‘1) . 2 — \/g X 2’!)’Lb-‘1-77’L/f—‘1-’n,/2—0—1/jjqA (13)
» Time II (73): In Line 24, we generate about

21+mb+m/f—z . y2 . 227’1772(7177‘f)72h‘f
—s. 2mh+m}72(n7rf)72hf+n/ﬁ2(j2 (14)
—g- 2mb+m'f7n+2rf72hf /]52@2

quartets. The time complexity of Line 25 to generate the key counters is

T2 _ (8 . 2mb+m/f_n+2rf_2hf/ﬁ242) e, (15)
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» Time IIT (73): The time complexity of the exhaustive search is
T3 — 97 . 27nb+7nf—w—h . 2k—(mb+mf) — 2k—h. (16)

For choosing h (according to the success probability Eq. (8)), the conditions
mp+my—ax—h>0and x <my+ m} have to be satisfied.

The memory to store the key counters and store the structures is
2m;,+mf7w + 4y . 27"17 — meerffw + \/g . 2n/2+2/ﬁq/\ (17)

As shown in Algorithm 1 and its complexity analysis, we have to determine
various parameters to derive a better attack. Many parameters are determined
by the boomerang distinguishers, such as my,, my, ry, 7y and pg. Hence, taken
SKINNY as an example, we build an automatic model to determine boomerang
distinguishers with optimal key-recovery parameters in the following section.

4 Automatic Model For SKINNY

4.1 Description of SKINNY

At CRYPTO 2016, Beierle et al. proposed the lightweight block cipher SKINNY
[7]. Denote n as the block size, 1 as the tweakey size and c as the cell size. There
are six main versions SKINNY-n-n: n = 64,128, n = n, 2n, 3n. The internal state
is viewed as a 4 x 4 square array of cells. The tweakey state is viewed as z 4 x 4
square arrays of cells, denoted as (TK1) when z =1, (TK1,TK2) when z = 2,
and (TK1,TK2,TK3) when z = 3. In each round, the state is updated with
5 operations: SubCells (SC), AddConstants (AC), AddRoundTweakey (ART),
ShiftRows (SR) and MixColumns (MC). SKINNY adopts the TWEAKEY frame-
work [31] as shown in Figure 7. We briefly introduce the round function as
follows. For more details, please refer to [7].

xR |—c KR | C2 KR |— s xon |— ¢,

U

]

(ShiftRows ) (fixColums)

Fig.7: The framework of SKINNY-n-3n. (Thanks to https://www.iacr.org/
authors/tikz/)
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The MC operation adopts non-MDS binary matrix, and we have

a a®chd « B
b| a | Bl _|Bey®S

MC ol = b e and MC ~ = B . (18)
d adc 1 a®d

The equivalent subtweakey in round 7 is ETK; = MCo SR(STK;) as Figure 8.

213 01|23
5/6/7| SR |o]|1]2]|3
MC |7|4|5|86
01|23

STK; ETK;

Fig. 8: The relations between the cells of STK; and ETK;.

Lemma 1 [6] For any given SKINNY S-bozx S and any two non-zero differences
Oin and Sout, the equation S;(y) ® S;(y® din) = dout has one solution on average.

4.2 Previous automatic models of searching boomerang
distinguishers on SKINNY

On SKINNY, there are several automatic models aim at searching boomerang
distinguishers. The designers of SKINNY [7] first gave the Mixed-Integer Linear
Programming (MILP) model to search truncated differentials of SKINNY. Later,
Liu et al. [36] tweaked the model to search boomerang distinguishers.

As Dunkelman et al’s (related-key) sandwich attack framework [27], the
Ng-round cipher E,; is considered as Eio0E,, o EO, where Eo, E,,, E; contain
T0, Tm, 71 rounds, respectively. Let p and ¢ be the probabilities of the upper
differential used for Ey and the lower differential used for E;. The middle part
FE,, specifically handles the dependence and contains a small number of rounds.
If the probability of generating a right quartet for F,, is t, the probability of the
whole Ng-round boomerang distinguisher is pG>t.

Song et al. [46] proposed a generalized framework of BCT revisited the
Boomerang Connectivity Table (BCT) proposed by Cid et al. in [21], and to
systematically calculate the probability of a boomerang distinguisher consider-
ing the dependence.

Hadipour et al. [30] introduced a heuristic approach to search a boomerang
distinguisher with a set of new tables. They first searched truncated differential
with the minimum number of active S-boxes with an MILP model based on Cid
et al.’s [22] model. At the same time, the switching effects in multiple rounds were
also considered. Then they used the MILP/SAT models to get actual differential
characteristic and experimentally evaluate the probability of the middle part.
Based on the algorithm proposed in [46], they evaluated the probability of the
middle part mathematically.
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Almost at the same time, Delaune, Derbez and Vavrille [23] proposed a new
automatic tool to search boomerang distinguishers and provide their source code
to facilitate follow-up works. They also introduced a sets of tables which help
to calculate the probability of the boomerang distinguisher. With the tables
to help roughly evaluate the probability, they use an MILP model to search
for the upper and lower trails throughout all rounds by automatically handling
the middle rounds. Then a CP model is applied to search for the best possible
instantiations.

Recently, Qin et al. [40] combine the key-recovery attack phase and dis-
tinguisher searching phase into one uniform automatic model to attack more
rounds. Their extended model tweaks the previous models of Hadipour et al.
[30] and Delaune et al. [23] for searching the entire (N, + N4 + Ny) rounds of a
boomerang attack. The aim is to find new boomerang distinguishers in related-
tweakey setting that give a key-recovery attack penetrating more rounds.

4.3 Our model to determine a distinguisher

Following the previous automatic models [40,23,30], we introduce a uniform
automatic model to search good distinguishers for the new rectangle attack
framework in Algorithm 1. We searches the entire (N, + Ng + Ny) rounds
of a boomerang attack by adding new constraints and new objective func-
tion, and takes all the critical factors affecting the complexities into account.
The source code of our automatic model is given in https://github.com/
key-guess-rectangle/key-guess-rectangle, which is mainly built on the
open source by Delaune, Derbez and Vavrille [23].

Different from Qin et al.’s [40] uniform automatic key-recovery model, which
targets on the rectangle attack framework by Zhao et al. [53], our automatic
models for Algorithm 1 need additional constraints to determine h¢-bit internal
states acting as filters and m’f—bit subtweakey needed to guess in the Ny extended
rounds. Moreover, in Qin et al.’s [40] model, only the time complexity of (Time
IT of Zhao et al’s model [53] in Section 2.3) generated quartets is considered.
However, in our model we have to consider more time complexity constraints,
i.e., Time I, Time II and Time IIT in Algorithm 1.

In our extended model searching the entire (N + Ng + Ny) rounds of a
boomerang attack, we use similar notations as [40,23], where X* and X' denote
the internal state before SubCells in round r of the upper and lower differentials.
We only list the variables that appear in our new constraints, i.e. DXU[r][i] (0 <
7 < Ny + 710+ Tm,0 < i < 15) and DXL[r][¢] (0 <7r <1, +r1 + Ny, 0<i<15)
are on behalf of active cells in the internal states, and KnownEnc (0 < r <
Ny — 1,0 < i < 15) is on behalf of the my-bit subtweakeys involved in the N
extended rounds, i.e., > oo <y, 2 o<i<7 KnownEnc[r][i] corresponds to the total
amount of guessed my-bit key in Ej. The constraints in E} are the same to Qin
et al.’s [40] model. In the following, we list the differences in our model.

Modelling propagation of cells with known differences in E;. Since
we are going to filter quartets with certain cells of the internal state with fixed
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differences, we need to model the propagation of fixed differences in F;. Taking
the key-recovery attack on 32-round SKINNY-128-384 as an example (see Figure
9), the cells with fixed differences are marked by & and 8. We define a binary
variable DXFixed|r][i] for the i-th cell of X, and a binary variable DWFixed|r][i]
for the i-th cell of W, (0 <r < Ny—1,0 <14 < 15), where DXFixed[r|[i] = 1 and
DWFixed[r][i] = 1 indicate that the differences of corresponding cells are fixed.
For the first extended round after the lower differential, the difference of each
cell is fixed :
DXFixed[0][i] = 1,V 0 < i < 15.

o | | |
STKs7
I
legl |
[ 1]
STKos
[ ks
ST Ky
1
STy
SC 1 SR MC
AC
i ART
STK3 X31 Ya1 Z3 Wy

Fig.9: The cells with fixed differences in Ny-round of the attack on
SKINNY-128-384.

In the propagation of the fixed differences, after the SC operation, only the
differences of inactive cells are fixed. In the ART operation, the subtweakey
differences do not affect whether the differences are fixed. Let permutation
Py =10,1,2,3,7,4,5,6,10,11,8,9,13,14, 15, 12] represent the SR operation,

DWFixed[r|[i] = =DXL[r,, + r1 + 7][Ps[i]],V 0 <r < Ny —1,0 < ¢ < 15.

The constraints on the impact of the MC operation by Equation (18) to the
internal state are given below: V0 <r < Ny —2,0 < ¢ < 3,

DXFixed[r + 1][i] = DWFixed[r][i] A DWFixed[r][i + 8] A DWFixed|[r][i + 12],
DXFixed[r + 1][i + 4] = DWFixed|[r][d],
DXFixed[r + 1][i + 8] = DWFixed|r][i + 4] A DWFixed[r][i + 8],

[r+1][

DXFixed[r + 1][i + 12] = DWFixed[r][i] A DWFixed[r][i + 8].
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Modelling cells that could be used to filter quartets in E¢. Note that in
our attack framework in Algorithm 1, we guess m/i-bit £ of ky involved in Ny
extended rounds to obtain a 2hg-bit filter. To identify smaller m/f with larger
hy, we define a binary variable DXFilter[r][i] for i-th cell of X, and a binary
variable DWFilter[r][z] for i-th cell of W, (0 <7 < Ny —1,0 <4 < 15), where
DXFilter[r][i] = 1 and DWFilter[r][i] = 1 indicate the corresponding cells can
be used as filters. Note that, the (n — ry) inactive bits of the ciphertext are also
indicated by DWFilter.

For each cell in X, if the difference is nonzero and fixed, we can choose the
cell as filter, i.e. @ X m Form =S 0, the cell is not a filter because it has been
used as filter in W,.. The valid valuations of DXFixed, DXL and DXFilter are
given in Table 2.

Table 2: All valid valuations of DXFixed, DXL and DXFilter for SKINNY.
DXFixed[r][i] = DXL[ry, + 71 + 7][d] DXFilter[r][]

0 1 0
1 0 0
1 1 1

In the last round, Wy, 1 can be computed from the ciphertexts, and the
cells with fixed differences of Wy, 1 can be used as filters, i.e., the (n —ry)
inactive bits, where

DWFilter[Ny — 1][¢] = DWFixed[N; — 1][i],V 0 <1 < 15.

Since we extend Ny rounds with probability 1 at the bottom of the distin-
guisher, then the differences of W,. are propagated to X,,; with probability 1
with the MC operation, and there will be more cells of W,. with fixed differences
than the cells of X,.;; with fixed differences. Hence, these extra cells with fixed
differences in W, can act as filters. We give two examples of how to determine
which cells of W,. can be used for filtering:

SIRREN

Wr X r+1 W; Wr

Fig. 10: Example (1). Fig.11: Example (2).

1. Example (1): Figure 10 shows the propagation of fixed differences, i.e.,
DWFixed and DXFixed, where O cells denote the unfixed differences. In Fig-
ure 10, the differences of W,.[0,1,3] are fixed (marked by ). After the MC
operation, only the difference of X, ;1[1] is fixed. Since there are three cells
with fixed differences in W,. but only one cell with fixed difference in X, 11,
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we can use two cells of W, as filters (the one cell of fixed difference in X, 11
has been used in the SC computation). To determine which cells acting as fil-
ters, we apply the MC™! operation to X, and get fixed difference of W/[0],
which means if AX,1[1] is fixed, then AW,.[0] will be certainly fixed. Since
Xr+1[1] has been used as filter in the SC computation, W,.[0] will not act as
filter redundantly. Hence, only W;.[1, 3] can be used as filters (marked by OJ).

2. Example (2): In Figure 11, only the difference of W,.[1] is fixed, which is
marked by Bl. After applying the MC operation, all the differences of X1
are unfixed. So applying the MC™! operation to X, 1, all the differences of
W) are unfixed. Hence, the difference of W,.[1] need to be fixed, which can
be used for filtering (marked by 0J).

We give some other examples in Figure 12. All valid valuations of DWFixed
and DWFilter are given in Supplementary Material A. Note that DXFixed is
only used as the intermediate variable to determine DWFilter, since DXFixed is
fully determined by DWFixed.

Fig. 12: Some cases of the valuations of DWFixed and DWFilter.

Denoting the sets of all possible valuations listed in Table 2 and Table 8 by
P; and Q;, there are

(DXFixed[r][i],DXL[rm + 1 + 7][], DXFilter[r][i]) € P;,V 0 <r < Ny — 1,0 < i < 15,

(DWFixed[r][i],DWFixed[r]|[i 4+ 4], DWFixed[r][i + 8], DWFixed[r][i + 12],

DWFilter(r][i],DWFilter(r][i 4+ 4], DWFilter(r][i + 8], DWFilter(r][i + 12]) € Q,
VO<r<N;—20<i<3.

We define a binary variable DXisFiter[r][i] for i-th cell of X, and a binary
variable DWisFiter|[r][i] for i-th cell of W, (0 < r < Ny —1,0 <i < 15), where
DXisFiter([r][i] = 1 and DWisFilter[r][{] = 1 indicate the corresponding cells
are chosen to be filters before generating the quartets. v 0 < r < Ny —1,0 <
i <15,

DXisFilter|[r|[i] < DXFilter[r][i],
DWisFilter|[r|[i] < DWFilter|r][s].

Modeling the guessed subtweakey cells in E; for generating the quar-
tets. We define a binary variable DXGuess|r][¢] for i-th cell of X, and a binary
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variable DWGuess[r][i] for i-th cell of W, (0 <7 < N; —1,0 < 4 < 15), where
DXGuess|[r|[i] = 1 and DWGuess[r][i] = 1 indicate the corresponding cells need
to be known in decryption from ciphertexts to the cells acting as filters. So
whether ST K, [i] should be guessed is also identified by DXGuess[r][i], where
0<r<Ny—land0<i<T.

For the round 0, only cells used to be filters in the internal state need to be

known:
DXGuess[0][i] = DXisFilter[0][i], V 0 < i < 15.

From round 0 to round Ny — 1, the cells in W, need to be known involve
two types: cells to be known from X, over the SR operation, and cells used to
be filters in W,.:

DWGuess|r][i] = DWisFilter[r|[i] VDXGuess[r|[Pe[i]], VO <r < Ny—1, 0 <i < 15.

In round 0 to round Ny — 2, the cells in X, need to be known involve two
types: cells to be known from W, over the MC operation, and cells used to be
filtersin X;;1: VO<r<N,—2,0<i<3

DXGuess[r + 1][¢] = DWGuess|[r][i + 12] V DXisFilter[r + 1][¢],

DXGuess[r + 1][¢ + 4] = DWGuess|[r][¢] V DWGuess|r][¢ 4+ 4] V DWGuess[r][i + 8]V
DXisFilter[r + 1][¢ + 4],

DXGuess[r + 1][¢ 4+ 8] = DWGuess|r][i + 4] V DXisFilter[r + 1][i + §],

DXGuess[r + 1][¢ + 12] = DWGuess[r][¢ + 4] V DWGuess|[r|[i + 8] V DWGuess|[r][i + 12]V
DXisFilter[r + 1] + 12].

We have ZOS"'SNf—L o<i<7 DXGuess|[r|[i] to indicate the m’;-bit key guessed
for generating quartets.

Modelling the advantage h in the key-recovery attack. In our Algorithm
1 in Section 3.2, the advantage h determines the exhaustive search time, where
h should be smaller than the number of key counters, i.e. h < my +my —x. The
x-bit guessed subkey should satisfy = < my + m’f, and also determine the size of
memory 2™ ™S =% to store the key counters. So we need a balance between x and
h to achieve a low time and memory complexities. We define an integer variable
Adv for h and an integer variable x. To describe my (not m} here), we define a
binary variable KnownDec[r|[4] for i-th cell of ¥, (0 <7 < Ny —1,0 < < 15),
where KnownDec|[r|[i] = 1 indicates the corresponding cell should be known in the
decryption from ciphertext to the position of known §. Then whether STK,.[i]
should be guessed is also identified by KnownDec[r][i], where 0 < r < Ny —1 and
0 < i < 7. In the first round extended after the distinguisher, only the active
cells need to be known:

KnownDec[0][¢] = DXL[ry, + r1][i],¥V 0 <4 < 15.

In round 1 to round Ny — 1, the cells in Y, need to be known involve two
types: cells to be known from W, over the MC and SB operation, and active cells
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in X, 1:V0O<r<N,—2 0<i<3

KnownDec[r + 1][¢] = DXL[rs, + r1 + 7 + 1][¢] V KnownDec|[r|[Pw:[: + 12]],
KnownDec[r + 1][¢ + 4] = DXL[rym + 1 + 7 + 1][¢ 4+ 4] V KnownDec[r][Ps[¢]]V
KnownDec[r][Ps[i + 4]] V KnownDec[r][Ps[i + 8]],
KnownDec[r + 1][¢i + 8] = DXL[rym + r1 + r + 1][i + 8] V KnownDec[r][Ps[i + 4]],
KnownDec[r + 1][¢ + 12] = DXL[ry + 71 + 7 + 1][¢ + 12] V KnownDec[r][Ps[i + 4]]V
KnownDec|r][Ps [t + 8]] V KnownDec|[r|[ P [t + 12]].

We have Zo<r<Nf—1 o<i<7 KnownDec|r][i] to indicate the m-bit key.

The objective function. As in Sect. 3.2, the time complexities of our new
attack framework involve three parts: Time I (7}), Time II (7%) and Time
ITI (T3). We need to balance those time complexities Ty, T5 and T5.

The constraints for probability p?tG> of the boomerang distinguisher are same
to [23], where DXU, DXL and DXU A DXL are on behalf of the p, ¢ and ¢. KnownEnc
is on behalf of the my, and we don’t repeat the details here. To describe T7, we
have:

T = > wo - DXU[N, + 7][i] + > wy - DXL[ry 4 r][i]+
0<r<rp—1, 0<i<15 0<r<ri—1, 0<i<15
W + (DXU[Ny + 10 + 7][¢] A DXL[r][i])+
0<r<ry, —1, 0<i<15

Z Wm, - KnownEnc[r][i] + Z Wm, - DXGuess[r][i] + cry,
0<r<N,—2, 0<i<7 0<r<Njp—1, 0<i<7

where cp, indicates the constant factor on/ 241 and wg, Wi, Wy, Winy, Wiy, are
weights factors discussed later.
For describing T5 (let ¢ = 1), we have:

Ty = > 2wp - DXU[Ny + r][i] + > 2wy - DXL[rm 4 r][i]+

0<r<rg—1, 0<i<15 0<r<ri—1, 0<i<15

2w, - (DXU[Ny, + ro + r][i] A DXL[r][¢])+
0<r<rpm—1, 0<i<15

Z W, + KnownEnc[r][i] + Z Win s - DXGuess|r][{]—
0<r<Np—2, 0<i<7 0<r<Nj;—1, 0<i<7
> w, - (DXisFilter[r][i] + DWisFilter[r][i]) + cr,,

0<r<N;—1, 0<i<15

where } o, o 1 o<i<i5 Why-(DXisFilter|r|[i]+DWisFilter|[r|[i]) corresponds
to the total filter 2(n — ry) + 2h according to Equation (14), and ¢, indicates
a constant factor 2.
For T3, we have:
T3 = C1y — AdV,
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where cr, = n for SKINNY-n-7i. For the advantage h and x, we have constraints:

x < Z KnownEnc[r][{] + Z DXGuess|[r][¢],

0<r<N,—2, 0<i<7 0<r<Nj;—1, 0<i<7

Adv +x < Z KnownEnc[r][i] + Z KnownDec|r][¢].

0<r<Np—2, 0<i<7 0<r<Ny—1, 0<i<7

So we get a uniformed objective:

Minimize obj
obj > T,
obj > Ty,
obj > Ts.

4.4 New distinguishers for SKINNY

With our new model, we add such conditions to the automatic searching model
in [23] to search for new distinguishers. Due to different parameters have different
coefficients in the formula of the time complexity, we give them different weights
to model the objective more accurate. For SKINNY, the maximum probability in
the DDT table both for 4-bit S-box and 8-bit S-box is 272. Then considering the
switching effects similar to [30], we adjust the weight wy, = 2wy, = 2w,, =
dwy = 4wy = 8wy, = 8 for ¢ = 4 and wy, = 2wy, = 2wy, = 8wy = 8wy =
16w, = 16 for ¢ = 8. Similarly, The constants ¢y, and cr, are set to 33 and 64
for ¢ = 4, and to 65 and 128 for ¢ = 8. We use different N, Nq and Ny to run
our model. IV} is chosen from 2 to 4 and Ny is 4 or 5 usually. N4 is chosen based
on experience, which is shorter than previous longest distinguishers.

By searching new truncated upper and lower differentials using the MILP
model and get instantiations using the CP model following the open source
[23], we obtain new distinguishers for SKINNY-128-384, SKINNY-64-192 and
SKINNY-128-256. To get more accurate probabilities of the distinguishers, we
calculate the probability p and ¢ considering the clustering effect. For the middle
part, we evaluate the probability using the method in [46,30,23] and experimen-
tally verify the probability. The experiments use one computer equipped with one
RTX 2080 Ti and the results of our experiments are listed in Table 3. Our source
codes are based on the open source by Delaune, Derbez and Vavrille [23], which is
provided in https://github.com/key-guess-rectangle/key-guess-rectangle.
Our source code also automatically draws the rectangle attack pictures including
the distinguisher and key-recovery part. In addition, we summarize the previous
boomerang distinguishers for a few versions of SKINNY in Table 4.

We list the 23-round boomerang distinguisher for SKINNY-128-384 in Ta-
ble 5. For more details, we refer to Table 17, 18 and 19 and Table 20, 21, 22 and
23 in Supplementary Material J.
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Table 3: Experiments on the middle part of boomerang distinguishers for SKINNY.

Version Ng r Probability ¢ Complexity Time

64-192 22 6 Q1788 230 21.9s
128-384 23 3 2720.51 231 30.6s
128-256 18 4 93541 2140 16231.8s
128-256 19 4 9—26.71 235 481.2s

Table 4: Summary of related-tweakey boomerang distinguishers for SKINNY. Ny
is the round of distinguishers; N, + Ngq + Ny is the total attacked round.

Version N; Probability 5°§°t Ny + Ng+ Ny Ref.

29 2742.98 _ [46]
22 275494 26 [36]
23 275585 29 [30]
64-192 0o 5-57.93 ) 23]
22 275773 30 [40]
22 275756 31 Ours
18 2—7783 _ [46]
18 910384 22 [36]
20 2785.77 _ [23]
128-256 21 211643 24 [30]
19 Q11697 25 [40]
18 2710851 25 Ours
19 g—121.07 26 Ours
29 2748.30 _ [46]
23 2112 27 [36]
23 2112 28 [53]
128-384 0 586.09 i 23]
25 27 116-59 30 [30]
22 Q710149 30 [40]
23 27 115.09 32 Ours

5 Improved Attacks on SKINNY

In this section, we give an improved attack on round-reduced SKINNY-128-384
using the distinguisher in Section 4.4 with our new rectangle attack framework.
For SKINNY-64-192 and SKINNY-128-256, we also use the new distinguishers
to achieve one more round than previous. For SKINNY-64-128, we find the dis-
tinguisher in [40] is optimal and attack one more round with the new attack
framework. The details can refer to Supplementary Material C.

5.1 Improved attack on 32-round SKINNY-128-384

We use the 23-round rectangle distinguisher for SKINNY-128-384 given in Table
5, whose probability is 27 "p?t¢% = 27128-115.09 — 9-243.09  Appending 4-round
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Table 5: The 23-round related-tweakey boomerang distinguisher for
SKINNY-128-384.

273218 t = 272()‘51 q _ 2715&1 _ 271151‘)9
y b — ) — —

ro=11,rm=3,r1 =9, p= , PPt§>
ATK1 =00, 00, 00, 00, 00, 00, 00, 00, 24, 00, 00, 00, 00, 00, 00, 00
ATK?2 =00, 00, 00, 00, 00, 00, 00, 00, 07, 00, 00, 00, 00, 00, 00, 00
ATK3 =00, 00, 00, 00, 00, 00, 00, 00, e3, 00, 00, 00, 00, 00, 00, 00
AXy =00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 20
VTK1 = 00, 8a, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 0O
VTK2 =00, 0c, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, OO
VTK3 =00, 7f, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
VXs3 =00, 00, 00, 00, 00, 00, 00, 00, 00, 50, 00, 00, 00, 00, 00, 00

Ey and 5-round Ey, we attack 32-round SKINNY-128-384 as illustrated in Fig-
ure 13. In the first round, we use subtweakey ET Ky = MC o SR(STK)) instead
of STKy, and there is ETKy[i] = ETKy[i + 4] = ETKy[i + 12] = ST K[i] for
0 < i < 3 according to Figure 8. So we have r, = 12 -8 = 96 by W{. As shown
in Figure 13, the & cells are needed to be guessed in Ejp, including 3 @ cells in
STKs, 7@ cells in STK4, 8 & cells in ETKy. Hence, my, = 18 -8 = 144. In
the Ef, we have ry = 16 -8 = 128 and my = 24 - 8 = 192. There are 7 cells in
ST K3, and 4 cells ST K3y marked by red boxes to be guessed in advance, i.e.,
m'f = 11 -8 = 88. Then, we get 8 cells in the internal states (marked by red
boxes in W3, Wag and Xa9) as additional filters with the guessed m’f—bit key,
ie., hy = 8-8 = 64. Due to the tweakey schedule, we deduce ST Kog[3,7] from
ETKy[1,0], STK;[0,2] and STK30[7,1]. So there are only (m; — 2¢) = 176-
bit subtweakey unknown in Ey after my-bit key is guessed in Ej. As shown in
Table 6, we have ks = {STK30[1,3,5,7], STK2]0,2,3,4,5,6, 7]} marked in red
indexes and hy = {Xo9[11], Wag[5, 7, 13, 15], W3[5, 8, 15]} marked in bold. With
the above preparation, we give the attack according to Algorithm 1 as follows:

Table 6: Internal state used for filtering and involved subtweakeys for 32-round
SKINNY-128-384.

Round Filter Involved subtweakeys
1 AW30[5] =0 [STK31[5)
2 30 AW30[8] =0 |STK3:1[4]
3 AWiso[15] = 0 |ST K1 [3]
4 AW29[5] =0 STKSO[{—)L STK31[0, 6, 7]
5 AWag[7] =0 |STK30[7], STK31[2,4,5]
6 29 AWag[10] =0 |STK30[6], STK31[1,7]
7 AWzg [13] = 0 STK.;()“], STK31 [0, 5]
8 AW29[15] =0 |STK30[3], STK31[2,7]
9 Ang[ll] = 0x58 STKso[i—)], STKgl[U,ﬁ]
10 AWas[5] =0 ST Kag[5], STK30[0,6,7], STK31[1,2,3,4,7]
11 28 AWoas[11] =0 |STKo[7), STK30[2,4], STK31[1,3,5, 6]
12 AW28[13] =0 STKzg[l], STKgo[O, 5], STK31 [3, 4, 6}
13 AWos[15] =0 |STKo9[3], STK30[2,7], STK31[1,4,6]
14 AWar[7] =0 ST Kos(7], STK29(2,4,5], STK30[0,1,3,5,6], STK31[0,1,2,3,4,5,6,7)
15| 27 AWar[15] =0 [STKa2s(3], STKa29[2,7], STK30[1,4,6], STK31(0,3,5,6,7]
16 AXo7[9] = 0x50 | ST K2s[7],STK29(2,4], STK30[1,3,5,6], STK31[0,1,2,5,6,7]
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cO| cO|
sSC 20| 120 SR 20, MC
AC 20) 20 20)
20 ART |20 20)
STK3 Y3 Z3 W3

23-round rectangle distinguisher of SKINNY-128-384

SC SR MC

=]

SR MC
ART
Z31 W1
] Active cell Both the difference and the value are needed
E Active cell with fixed difference Oa %) Zero difference, but the value is needed

D Value is needed to fast filter quartets

Fig. 13: The 32-round attack against SKINNY-128-384.
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Construct y = /s - 2%/277 /\/P2tG2 = /s - 2255 structures of 27 = 29
plaintexts each according to Eq. (10). For each structure, query the 2%
ciphertexts by encryptions under K7, Ko, K3 and K,4. Hence, the data com-
plexity is /s - 2"/2%2/\/p2tG2 = /s - 21235 according to Eq. (12). The
memory complexity in this step is also /s - 2123-54,

. Guess z-bit key (part of the k;, and k} involved in E}, and Ej):

(a) Initialize a list of 2meFms—2¢—2 — 2320=% coyunters. The memory com-
plexity in this step is 232977,

(b) Guess the other (my, +m/ — z) = (232 — z)-bit key involved in Ej and
Efi

i. For each structure, we partially encrypt P; under my-bit subkey to
the positions of known differences of Y3, and partially decrypt it to
the plaintext P» (within the same structure) after xoring the known
difference «. The details can refer to Supplementary Material B. Do
the same for each P5 to get P,. Store the pairs in S and S;. Totally,
my, = 18 - 8 = 144-bit key are involved.

ii. The size of S; and Sy is y - 2" = /s - 212154, For each element
in S7, with m} = 88-bit k}, we can obtain 2hy = 2-64 = 128
internal state bits as filters. So partially decrypt (Cy,C3) in S;
with k} to get {W30[5, 8, 15], Wag[5, 7,13, 15], X9[11]} as filters. In-
sert the element in S; into a hash table H indexed by the hy =
56-bit {Wso[5, 8,15], Wag[5, 7,13, 15], Xog[11]} of C1 and hy = 56-
bit {W3q[5,8, 15], Wag[5, 7,13, 15], X29[11]} of Cy. For each element
(C3,C4) in Sa, partially decrypt it with &% to get the 2hy = 128 in-
ternal state bits, and check against H to find the pairs (Cq,C3),
where (Cy,C3) and (Cy,Cy) collide at the 2hy = 128 bits. Ac-
cording to Eq. (13), the data collection process needs Ty = /s -
2mb+mf+n/2+1/m 5 - QUAHSSHOLEIHST.SL _ fo 935454,
We get s - 27n1,+mf—2hf n+2rf/(ﬁ2t(12) —5- 2144+887128+128+115.09 —
s+ 234709 quartets according to Eq. (15).

iii. On e: for each of s - 23479 quartets, determine the key candidates
and increase the corresponding counters. According to Eq. (15), this
step needs Ty = s- 234799 . 2. We refer the readers to Table 7 to make
the following guess-and-filter steps more clear.

A. In round 31: guessing ST K31 1] and together with k) as shown
in Table 7, we compute Z30[6,14] and peel off round 31. Then
AY30[6] and AX3q[14] are deduced. For the 3rd column of X3 of
(C1,Cs5), we obtain AX30[6] = AX30[14] from Eq. (18). Hence,
we obtain AX30[6] and deduce ST K30[6] by Lemma 1. Similarly,
we deduce STK},[6] for (Cq, Cy). Since AST K34[6] is fixed, we
get an 8-bit filter. s-2347:09.28.92-8 = 5.2347:09 gyartets remain.

B. In round 30: guessing ST K30[0], we compute Zag[l,9,13] as
shown in Table 7. Then AYag[l] and AXy9[9,13] are deduced.
For the 2nd column of Xag of (C1, C3), we can obtain AXag[1] =
AXa9[9] = AXg9[13] from Eq. (18). Hence, we obtain AXog[1]
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and deduce ST Kg[1] by Lemma 1. Similarly, we deduce ST K/4[1]
for (Cq, Cy), which is an 8-bit filter. For both (Cy, Cs) and (Cs, Cy),
AXog[9] = AX2o9[13] is an 8-bit filter. 5-2347:09.28.2-8.9-8.9-8 —
s - 2331:09 quartets remain.

C. Guessing ST K30[2, 4], we compute Zag[3, 7, 15] and peel off round
30. Then AYy[3,7] and AXo9[15] are deduced. For the 4th col-
umn of X29 of (01,03), we can obtain AX29[3} = AX29[7] =
AXo9[15] from Eq. (18). Hence, we obtain AXy9[3,7] and de-
duce ST Ka9[3, 7] by Lemma 1. Similarly, we deduce ST K4[3,7]
for (Cy, Cy4), which is a 16-bit filter. 5-2331:09.216.9-16 — 4.9331.09
quartets remain.

D. In round 29: guessing ST K39[2, 5], we compute Zog[3,11,15].
Then AYasg[3] and AXss[11,15] are deduced. For the 4th col-
umn of Xog of (C1,C3), we can obtain AXgg[3] = AXag[ll] =
AXog[15] from Eq. (18). Since ST Kog[6] can be deduced from
the known ETK[0], STK>[2] and STK35p[1l], we can compute
X28[3} and Ang[g} For both (01,03) and (02,04), AX28[3] =
AX28[15] and AX28[11] = AX28[15] are two 8-bit filter. 5'2331'09'
216.9-16 . 9716 — 5. 931509 gyartets remain.

E. Guessing ST Kog[4], we decrypt two rounds to get X57[9] with
known ST Kys[7]. In round 27, AX57[9] = 0x50 is an 8-bit filter
for both (C1,C3) and (Cy, Cy). s - 2315:09. 28 . 9716 — 5. 9307.09
quartets remain.

_ o8 4 8. 4 —16 . 916 . 4 —16 . 916
So for each quartet, e = 2% - 55 +2°. 55 +27°° .20 5 2 .20

a5+ 273228 8 x 2601 and Ty = 5 - 23531

(c) (Exhaustive search) Select the top 2m»+ms—2c—z=h — 9320—2=h hjtg ip
the counter as the key candidates. Guess the remaining k — (my +my —
2¢) = 64-bit key to check the full key. According to Eq. (16), T3 = 2F~".

Table 7: Tweakey recovery for 32-round SKINNY-128-384, where the red bytes
are among k} or obtained in the previous steps.

Step

Internal state|Involved subtweakeys

A

Zsol6]  |STKs1[7]
Z30[14] ST Ks1[1]

B

Zao[l]  |STKsolb
Z29[9] STK30[7 STKgl[ZA'—"l]
Zag[13]  |STK30[0], STK31[3, 4]

STKs1 [()]

ZQQ[S] STKgo[T STK31 4]

D

Zos[3]  |STKao[7], STK30[4], STK31[3,5,0]
Zos[11]  |STKs[5], STK30[0,6], STK1[1,3,4,7)
Zas[15] | STKo9[2], STK30[1,6], STK3[0,5,7]

E

’
I
’ [
Zoo[7]  |STKsold], STK1[3,5, 6]
Zao[15]  |STKs0[2], STKa[l,6]
1
I
’

X27[9]  |STKas[7],5TK29[2,4], STKs0[1,3,5,6], STKz1[0, 1, 2,5,6,7]

In order

to balance T3,7%,T5 and memory complexity and achieve a high

success probability, we set s = 1, h = 40 and = = 128 (z < my +m; = 232,
h < mp+ms—2c—x =320—x ) with Eq. (8). Then we have T} = 235454,
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Ty, = 23531 and Ty = 23%4. In total, the data complexity is 2123-%4, the memory
complexity is 2123-%4 and the time complexity is 23499, The success probability
is about 82.1%.

6 Conclusion and Further Disscussion

In this paper, we introduce a new key-recovery framework for the rectangle at-
tacks on ciphers with linear schedule with the purpose of reducing the overall
complexity or attacking more rounds. As proof of work, we give a uniform au-
tomatic model on SKINNY to search distinguishers which are more proper for
our key-recovery framework. With the new rectangle distinguishers, we give new
attacks on a few versions of SKINNY, which achieve 1 or 2 rounds than the best
previous attacks.

Further discussion.

For ForkSkinny, we find that the 21-round distinguisher on ForkSkinny-128-256
in [40] is also optimal for our new rectangle attack model. Our attack on 28-round
ForkSkinny-128-256 with 256-bit key reduce the time complexity of [40] by a
factor of 222, For Deoxys-BC and GIFT, we do not give the automatic models
but only apply our rectangle attack framework in Algorithm 1 with the previous
distinguishers. Our attack for Deoxys-BC-384 reduces the time complexity of
the best previous 14-round attack [52] by a factor of 22%7 with similar data and
memory complexities. For GIFT-64, our rectangle attack use the same rectangle
distinguisher with Ji et al. [33], but achieve one more round. Moreover, compared
with the best previous attack achieved by differential attack by Sun et al. [47],
our rectangle attack achieves the same 26 rounds, where the time and memory
complexities are reduced by factors of 21045 and 239, respectively, and the data
complexity are increased by a factor of 2282, The details of the attacks can refer
to Supplementary Material E, F and G.

For single-key setting, our tradeoff key-recovery model in Section 3 and Zhao
et al.’s model [51] can be trivially converted into the single-key model by just
let the differences of the keys be 0. We also give an attack on 10-round Serpent
reusing the rectangle distinguisher by Biham, Dunkelman and Keller [12] and
achieving better time complexity (see Supplementary Material H).

To better understand different key-recovery rectangle models, we give an
overall analysis of the four attack models in Section 2 and 3. With different
parameters, different models perform differently (see Supplementary Material I).
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Supplementary Material

A All valid valuations of DWFixed and DWFilter for SKINNY

This section give all valid valuations of DWFixed and DWFilter for SKINNY when
model which cells that could be used to filter quartets in Ej.

Table 8: All valid valuations of DWFixed and DWFilter for SKINNY.

DWFixed[r] DWFilter|r]
[i] [i4+4] [¢ + 8] [i + 12]|[¢] [¢ + 4] [¢ + 8] [i + 12]
0 0 0 0 0 0 0 0
0 0 0 1 0 O 0 1
0 0 1 0 0 0 1 0
0 0 1 1 0 O 1 1
0 1 0 0 0 1 0 0
0 1 0 1 0 1 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 O 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1
1 0 1 0 0 O 0 0
1 0 1 1 0 0 0 0
1 1 0 0 0 1 0 0
1 1 0 1 0 1 0 1
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0

B The procedure of generating plaintext pairs for
SKINNY-128-384

In this section, we explain how to deduce P, from P; with my-bit subkeys in-
volved in Ej. We take the 4-round Ej, of 32-round attack on SKINNY-128-384 as
example (see Fig. 13), and decompose the whole process into two phases:

L. Partially encrypt P to Y3 (only active cells) as shown in Fig. 14.
2. Partially decrypt Y3 = Y3 & AY3 to get P, as shown in Fig. 15.

In Phase (1): As shown in Fig. 14, in order to compute Y30, 6,9, 12] from
P;, we need the values of the cells marked by B in X5. With the details of MC
and SR, the values of Z50,2,4,10,11,13] and corresponding ST K>[0,2,4] are
needed. Then cell positions in X5 which need to be known are the same as those
in Z. Similarly, the values of Z1[0 — 2,5,6,8 — 11,13,15] and corresponding
STK;[0 — 2,5, 6] are needed. Then W{[0 — 2,5,6,8 — 11,13,15] and ETKy[0 —
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SC SR MC
AC

STK; 3 Y3 Z3 W3

Fig. 14: Phase (1): The 4-round Ej of the attack on SKINNY-128-384.
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STK3 X3 Ys Zs Wy

Fig.15: Phase (2): The 4-round Ej of the attack on SKINNY-128-384.
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2,5,6,8— 11,13, 15] are needed to compute X1[0—2,5,6,8 — 11,13, 15]. All cells
need to be known in Phase (1) are marked by B3 and 8.

In Phase (2): As shown in Fig. 15, with Y3[0, 6,9, 12] computed in Phase (1),
we can compute Y3[0,6,9,12] = ¥3[0,6,9,12] ® a[0,6,9,12]. So the differences
of the active cells in AX3[0,6,9,12] are determined. Therefore, we compute the
differences of active cells in AY3[2,4,5,7,8,10,13] from AXj5 through the linear
operations SR and MC. Then we need compute the values of Y»[2,4,5,7,8,10,13]
from P; as Phase (1), where the values of Z1[0-3,5,7, 8,10, 14, 15] and ST K;[0—
3,5,7] are needed. Suppose we have known the values of Y3[2,4,5,7,8,10,13],
we can compute the values of Y»[2,4,5,7,8,10,13] and deduce the AY;[0,1,3 —
7,9 — 11,14,15]. So in total, the values of Y7[0 — 11,14,15] are needed. We
need ETKo[0 — 11,14,15] and W{[0 — 11,14,15] to deduce Y;[0 — 11,14, 15]
and AX[0,1,3 — 7,9 — 11,14, 15], as well as AW([0,1,3 — 7,9 — 11,14, 15]. So
for Py, we obtain W{[0,1,3 — 7,9 — 11,14, 15] = W/}[0,1,3 — 7,9 — 11,14,15] &
AW§10,1,3—7,9—11,14,15]. All cells need to be known in Phase (1) are marked
by O and &.

Totally, m, = 18 x 8 = 144 key bits are involved in the above two phases,
and involved in Ej.

C Improved Attacks on other versions of SKINNY

C.1 Improved attack on 31-round SKINNY-64-192

We use the 22-round rectangle distinguisher for SKINNY-64-192 given in Sect. 4.3,
whose probability is 27 "p%t§? = 276475756 — 9712156 Appending 4-round E
and 5-round Fy, we attack 31-round SKINNY-64-192, as illustrated in Fig. 16.
There are 7, = 15-4 = 60 by W§, mp = 19-4 = 76, ry = 16 - 4 = 64,
my =24-4=96. hy =8-4 =32 and m’f = 11-4 = 44. Due to the tweakey sched-
ule, we can deduce ST Ks[1,4,5,7] from ETKy[2,10,8,0], STK>[4,3,1,2] and
ST K30[0,6,3,1]. So there are only (m; — 4c) = 80-bit subtweakey unknown in
E;. Asshown in Fig. 16, there are k} = {STKo[1,3,5,7],STK24[0,2,3,4,5,6,7]}
and hy = {Xog[11], Was[5,7,13,15], Way[5, 8, 15]}.

The attack follows Algorithm 1 in Sect. 3.2 and is similar to Sect. 5.1,
where y = /5 - 2%/2770 [\ /p?tq2 = /s - 2078, Hence, the data complexity is
\/g B 2n/2+2/ /ﬁ2t52 — \/g . 262.78-

According to Eq. (13), T) = \/E.me+m}+n/2+l/ [FRGE = /f5-2T0+44+32+1428.78
5 - 21818,

ACCOrdng to Eq (15)’ TQ —_ S.2mb+m}—2hf+n/(ﬁ2t62).€ — 5.276+44764+64+57.56.
c— 5.90l7TT56

According to Eq. (16), T5 = 2¥=" where h < my, +my — 4c — . = 156 — z.

According to Eq. (17), the memory complexity is /s - 2"/2%2/\/p%tG2 +
2mb+mf—4c—z — \/g 262.78 + 2156—I.
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7| 1 1 1
1 | | B sc 11 1 SR 1] MC
e |5 L7 | | AC 1 1 1
L] 1 ART 1 1
STK3 X3 Y Z3 Ws

i
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Gk ART
Y30 Zs0 Wio
D Active cell Both the difference and the value are needed
E Active cell with fixed difference 0a 7| Zero difference, but the value is needed

D Value is needed to fast filter quartets

Fig. 16: The 31-round attack against SKINNY-64-192.
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The tweakey recovery process with time . The tweakey recovery process
is same with Sect. 5.1. For each of the s - 2177-°6 quartets, we determine the key
candidates and increase the corresponding counters with the following steps:

1. In round 30: guessing ST K30[1] and together with k} as shown in Table 9,
we compute Zag[6, 14] and peel off round 30. Then AY59[6] and AXq9[14] are
deduced. For the 3rd column of Xag of (C1,C5), we can obtain AXog[6] =
AXag[14] from Eq.(18). Hence, we obtain AXag[6] and deduce ST Ka9[6] by
Lemma 1. Similarly, we deduce ST K%4[6] for (Ca,Cy). Since AST Kog[6] is
fixed, we get a 4-bit filter. s - 217756 .24 . 274 = 5. 217756 quartets remain.

2. In round 29: guessing ST K39[0], we compute Zag[1,9,13]. Then AYag[1]
and AXog[9,13] are deduced. For the 2nd column of Xag of (Cy,C3), we can
obtain AXog[1] = AXog[9] = AXog[13] from Eq.(18). Since ST Kog[1] can be
deduced from the known ET Ky[2], ST K3[4] and ST K350[0], we can compute
ng[l] and AXQg[l] For both (61,03) and (02,04), AX2S[1] = AX28[13]
and AXq9[9] = AXqg[13] are two 4-bit filter. 5-2177-56.24.278.9-8 — 5.2165.56
quartets remain.

3. Guessing ST Kq9[2, 4], we compute Zsg[3,7,15] and peel off round 29. Then
AY[3, 7] and AXog[15] are deduced. For the 4th column of Xag of (Cy, C3),
we can obtain AXosg[3] = AXog[7] = AXog[15] from Eq.(18). Hence, we
obtain AXog[3] and deduce ST Kog[3] by Lemma 1. Similarly, we deduce
STKg[3] for (Cs,Cy), which is a 4-bit filter. Since ST Kog[7] is deduced
from last steps, we can compute AXog[7],where is a 4-bit filter for both
(C1,C3) and (Ca,Cy). s-2165:56. 98 . 274 . 978 — 5. 916156 (yartets remain.

4. In round 28: guessing ST Ko3[2], we compute Zs7(3,11,15]. Then AYa7[3]
and AXy7[11,15] are deduced. For the 4th column of Xs7 of (C1,Cs), we
can obtain AXy7[3] = AXo7[11] = AXa7[15] from Eq.(18). Hence, we obtain
AX57([3] and deduce ST K27([3] by Lemma 1. Similarly, we deduce ST K}-[3]
for (Cq, Cy), which is a 4-bit filter. For both (C1, C3) and (Cs, Cy), AXar[11] =
AXo7[15] is a 4-bit filter. s-2161:56.24.274.278 — 5.2153-56 quartets remain.

5. In round 27: guessing ST K»7[7], we compute Xa7[9]. AXo7[9] = 0x50 is
a 4-bit filter for both (Cy,C3) and (Cy, Cy). s - 2153:56.24. 978 — 5. 9149.56
quartets remain.

So for each quartet, e = 2. L 4+2%. L 42712.98. 4 4 971694, L 4 o291, L ~
22.05 and T2 =3- 2179.61.

In order to balance Ti,75,T5 and memory complexity and achieve a high
success probability, we set s = 1, h = 24 and = = 116 (z < my, + m; = 120,
h < 156 — z). We have T} = 218178 T, = 217961 45 T, = 2168,

In total, for the 31-round attack on SKINNY-64-192 the data complexity is
26278 the memory complexity is 26272, and the time complexity is 28297, The
success probability is about 66.6%.

C.2 Improved attack on 25-round SKINNY-64-128

The 18-round rectangle distinguisher for SKINNY-64-128 produced by our auto-
matic model is the same to [40], whose probability is 27 "p?tg? = 276475534 =
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Fig. 17: The 25-round attack against SKINNY-64-128.

/7] Zero difference, but the value is needed
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Table 9: Tweakey recovery for 31-round SKINNY-64-192, where the red bytes are
among k} or obtained in the last steps.

Step|Internal state|Involved subtweakeys
1 Z2916] ST Ko
Z2g[14] ST Kso

7
1
Zas[1] STKa29[5), ST K30[0]
2 Z28(9] STKao[7], STK30[2, 4]
Z2s[13] | STKa9[0], STK30[3,4]
Z2s3) STRKa0(7], ST Ks30[4]
3 Zas|7] STKao[4], STK30[3, 5, 6]
Zas[15] | STKa9[2], STK30[l, 6]
Z27[3] STKQ& 7, STKQQ 4], STK:;Q[B, 5, 6]
4 Za7[11] | STKas[5], STK20[0,6], STKs0[1,3,4,7]
Za7[15) | ST Kas[2], STKao[l, 6], STK30[0,5,7)]
5 X26[9] | STK27[7),5T K212, 4], STK29[1,3,5,06], STK30[0, 1,2, 5,6, 7]

2711934 Appending 2-round Ej, and 5-round E, we attack 25-round SKINNY-64-128,
as illustrated in Fig. 17. There are 1, = 4 -4 = 16 by W[, mp = 3-4 =
12, rj = 16-4 = 64, my = 29-4 = 116, hy = 7-4 = 28 and m) =
10 - 4 = 40. Due to the tweakey schedule, we can deduce ST K22[5,6] from
ETK[6,4] and ST K24[3, 5], and deduce ST K4[6] from ET Ky[6] and ST Ka4[3].
So there are only (m; — 3¢) = 104-bit subtweakey unknown in Ey. As shown
in Fig. 17, there are kz} = {STK»3(2,5,6], STK24[0,1,3,4,5,6,7]} and hy =
{Was[5, 10, 14], Was 4, 5, 10, 15]}.
The attack follows Algorithm 1 in Sect. 3.2, where y = /5-2"/277 /\ /52132 =
/5 - 24367 Hence, the data complexity is /s - 2/212//p2tG2 = /s - 26167,
According to Eq. (13), T; = \/E.me+nL}+n/2+l/\/I32qu = /521240324 1427.67
5 - 211267,
According to Eq. (15), Ty = §- 27+ —2hs+n /(52452) ¢ = 5.912+40-56-+64+55.34,
c— g.911534
According to Eq. (16), T3 = 2¥=" where h < my, + my—12—2 =116 — x.
According to Eq. (17), the memory complexity is /s - 27/2+2/\/p?t422 +
2mb+7nf—12—7; — \E . 261.67 + 2116—x.

The tweakey recovery process with time e. For each of the s-2'1°-34 quar-

tets, we determine the key candidates and increase the corresponding counters
with the following steps:

1. In round 24: guessing ST K14[2] and together with other known subtweakeys
as shown in Table 10, we partially decrypt one round to compute Za3(3, 15]
and peel off round 24. Then AY33[3] and AXs3[15] are deduced. For the 4th
column of Xo3 of (C1, C3), we can obtain AXs3[3] = AX3[15] from Eq.(18).
Hence, we obtain AX»3[3] and deduce ST K»3[3] by Lemma 1. Similarly, we
deduce ST K/3[3] for (Cy, Cy). Since AST Ko3[3] is fixed, we get a 4-bit filter.
5-2115:34 . 94 . 9=4 — 5. 911534 quartets remain.

2. In round 23: guessing ST K»3[1], we compute Zs2[2,14]. Then AY5:[2] and
AXago[14] are deduced. For the 3rd column of X5 of (Cy,C3), we can obtain
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AX93[2] = AXagz[14]. Hence, we obtain AX9s[2] and deduce STK3[2] by
Lemma 1. Similarly, we deduce ST K},[2] for (C2, Cy), which is a 4-bit filter.
5-2115:34 .94 9= — 5. 911534 qyartets remain.

3. Guessing ST Ko3[7], we compute Zao[6]. Since ST Ko2[6] is deduced in data
collection process, Xo5(6] is deduced. Due to Eq.(18), AX22[6] = AX9o[14] is
a 4-bit filter for both (C1, C3) and (Cy, Cy). 5-2115:34.24.974.974 — 5.9111.34
quartets remain.

4. Guessing ST K»3[0], we compute Z2[5,9,13]. Since ST Ky[5] is deduced
in data collection process, Xa2[5] is deduced. Due to Eq.(18), AX9[5] =
AXo2[9] & AX22[13] @ 0x7is a 4-bit filter for both (C1,C3) and (Ca, Cy).
5211134 94 9—4 . 9—4 — 5. 210734 gquartets remain.

5. In round 22: guessing ST Kao[l], we compute Zo;[2,14]. Then AYs[2]
and AXo[14] are deduced. For the 3rd column of X5 of (Cy,Cs), we
can obtain AX5[2] = AXs[14]. Hence, we obtain AX5[2] and deduce
ST K1 [2]. Similarly, we deduce ST K}, [2] for (Cs,Cy), which is a 4-bit fil-
ter. s-2107:34 .94 . 9=4 — 5. 910734 qyartets remain.

6. Guessing ST Ka2[7] and ST K3[4], we compute Zo;[6]. Then AYs[6] is de-
duced. For the 3rd column of Xs; of (C1,C3), we can obtain AXs;[6] =
AX51[14]. Hence, we obtain AXy;[6] and deduce ST K>, [6]. Similarly, we de-
duce ST K}, [6] for (Cs, Cy4), which is a 4-bit filter. Thereafter, in round 21,
we compute Zag[2] from Xa1[6]. Then, AY20[2] is deduced. Due to AXq[2] =
0xd, we deduce ST Ko[2] for (Cy,C3). Similarly, we deduce STK},[2] for
(Cy, Cy), which is a 4-bit filter. s-2107-34.28 . 274. 274 — 5. 210734 gyartets
remain.

7. Guessing ST K53[0] and ST K»;[1], we compute Zap[14] and deduce Xog[14].
AXy[14] = 0xd is a 4-bit filter for both (Cy,C3) and (Co, Cy). s - 219734 .
28.274.274 = 5. 210734 guartets remain.

8. Guessing ST Ky[4] and ST K [7], we compute Zag[4]. Since ST Koz[6] is
deduced in data collection process, we deduce Xo0[6]. AX90[6] = 0xd is a
4-bit filter for both (C1,C3) and (Cy, Cy). 5-2107:34.28.974. 94 = 5.9107.34
quartets remain.

So for each quartet, e =24 ;L .3+4274.24. L 4 278.21. 4 4 278.98. 1.3 ~ 2306
and Ty = s - 21184,

In order to balance Ti,7T5, T3 and memory complexity and achieve a high
success probability, we set s = 1, h = 24 and = = 52 (z < mp + m’f = 52,
h < 112 — 2). We have Ty = 211267 7, = 21184 and T3 = 2104, The memory
complexity is 261:67 4 264 ~ 26279,

In total, for the 25-round attack on SKINNY-64-128, the data complexity is
26167 the memory complexity is 26426, and the time complexity is 21843, The
success probability is about 76.9%.

C.3 Improved attack on 25-round SKINNY-128-256

We use the 18-round rectangle distinguisher for SKINNY-128-256 given in Sect. 4.3,
whose probability is 2 "p?tg? = 271287108:51 — 9=236.51 ' Appending 3-round E
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Table 10: Tweakey recovery for 25-round SKINNY-64-128, where the red bytes
are among k’f or obtained in the last steps.

Step|Internal state|Involved subtweakeys
1 Z23[3] STKo4[7
Z23[15] STK24[2
9 Z22[2] ST K»3(6], STK24[7]
Z22[14] ST K>3[1], STK>4[0, 5]
3 Z22(6 STK»3(7], STK24[2,4,5]
Z225 STK23(0], ST K241, 4, 7]
4 Z22[9 STK»3[7], STK24[2,4]
Z25[13] STK>3[0], STK24[3, 4]
5 Z21[2] STK»23[6], STK23[7], STK24[2,4,5]
Z21[14} STKo2[1], STK23[0, 5], STK24[3.4. ()']
6 Z21[6] STK»3[7], STK23(2,4,5], STK24[0,1, 3,5, 6]
Z20[2] ST K21 [6], STK22[7], STK23[2,4,5], STK24[0,1,3,5,6]
7 Z20[14] STK>1[1], STK»22[0,5], STK23[3,4,6], STK24[1,2,4,5,7]
8 Z20[6] STK»>1[7], STK»22[2,4,5], STK23[0,1,3,5,6], STK24[0,1,2,3,4,5,6,7]

and 4-round Ey, we attack 25-round SKINNY-128-256, as illustrated in Fig. 18.
There are r, = 4-8 = 32 by Wi, mpy = 5-8 = 40, ry = 12-8 = 96,
my =21-8=168, hy = 7-8 = 56 and m; = 3-8 = 24. Due to the tweakey
schedule, we can deduce ST Ka2[6] from ETK([0] and ST K24[5]. So there are
only (my — ¢) = 160-bit subtweakey unknown in E;. As shown in Fig. 18, there
are k} = {STK24[2, 5, 6]} and hf = {W24 [5, 10, 14], W25[4, 5, 10, 15}}
The attack follows Algorithm 1 in Sect. 3.2, where y = /5-2"/27" /\ /p2t§2 =
/5 - 28625 Hence, the data complexity is /s - 2/212 / /212 = /s - 212025,
According to Eq. (13), T; = \/§_2mb+m}+n/2+l/w = /5-210+246441+454.25 _
/5 - 218325
ACCOrding to Eq (15)’ j’v2 — 5'2mb+m}_2hf+n/(ﬁ2t62)'€ — 5.240+247112+128+108.51.
_ 188.51
eE=5-2 - E.
According to Eq. (16), T3 = 28=" where h < mj + my —c —z = 200 — z.
According to Eq. (17), the memory complexity is +/s - 2%/2%2/\/p2tG? +
2mb+mf7cfz — \/5 . 2120,25 + 22007&0'

The tweakey recovery process with time e. For each of the s-2'%8-51 quar-
tets, we determine the key candidates and increase the corresponding counters
with the following steps:

1. In round 24: for the 4th column of Xo4 of (C1, C5), we can obtain AXo4[3] =
AXo4[15] from AWas[15] = 0. Since AY24[3] and AXo4[15] are known, we
deduce ST K24[3] by Lemma 1. Similarly, we deduce STK},[3] for (Cz, C4),
which is an 8-bit filter. s - 218851 . 278 — 5. 218051 gyartets remain.

2. Guessing ST K»4[1], we compute Z3[2,14]. Then AY33[2] and AXy3[14] are
deduced. For the 3rd column of Xa3 of (Cy,C3), we can obtain AXo3[2] =
AXo3[14]. Hence, we obtain AXs3[2] and deduce ST K»3[2] by Lemma 1.
Similarly, we deduce ST K%5[2] for (Co, Cy), which is an 8-bit filter. s-2180-51.
28.9278 = 5. 218051 quartets remain.
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Fig. 18: The 25-round attack against SKINNY-128-256.
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Guessing ST K24[7], we compute Z53[6]. Then AYa3[6] is deduced. For the
3rd column of Xs3 of (C1,C3), we can obtain AX3[6] = AXoa3[14]. Hence,
we obtain AX»3[6] and deduce ST K23[6] by Lemma 1. Similarly, we deduce
STK}[6] for (Cz,Cy), which is an 8-bit filter. s-2180-51.28.278 — 5.2180.51
quartets remain.

Guessing ST K34[0], we compute Z23[5,9,13]. Then AY33[5] and AXa3(9,13]
are deduced. For the 2nd column of X3 of (C1, C3), we can obtain AXa3[5] =
AXo3[9]® AXo3[13] @ 0x58. Hence, we obtain AXo3[5] and deduce ST Ka3(5]
by Lemma 1. Similarly, we deduce ST K)4[5] for (C2,Cy), which is an 8-bit
filter. s - 2180-51. 98 . 9=8 — 5. 2180.51 qyartets remain.

In round 23: guessing STK»3[l], we compute Zss[2,14]. Then AY,[2]
and AXoyy[14] are deduced. For the 3rd column of Xy of (Cy,C3), we
can obtain AXas[2] = AXoo[14]. Hence, we obtain AXas[2] and deduce
ST K9s[2]. Similarly, we deduce STK),[2] for (Ca,Cy4), which is an 8-bit
filter. s - 2180-51. 98 . 9=8 — 5. 2180.51 qyartets remain.

Guessing ST K3(7] and ST K24[4], we compute Z22[6]. Since ST Ka2[6] from
ETKy[0] and ST K24[5], then X55[6] is deduced. Hence, AX53[6] = AXo3[14]
is an 8-bit filter for both (C1,C3) and (Cq, Cy). Thereafter, in round 22,
we compute Za1[2] from Xa5[6]. Since AX51[2] = 0x37, we deduce ST K21[2]
for (C1,Cs3) and STKo1[2] for (Co,Cy), which is an 8-bit filter. s - 2180-51 .
216.9-8. 9716 — 5. 9217251 guartets remain.

Guessing ST K23[0] and ST K2s[1], we compute Zo1[14] and deduce Xo;[14].
AX>;[14] = 0x37 is an 8-bit filter for both (Cy,C3) and (Ca, Cy). s- 217251,
216.9-8. 978 — 5. 217251 gyuartets remain.

Guessing ST Ky3[4] and STKas[7], we compute Zo1[6]. Since AXq[6] =
0x37, we deduce ST K»[6] for (C1,C3) and ST Ko;[6] for (Ca,Cy), which
is an 8-bit filter. s -2172:51 . 216 . 978 — 5. 218051 qyartets remain.

So for each quartet, & = 3£ +278.28. 1. 44278.216. 4 4 9716916, 1.9 ~ 254
and Ty = s - 2193.91

In order to balance Ti,7T5,T5 and memory complexity and achieve a high

success probability, we set s = 1, h = 80 and = = 64 (z < my + m’f = 64,
h < 200 — z). We have T} = 218325 T, = 219391 and T3 = 2176, The memory

complexity is
In total, for the 25-round attack on SKINNY-128-256, the data complexity is

2120.25 + 2136 ~ 2136

2120-25 the memory complexity is 2!36, and the time complexity is 219391, The
success probability is about 83.8%.

C.4 Improved attack on 26-round SKINNY-128-256

We use the 19-round rectangle distinguisher for SKINNY-128-256 given in Sect. 4.3,
whose probability is 27"p?t§? = 27 1287121.07 — 9=249.07  Appending 3-round E,
and 4-round Ey, we attack 26-round SKINNY-128-256, as illustrated in Fig. 19.
There are 1, = 9-8 = 72 by Wy, mp = 11 -8 = 88, ry = 12-8 = 96,
my =21-8=168, hy = 8-8 = 64 and m} = 4.8 = 32. Due to the tweakey
schedule, we can deduce ST K23[2, 6] from ETK([8,0] and ST K24[4, 5]. So there
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Table 11: Tweakey recovery for 25-round SKINNY-128-256, where the red bytes
are among k} or obtained in the last steps.

Step|Internal state|Involved subtweakeys
5 Z232] STK24[0
Z33[14] STKo4

1

3 Z23[6 STRa24[7

Z23[5 STR24[6
4 Z23[9 ST K47

Z2s[13]  |STK24[0
5 Z23[2] STR23(0), ST Ka24[7]

222[14] STK23 1 N STK24 0, 5]
5 Z22[0] STRa3(7), ST K242, 4, 5]

Z21[2] STK22[6], STK23[7], STK24[2,4, 5]
7 Z21[14]  |STKa22(1], STK23]0,5], ST K243, 4, 0]
3 Z21[0] STRa22(7), ST K232, 4, 5], ST K240, 1,3, 5, 0]

are only (m; — 2c) = 152-bit subtweakey unknown in Ey. As shown in Fig. 19,
there are k} = {STK24[2, 3, 5, 6]} and hf = {W24[5, 107 14], W25[4, 5, 10, 15]}

The attack follows Algorithm 1 in Sect. 3.2, where y = /5-2"/277 /\ /52132 =
/5 - 25293 Hence, the data complexity is /s - 2/212 /\/p2t§2 = /s - 212653,

According to Eq. (13), T; = \/§_2mb+m}+n/2+1/w = /5288 +32+64+1460.53
/5 - 224553

ACCOI‘dng to Eq (15)7 T2 _ S'2mb+m}72hf+n/(ﬁ2t62)'€ — 8.288-‘,-32—128-‘,-128-‘,-121.07.
g =g 22107 ¢

According to Eq. (16), T3 = 287" where h < mj + my — 2c — x = 240 — x.

According to Eq. (17), the memory complexity is /s - 2"/22/\/p2tG2 +
2mb+mf72cfw — \/g 3 2126.53 + 22407w'

The tweakey recovery process with time e. For each of the s-2241:07 quar-
tets, we determine the key candidates and increase the corresponding counters
with the following steps:

1. In round 25: guessing ST K5[1], we compute Za4[2, 14]. Then AY>54[2] and
AXo4[14] are deduced. For the 3rd column of Xa4 of (Cy, C3), we can obtain
AX4[2] = AXog4[14]. Hence, we obtain AXo4[2] and deduce STK4[2] by
Lemma 1. Similarly, we deduce ST K}, [2] for (Cq, Cy), which is an 8-bit filter.
5-2241.07 .98 . 98 — 5. 924107 quartets remain.

2. Guessing ST Ko5[7], we compute Z24[6]. Then AYy4[6] is deduced. For the
3rd column of Xs4 of (C1,C3), we can obtain AXoy[6] = AXoy[14]. Hence,
we obtain AX54[6] and deduce ST K24[6] by Lemma 1. Similarly, we deduce
STK},[6] for (Cz,Cy), which is an 8-bit filter. s-2241:07.28 .278 — 5.9241.07
quartets remain.

3. Guessing ST K»5[0], we compute Za4[5,9, 13]. Then AY24[5] and AX54]9, 13]
are deduced. For the 2nd column of Xo4 of (C1, C3), we can obtain AXoy[5] =
AX04[9]® AX24[13] @ 0x82. Hence, we obtain AXs4[5] and deduce ST Koy[5]
by Lemma 1. Similarly, we deduce STK},[5] for (Cs,Cy4), which is an 8-bit
filter. s - 2241.07 . 98 . 9=8 — 5. 9241.07 qyartets remain.
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Fig.19: The 26-round attack against SKINNY-128-256.
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4. In round 24: guessing ST Ky4[l], we compute Zp3[2,14]. Then AYs3[2]
and AXy3[14] are deduced. For the 3rd column of Xs3 of (Cy,Cs5), we
can obtain AXo3[2] = AXo3[14]. Hence, we obtain AXo3[2] and deduce
ST K»3[2]. Similarly, we deduce STK)4[2] for (Ca,Cy), which is an 8-bit
filter. s - 2241.07. 98 . 978 — 5. 9241.07 qyartets remain.

5. Guessing ST Ko4[7] and ST Ks5[4], we compute Za3[6]. Then AYas[6] is de-
duced. For the 3rd column of Xo3 of (C1,C35), we can obtain AXa3[6] =
AXo3[14]. Hence, we obtain AXa3[6] and deduce ST Ko3[6]. Similarly, we
deduce STK}4[6] for (Cs, Cy), which is an 8-bit filter. Thereafter, in round
23, we compute Zz2[2] from Xo3[6]. Since ST Ka2[2] can be deduced from
known subtweakeys, AX55[2] = 0x81 is an 8-bit filter for both (Cy,C3) and
(Co,Cy). 5224107216 . 9=8 . 9=16 — 5. 9233.07 quartets remain.

6. Guessing ST K24[0] and ST K»3[1], we compute Za3[14] and deduce Xoo[14].
AXo2[14] = 0x81 is an 8-bit filter for both (Cy,C3) and (Ca, Cy). s-2233:07.
216.9-8. 978 — 5.92233.07 guartets remain.

7. Guessing ST Ko4[4] and ST K3[7], we compute Za3[6]. Since ST K53[6] can
be deduced from known subtweakeys, AX92[6] = 0xd is an 8-bit filter for
both (C1,Cs) and (Cy, Cy). s-2233:07.216. 2716 — 5.9233.07 quartets remain.

So for each quartet, e =28 £ .4 4+216. 4 4 278.216. 4 4 9-8.916. 4  913.33
and Th = s - 22944,

In order to balance Ti,7T5, T35 and memory complexity and achieve a high
success probability, we set s = 1, h = 24 and = = 112 (z < m; + m} = 112,
h <240 — z). We have T} = 2245.53 T, — 22544 and Ty = 2232, The memory
complexity is 2126:53 4 2128 ~ 912844

In total, for the 26-round attack on SKINNY-128-256, the data complexity is
2126:53 the memory complexity is 212844, and the time complexity is 22°44. The
success probability is about 69.8%.

Table 12: Tweakey recovery for 26-round SKINNY-128-256, where the red bytes
are among k’f or obtained in the last steps.

Step|Internal state|Involved subtweakeys

N Z21]2] STRa25[6
Zoa[14]  |ST K51
2 Z24[6 ST K257
Z24B STRa25(6
3 Z24[9 ST K57
Z24[13]  |ST K5[0
4 Z23[2] STR24[0), ST Ka5[7]
Z23[14] STK24 1 N STK25 0, 5]
5 Z23[0] STRa24[7), ST K252, 4, 5]
Z22[2] STK23(6], STK24[7], STK25(2,4, 5]
6 Z22[14]  |STKa23(1], STK24]0,5], ST K253, 4, 0]
7 Z22[0] STRa3(7), ST K24[2,4,5], ST K250, 1,3, 5, 0]
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D Early abort technique with table

Fig. 20: Reducing complexity of €.

At CT-RSA 2008, Lu, Kim, Keller and Dunkelman [37] introduced the early
abort technique for impossible differential attack. They partially check whether
a candidate pair could produce the expected difference by guessing only a small
fraction of the unknown required subkey bits at a time. Since some useless pairs
can be discarded before the next guess for a different fraction of the required
round subkey bits, they reduce the computational workload for an attack.

Take Fig. 20 as an example of the the early abort technique adopted in
differential attack. W is the ciphertext and gray bytes are active. Guessing three
bytes of k, e.g. k[0,1,2], to partially decrypt a pair to get AY[0,1,2]. Since
AX|[0,1] = 0, with property of MC, we get a filter of 278, Then, guess k[3] for
the left pairs. The time complexity & is bounded by the first guess of k[0, 1, 2],
ie., e =2%.

Early abort technique with table. Using the hash tables to improve the
early abort technique is a tradeoff between the time and space. With table, we
reduce ¢ from 224 to 1 in this example. We prepare a hash table T},

1. For each of the 2% values of (W, W),
2. For each of the 232 key of k, decrypt (W, W’) to get AX. If AX[0,1] =0,
store k in T, indexed by (W, W’).

Under each index of T, there expect 232716 —= 216 values for k. When using
T. to perform the key recovery attack, we use each ciphertext pair (W, W’) to
access T to get the possible key candidates indexed by (W, W'). Here, € becomes
one memory access. To prepare the T;, we need a time complexity of 2°% and a
memory complexity of 280,

When applying the Early abort technique with table to our rectangle at-
tack, we have to prepare the table T. for quartets. Suppose the quartets are
(W1, Wa, W3, Wy), where (X1, X3) and (X3, X4) meet the conditions that the
first two bytes are inactive. Then we construct 7. as follows:

1. For each of the 2'2® values of (W1, Wy, W3, Wy),

2. For each of the 232 key of k, decrypt (W7, W3) to get AX = X; @ X3 and
AX' = Xy & Xy. If AX[0,1] = AX'[0,1] = 0, store k in T, indexed by
(W, Wo, W3, Wy).
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Under each index, there expect 232716=16 — 1 key candidate for k. Then in
the key-recovery phase, for each (W, W, W5, Wy), we just access the T to find
the candidate key. To prepare the T;, we need a time complexity of 2160 and a
memory complexity of 2128,

E Application to ForkSkinny

ForkSkinny is designed by Andreeva et al. [1], which is the internal primitive of
ForkAE [2], a 2nd round candidate in the NIST LWC project. ForkSkinny applies
the round function of SKINNY R;,;: times to the plaintext P, then forks the state,
and computes two ciphertexts independently: applying R: rounds in the first
branch to get C; and R11 rounds in the second branch to get Cy;. The subkeys are
generated by extending the tweakey schedule to produce Rjin;it+ Rr+ R1r subkeys.
At ToSC 2020, Bariant, David and Leurent [6] gave the related-key impossible
differential attack on (74+19=) 26-round reduced ForkSkinny-128-256, where
Rinit =7, R = 27, Ry1 = 19.

By tweaking our automatic model on SKINNY into ForkSkinny, we find
that the 21-round distinguisher on ForkSkinny-128-256 used in [40] is also
the optimal distinguisher for our new rectangle attack model. The probabil-
ity of the 21-round distinguisher with Ri,i; = 17, Ry = 27 and Ry = 4 is
2 p2tg? = 27128-105.77 — 9-233.77 WYith our new attack framework, we re-
duce the time complexity of the previous 28-round attack (Rinis = 7, R = 27,
R = 21) on ForkSkinny-128-256 with 256-bit key.

28-round attack on ForkSkinny-128-256 with 256-bit key. Appending 3-
round B and 4-round Ey to the 21-round distinguisher, we attack 28-round
ForkSkinny-128-256, as illustrated in Figure 21. There are r, = 8- 8 = 64 by
Wg, my = 10-8 =80, 7y = 12-8 = 96 and my; = 17 -8 = 136. Due to the
tweakey schedule, we can deduce ST K52(2, 6] from ET Ky[5,2] and ST K544, 5].
So there are only (mjy — 2¢) = 120-bit subtweakey unknown in Ey. From the
automatic search model, we get hy = 7-8 = 56 and m} = 3-8 = 24. where
k} = {STK54[O, 4, 5}} and hf = {X26[13]7 W26 [8, 9], I/V25[47 10, 11, 14]}

The attack follows Algorithm 1 in Section 3.2, where y = 1/5-2"/27" //p2t§2 =
/5 - 25288 Hence, the data complexity is /s - 2/%12 /\ /212 = /5 - 211888,

According to Eq. (13), T} = \/g_zmb+m’f+n/2+1/w _ \/5.280-&-24-',-64-&-1-&-52.88 _
5 - 222188

According to Eq. (15)7 T, = S.2mb+m/ffzhf+’ﬂ/(p"2tq"2)_5 — §.980+24-112+128+105.77,
g=5-222577 ¢

According to Eq. (16), T3 = 28~ where h < mj + my — 2¢c — x = 200 — x.

According to Eq. (17), the memory complexity is /s - 2"/2%2/\/p%tG2 +
2mb+mf—2c—x — \/g . 2118.88 + 2200—m.
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Fig. 21: The 28-round attack against ForkSkinny-128-256
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The tweakey recovery process with time e. For each of the s-222577 quar-
tets, we determine the key candidates and increase the corresponding counters
with the following steps:

1.

In round 27: for the 3rd column of Xo7 of (Cy, C3), we can obtain AX»7[2]$
AXo7[14] = AWgg[14] = 0. Then we obtain AX57[2] and deduce ST Ky4[2]
by Lemma 1. Similarly, we deduce STKL,[2] for (Cs,Cy), which an 8-bit
filter. s - 222577 . 278 — 5. 221777 quartets remain.

. Guessing STKj54[6], we compute Zag[5]. Then AYas[5] is deduced. Since

AXos[5] = 0x5e, we deduce ST K53[5] for (Cy, C3) and STK(;[5] for (Ca, Cy),
which is an 8-bit filter. s - 221777 .28 . 278 — 5. 221777 guartets remain.
Guessing ST K54[3] and together with known subtweakeys as in Table 13, we
compute Z4[0, 8, 12]. Then AX56[8,12] and AY26[0] are deduced. For the 1st
column of Xs6 of (C4,C3), we can obtain AXq6[0] = AXg6[8] = AXa6[12].
Hence, we obtain AXy6[0] and deduce ST K353[0] by Lemma 1. Similarly, we
deduce ST K(4[0] for (Cy, Cy4), which is an 8-bit filter. AX56[8] = AXo6[12] is
an 8-bit filter both for (C1, C3) and (Cy, Cy). §-221777.28.278.2716 — 5.9201.77
quartets remain.

Guessing ST Kj4[1, 7], we compute Zag[2, 6,14] and peel off round 27. Then
AXog[14] and AYa6[2, 6] are deduced. For the 3rd column of X6 of (Cy, C3),
we can obtain AXog[2] = AXqg[6] = AXa6[14]. Hence, we obtain AXog(2, 6]
and deduce ST K53(2,6] by Lemma 1. Similarly, we deduce STK.5[2,6] for
(Cy,Cy), which is a 16-bit filter. s - 220177 . 216 . 9716 — 5. 920177 gyartets
remain.

In round 26: Guessing ST K53[1, 4], we compute Zo5(2, 10, 14]. Then AX»5[10, 14]
and AYa5[2] are deduced. For the 3rd column of Xa5 of (C1,C3), we can
obtain AXg5[2] = AXa5[10] = AXo5[14]. Since ST K52[2] can be deduced
from ETKy[5] and ST K54[4], we can compute Xa5[2] and AXs35(2]. Then
AXo5[2] = AXy5[14] and AXo5[10] = AXa5[14] are two 8-bit filters both for
(C1,C3) and (Cq, Cy). 5-2201:77.216. 9716 916 — 5. 918577 (uartets remain.
Guessing ST K53(7], we compute Za4[8] and deduce Xo4[8]. AXo4[8] = 0x35
is an 8-bit filter for both (C1, C3) and (Cy, Cy). 5-218577.28.2716 — 5.9177.77
quartets remain.

So for each quartet, & = 5¢+275.28. 4.242724.216. L .94 9740.98. 4 ~ 2122,
So Ty = s - 2224:55,

In order to balance T7, T5, T5 and memory complexity as well as achieve a

high success probability, we set s =1, h =48 and x = 96 (x < my + m} = 104,
h < 200—z) with Eq. (8). Then we have T} = 2221-88 T = 222455 and Ty = 2208,

In total, the data complexity is 2''%88 the memory complexity is 211888

and the time complexity is 222476, The success probability is about 84.0%.

F

Application to Deoxys-BC-384

Deoxys-BC is the internal tweakable block cipher of Deoxys-II [32], which is
among the final portfolio of CAESAR competition®. We only consider the ver-

*https://competitions.cr.yp.to/caesar-submissions.html
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Table 13: Tweakey recovery for 28-round Forkskinny-128-256, where the red
bytes are among k} or obtained in the last steps.

Step|Internal state|Involved subtweakeys
2 Za6 b STK54[6
Z26(0 STKs54[4
3 Z26(8 STKs4[6
Z26[12] STK54[3
Z62) STKs4[7
4 Z266) STKs4[7
Z26[14] STK54 1
Z252) ST K53(6], STK54[7]
5 Z25[10] STKs3[4], STK54[3, 5]
Z25[14] STKs3(1], STK54[0, 5]
6 Z2418] ST K52[6], STKs3[1,7], STK54[0,2,4,5]

sion Deoxys-BC-384 here. The framework is similar to SKINNY-n-3n as shown in
Figure 7, by replacing the SKINNY’s round function with AES’s in Figure 22.

Fig. 22: Round function of Deoxys-BC-384

SB

§

L h|n|n

w|w|n|n

w|w|n|n

L|h|h|n

There have been many cryptanalysis results [22,42,51,52] on reduced Deoxys-BC.
The best attack on reduced Deoxys-BC-384 is a 14-round attack with time 22827
and data 2!252 by Zhao et al. [52] at INDOCRYPT 2019. In this section, we im-
prove this attack with Attack VI. The distinguisher, the attack map (shown in
Figure 23) and the way to choose plaintexts are all the same to [52]. We have the
parameters: pg = 27992 1, = m, = 12 x 8 =96, ry = 96, my = 96 + 40 = 136.
According to Eq. (12), the data complexity is /s - 26442592 = | /5. 2125:2 Ac-
cording to Eq. (13), T} = +/s - 2my . 996+64+1450.2 — NCE 25 . 22202 According
to Eq. (15), To = s - gms—2h;  996—1284+2x96+59.2x2 o _ o 9my—2h; 92784

As shown in Fig. 23, we guess the first column of SR™* o MC™!(ST' K14) and the
5th byte of SR~ o MC™(ST K13) to compute the internal states marked by red
boxes of X3 as filters. Therefore, we get 2hy = 8x8 = 64 with m’f = 32+8 = 40.
Then, Ty = s -22%%4 . ¢ and T} = /s - 22602,

To reduce the complexity of €, we use the early abort technique with table
technique in Section D to compute the key candidates for each quartet. We
prepare two hash tables T for the last two columns of X4 in the same way with
Section D, which costs 2 x 219 time and 2 x 2!2® memory. By accessing T, we
can fast locate the key candidates by two table accesses for each quartet.

According to Eq. (16), T3 = 234" where my + my — 2 — h > 0, i.e.,
232—x—h > 0and 2 < my+m/; = 136. Let h = 130, then T3 = 2°°*. Let x = 92,
then the memory complexity of storing the key counters is 2mv+ms—% = 2140,
Choose s = 1, the success probability is 51.2%. The overall time complexity
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Fig. 23: Rectangle attack on 14-round reduced Deoxys-BC-384.

is about 220 (previous 22%2:7). The memory complexity is 2!4° and the data
complexity is the same to Zhao et al. [52].

G Application to GIFT-64

GIFT [4] was proposed by Banik et al. at CHES 2017. GIFT has an SPN structure.
There are two versions for GIFT according to the block size i.e., GIFT-64 and
GIFT-128. Both two versions adopt a 128-bit key. The numbers of rounds for
GIFT-64 and GIFT-128 are 28 and 40, respectively. In this paper, we only con-
sider GIFT-64. There are three operations in each round function, i.e., SubCells,
PermBits and AddRoundKey, whose detials are defined as follows:

1. SubCells: Apply 16 4-bit Sboxes (Table 14) in parallel to every nibble of
the internal state of GIFT-64.

Table 14: The Sbox of GIFT

r 0123456789 abcdef
GS(x)1ad4c6£392db7508e

2. PermBits : Linear bit permutations bp(;) < b;, Vi € {0,1,...n — 1}, where
the P(i)s are

Poa(i) =4L%j +16 (3lezdl6j + (i mod 4)mod 4) + (i mod 4).
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3. AddRoundKey : The round keys RK is n/2-bit, which is extracted from the
key state, where n = 64 for GIFT-64. Let RK = U||V = us_1...ug||vs—1v0,
where s = n/4. For GIFT-64, the round key is XORed to the state as

b4i+1 — b4i+1 D ui, by < by D vy, Vi € {O, ey 15}.

A single bit “1” and a 6-bit constant C' are XORed into the internal state at
positions n — 1, 23, 19, 15, 11, 7 and 3 respectively.

The 128-bit master key is initialized as K = kr||ks]|...||ko, where |k;| = 16.
For GIFT-64, the round key RK = U||V = k1||ko. The key state is updated as
follows,

krllkel|-|lko <= (k1 >> 2)[[(ko 3> 12)]|...[[ka][k2-

For more details of GIFT, we refer to [4].
At SAC 2020, Ji et al. [33] proposed a 20-round related-key boomerang dis-
tinguisher («, d) = (00 00 00 00 00 00 a0 00,04 00 00 00 01 20 10 00) with

AK = 0004 0000 0000 0800 0000 0000 0000 0010,
VK = 2000 0000 0000 0000 0800 0000 0200 0800.

The probability is p2¢?r = 2758:557, Based on it, they gave a 25-round related-key
rectangle attack on GIFT-64 with 2'20-° time and 25378 data and 264! memory.

A 26-round attack on GIFT-64. For GIFT-64, we append one additional round
at the bottom of Ji et al’s 25-round attack to attack 26-round GIFT-64 (see
Table 15). The 128-bit key of GIFT-64 is divided into eight 16-bit k; (0 <i < 7).
In each round, a 32-bit kaji1]|ke; (0 < j < 3) key or its bit permuted key
k3 1llks; are XORed into the state. In our 26-round attack, the involved keys
of E, are 24 bits of RKy = ki|lko and 6 bits of RKy = ks3||ks, i.e., mp = 30. In
Ey, the involved keys are 32-bit RKos = kj||k5 and 24 bits of REKas = killkj
and 8 bits of RKoy = kb||kg, ie., my = 32+ 24 + 8 = 64.

Moreover, there are some key relations in Ej, and Ey. In detail, for RK;, 24-
bit ko[0,1,2,3,4,5,6,7,12,13,14,15] and k[0, 1,2,3,4,5,6,7,12, 13,14, 15] are
involved. For RKy5, 24-bit ko[4,5,6,7,8,9,10,11,12,13,14,15] and k4[0,1,2, 3,
4,5,6,7,12,13,14,15]. So k1[8,9,10,11] does not need to be guessed and only
32 — 4 = 28-bit k1] ko is involved in RK; and RK3s5. So totally 28-bit & ||ko, 32-
bit k3||k2 and 8-bit k7|/ks are involved in Ejp and E¢. Hence, 28 +32+8 = 68-bit
key (instead of my 4+ mys = 94-bit key) are involved in Ej, and Ey.

When applying Attack VI, we have r, = 44, r; = 64. According to Eq. (12),
the data complexity is /526328, According to Eq. (13), T} = /s-2m 756228 —
V5 - 2M 9228 According to Eq. (15), Ts = (s- 230+m’f764+2x6472hf+58,557) e —
s . 2my—2hs  9152.557 . o We choose m/; to balance T1 and T. Since in Ejp, 6-
bit ks||ke has been guessed. So to peel off the last round, we need to guess
an additional 32 — 6 = 26-bit key of RKy5 = k3| ks. Moreover, in Ej, 24-bit
key of ki1||/ko has been guessed and with the above analysis, we need to guess
only 28 — 24 = 4-bit key of RKos = ki||k{ to peel off the round 25. Hence,



Key Guessing Strategy in Rectangle Attacks with Linear Key-schedule 53

we need to guess m’f = 26 4+ 4 = 30-bit key to filter the wrong quartets using
the difference of internal state AXss and we get hy = 49. Therefore, we get
Ty = /523049228 — /5 911228 o) Ty = 5. 230-2x49 9152557 . o — o 984557 .,
According to Eq. (16), T3 = 2¥~". Since the total number of key bits involved
in B, and Ey is 68, h has to meet 68 —xz —h > 0 and = < mb—|—m'f = 60.
According to Eq. (17), the memory complexity is 2682 + /s - 26328, We choose
x = 8, h = 20 and s = 2 in order to achieve a good success probability of
72.5% according to Eq. (8). Note that ¢ is about 4 Sbox computations by the
early abort technique. At last, we have a time complexity of 211278 26-round
encryptions, a data complexity of 293-7® and a memory complexity of 26378,

Table 15: The 26-round related-key rectangle attack on GIFT-64. AX; and AY;
are the input and output differences of the Sbox layer of round i, AZ; is the
output difference of the linear layer of round i.
input (7777 7777 7777 7777 707 7777 7777 7777 7777 7777 2277 077 7777 7777 7777 7777
AYy  [?707 1770 0177 70?7 1707 7170 02?7 7077 7707 7?70 07?7 2077 2707 7770 0777 7077
AZy 77?77 77?7 7777 2772 0000 0000 0000 0000 117? 2777 2777 2777 2777 1177 7227 2777
AX, [7777 7777 2227 7777 0000 0000 0000 0000 1177 7277 7227 77277 7777 1177 7777 2727
AY> [0701 0070 0007 7000 0000 0000 0000 0000 0100 0070 0007 7000 7000 0100 00?0 000?
AZs 7777 0000 7177 0000 0000 0000 0000 0000 0001 0000 0000 0000 D000 0000 0000 ?177
AX, [7777 0000 7177 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 7177
AYs 1000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010
AZs |0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 1010 0000 0000 0000
AX4(a)|0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0000 0000

AX24(8)|0000 0100 0000 0000 0000 0000 0000 0000 0000 0001 0010 0000 0001 0000 0000 0000
AYs4 |0000 77?71 0000 0000 0000 0000 0000 0000 0000 7777 ?7?? 0000 ???7 0000 0000 0000
AZ34 [0070 0000 00?7 0700 0001 0000 7007 0070 7000 0000 7700 0007 0700 0000 0770 7000
AXas [0070 0000 0077 0700 0001 0000 7007 0070 7010 0000 ??700 0007 0700 0000 0?70 7000
AYss |7777 0000 7777 7777 7777 0000 7777 7777 7777 0000 7777 7?77 7777 0000 77?7 7777
AZss |?7707 7707 7707 7707 7770 7770 7770 7?70 0777 07?7 0777 0777 7077 7077 7077 7077
AXag |?707 7707 7707 77?07 7770 77?0 77?0 7770 0777 07?7 0777 0777 0077 7077 7077 7077
PA S I N O O O O O O o N O G O B O O O O Y O A Y N S Y O A N S S N S S N N Y S g
A R N o N O O O Y O O O G O O O O O Y O O Y O N O o O N O B U O O A O N B N O S SN S BN S
output 7777 ?777 77?7 P07 UVVY V0T VYT VWY P70V V0T 007 7007 0700 0077 7097 7777

H Application in single-key setting

In Section 3, we introduce the tradeoff key-recovery model for the rectangle
attack on cipher with linear key schedule. Our new related-key model and Zhao
et al.’s model [51] can be trivially converted into the single-key model by just
let the differences of the keys be 0. Choose

y =522 g, (19)
we get about

. 27‘b—1
(y e ) 22T s (20)
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quartets for the right (my 4+ my)-bit subkey, where s is the expected number of
right quartets. Therefore, the data complexity is

y- 2" =5 2"PHS /g, (21)
» Time I (T1): The time complexity of generating quartets is about
Ty = 2 oy 27 = 5 2L I (22)
» Time IT (T2): We generate about

Y- 2rb—1—2(n—rf+hf)

!’ . ~ ~
> — S.2mb+mffn+2rff2hf /p2q2

quartets. The time complexity of generating the key counters is
T2 — (8 . 2mb+m_'f7n+2rf72hf /ﬁ2q2) e, (23)

» Time III (73):

T3 _ 2:E . 2mb+mffa:7h . 2k7(mb+mf) — 2k7h. (24)

For chossing h (according to the success probability Eq. (8)), the conditions
my+my—x—h>0and x <my + m’f have to be satisfied, which gives a
guide to choose x.

Application to Serpent in single-key setting. We reuse the rectangle dis-
tinguisher by Biham, Dunkelman and Keller [12] and launch the rectangle attack
in chosen-ciphertext setting. £, and Ef consist of 9 rounds and 0 round, respec-
tively. The rectangle distinguisher E’ is 8-round, including a 4-round Ej and a
4-round Eq. 1y = mp =20, 7y =my =76, n =128, p = 27254 and ¢ = 27349,

According to Eq. (19), y = /s - 2%/277+15 /55 = (/5 - 2498 Hence, the data
complexity is /s - 2125% with Eq. (21). According to Eq. (22), Ty = /s - 2y .
920+64+1.5425.4434.9 _ \/5.2m/f -915:8 According to Eq. (23), To = s- om—2h;
920—128+2x76+120.6 , o — . 2m}—2hf . 9164.6 According to Eq. (24), Ty = Qk—h7
where my +myg —x — h > 0, i.e., h < 96 — x. Obviously, 75 > 2'%° and when
x=0and h =96, T3 = 21, The memory complexity is /s - 2125-8 4 296z,

We set s =2, h =92 and « = 0 with Eq. (8), and the success probability is
71.4%. Then we have T3 = 2154, We can also balance T} and T by adapting m'f
and hy. For Serpent, once we guess a 4-bit key for one active S-box, we gain
two 4-bit filters considering both sides of the rectangle. We choose m’f =12 and
2h; = 24. Then T} = /22121458 & 91583 45 Ty = 212-24+164.6 . o — 91526
The total complexity is bounded by T3 = 2'64 and our attack achieve better
time complexity than [11] as shown in Table 16.
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Table 16: Rectangle attacks on 10-round Serpent.

Key size Time Data Memory Approach Ref.
256 27738 21263 9T26:3 yectangle [11]
256 261 21263 91263 roctangle ours

I Overall analysis of the four attack models

In the above three models in Sect. 2 and our new model in Sect. 3.2, there are
some differences:

— The Attack I model of Sect. 2.1 guesses all the (my, + my)-bit key at once
and generates the quartets;

— The Attack II model of Sect. 2.2 does not guess the key involved in Ej, and
E; when generating quartets, and uses the hash tables in the key-recovery
process.

— The Attack IITI model of Sect. 2.3 only guesses my-bit key in Ej to generate
quartets and the key-recovery process is just a guess and filter process.

— Our new attack model of Sect. 3.2 guesses myp-bit key in Ej, and m}—bit
key in Ey (m'f < my) to generate quartets, which increases the time of
generating quartets but reduces the number of quartets to be checked in the
key-recovery process.

For all the attack models, the data complexities are the same, which depend
on the the probability of the rectangle distinguisher and s. However, the time
complexities are different.

Comparison on the time complexity. To analysis different time complex-
ities, we first compare time complexities in the key-recovery process. Suppose,
pG = 27¢ and s is small and ignored, we approximate the four complexities to be

Attack I:7Tp = 2metmstn/2+i+2 (25)
Attack IT:Typ = 2metmet2ry=—nd2t 4 omyt2rytry—nt2t (26)
Attack III: Tppp = 2met2rs—nt2t o (27)
Attack IV : Ty = 27mwt2rs—ntmy—2hs+2t o (28)

To compare T11 and T1rr, when € < 2" the complexity of Attack III is
lower than Attack II. In the key-recovery process of Attack III, usually an
early abort technique [37] is applied, which makes the e very small, for example
the key-recovery phase on 32-round SKINNY-128-384.

To compare T11r and 11y, when m’f — 2hy < 0, the complexity of Attack
IV is lower than Attack III. So for ciphers in which can found hy-bit filter
with m’f—bit guessed subkey satisfying m’f —2hy <0, Attack IV is better than
Attack IIT.
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To compare T, Tt; and Tirr, we assume that the probability p2¢? is larger
than 27™ but the gap is small. Then n/2+¢ can be approximated by n and 2¢ =~ n.
Thereafter, the complexities can be further estimated as 2™+ +7+2 for Attack
I, 2metret2ry L oms+2retry for Attack II and 2127/ .¢ for Attack III. When
2217 e < 2ms+7+2 the complexity of Attack III islower than Attack I. When
Ty +2ry <myg+n+2and 2ry + 75 < my +n + 2, the complexity of Attack II
is lower than Attack I.

Hence, different models perform differently for different parameters.

J The differentials of boomerang distinguishers of SKINNY

This section gives the related-tweakey boomerang distinguisher and the differ-
entials of the boomerang distinguishers searched in Sect. 4.4. For each round
of the differentials, we list the input/output differences of the S-box, as well
as the subtweakey differences. In the following tables, the differences are given
in hexadecimal, “*” denote arbitrary nonzero difference, “-” denote arbitrary
difference.

Table 17: The 22-round related-tweakey boomerang distinguisher for
SKINNY-64-192.

7o =10, Ty = 6, 71 = 6, p = 271984 4 — 91788 & _ | 52452 _ 9=57.56
ATK1=f£, 0, 0, 0, 0, 0, O, a, O, O, O, O, O, O, O, &
ATK2=4, 0, 0, 0, O, 0, O, 4, 0, O, O, O, 0, O, O, 9
ATK3=b, 0, 0, 0, 0, 0, O, 6, 0, O, O, O, 0, O, 0, 4
AXg=1, 0, 0, 0, 0, 0O, 0, 1, 0, O, O, O, O, O, O, O
VT'Kl1=o0, 0, 0, 0, 0, 0, 0, O, O, 1, O, O, O, O, O, O
VI'K2=o0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, O
VT'K3=o0, 0, 0, 0, 0, 0, 0, O, O, d, O, O, O, O, O, O
VX =0, 0, 0, 0, 0, 0, 0, 0, O, a, O, O, 0, O, 0, O

Table 18: The 18-round related-tweakey boomerang distinguisher for
SKINNY-128-256.
ro = 6, T = 47 r= 87 13 — 274’ t = 2735417 q — 273255, ﬁ2tq2 — 2710&51

ATK1 = 00, 00, f0, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
ATK?2 = 00, 00, f8, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
AXy =00, 00, 02, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
VTK1 =00, 00, 00, 00, 00, 00, 00, 00, ed, 00, 00, 00, 00, 00, 00, 00
VTK?2 =00, 00, 00, 00, 00, 00, 00, 00, 36, 00, 00, 00, 00, 00, 00, 00
VXis =00, 00, 37, 00, 00, 00, 37, 00, 00, 00, 00, 00, 0O, 37, 00, 00
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Table 19: The 19-round related-tweakey boomerang distinguisher for
SKINNY-128-256.

ro=9,rm=4,7r1=6,p=
ATK1 =00, 00, 00, 00, 00, 00, 00, 00, 00, 0O, 6f, 00, 00, 00, 00, 00
ATK?2 = 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 9b, 00, 00, 00, 00, 00
AXo = cb, 00, 00, 00, 00, 00, 00, cb, 00, 00, cb, 00, 00, 00, 00, 00
VTK1 =80, 00, 00, 00, 00, 00, 00O, 00, 00O, 00, 00, 00, 00, 00, 00, 0O
VTK?2 = 2a, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 0O
VvXy9 =00, 00, 81, 00, 00, 00, 81, 00, 00, 00, 00, 00, 00, 81, 00, 00

2741484 t = 2726471 (~I~ — 275.34 ﬁthZ — 27121.07

K Figures on SKINNY automatically produced including
distinguishers and key-recovery phase

Our automatic model can automatically produce the figures including the key-
recovery phase and the distinguishers.

The figure on 25-round key-recovery attack on SKINNY-64-128 is shown in
Figure 24.

The figure on 31-round key-recovery attack on SKINNY-64-192 is shown in
Figure 25.

The figure on 25-round key-recovery attack on SKINNY-128-256 is shown in
Figure 26.

The figure on 26-round key-recovery attack on SKINNY-128-256 is shown in
Figure 27.

The figure on 32-round key-recovery attack on SKINNY-128-384 is shown in
Figure 28.

The figures are too long, hence too small to look at. We also refer the readers
tohttps://github.com/key-guess-rectangle/key-guess-rectangle/tree/
main/ArticleTails/pic to see the large figures.


https://github.com/key-guess-rectangle/key-guess-rectangle/tree/main/ArticleTails/pic
https://github.com/key-guess-rectangle/key-guess-rectangle/tree/main/ArticleTails/pic
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Table 20: The differentials of the 23-round distinguisher for SKINNY-128-384,
where R11 to R13 denote r,,, = 3-round middle part, u satisfies DDT[0x20][u] >
0 and DDTJu][0x5b] > 0, v satisfies DDT[0x5b|[v] > 0 and DDT[v][0xc0] >
0, wy/o satisfies DDT[v][w;/5] > 0 and DDT[w,/5][0x04] > 0, ' satisfies
DDT[0x02][v'] > 0 and DDT[0x42][v] > 0, v’ satisfies DDT[v/][v'] > 0 and
DDT[v'][0x50] > 0.

Upper differential

Lower differential

0,0,0,0,0,0,0,01,0,0,0,0,0,0,0,20
RO 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,u
0,0,0,0,0,0,0,0
0,0,«,0,0,0,0,0,0,0,0,0,0,0,0,0
R1 0,0,5b,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,5b,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
R2-R6 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
R7 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,5b,0,0
0,0,0,0,0,0,0,0,0,0,5b0,0,0,0,0,0
R8 0,0,0,0,0,0,0,0,0,0,v,0,0,0,0,0
0,0,0,0,0,0,0,0
v,0,0,0,0,0,0,0,v,0,0,0,v,0,0,0
R9 w1 ,0,0,0,0,0,0,0,w2,0,0,0,c0,0,0,0
0,0,0,c0,0,0,0,0
w1,0,w2,0,w;,0,0,c0,0,0,ws2,0,w:,0,w2,cO
R10 04,0,04,0,04,0,0,04,0,0,04,0,04,0,04,04
0,0,0,0,0,0,0,0
0,04,0,04,04,0,04,0,0,04,0,0,0,0,04,0
R11 0,*,0,%,%,0,%,0,0,%,0,0,0,0,%,0
0,0,0,0,0,0,0,61 0,0,0,0,0,0,0,0
R12 middle part middle part
T T T T T T T Ty Ty T T T Ty T T 0,%,0,%,%,0,0,%,0,0,0,%,%,0,0,0
R13 ST T T Ty T T Ty Ty T Ty Ty Ty T Ty ™ 0,02,0,42,02,0,0,02,0,0,0,02,42,0,0,0
0,68,0,0,0,0,0,0 0,0,0,0,0,0,0,0
0,0,0,0,0,02,0,42,02,0,0,0,0,0,0,42
R14 0,0,0,0,0,v,0,58,u,0,0,0,0,0,0,u’
0,0,0,0,0,0,0,58
0,0,0,0,0,0,0,0,0,0,0,0,0,0,u ,0
R15 0,0,0,0,0,0,0,0,0,0,0,0,0,0,v",0
0,0,0,0,0,0,0,0
0,v,0,0,0,0,0,0,0,0,0,0,0,0,0,0
R16 0,50,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,50,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
R17-R21 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
R22 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
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Table 21: The differentials of the 22-round distinguisher for SKINNY-64-192,

6-round middle part, u satisfies DDT[0x1][u] > 0

and DDT[u @ 0x9][0xb] > 0, v satisfies DDT[0x1][v] > 0 and DDTv][0xb] > 0.

where R10 to R15 denote r,,

Lower differential

0,0,0,0,0,0,0,0

middle part
0,+,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,a,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,a,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,a,0,0,0
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Table 22: The differentials of the 18-round distinguisher for SKINNY-128-256,
where R6 to R9 denote r,,, = 4-round middle part, u satisfies DDT[u][0x9b] >

0, v satisfies DDT[v][u] >

O, w1

satisfies DDT[wq][v] > 0 and

DDT[0x30/80/a0][w;] > 0, we satisfies DDT[ws][v] > 0 and DDT[0x30][w2] > 0,
wg satisfies DDT[ws][v] > 0, DDT[ws][0x56] > 0 and DDT[0x10/30][ws] > 0.

Upper differential Lower differential
0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0
RO 0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,8,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
R1-R3 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
R4 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,10,0
0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0
R5 0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0
0,0,0,0,0,0,0,0
0,40,0,0,0,0,0,0,0,40,0,0,0,40,0,0 e
R6 0,*,0,0,0,0,0,0,0,%,0,0,0,%,0,0 e e
0,0,0,0,0,30,0,0 0,0,0,0,0,0,0,0
R7-R8 middle part middle part
e e *,0,0,0,0,0,%,0,0,%,0,0,%,%,%,0
R9 ST T T T Ty Ty T Ty Ty Ty Ty T T T, T 30,0,0,0,0,0,90,0,0,30,0,0,10,30,80,0
0,0,0,0,0,0,0,0 0,0,0,30,0,0,0,0
0,80,0,10,30,0,0,30,0,0,0,20,30,0,0,0
R10 0,w:,0,ws,w;,0,0,w2,0,0,0,w;,ws,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,w;,0,w3,w2,0,0,0,0,0,0,ws
R11 0,0,0,0,0,v,0,56,v,0,0,0,0,0,0,v
0,0,0,0,0,0,0,56
0,0,0,0,0,0,0,0,0,0,0,0,0,0,v,0
R12 0,0,0,0,0,0,0,0,0,0,0,0,0,0,u,0
0,0,0,0,0,0,0,0
0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0
R13 0,9b,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,9b,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
R14-R16 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
R17 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,37,0,0,0,0,0
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where R9 to R12 denote 7, = 4-round middle part, u satisfies DDT[0xcb][u] > 0

and DDT[u)[0x58] > 0, v satisfies DDT[0xb0][v] > 0 and DDT[v][0xd0] >
0, wy/o satisfies DDT[v][w;/2] > 0 and DDT[w;/5][0x04] > 0, v" satisfies

Table 23: The differentials of the 19-round distinguisher for SKINNY-128-256,
DDT][0x20][v'] > 0 and DDT[v’][0x80] > 0.

Lower differential

0,0,0,0,0,0,0,0

middle part
,0,%,0,%,%,0,0,0,0,0,0,%

,20,0,20,20,0,0,0,0,0,0,20

0,0,0,0,0,0,0,20
0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,v",0

0,0,0,0,0,0,0,0
0,v,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,80,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,80,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
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Fig. 24: 25

round key

recovery attack on SKINNY

64

128
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Fig. 25: 31-round key-recovery attack on SKINNY-64-192
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Fig.

26: 25

round key

recovery attack on SKINNY

128

256
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