
Secure Computation for G-Module and its Applications

Qizhi Zhang ∗
Ant Group

qizhi.zqz@antgroup.com

BingSheng Zhang ∗
Zhejiang University

bingsheng@bingsheng@zju.edu.cn

Lichun Li
Ant Group

lichun.llc@antgroup.com

Shan Yin
Ant Group

yinshan.ys@antgroup.com

Juanjuan Sun
School of mathematical sciences, Tongji university

sunjuan@tongji.edu.cn

Abstract
Secure computation enables two or more parties to jointly
evaluate a function without revealing to each other their private
input.G-module is an abelian groupM,where the groupG acts
compatibly with the abelian group structure onM. In this work,
we present several secure computation protocols forG-module
operations in the online/offline mode. We then show how to
instantiate those protocols to implement many widely used
secure computation primitives in privacy-preserving machine
learning and data mining, such as oblivious cyclic shift, one-
round shared OT, oblivious permutation, oblivious shuffle,
secure comparison,oblivious selection,DReLU,andReLU,etc.
All the proposed protocols are constant-round, and they are 2X
- 10X more efficient than the-state-of-the-art constant-round
protocols in terms of communication complexity.

1 Introduction

In a secure computation (a.k.a. multi-party computation) pro-
tocol, two or more parties collaboratively evaluate a function
and receive its output without revealing their private input
to the others. A number of general-purpose secure compu-
tation solutions [Yao86, GMW87, BLW08, DPSZ12] have
been proposed in the past decades. Recently, an increasing
number of practical multi-party computation platforms are
tailor-made for privacy-preserving machine-learning and/or
data-mining, such as Delphi [MLS+20], SecureML [MZ17],
SecureNN [WGC19], Chameleon [RWT+18], and CrypT-
Flow [KRC+20], etc. Typically, those protocols are deployed
in client-server mode [HM00,DI05] with three MPC parties
or two MPC parties with an semi-honest assistant third-party
(a.k.a. server-aid mode, .e.g., [MOR16,RWT+18]).

In this work, we first investigate the secure computation
problem for G-module operations. In mathematics, given a
group G, G-module is an abelian groupM, on which G acts
compatibly with the abelian group structure onM. We present

1These authors contributed equally to this work.

three secure computation protocols forG-module under differ-
ent settings. Our protocols are designed in the pre-processing
(a.k.a. online-offline) mode, e.g. [DPSZ12], where in the
offline phase, the secure computation parties prepare some
correlated randomness, e.g. Beaver triples, using offline proto-
cols, say homomorphic encryption or the help of a semi-honest
third party [RWT+18]. We then show how to instantiate our
protocols to realize some useful concrete secure computation
primitives, such as secure comparison andoblivious shuffle. As
one important and classical problem, secure comparison (a.k.a.
Yao’s Millionaires’ problem [Yao86]), in which two parties
find out whether G < H for private input G, H without disclosing
them, receives the most attention [KSS09, GSV07]. Many
constructions are proposed in the literature, e.g., [Cou18],
and to the best of our knowledge, function secret sharing
(FSS) based secure comparison [BGI16] is the most efficient
constant-round protocol w.r.t. online communication. Secure
comparison is one of the fundamental building blocks in
privacy-preserving machine learning. Typically, ReLU and
DReLU which internally needs secure comparison, are com-
monly used in the active layers of deep learning. They are
defined by

ReLU(G) :=
{
G if G ≥ 0
0 otherwise

DReLU(G) :=
{

1 if G ≥ 0
0 otherwise

For instance, platforms like [MLS+20,MR18,MZ17,WGC19,
RWT+18, KRC+20], all implement and use ReLU and
DReLU in certain tasks. In two’s complement representation,
DReLU(G) = −MSB(G), where MSB means Most Significant
Bit.
Oblivious shuffle is another handy protocol that is widely

used in privacy-preserving database manipulation [LWZ11].
In an oblivious shuffle protocol, the MPC parties hold a shared
array ([00], . . . , [0=−1]), and they want to jointly shuffle to
array such that none of the MPC parties know the exactly
permutation of the shuffled array. Conventionally, oblivious

1

First Non-
Zero Bit

Share
Conversion

Secure
Compare

DReLU
(MSB)

Select
Share

ReLU

G-Module
Setting III

G-Module
Setting II

G-Module
Setting I

Oblivious
Permutation

Oblivious
Shuffle

Oblivious
Cyclic Shift Shared OT

Figure 1: The roadmap of our protocols

sorting networks, e.g., butterfly network, are used to permute
the array; however, it would resulting an$ (log=)-round proto-
col. In [LWZ11], the authors proposed a novel oblivious shuffle
protocol, where the concept is similar to a mix-net method.
Take the 3-party protocol as an example, in LWZ oblivious
shuffle [LWZ11], the parties first re-share the array such that
only %2 and %3 hold the (additive) shares of the array, i.e., %1’s
shares are 0. Then, %2 and %3 can permute their shares of the
array according to the same random permutation f1 ∈ (= that
is only known to %2 and %3. Note that %1 is oblivious to f1.
After that, the parties re-share the permuted array such that
only %3 and %1 hold the shares; similarly, %3 and %1 jointly
permute the array according to a random permutation f2 that
is unknown to %2; finally, %1 and %2 jointly permute the array
according to f3 that is unknown to %3. The array has been
permuted three times. Since each party is oblivious to at least
one permutation, the overall permutation is unknown to all
the parties. Although it is a constant-round efficient protocol,
it cannot be naturally ported to the two-party setting. This
is because each party has to shuffle the array alone without
seeing the data in plaintext; usually, public-key cryptographic
operations are needed. Very recently, Chase et al. [CGP20]
proposed a 3-round two-party oblivious shuffle protocol only
using symmetric cryptographic operations. In this work, we
show the first constant-round oblivious shuffle protocol for
two-party computation using additive shares only.
Our Contributions. In this paper, we focus on secure com-
putation for G-module operations, and then gradually develop
our oblivious cyclic shift, one-round shared OT, oblivious
permutation, oblivious shuffle, secure comparison, oblivious
selection,DReLu, andReLu protocols. Ourmain contributions
can be summarized as follows:

• We introduce a new notion called secure computation
for G-module, and formalize its functionally FGM in the
well-knownUniversal Composibility framework [Can01].
We then present three secure computation protocols
that UC-realize FGM in three different settings. The

communication complexity of our protocol is shown
in Table. 1.1. Those protocols may be of independent
interest, as they can be further instantiated to many other
efficient handy protocols besides the examples mentioned
in this paper.

• As an application of secure computation for G-module
(setting III), we construct a novel secure comparison pro-
tocol Π?,=SC . The protocol is designed in the online/offline
mode. As depicted in Table. 1.1, to privately compare
G, H ∈ Z2= , the overall communication (offline + online) is
only (4=+3) log ? +3=+ log(=+1) +2, where ? ≥ =+3
is a prime number. We note that the communication com-
plexity is approximately 10%of that of the state-of-the-art
constant-round protocol [BGI16].

• We present a DReLU protocol Π?,=DReLU. Compared to
the most efficient constand-round DReLU protocol in
the literature, CrypTFlow [KRC+20], the online and
overall (online + offline) communication of our protocol
are approximately 31% and 55% of that of CrypTFlow,
respectively. Moreover, the round complexity of our
protocol is also much less than that of CrypTFlow. The
exact numbers can be found in Table. 1.1.

• As an application of the presented secure computation
for G-module (setting I), we show how to realize two-
party oblivious permutation protocol Π=,ℓO-Perm, where %1
inputs permutation f ∈ (=, where (= is the symmetric
group of degree =, and %2 inputs G := (G0, . . . , G=−1) ∈ Z=2ℓ ,
where G8 ∈ Z2ℓ ; after the protocol execution, %1 and %2
obtain shares of f(G) in Z=2ℓ , where f(G) is defined by
f(G)8 = Gf−1 (8) . We then construct our two-party obvious
shuffle protocol Π=,ℓO-shuffle using protocol Π=,ℓO-Perm twice.
To the best of our knowledge, this is the first constant-
round two-party oblivious shuffle protocol without using
any cryptographic operations. Comparing with the state-
of-the-art [CGP20], the communication of our protocol
is two orders of magnitude less than [CGP20] for big =.

• As an application of secure computation for G-module
(setting II), we construct an oblivious selection protocol
Π#O-select. In an oblivious selection protocol, %1 and %2
jointly hold shares of 1 ∈ {0,1} and G0, G1 ∈ Z# , and they
will obtain shares of G1 obliviously after the protocol
execution. Compared to the oblivious selection protocol
in SecureNN [WGC19], the online and overall (online +
offline) communication of our protocol are approximately
41% and 62% of that of SecureNN, respectively. In
addition, the round complexity of our protocol is half of
SecureNN. The exact numbers can be found in Table. 5.2.

• Finally, on top ofΠ?,=DReLU andΠ#O-select, we further develop
the ReLU protocol ΠReLU. Compare to the ReLU proto-
cols in SecureNN [WGC19] and CrypTFlow [KRC+20],
The online communication and overall (online+offline)

2

communication of our ReLU protocol are approximately
31% and 55% of that of the state-of-the-arts. Besides,
the round complexity of our protocol is much less. The
exact numbers can be found in Table. 7.1.

Our Techniques. The protocol dependency is shown in Fig. 1.
We first formally define the G-module UC functionality FGM
in three different settings. We then UC-realize FGM with three
protocols in the F offline

GM -hybrid model. We then show how to
instantiate G-module (setting III) to develop a first non-zero
bit protocol Π?,=FNZ. In the protocol Π?,=FNZ, %1 and %2 jointly
holds the shares (over Z?) of a non-zero binary vector, and
they obtain the share (overZ=) of the index of the first non-zero
bit. We then show that the (1, =)-Shared OT protocol can be
instantiated from G-module (setting I). In the (1, =)-Shared
OT protocol, %1 inputs messages (<0, . . . ,<=−1), <8 ∈ Z2ℓ ,
and %2 inputs an index 8 ∈ Z=. After the protocol execution,
%1 and %2 obtain shares of <8 . For completeness, we also
recap the share conversion protocol from [Cou18]. On top of
Π
?,=

FNZ, (1, =)-Shared OT, and share conversion protocols, we
develop our constant-round secure comparison protocol Π?,=SC .
As compared in Table. 6.1, ourΠ?,=SC protocol is more efficient
than the state-of-art.
We then develop our DReLU protocol Π?,=DReLU using the

Π
?,=

SC protocol as a building block. As mentioned before,
our DReLU protocol is more efficient than that in Se-
cureNN [WGC19] and CrypTFlow [KRC+20] (cf. Table. 6.2).
We instantiateG-module (setting I) to realize the first constant-
round two-party oblivious shuffle protocol without using
any cryptographic operations. Meanwhile, we instantiate G-
module (setting II) to realize the oblivious selection proto-
col. Comparing to the oblivious selection protocol in Se-
cureNN [WGC19] (It is called select share in SecureNN), our
protocol is more efficient in all aspect (cf. Table. 5.2). Finally,
we develop the ReLU protocol Π=ReLU using the aforemen-
tioned protocols as building blocks. Our ReLU protocol is the
more efficient than the state-of-art (cf. Table. 7.1).

2 Preliminaries

Notation. Throughout this paper, we use the following nota-
tions and terminologies. Let _ ∈ N be the security parameter.
Let ∅ denote empty set. When � is a set, |�| stands for the
cardinality of � in terms of the number of entries. When (is
a set, B← (stands for sampling B uniformly at random from
(. When � is a randomised algorithm, H← �(G) stands for
running � on input G with a fresh random coin A . When needed,
we denote H := �(G;A) as running � on input G with the explicit
random coin A. When � is an abelian group, 0 is an element
in �, we denote [0] as the additive share representation of
0, i.e., [0] := (01, 02) such that 01 +02 = 0, where %1 hold 01
and %2 hold 02. We abbreviate probabilistic polynomial time

as PPT. Let poly(·) and negl(·) be a polynomially-bounded
function and negligible function, respectively.
G-Module. Let (G, ·) be a finite group with identity ele-
ment 1 and (M,+) be a finite abelian group, we call M a
G-module [HS97] if there is a map:

G × M −→ M
(6 , ℎ) ↦−→ 6 · ℎ

satisfying the following properties:

• ∀ℎ ∈M: 1 · ℎ = ℎ;

• ∀61, 62 ∈ G, ∀ℎ ∈M: (61 · 62) · ℎ = 61 · (62 · ℎ);

• ∀6 ∈ G, ∀ℎ1, ℎ2 ∈M: 6 · (ℎ1 + ℎ2) = 6 · ℎ1 +6 · ℎ2.

The image of (6, ℎ) under above map is usually written by
6 · ℎ or 6ℎ, and is called the image of ℎ under the action of 6.
For a fixed ℎ inM, the set {6ℎ : 6 ∈ G} is called the orbit of ℎ
under the action of G, or the G-orbit of ℎ , and written as Gℎ.
Under the action of G,M has G-orbit decomposition, de-

noted as M =
∐
8M8 , where M8 := G · ℎ8 can be generated

by any element ℎ8 ∈ M8 under the group action of G, and
M8 ∩M 9 = ∅ for 8 ≠ 9 .
Semi-direct product. Let N be an abelian group and H be
a group, q be a homomorphism q : � −→ �DC (#), we can
construct a new group �n# , called the semidirect product
of H and N with respect to q ([SEM03].pp. 75–76), defined
as follows:
The underlying set is the Cartesian product � × # . The

group operation is determined by the homomorphism q:

�n# × �n# −→ �n#
(ℎ1, =1) , (ℎ2, =2) ↦−→ (ℎ1ℎ2, =1qℎ1 (=2))

for =1, =2 ∈ # and ℎ1, ℎ2 ∈ �.
Universal Composbility. Following Canetti’s frame-
work [Can01], a protocol is represented as interactive Turing
machines (ITMs), each of which represents the program to
be run by a participant. Protocols that securely carry out a
given task are defined in three steps, as follows. First, the
process of executing a protocol in an adversarial environment
is formalized. Next, an “ideal process” for carrying out the
task at hand is formalized. The parties have access to an “ideal
functionality,” which is essentially an incorruptible “trusted
party” that is programmed to capture the desired functionality
of the task at hand. A protocol is said to securely realize
an ideal functionality if the process of running the protocol
amounts to “emulating” the ideal process for that ideal func-
tionality. Below we overview the model of protocol execution
(called the real-world model), the ideal process, and the notion
of protocol emulation.

3

Table 1.1: Communication complexity and round complexity of our protocols. (The offline functionalities are realized by a semi-honest server.
G is a group,M is a G-module. |G| and |M| denote the cardinalities of G andM, respectively. The messages in (1, =) Shared OT Π=,;S−OT are
from Z2ℓ . Π

2, ?
convert stands for the share conversion protocol from Z2 to Z? . The first non-zero bit protocol Π?,=FNZ takes input from shares of a

size-= binary vector over Z? , where ? ≥ =+2 is a prime number. The secure comparison protocol Π=SC takes input G, H ∈ Z2= .)

Protocol offline com. online com. online round total com.
ΠI
GM (cf. Sec. 4) log |M| log |G| + log |M| 1 log |M| +2log |M|

ΠII
GM (cf. Sec. 4) log |M| 2log |G| +2log |M| 1 2log |G| +3log |M|

ΠIII
GM (cf. Sec. 4) log |M| 2log |M| 2 3log |M|

Π
=,;
O−Shift (cf. Sec. 5) =ℓ =ℓ + log= 1 2=ℓ + log=
Π
=,;
S−OT (cf. Sec. 5) =ℓ =ℓ + log= 1 2=ℓ + log=

Π
=,;
O−Perm (cf. Sec. 5) =ℓ =ℓ + log=! 1 2=ℓ + log=!

Π
=,;
O−Shuffle (cf. Sec. 5) 2=ℓ 2=ℓ +2log=! 2 4=ℓ +2log=!

Π
=,;
OT2 (cf. Appendix. D) ℓ =ℓ + log= 2 (=+1)ℓ + log=

Π
=,;
S−OT2 (cf. Appendix. D) ℓ =ℓ + log= 2 (=+1)ℓ + log=
Π
?,=

FNZ (cf. Sec. 5) = log ?* 2= log ? 2 3= log ?

Π
?,=

SC (cf. Sec. 5) (2=+1) log ?†
+1

2(=+1) log ?+3=
+ log(=+1)+1 4 (4=+3) log ?+3=

+ log(=+1)+2

Π
?,=

DReLU (cf. Sec. 5) (2=−1) log ?*
+1

2= log ?+
3=+log=−2 4 (4=−1) log ?+

3=+log=−1
Π#OS for odd N (cf. Sec. 5) log# 2(1+ log#) 1 2+3log#
Π#OS for even N (cf. Sec. 5) log# +1 2(2+ log#) 1 5+3log#

Π
?,=

ReLU (cf. Sec. 5) (2=−1) log ?*
+=+2

2= log ?+
5=+log=+2 5 (4=−1) log ?+

6=+log=+4
* ? ≥ =+2 is a prime number.
† ? ≥ =+3 is a prime number.

3 Security Model

Our security model is based on the Universal Composibility
(UC) framework, which lays down a solid foundation for de-
signing and analyzing protocols secure against attacks in an
arbitrary network execution environment (therefore it is also
known as network aware security model). Roughly speaking,
in the UC framework, protocols are carried out over multi-
ple interconnected machines; to capture attacks, a network
adversary A is introduced, which is allowed to corrupt some
machines (i.e., have the full control of all physical parts of
some machines); in addition,A is allowed to partially control
the communication tapes of all uncorrupted machines, that
is, it sees all the messages sent from and to the uncorrupted
machines and controls the sequence in which they are deliv-
ered. Then, a protocol d is a UC-secure implementation of a
functionality F , if it satisfies that for every network adversary
A attacking an execution of d, there is another adversary
S—known as the simulator—attacking the ideal process that
uses F (by corrupting the same set of machines), such that,
the executions of d with A and that of F with S makes no
difference to any network execution environment.

3.1 The ideal world execution
In the ideal world, %1 and %2 only communicate with an ideal
functionality FGM during the execution. As depicted in Fig. 2,
G-module has three settings. In setting I, party %1 inputs 6 ∈G
and party %2 inputs ℎ ∈M to FGM. Upon receiving the input,
FGM computes B := 6 · ℎ. It then picks random B1←M and sets
B2 := B− B1. After that, FGM sends the output B1, B2 to %1 and
%2, respectively. In setting II, party %1 inputs 61 ∈ G, ℎ1 ∈M
and party %2 inputs 62 ∈ G, ℎ2 ∈M to FGM. Upon receiving
the input, FGM computes B := 61 · 62 · (ℎ1 + ℎ2). It then pick
random B1←M and sets B2 := B− B1. After that FGM sends
output B1, B2 to %1 and %2, respectively. In setting III, party
%1 inputs ℎ1 ∈M and party %2 inputs ℎ2 ∈M to FGM. Upon
receiving the input, FGM computes ℎ′ := ℎ1 + ℎ2. It then picks
random 6← G and sets ℎ := 6−1 · ℎ′. After that, FGM sends 6
to %1 and ℎ to %2;

3.2 The real/hybrid world execution
The real/hybrid world protocol ΠGM uses the offline function-
ality F offline

GM . As depicted in Fig. 3, the functionality F offline
GM

prepares correlated randomness for %1 and %2 to facilitate
the G-module protocol. More specifically, It consists of the
following three different settings. In setting I, F offline

GM picks
random D← G and E,F1←M. It then sets F2 := D · E −F1.

4

This functionality interacts with players P := {%1 , %2 } and the ideal adversary
S. It is parameterized with finite groups G,M.

Setting I:

• Upon receiving (Input-I, sid, 6) from %1:

– Send (InputNotify, sid, %1) to the adversary S;

• Upon receiving (Input-I, sid, ℎ) from %2:

– Send (InputNotify, sid, %2) to the adversary S;

• Once both parties have sent their input:

– Compute B := 6 · ℎ;
– Pick random B1←M and set B2 := B− B1;
– Send (Output-I, sid, B1) to %1 and (Output-I, sid, B2) to %2;

Setting II:

• Upon receiving (Input-II, sid, 61 , ℎ1) from %1:

– Send (InputNotify, sid, %1) to the adversary S;

• Upon receiving (Input-II, sid, 62 , ℎ2) from %2:

– Send (InputNotify, sid, %2) to the adversary S;

• Once both parties have sent their input:

– Compute B := 61 ·62 · (ℎ1 +ℎ2);
– Pick random B1←M and set B2 := B− B1;
– Send (Output-II, sid, B1) to %1 and (Output-II, sid, B2) to %2

Setting III:

• Upon receiving (Input-III, sid, ℎ1) from %1:

– Send (InputNotify, sid, %1) to the adversary S;

• Upon receiving (Input-III, sid, ℎ2) from %2:

– Send (InputNotify, sid, %2) to the adversary S;

• Once both parties have sent their input:

– Compute ℎ′ := ℎ1 +ℎ2;

– Pick random 6← G and set ℎ := 6−1 · ℎ′;
– Send (Output-III, sid, 6) to %1 and (Output-III, sid, ℎ) to %2

Ideal functionality FGM [G,M]

Figure 2: Ideal functionality FGM [G,M] for G-module

After that, F offline
GM sends (D,F1) to %1 and (E,F2) to %2. In set-

ting II, F offline
GM picks random D1, D2← G and E1, E2,F1←M.

It then sets F2 := D1 · D2 · (E1 + E2) −F1. After that, F offline
GM

sends (D1, E1,F1) to %1 and (D2, E2,F2) to %2. In setting III,
F offline
GM picks random D ← G and E,F1 ← M. It then sets
F2 := D · E −F1. After that, F offline

GM sends (D,F1) to %1 and
(E,F2) to %2.

4 Secure Computation for G-module

In this section, we provide three secure computation protocols
for G-module with different settings. There are all in the pre-
processing model. In the following, let G be a finite group,
andM be a finite G-module.
2PC for G-module (Setting I). In this setting, party %1 has
private input 6 ∈G and party %2 has private input ℎ ∈M. After

This functionality interacts with players P := {%1 , %2 } and the adversary A.
It is parameterized with finite groups G,M.

Setting I:

• Upon receiving (Prepare-I, sid) from both parties %1 and %2:

– Pick random D← G and E, F1←M;

– Set F2 := D · E −F1;

– Send (Prepare-I, sid, D, F1) to %1 and (Prepare-I, sid, E, F2)
to %2;

Setting II:

• Upon receiving (Prepare-II, sid) from both parties %1 and %2:

– Pick random D1 , D2← G and E1 , E2 , F1←M;

– Set F2 := D1 ·D2 · (E1 + E2) −F1;

– Send (Prepare-II, sid, D1 , E1 , F1) to %1 and
(Prepare-II, sid, D2 , E2 , F2) to %2;

Setting III:

• Upon receiving (Prepare-III, sid) from both parties %1 and %2:

– Pick random D← G and E, F1←M;

– Set F2 := D · E −F1;

– Send (Prepare-III, sid, D, F1) to %1 and
(Prepare-III, sid, E, F2) to %2;

Offline functionality F offline
GM [G,M]

Figure 3: Offline functionality F offline
GM [G,M] for G-module

the protocol execution, %1 and %2 output shares of 6 · ℎ ∈M.
The protocol ΠI

GM [G,M] is described in Fig. 4.

Theorem 1 Let G be a finite group, and M be a finite G-
module. The protocol ΠI

GM [G,M] described in Fig. 4 UC-
realizes FGM [G,M] described in Fig. 2 in the F offline

GM [G,M]-
hybrid model against semi-honest PPT adversaries with static
corruption.

Proof: See Appendix. A.
Efficiency.When F offline

GM [G,M] is realized by a semi-honest
server (a.k.a. server-aid mode, e.g. [RWT+18]), the offline
communication of protocol ΠI

GM [G,M] is log |G| +3log |M|
bits. The communication can be further reduced to log |M|
bits using PRF (cf. below). The online communication of
protocolΠI

GM [G,M] is log |G| + log |M| bits, and in one round.
Hence, the total communication of protocol ΠI

GM [G,M] is
log |G| +2log |M| bits.
More specifically, %1, %2 can get (D,F1) and (E,F2) as

follows: The assisting server (, %1 and %2 share a PRF:

� : × N −→ G×M
(: , C) ↦−→ �: (C)

where is the key space. Let (and %1 share a key :1, (and
%2 share a key :2. In the offline phase, for a counter C ∈ N,
(uses :1 ∈ as a PRF key to generate (DC ,FC ,1) ← �:1 (C)
and uses :2 ∈ as a PRF key to generate (D̃C , EC) ← �:2 (C),
then computes FC ,2 := DCEC −FC ,1 and finally sends it to %2.

5

Protocol:

• Upon receiving (Input-I, sid, 6) from the environment Z, the party
%1 does:

– Send (Prepare-I, sid) to Foffline
GM [G,M], obtaining

(Prepare-I, sid, D, F1) ;
– Send 0 := 6 ·D−1 to %2;

• Upon receiving (Input-I, sid, ℎ) from the environment Z, the party
%2 does:

– Send (Prepare-I, sid) to Foffline
GM [G,M], obtaining

(Prepare-I, sid, E, F2) ;
– Send 1 := ℎ− E to %1;

• Upon receiving 1 ∈M from %2, the party %1 does:

– Set B1 := 6 ·1 + 0 ·F1;

– Return (Output-I, sid, B1) to the environment Z and halt;

• Upon receiving 0 ∈ G from %1, the party %2 does:

– Set B2 := 0 ·F2;

– Return (Output-I, sid, B2) to the environment Z and halt;

Protocol ΠI
GM [G,M]

Figure 4: Protocol ΠI
GM [G,M] for G-module (setting I) in the

F offline
GM [G,M]-hybrid model

%2 stores {FC ,2}C . In the online phase, %1 uses :1 to generate
(DC ,FC ,1) ← �:1 (C), and %2 uses :2 to generate (D̃C , EC) ←
�:2 (C), and restores FC ,2.
2PC for G-module (Setting II). In this setting, party %1 has
private input 61 ∈ G, ℎ1 ∈M and party %2 has private input
62 ∈G, ℎ2 ∈M. After the protocol execution, %1 and %2 output
shares of 61 · 62 · (ℎ1 + ℎ2) ∈M. The protocol ΠII

GM [G,M] is
described in Fig. 5.

Theorem 2 Let G be a finite abelian group, andM be a finite
G-module. The protocol ΠII

GM [G,M] described in Fig. 5 UC-
realizes FGM [G,M] described in Fig. 2 in the F offline

GM [G,M]-
hybrid model against semi-honest PPT adversaries with static
corruption.

Proof: See Appendix. B.
Efficiency. Similarly, in the server-aid mode, the offline

communication of protocol ΠII
GM [G,M] is 2 log |G| +4log |M|

bits, and it can be further reduced to log |M| bit using PRF. The
online communication of protocol ΠII

GM [G,M] is 2(log |G| +
log |M|) bits, and in one round. Hence the total communication
of protocol ΠII

GM [G,M] is 2 log |G| +3log |M| bits.
2PC for G-module (Setting III). In this setting, party %1 has
private input ℎ1 ∈M and party %2 has private input ℎ2 ∈M.
After the protocol execution, %1 gets a random element 61 ∈G,
and %2 gets 62 ∈ G(ℎ1 + ℎ2) such that 61 · 62 = ℎ1 + ℎ2. The
protocol ΠIII

GM [G,M] is described in Fig. 6.

Protocol:

• Upon receiving (Input-II, sid, 61 , ℎ1) from the environment Z, the
party %1:

– Send (Prepare-II, sid) to Foffline
GM [G,M], obtaining

(Prepare-II, sid, D1 , E1 , F1) ;
– Send 01 := 61 ·D−1

1 and 11 := 61 · (ℎ1 − E1) to %2;

• Upon receiving (Input-II, sid, 62 , ℎ2) from the environment Z, the
party %2:

– Send (Prepare-II, sid) to Foffline
GM [G,M], obtaining

(Prepare-II, sid, D2 , E2 , F2);
– Send 02 := 62 ·D−1

2 and 12 := 62 · (ℎ2 − E2) to %1;

• Upon receiving 02 ∈ G, 12 ∈M from %2, the party %1:

– Set B1 := 61 ·12 + 01 · 02 ·F1;

– Return (Output-II, sid, B1) to the environment Z and halt;

• Upon receiving 01 ∈ G, 11 ∈M from %1, the party %2:

– Set B2 := 62 ·11 + 02 · 01 ·F2;

– Return (Output-II, sid, B1) to the environment Z and halt;

Protocol ΠII
GM [G,M]

Figure 5: Protocol ΠII
GM [G,M] for G-module (setting II) in the

F offline
GM [G,M]-hybrid model

Protocol:

• Upon receiving (Input-III, sid, ℎ2) from the environment Z, the party
%2 does:

– Send (Prepare-III, sid) to Foffline
GM [G,M], obtaining

(Prepare-III, sid, E, F2);
– Send 02 := ℎ2 −F2 to %1;

• Upon receiving (Input-III, sid, ℎ1) from the environment Z and 02
from %2, the party %1 does:

– Send (Prepare-III, sid) to Foffline
GM [G,M], obtaining

(Prepare-III, sid, D, F1) ;
– Send 01 := D−1 · (ℎ1 −F1 + 02) and to %2;

– Return (Output-III, sid, D) to the environment Z and halt;

• Upon receiving 01 ∈ G from %1, the party %2 does :

– Set ℎ := 01 + E;
– Return (Output-III, sid, ℎ) to the environment Z and halt;

Protocol ΠIII
GM [G,M]

Figure 6: Protocol ΠIII
GM [G,M] for G-module (setting III) in the

F offline
GM [G,M]-hybrid model

Theorem 3 Let G be a finite group, and M be a finite G-
module. The protocol ΠIII

GM [G,M] described in Fig. 6 UC-
realizes FGM [G,M] described in Fig. 2 in the F offline

GM [G,M]-
hybrid model against semi-honest PPT adversaries with static
corruption.

Proof: See Appendix. C.
Efficiency. Similarly, in the servier-aid mode, the offline

communication of protocol ΠIII
GM [G,M] is log |G| +3log |M|

bits, and it can be further reduced to log |M| bits using PRF.

6

Common input: Z= ,Z2ℓ ,Ψ :="0? (Z= ,Z2;)
%1’s input: : ∈ Z=
%2’s input: k ∈ Ψ

• %1 and %2 jointly invoke protocol ΠI
GM [Z= ,Ψ], and obtain the shares

(k1 , k2) of L-Shift: (k) .
• %1 outputs k1, and %2 outputs k2.

Protocol Π=,ℓO-shift

Figure 7: The Oblivious Shift Protocol Π=,ℓO-shift

The online communication of protocolΠIII
GM [G,M] is 2 log |M|,

and in two rounds. Hence the total communication of protocol
ΠIII

GM [G,M] is 3 log |M|.

5 Instantiations and Applications

Oblivious cyclic shift. In an oblivious cyclic shift proto-
col Π=,ℓO-shift, %1 inputs a private offset : ∈ Z=, and %2 in-
puts a private vector G := (G0, . . . , G=−1), where G8 ∈ Z2ℓ . Af-
ter the protocol execution, %1 and %2 obtains shared vector
([G:], [G:+1], . . . , [G:−1]).
The oblivious cyclic shift protocol is an instantiation of G-

module (setting I). LetΨ :="0?(Z=,Z2;) be the set consisting
of all the maps from Z= to Z2; . For any : ∈ Z=, let L-Shift: :
Ψ ↦→ Ψ be the “cyclic left shift” on Ψ, which is defined by
L-Shift: (k) (8) := k(8 + :) with k ∈ Ψ and 8 ∈ Z=. There is a
Z=-module structure on Ψ defined as:

Z= × Ψ −→ Ψ

(: , k) ↦−→ L-Shift: (k)

Now, we can view protocol Π=,ℓO-shift as follows. %1 inputs
: ∈ Z=, and %2 inputs map k ∈ Ψ (represented by a vector
(k(0), . . . ,k(=−1))). At the end of the protocol, %1 and %2
obtain shared vector representation of L-Shift: (k) in Ψ. As
depicted in Fig. 7, we can use the protocol ΠI

GM [Z=,Ψ] to
realize Π=,ℓO-shift.

Efficiency.The communication of protocolΠ=,ℓO-shift is exactly
that of the protocolΠI

GM [Z=Ψ]. In the server-aid mode, offline:
=ℓ bits, online: =ℓ + log= bits, 1 round.
One-round (1, =)-shared OT. In an (1, =)-Shared OT proto-
col Π=,ℓS-OT, %1 inputs an index 8 ∈ Z=, and %2 inputs messages
(G0, . . . , G=−1), G8 ∈ Z2; ; after the protocol execution, %1 and
%2 obtain shared [G8]. Conventionally, such a protocol requires
two rounds in the online phase. (cf. Appendix. D).
In this paper, we give a one-round (1, =)-shared OT proto-

col. This (1, =)-Shared OT protocol is also an instantiation
of G-module (setting I). Let Ψ := "0?(Z=,Z2ℓ) be the set
consisting of all the maps from Z= to Z2; . Equivalently, we
can view that %1 inputs 8 ∈ Z=, and %2 inputs a map k ∈ Ψ
(represented by a vector (k(0), . . . ,k(=−1))). At the end of
the protocol, they obtain shares of [k(8)].

Common input: Z= ,Z2ℓ ,Ψ :="0? (Z= ,Z2;)
%1’s input: 8 ∈ Z=
%2’s input: k ∈ Ψ

• %1 and %2 jointly invoke protocol ΠI
GM [Z= ,Ψ], and obtain the shares

(k1 , k2) of L-Shift8 (k) .
• %1 outputs k1 (0) , and %2 outputs k2 (0) .

Protocol Π=,ℓS-OT

Figure 8: The one-round shared OT protocol Π=,ℓS-OT

Because k(8) = L-Shift8 (k) (0), we can realize one-round
(1, =)-Shared OT using the protocol Π=,ℓO-shift. The protocol
Π
=,ℓ

S-OT is depicted in Fig. 8:

Efficiency. The communication of the protocol Π=,ℓS-OT is
exactly that of the protocol Π=,ℓO-shift, that is, in the server-aid
mode, offline: =ℓ bits, online: =ℓ + log= bits, 1 round.
Oblivious permutation. In an obvious permutation protocol
Π
=,ℓ

O-Perm, %1 inputs permutation f ∈ (=, where (= is the sym-
metric group of degree =, and %2 inputs G := (G0, . . . , G=−1) ∈
Z=2ℓ , where G8 ∈ Z2; ; after the protocol execution, %1 and
%2 obtain shares of f(G) in Z=2ℓ , where f(G) is defined by
f(G)8 = Gf−1 (8) .
There is a (=-module structure on Z=2ℓ defined as follows:

(= × Z=2; −→ Z=2ℓ
(f , G) ↦−→ f(G)

As depicted in Fig. 9, we can use the protocol ΠI
GM [(=,Z

=

2ℓ]
to realize Π=,ℓO-Perm.

Efficiency. The communication of the protocol Π=,ℓO-Perm is
exactly that of the protocol ΠI

GM [(=,Z
=

2ℓ]. In the server-aid
mode, offline: =ℓ bits, online: =ℓ + log=! < =ℓ += log= bits, 1
round.
Oblivious shuffle. In an obvious shuffle protocolΠ=,ℓO-shuffle, %1
and %2 holds a shared vector G := (G0, . . . , G=−1) ∈ Z=2ℓ . They
want to oblivious shuffle G, and obtain shared [f(G)], where
f ∈ (= is oblivious to both %1 and %2.

Intuitively, oblivious shuffle can be achieved by applying the
oblivious permutation Π=,ℓO-Perm twice. At the beginning of the
protocol, suppose %1 holds shares G (1) := (G (1)0 , . . . , G

(1)
=−1) and

%2 holds shares G (2) := (G (2)0 , . . . , G
(2)
=−1) such that G (1)

8
+ G (2)

8
=

G8 . First, %1 picks a random permutation f1 ∈ (=; %1 and %2
invoke Π=,ℓO-Perm to permute %2’s shares, obtaining shares of
f1 (G (2)) as (F (1) ,F (2)). %1 then resetsF (1) :=F (1) +f1 (G (1)).
It is easy to see that F (1) +F (2) = f1 (G). Analogously, %2
then picks a random permutation f2 ∈ (=. %1 and %2 invoke
Π
=,ℓ

O-Perm to permute %1’s shares, obtaining shares of f2 (F (1))
as (I (1) , I (2)). %2 then resets I (2) := I (2) +f2 (F (2)). Hence,
I (1) + I (2) = f2 (f1 (G)). Since %1 is oblivious to f2 and %2 is

7

Table 5.1: Comparison to exists Oblivious Shuffle protocols

l Protocol offline com. online comm. online round total comm.
l Ours 2=ℓ 2log=!+2=ℓ 2 2log=!+4=ℓ
l Secret-Shared Shuffle [CGP20] 0 33=_ log) + (3 +1)=; * 3 33=_ log) + (3 +1)=; *
32 Ours 64= < 64=+2= log= 2 < 2= log=+128=
32 Secret-Shared Shuffle [CGP20] 0 ≥ 384= log=+64= 3 ≥ 384= log=+64=
64 Ours 128= < 128=+2= log= 2 < 2= log=+256=
64 Secret-Shared Shuffle [CGP20] 0 ≥ 384= log=+128= 3 ≥ 384= log=+128=
128 Ours 256= < 256=+2= log= 2 < 2= log=+512=
128 Secret-Shared Shuffle [CGP20] 0 ≥ 384= log=+256= 3 ≥ 384= log=+256=
* _ = 128, 3 = 2d log=

log) e −1, and) = 2,3, · · ·=.

oblivious to f1, the entire shuffle is oblivious to both parties.
The protocol is given in Fig. 10.

Efficiency. The communication of the protocol Π=,ℓO-shuffle is
twice ofΠ=,ℓO-Perm, i.e., offline: 2=ℓ bits, online: 2(=ℓ+ log=!) <
2(=ℓ += log=) bits, 2 round.
In Table. 5.1, we compare our Π=,ℓO-shuffle where the secret-

shared shuffle protocol in [CGP20].When = is big,our protocol
is much more efficient than theirs. The overall communication
(offline+online) of our protocol less than 1/192 of [CGP20]
when =→∞. Besides, our protocol does not use cryptographic
operations,while the secret-shared shuffle protocol in [CGP20]
heavily uses symmetric cryptography.

Oblivious Selection. Let G, H ∈ Z# , 0 ∈ Z2. In an oblivious
selection protocol Π#O-select, %1 and %2 holds [G], [H], [0],
where G, H are additively shared in Z# and 0 is binary shared
in Z2. After the protocol execution, %1 and %2 obtains shared
[B] over Z# which is defined as

B :=
{
G if 0 = 1,
H if 0 = 0.

We call 0 ∈ Z2 the selection bit. Hereby, we first resolve a
special case, where H = 0. Note that since B = 0(G − H) + H,
general case can be reduced to special case without additional
communication. In the following, we show how to instantiate
G-module (setting II) to realize the special oblivious selection
protocol Π# ,specialO-select . When H = 0, %1 and %2 jointly compute
the equation

0G =
G− (−1)0G

2
for 0 = 0,1, and G ∈ Z# .

Special oblivious selection when # is odd. Let 0 = 01 +02
(mod 2), G = G1 +G2 (mod #) be the shares of 0 over Z2 and
G over Z# respectively, where # is an odd number. We have

(−1)0G = (−1)01+02 (G1 + G2)
= (−1)01 (−1)02 (G1 + G2) ∈ Z#

Common input: (= ,Z=2ℓ
%1’s input: f ∈ (=
%2’s input: G := (G0 , . . . , G=−1) ∈ Z=2ℓ

• %1 and %2 jointly invoke protocol ΠI
GM [(= ,Z

=

2ℓ
] to get the share

(I1 , I2) of f (G) .
• %1 outputs I1, and %2 outputs I2.

Protocol Π=,ℓO-Perm

Figure 9: The oblivious permutation protocol Π=,ℓO-Perm

LetG := {±1},M := Z# . It easy to see thatM is aG-module.
Hence we can use the protocol ΠII

GM [{±1},Z#] to compute
(−1)0G and hence to compute G− (−1)0G ∈ Z# . In the case
that # is an odd number, then 2 is invertible in Z# , and hence it
easy to compute 0G from G− (−1)0G. The protocol is depicted
in Fig. 11.

Special oblivious selection when # is even. In the case that
is an even number, 2 is not invertible in Z# , we need to
modify the protocol. In fact, if # is an even number, 0 = 01 +
02 mod 2, G = G1 + G2 mod # are the share representations
of 0 and G respectively. One can lift G1, G2 to G̃1, G̃2 ∈ Z2#
respectively. Let G̃ := G̃0 + G̃1 mod 2# , then we have 0G ≡ 0G̃
mod # for 0 = 0, 1.

Using the samemethod as in the case# is an oddnumber,we
can get the share representations of 20G̃ = G̃− (−1)0 G̃ ∈ Z2# ,
and 0G̃ ∈ Z# which is equal to 0G ∈ Z# (cf. Fig. 12).

Oblivious selection. In Fig. 13, we present oblivious selec-
tion protocol Π#O-select using Π

,special
O-select protocol as a building

block.
Efficiency.We compare the efficiency of our protocols with

SecureNN [WGC19] in Table 5.2. The communication for our
special oblivious selection protocols and general oblivious
selection protocol are essentially the same. It easy to see that
the online communication, round and the total (online+offline)

8

Common input: (= ,Z=2ℓ
%1’s input: G (1) := (G (1)0 , . . . , G

(1)
=−1) ∈ Z

=

2ℓ

%2’s input: G (2) := (G (2)0 , . . . , G
(2)
=−1) ∈ Z

=

2ℓ

• %1 picks random f1← (= .

• %1 and %2 jointly invoke protocol Π=,ℓO-Perm, where %1 inputs f1 and
%2 inputs G (2) . After the execution, %1 and %2 obtain F (1) and F (2) ,
respectively.

• %1 resets F (1) := F (1) + f1 (G (1)) .
• %2 picks random f2← (= .

• %2 and %1 jointly invoke protocol Π=,ℓO-Perm, where %2 inputs f2 and
%1 inputs F (1) . After the execution, %1 and %2 obtain I (1) and I (2) ,
respectively.

• %2 resets I (2) := I (2) + f2 (F (2)) .
• %1 outputs I (1) , and %2 outputs I (2) .

Protocol Π=,ℓO-shuffle

Figure 10: The oblivious shuffle protocol Π=,ℓO-shuffle

Common input: {±1}, Z#
%1’s input: G1 ∈ Z# , 01 ∈ Z2
%2’s input: G2 ∈ Z# , 02 ∈ Z2

• %1 and %2 jointly invoke protocol ΠII
GM [{±1},Z#], where %1 inputs

((−1)01 , G1) and %2 inputs ((−1)02 , G2) . After the execution, %1 and
%2 obtain F1 and F2, respectively, as share representation of
(−1)0G ∈ Z# .

• %1 computes I1 := G1−F1
2 .

• %2 computes I2 := G2−F2
2 .

• %1 outputs I1, and %2 outputs I2.

Protocol Π# ,specialO-select (for odd #)

Figure 11: The special oblivious selection protocol Π# ,specialO-select (for
odd module #)

communication of our protocols less than the one in SecureNN
[WGC19] when log# ≥ 3.
First Non-zero Bit. Let ? ≥ =+2 be a prime number. %1, %2
hold shares of a non-zero binary vector D := (D0, . . . , D=−1)
over Z=? . It satisfies

D8 = 0 or 1,∀ 8 ∈ Z= & ∃ D 9 = 1, 9 ∈ Z=

They want to jointly locate the first non-zero bit of D.
At the end of the protocol, %1, %2 will get the shares of
min{8 ∈ Z= : D8 ≠ 0} overZ=. LetG := Z=n (Z∗?)= be the semi-
direct product of the groups Z= and (Z∗?)=. The underlying
set of the group G is the Cartesian product Z= × (Z∗?)= while
the group operation is defined by

G×G −→ G
((8, 0), (9 , 1)) ↦−→ (8 + 9 , 0 ∗L-shift8 (1))

Here L-shift8 is the 8-th circular left shift operator on Z=? , i.e.,
for G = (G0, G1, · · ·G=−1) ∈ Z=? , we have

L-shift8 (G) = (G8 , G8+1, · · · , G=−1, G0, · · ·G8−1) ∈ Z=?

Common input: {±1}, Z#
%1’s input: G1 ∈ Z# , 01 ∈ Z2
%2’s input: G2 ∈ Z# , 02 ∈ Z2

• %1 and %2 view G1 and G2 as elements in Z2# .

• %1 and %2 jointly invoke protocol ΠII
GM [{±1},Z2#], where %1 inputs

((−1)01 , G1) and %2 inputs ((−1)02 , G2) . After the execution, %1 and
%2 obtain F1 and F2, respectively, as share representation of
(−1)0G ∈ Z2# .

• %1 computes I1 := b G1−F1
2 c mod # .

• %2 computes I2 := d G2−F2
2 e mod # .

• %1 outputs I1, and %2 outputs I2.

Protocol Π# ,specialO-select (for even #)

Figure 12: The special oblivious selection protocol Π# ,specialO-select (for
even module #)

Common input: {±1}, Z#
%1’s input: G1 ∈ Z# , H1 ∈ Z# , 01 ∈ Z2
%2’s input: G2 ∈ Z# , H2 ∈ Z# , 02 ∈ Z2

• %1 and %2 jointly invoke protocol Π#,specialO-select , where %1 inputs
((−1)01 , H1 − G1) and %2 inputs ((−1)02 , H2 − G2) . After the
execution, %1 and %2 obtain F1 and F2, respectively, as share
representation of 0 (H− G) ∈ Z2# .

• %1 outputs F1 + G1, and %2 outputs F2 + G2.

Protocol Π#O-select

Figure 13: The special oblivious selection protocol Π#O-select

Table 5.2: Comparison to exists oblivious selection protocol

N Protocol offline com. online com. round total com.
odd N Π#O-select log# 2(1+ log#) 1 2+3log#
even N Π#O-select log# +1 2(2+ log#) 1 5+3log#

N SecureNN 0 5log# 2 5log#
232 Π#O-select 33 68 1 101
232 SecureNN 0 160 2 160
264 Π#O-select 65 132 1 197
264 SecureNN 0 320 2 320
2128 Π#O-select 129 260 1 389
2128 SecureNN 0 640 2 640

We verify that G is a non commutative group with the iden-
tity element (0,1=). One can define the G-module structure
on Z=? as follows:

G×Z=? −→ Z=?
((8, 0), G) ↦−→ 0 ∗L-shift8 (G)

Then we have the following Lemma.

Lemma 1 Let G := Z=n (Z∗?)= be the semi-direct product
of the group Z= and the group (Z∗?)=. There is a G-orbit
decomposition

Z=? =
=∐
3=0

*3

9

Common input: Z=n (Z∗?)= , Z=?
%1’s input: (D (1)0 , . . . , D

(1)
=−1) ∈ Z

=
?

%2’s input: (D (2)0 , . . . , D
(2)
=−1) ∈ Z

=
?

• %1 computes prefix sum E
(1)
8

:=
∑8
9=0 D

(1)
8
∈ Z? for 8 ∈ Z= , and then

computes I (1)
8

= 5 (D (1)
8
, E
(1)
8
) ∈ Z? , for 8 ∈ Z= .

• %2 computes prefix sum E
(2)
8

:=
∑8
9=0 D

(2)
8
∈ Z? for 8 ∈ Z= , and then

computes I (2)
8

= 5 (D (2)
8
, E
(2)
8
) ∈ Z? , for 8 ∈ Z= .

• %1 and %2 jointly invoke protocol ΠIII
GM [Z=n (Z

∗
?)= ,Z=?]. After the

execution, %1 obtains 6 = (8, 2) ∈ Z=n (Z∗?)= , and %2 obtains F ∈ Z=?
such that 6F = I.

• %2 takes 9 as the only 9 ∈ Z= such that F9 = 0.
• %1 outputs −8, and %2 outputs 9.

Protocol Π?,=FNZ

Figure 14: The first non-zero bit protocol Π?,=FNZ

of Z=? , where*3 is the subset of Z=? consisting of the elements
of Hamming weight 3. i.e. having 3 non-zero coordinates.

We can instantiateG-module setting III protocolΠIII
GM [Z=n

(Z∗?)=,Z=?] to realizing the first non-zero bit protocol Π?,=FNZ.
The main idea comes from the following lemma:

Lemma 2 Let ? ≥ =+2 be a prime number,and letD = (D8)=−1
8=0

be a non-zero 0-1 vector in Z=? . Let E ∈ Z=? defined as

E0 = D0
E8 = E8−1 +D8 for 8 = 1,2, · · · , =−1

Thus E8 ∈ Z=+1 for all 8 ∈ Z=. Let 5 be a map

5 : {0,1} ×Z=+1 −→ Z?
(0, 1) ↦−→ 1−20 +1 mod ?

Then we have min{8 |D8 ≠ 0, 8 ∈ Z=} is the unique 8 ∈ Z= such
that 5 (D8 , E8) = 0 mod ?.

Proof: First we claim that (1,1) is the unique (0, 1) ∈ {0,1}×
Z=+1 such that 5 (0, 1) = 0 mod ?. That is because if 0 = 0,
5 (0, 1) ∈ {1,2, · · ·=+1} for 1 ∈ Z=+1, which implies 5 (0, 1) ≠
0 mod ?; while if 0 = 1, then 1 = 1 is the only solution such
that of 5 (1, 1) = 0 mod ?.

Now it is not difficult to see that min{8 = 0,1, · · · , =−1|D8 ≠
0} is the unique 8 ∈ Z= such that both D8 = 1 and E8 = 1.
Thus min{8 |D8 ≠ 0, 8 ∈ Z=} is the unique 8 ∈ Z= such that
5 (D8 , E8) = 0 which finishes the proof. �
Following Lemma 2, we design our protocol to compute

the first non-zero bit of a non-zero 0-1 vector D = (D8)=−1
8=0 in

Z=? , where the input is its shares over Z=? , and the output is its
shares over Z=. The principle is as follows. Let E and 5 as in
Lemma 2, I = (5 (D0, E0)), · · · , 5 (D=−1, E=−1)) ∈ Z=?, and the
group G as in Lemma 1, then the orbit GI will be the unique

Common input: Z2=
%1’s input: G := (G0 , . . . , G=−1) ∈∈ Z2=
%2’s input: H := (H0 , . . . , H=−1) ∈ Z2=

• %1 appends G= = 1 to G, and %2 appends H= = 0 to H.

• For 8 ∈ Z=+1, %1 and %2 view I8 := G8 + H8 mod 2 as the jointly
shared value [I8] over Z2, and invoke Π2, ?

convert to convert shares of I8
over Z2 to shares of I8 over Z? .

• %1 and %2 invoke Π?,=+1FNZ to obtain shares of the index of the first
non-zero bit of (I0 , . . . , I=) , denoted as 91 ∈ Z=+1 and 92 ∈ Z=+1.

• %2 cyclic left-shift H′← L-shift 92 (H) .

• %1 and %2 invoke Π=+1,1S-OT , where %1 inputs 91, and %2 inputs H′.
After the execution, %1 and %2 obtains F1 ∈ Z2 and F2 ∈ Z2 as the
share representation of H 91+ 92 .

• %1 outputs F1, and %2 outputs F2.

Protocol Π=SC

Figure 15: The secure comparison protocol Π=SC

G-orbit of Hamming weight =− 1 in the decomposition in
Lemma 1, which is public information that both parties know.
If there is a 6 = (8, 2) ∈ G and F ∈ Z=? such that 6F = I, then
the first non-zero bit of I is (−8 + 9) mod =, where 9 is the
first non-zero bit of F. The protocol is depicted in Fig. 14
Efficiency. The round and communication of the protocol

Π
?,=

FNZ are the same as those of ΠIII
GM [Z=n (Z

∗
?)=,Z=?]. Hence

its offline communication is = log ?, its online communication
is 2= log ? in 1 round. Its communication and round is shown
in Table. 1.1.

6 Secure Comparison

During the secure comparison protocolΠ=SC, %1 holds G ∈ Z2=

and %2 holds H ∈ Z2= . After the protocol execution, %1 and
%2 will obtain shares of (G

?
< H) over Z2. We now show how

to construct protocol Π=SC using Π2, ?
convert (cf. Appendix E),

Π
?,=+1
FNZ , and Π=+1,1S-OT as building blocks, where ? ≥ =+3 is a

prime number.
Intuitively, for G ≠ H ∈ Z2= , write the binary representation

of G, H as G =
∑=−1
8=0 G8 ∗ 2=−8−1, H =

∑=−1
8=0 H8 ∗ 2=−8−1, where

G8 , H8 ∈ {0,1}.
If 8 is the leftmost bit such that G8 ≠ H8 , then (G < H) is same

as (H8 = 1) and vice versa. The protocol is depicted in Fig. 15.
Efficiency. TheΠ=SC protocol invokes = instances ofΠ2, ?

convert
(G= and H= is public, so it does not require share conversion),
1 instance of Π?,=+1FNZ and 1 instance of Π=+1,1S-OT , where ? is a
prime number with ? ≥ =+3. Hence its offline communication
is (2=+1) log ? +=+1 bits, and its online communication is
(2=+1) log ? +3=+ log(=+1) +1 bits in 4 round.
However, we can reduce the offline communication to
(2= + 1) log ? + 1 by using the protocol Π=+1,1S-OT2 (cf. Ap-
pendix. D) instead of the protocol Π=+1,1S-OT . The online com-
munication of the protocol Π=+1,1S-OT2 is same as Π=+1,1S-OT , but the

10

Common input: Z2=
%1’s input: D := (D0 , . . . , D=−1) ∈∈ Z2=
%2’s input: E := (E0 , . . . , E=−1) ∈ Z2=

• %1 and %2 invoke Π=−1
SC , where %1 inputs 2=−1 − D̃−1, and %2 inputs

Ẽ . After the execution, %1 and %2 obtains F1 ∈ Z2 and F2 ∈ Z2 as the
share representation of ((D̃ + Ẽ) ≥ 2=−1) over Z2.

• %1 computes I1 := 1+F1 +D=−1 mod 2.
• %2 computes I2 := F2 + E=−1 mod 2.
• %1 outputs I1, and %2 outputs I2.

Protocol Π=DReLU

Figure 16: The DReLU protocol Π=DReLU

offline communication of Π=+1,1S-OT2 is 1 bit; whereas, the offline
communication of the protocol Π=+1,1S-OT is =+1 bits.

The roundcomplexity of the protocolΠ=+1,1S-OT2 is 2,but the first
move ofΠ=+1,1S-OT2 can overlap with previous round; therefore, the
total round complexity does not increase,which is still 4 rounds.
Table. 6.1 gives a comparison between our protocol Π=SC and
well-known protocols [BGI16,Cou18,GSV07,KSS09].

7 Secure computation for DReLU and ReLU

DReLU. In fixed point representation of real number, we
usually use two’s complement to represent a negative number,
hence in order to confirm a number G ∈ Z2= is not “ negative",
we need to check whether G < 2=−1 or not. It is easy to see
there the DReLU problem is closely related to finding the
most significant bit (MSB) problem. In two’s complement
representation, DReLU(G) = −MSB(G), where MSB means
Most Significant Bit.

In the share representation of G = D+ E ∈ Z2= , one can write
D and E in the binary form D =

∑=−1
8=0 D8 ·28 and E =

∑=−1
8=0 E8 ·28 ,

where D8 , E8 ∈ {0,1} for all 8 ∈ Z=. In the following we will use
the notation D̃ =

∑=−2
8=0 D8 ·28 and Ẽ =

∑=−2
8=0 E8 ·28 respectively.

Now we define %, & be two elements in Z2 as

% := ((D̃ + Ẽ) ≥ 2=−1) (boolean expression)
& := (D=−1 + E=−1) mod 2

Then we get the following lemma.

Lemma 7.1 The boolean value of (G < 2=−1) is equal to
1+%+& mod 2 under the identities true = 1 and false = 0.

Proof: Under the identities true = 1 and false = 0, we have

(G ≥ 2=−1)
= D=−1 + E=−1 + carry of D̃ + Ẽ
= & +% mod 2

Hence we have

(G < 2=−1) = 1+%+& mod 2.

Common input: Z2=
%1’s input: D := (D0 , . . . , D=−1) ∈∈ Z2=
%2’s input: E := (E0 , . . . , E=−1) ∈ Z2=

• %1 and %2 invoke Π=DReLU, and obtain F1 ∈ Z2 and F2 ∈ Z2 as the
share representation of DReLU(G) over Z2.

• %1 and %2 invoke Π2=,special
O-select , where %1 inputs (D, F1) and %2 inputs

(E, F2) ; after the execution, %1 and %2 obtains I1 and I2 as the share
representation of DReLU(G) · G.

• %1 outputs I1, and %2 outputs I2.

Protocol Π=ReLU

Figure 17: The ReLU protocol Π=ReLU

�
Based on the Lemma 7.1, Fig. 16 describes our DReLU

protocol Π=DReLU.

Remark 7.2 In SecureNN [WGC19] and CrypT-
Flow [KRC+20], their protocol Π=DeReLU restricts its
input G in the subdomain

[
0,2:

]
∪

[
2= −2: ,2= −1

]
of

[0,2= −1], where : < = − 1. Whereas, our protocol works
for all the G in [0,2= −1]. Besides, in SecureNN [WGC19]
and CrypTFlow [KRC+20], the assisting server also needs
participate the online phase; whereas, the assisting server
only needs to participate the offline phase in our protocol.

Efficiency. The communication of protocol Π=DReLU is same
as the protocol Π=−1

SC , and is shown in Table. 1.1. We compare
our protocol Π=DReLU with well-known protocols in Table. 6.2,
where ? is a prime number greater than or equal to =+2.
ReLU. In the fixed point representation of real number, we
usually use two’s complement to represent a negative number,
hence to compute the ReLU(G) for a number G ∈ Z2= , we need
to compute

ReLU(G) =
{
G if G < 2=−1

0 otherwise

i.e., ReLU(G) = DReLU(G) · G. Fig. 17 depicts the ReLU pro-
tocol Π=ReLU.

Efficiency. The communication and round of our Π=ReLU
protocol is equal to the sum of that of Π=DReLU and Π2= ,special

O-select .
The communication is shown in the Table 1.1.

Now let us compare the communication of our Π=ReLU
protocol to that in SecureNN ([WGC19]) and CrypTFlow
([KRC+20]) in the Table. 7.1 and from now on let ? be a
prime number with ? ≥ =+2.

8 Related Work

In terms of secure comparison, many solutions have been
proposed in the literature [Yao86,Cou18,GMW87,WMK16,

11

Table 6.1: Compare to exists SC protocols

n Protocol offline com. online comm. online round total comm.
n Ours (2=+1) log ? +1* 2(=+1) log ?+

3=+log(=+1)+1 4 (4=+3) log ?+
3=+log(=+1)+2

n FSS [BGI16] ≈ 2_= ** 2n 1 ≈ 2_=+2=
n NPSETC SC1 [Cou18] $ (:=/log :) if ==> (:2)

$ (=) else $ (=) $ (log log=) $ (=)

n NPSETC SC2 [Cou18] $ (:=/log :) if =1−1/2=> (:2)
$ (=) else $ (=) $ (2 log∗ =) $ (=)

n NPSETC SC3 [Cou18] $ (:=/log :) if =1−1/2=> (:2)
$ (=) else $ (=) $ (2 log∗ =) $ (=)

32 Ours 340 446 4 786
32 FSS [BGI16] ≈ 4096×2 64 1 ≈ 8256
32 NPSETC SC1 [Cou18] 15120 530 12 15650
32 NPSETC SC2 [Cou18] 12568 3125 7 15693
32 NPSETC SC3 [Cou18] 12394 622 10 13016
32 GSV07 [GSV07] 14062 1068 6 15130
32 KSS09 [KSS09] 12352 12320 2 24672
64 Ours 784 988 4 1772
64 FSS [BGI16] ≈ 8512×2 128 1 ≈ 17152
64 NPSETC SC1 [Cou18] 31388 1120 12 32508
64 NPSETC SC2 [Cou18] 28872 4138 7 33010
64 NPSETC SC3 [Cou18] 28786 1286 10 30072
64 GSV07 [GSV07] 29072 2208 7 31280
64 KSS09 [KSS09] 24804 24640 2 49344
128 Ours 1809 2207 4 4016
128 FSS [BGI16] ≈ 16384×2 256 1 ≈ 33024
128 NPSETC SC1 [Cou18] 52121 2101 12 54222
128 NPSETC SC2 [Cou18] 48031 5801 7 53832
128 NPSETC SC3 [Cou18] 47963 2239 10 50202
128 GSV07 [GSV07] 59250 4500 8 63750
128 KSS09 [KSS09] 49408 49280 2 98688

* Here ? is a prime number with ? ≥ =+3.

** In paper [BGI16], _ = 128.

Table 6.2: Comparison to exists DReLU protocols

n Protocol offline com. online com. online round total com.
n Ours (2=−1) log ? +1 * 2= log ?+

3=+log=−2 4 (4=−1) log ?+
3=+log=−1

n CrypTFlow [KRC+20] 0 6n log p + 14n 8 6n log p + 14n
n SecureNN [WGC19] 0 8n log p + 19n 8 8n log p + 19n
32 Ours 329.2 432.4 4 761.6
32 CrypTFlow [KRC+20] 0 1448.2 8 1448.2
32 SecureNN [WGC19] 0 1941.6 8 1941.6
64 Ours 771.4 972.5 4 1743.9
64 CrypTFlow [KRC+20] 0 3225.4 8 3225.4
64 SecureNN [WGC19] 0 4321.8 8 4321.8
128 Ours 1794.5 2189.6 4 3984.1
128 CrypTFlow [KRC+20] 0 7193.7 8 7193.7
128 SecureNN [WGC19] 0 9634.2 8 9634.2
* ? ≥ =+2 is a prime number.

12

Table 7.1: Comparison to exists ReLU protocols

n Protocol offline com. online comm. online round total comm.

n Ours (2=−1) log ?*
+=+2

2= log ?+
5=+log=+2 5 (4=−1) log ?+

6=+log=+4
n CrypTFlow [KRC+20] 0 6= log ? +19= 10 6= log ? +19=
n SecureNN [WGC19] 0 8= log ? +24= 10 8= log ? +24=
32 Ours 362.2 500.4 5 862.6
32 CrypTFlow [KRC+20] 0 1608.3 10 1608.3
32 SecureNN [WGC19] 0 2101.6 10 2101.6
64 Ours 836.4 1104.5 5 1940.9
64 CrypTFlow [KRC+20] 0 3545.4 10 3545.4
64 SecureNN [WGC19] 0 4641.8 10 4641.8
128 Ours 1923.5 2449.6 5 4373.1
128 CrypTFlow [KRC+20] 0 7833.7 10 7833.7
128 SecureNN [WGC19] 0 10274.2 10 10274.2
* ? ≥ =+2 is a prime number.

BGI16,GSV07,KSS09]. To the best of ourknowledge, function
secret sharing (FSS) based secure comparison [BGI16] is the
most online efficient constant-round protocol. It only has one
online round and very small online communication. However,
as shown in the comparison table, their offline communication
is very large.

In terms of solutions for ReLU and DReLU. Recently, they
have received lots of research focus due to the increasing
popularity of privacy-perserving machine learning. We briefly
describe the well-known ones in the following. In [MZ17],
SecureML evaluates the ReLU function by switching to Yao
sharing. The garbled circuit simply adds the two shares and
outputs the most significant bit to compute DReLU. They
also consider replacing the ReLU activation function with the
square function. This approach improves the online efficiency
but consumes more multiplication triplets and increases cost
of the offline phase. In [MR18], ABY3 uses polynomial piece-
wise functions to approximately compute ReLUs. To efficient
computation of polynomial piecewise functions, they design
a mixed-protocol to directly perform the computation on
mixed representation. They compute inequality by extracting
the MSB. The bit-extraction is performed with binary secret
sharing and computed within the garbled circuit or by an
additional round of interaction. In [RWT+18], Chameleon
evaluates the ReLU activation function as a MUX operation
on the sign bit in the Goldreich-Micali-Wigderson (GMW)
protocol. Because the most efficient representation of a func-
tion in the GMW protocol is the one that has minimum circuit
depth, the Boolean circuits describing the ReLU function
in Chameleon are depth-optimized. In [WGC19], SecureNN
computes the shares of MSB and flips it to compute DReLU.
In more detail, since computing LSB of a number is much
easier than computing the MSB (as it does not require bit
extraction), they flip the problem to computing LSB as follows:
MSB(a) = LSB(2a) when it is working over an odd ring. So
their protocols for ReLU completely avoid the use of garbled

circuits. In [KRC+20], CrypTFlow modifies how two of the
protocols in SecureNN are used - ComputeMSB and Share-
Convert to compute ReLU function. Both original protocols
ComputeMSB and ShareConvert require P2 to send fresh
shares of a value to P0 and P1. CrypTFlow makes one of the
shares be computed as the output of a shared PRF key between
P2 and one of the parties. This cuts the communication of
this step to half. In [MLS+20], Delphi uses garbled circuits
to evaluate the ReLU activation function and replaces some
ReLU activations with polynomial (specifically, quadratic)
approximations. They design a planner that automatically
discovers which ReLUs to replace with quadratic approxima-
tions so as to maximize the number of approximations used
while still ensuring that accuracy remains above a specified
threshold.

In above works, SecureML [MZ17], ABY3 [MR18], Delphi
[MLS+20] use an aproximate ReLU; Chameleon [RWT+18],
ABY2.0 [PSSY21] use a real ReLU, but have non-constant
round (In fact they have the round complexity $ (log=)). On
the other hand, SecureNN [WGC19], CrypTFlow [KRC+20]
give protocols for real ReLU with constant round complexity.
In the protocol of real ReLU with constant round, the minimal
communication is in [KRC+20].

In terms of oblivious shuffle, Laur et al. [LWZ11] proposed
a generic solution for three or more parties. Recently, Chase et
al. [CGP20] proposed a 3-round two-party oblivious shuffle
protocol only using symmetric cryptographic operations. Its
communication is 33=_ log) + (3+1)=;, where 3 = 2d log=

log) e −
1,) = 2, · · ·=; _ is the security parameter, and is advised to
take 128. The two-party oblivious shuffle protocol proposed
in this work is more efficient w.r.t. both communication and
computation.

13

9 Conclusion

In this work,we present secure computation for amathematical
object: G-module. We then instantiate G-module protocols
to realize many useful protocols, such as oblivious shuffle,
oblivious selection, secure comparison, DReLU, ReLU, etc.
In general, our protocols are more efficient than the state of
the arts. In the future, we will instantiate G-module to realize
more secure computation protocols.

References

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function se-
cret sharing: Improvements and extensions. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, ACM CCS
2016, pages 1292–1303. ACM Press, October 2016.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Share-
mind: A framework for fast privacy-preserving com-
putations. In Sushil Jajodia and Javier López, editors,
ESORICS 2008, volume 5283 of LNCS, pages 192–206.
Springer, Heidelberg, October 2008.

[Can01] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, October
2001.

[CGP20] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya.
Secret-shared shuffle. In Shiho Moriai and Huaxiong
Wang, editors,ASIACRYPT 2020, Part III, volume 12493
of LNCS, pages 342–372. Springer, Heidelberg, Decem-
ber 2020.

[Cou18] Geoffroy Couteau. New protocols for secure equality
test and comparison. In Bart Preneel and Frederik
Vercauteren, editors, ACNS 18, volume 10892 of LNCS,
pages 303–320. Springer, Heidelberg, July 2018.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multi-
party computation using a black-box pseudorandom gen-
erator. In Victor Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 378–394. Springer, Heidelberg,
August 2005.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah
Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 643–662. Springer, Heidelberg, August
2012.

[GMW87] OdedGoldreich, SilvioMicali, and AviWigderson. How
to prove all NP-statements in zero-knowledge, and a
methodology of cryptographic protocol design. In An-
drew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 171–185. Springer, Heidelberg, August
1987.

[GSV07] Juan A. Garay, Berry Schoenmakers, and José Ville-
gas. Practical and secure solutions for integer compar-
ison. In Tatsuaki Okamoto and Xiaoyun Wang, edi-

tors, PKC 2007, volume 4450 of LNCS, pages 330–342.
Springer, Heidelberg, April 2007.

[HM00] Martin Hirt and Ueli M. Maurer. Player simulation and
general adversary structures in perfect multiparty com-
putation. Journal of Cryptology, 13(1):31–60, January
2000.

[HS97] Peter John Hilton and Urs Stammbach. A course in
homological algebra. In Graduate Texts in Mathematics.
Springer, 1997.

[KRC+20] Nishant Kumar, Mayank Rathee, Nishanth Chandran,
Divya Gupta,AseemRastogi, andRahul Sharma. CrypT-
Flow: Secure TensorFlow inference. In 2020 IEEE Sym-
posium on Security and Privacy, pages 336–353. IEEE
Computer Society Press, May 2020.

[KSS09] VladimirKolesnikov,Ahmad-Reza Sadeghi,andThomas
Schneider. Improved garbled circuit building blocks and
applications to auctions and computing minima. In
Juan A. Garay, Atsuko Miyaji, and Akira Otsuka, editors,
CANS 09, volume 5888 of LNCS, pages 1–20. Springer,
Heidelberg, December 2009.

[LWZ11] Sven Laur, Jan Willemson, and Bingsheng Zhang.
Round-efficient oblivious database manipulation. In
Xuejia Lai, Jianying Zhou, and Hui Li, editors, ISC 2011,
volume 7001 of LNCS, pages 262–277. Springer, Hei-
delberg, October 2011.

[MLS+20] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srini-
vasan, Wenting Zheng, and Raluca Ada Popa. Delphi: A
cryptographic inference service for neural networks. In
Srdjan Capkun and Franziska Roesner, editors, USENIX
Security 2020, pages 2505–2522. USENIX Association,
August 2020.

[MOR16] Payman Mohassel, Ostap Orobets, and Ben Riva. Effi-
cient server-aided 2pc for mobile phones. Proceedings
on Privacy Enhancing Technologies, 2016(2):82–99,
2016.

[MR18] Payman Mohassel and Peter Rindal. ABY3: A mixed
protocol framework for machine learning. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, ACM CCS 2018, pages 35–52. ACM
Press, October 2018.

[MZ17] Payman Mohassel and Yupeng Zhang. SecureML: A
system for scalable privacy-preserving machine learning.
In 2017 IEEE Symposium on Security and Privacy, pages
19–38. IEEE Computer Society Press, May 2017.

[PSSY21] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hos-
sein Yalame. ABY2.0: Improved mixed-protocol se-
cure two-party computation. In 30. USENIX Security
Symposium (USENIX Security’21), Virtual Event, Au-
gust 11-13, 2021. USENIX. To appear. Full version:
https://ia.cr/2020/1225.

[RWT+18] M. Sadegh Riazi, Christian Weinert, Oleksandr
Tkachenko, Ebrahim M. Songhori, Thomas Schneider,
and Farinaz Koushanfar. Chameleon: A hybrid secure
computation framework for machine learning applica-
tions. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim,

14

https://ia.cr/2020/1225

Yongdae Kim, Javier López, and Taesoo Kim, editors,
ASIACCS 18, pages 707–721. ACM Press, April 2018.

[SEM03] An Introduction to Abstract Algebra. Walter de Gruyter,
2003.

[WGC19] SameerWagh,Divya Gupta, andNishanth Chandran. Se-
cureNN: 3-party secure computation for neural network
training. PoPETs, 2019(3):26–49, July 2019.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz.
EMP-toolkit: Efficient MultiParty computation toolkit,
2016. https://github.com/emp-toolkit/ Ac-
cessed January 5th, 2021.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange
secrets (extended abstract). In 27th FOCS, pages 162–
167. IEEE Computer Society Press, October 1986.

A Security Proof of Theorem. 1

Proof: To prove Thm. 1, we construct a simulator S such that
no ppt environment Z can distinguish between (i) the real
execution execF

offline
GM [G,M]
ΠI

GM [G,M],A,Z
where the parties P := {%1, %2}

run protocol ΠI
GM [G,M] in the F offline

GM [G,M]-hybrid model
and the corrupted parties are controlled by a dummy adversary
A who simply forwards messages from/to Z, and (ii) the
ideal execution execFGM [G,M],S,Z where the parties %1 and
%2 interact with functionality FGM [G,M] in the ideal world,
and corrupted parties are controlled by the simulator S. We
consider following cases.

Case 1: %1 is corrupted; %2 is honest.

Simulator. The simulator S internally runs A, forwarding
messages to/from the environmentZ. S simulates the inter-
face of F offline

GM [G,M] as well as honest %2. In addition, the
simulator S simulates the following interactions with A.

• Upon receiving (InputNotify,sid, %2) for the honest
%2 from the external FGM [G,M], the simulator S sends
(Prepare-I,sid) to F offline

GM [G,M] on behave of %2. S
then picks random 1←M and sends 1 to %1 behave of
%2.

• When the dummy party %1 in the ideal world receives
(Input-I,sid, 6) from the environmentZ, S directly for-
wards (Input-I,sid, 6) to the external ideal functionality
FGM [G,M].

Indistinguishability. The indistinguishability is proven
through hybrid worldsH0,H1.
Hybrid H0: It is the real protocol execution
execF

offline
GM [G,M]
ΠI

GM [G,M],A,Z
.

HybridH1:H1 is the same asH0 except that inH1, %2 sends
a random 1←M to %1 instead of 1 := ℎ− E.

Claim 1 H1 andH0 are perfectly indistinguishable.

Proof: Since E ∈M is uniformly random, the distribution of 1
is also uniformly random regardless ℎ. Therefore,H1 andH0
are perfectly indistinguishable. �
The adversary’s view of H1 is identical to the simulated

view execFGM [G,M],S,Z . Therefore, we have

execF
offline
GM [G,M]
ΠI

GM [G,M],A,Z
≡ execFGM [G,M],S,Z .

Case 2: %2 is corrupted; %1 is honest.

Simulator. The simulator S internally runs A, forwarding
messages to/from the environmentZ. S simulates the inter-
face of F offline

GM [G,M] as well as honest %1. In addition, the
simulator S simulates the following interactions with A.

• Upon receiving (InputNotify,sid, %1) for the honest
%1 from the external FGM [G,M], the simulator S sends
(Prepare-I,sid) to F offline

GM [G,M] on behave of %1. S
then picks random 0← G and sends 0 to %2 behave of
%1.

• When the dummy party %2 in the ideal world receives
(Input-I,sid, ℎ) from the environmentZ, S directly for-
wards (Input-I,sid, ℎ) to the external ideal functionality
FGM [G,M].

Indistinguishability. The indistinguishability is proven
through hybrid worldsH0,H1.
Hybrid H0: It is the real protocol execution
execF

offline
GM [G,M]
ΠI

GM [G,M],A,Z
.

HybridH1:H1 is the same asH0 except that inH1, %2 sends
a random 0← G to %1 instead of 0 := 6 ·D−1.

Claim 2 H1 andH0 are perfectly indistinguishable.

Proof: Since D ∈ G is uniformly random, the distribution of 0
is also uniformly random regardless 6. Therefore,H1 andH0
are perfectly indistinguishable. �
The adversary’s view of H1 is identical to the simulated

view execFGM [G,M],S,Z . Therefore, we have

execF
offline
GM [G,M]
ΠI

GM [G,M],A,Z
≡ execFGM [G,M],S,Z .

Case 3: Both %1 and %2 are corrupted.

Simulator. The simulator S internally runs A, forwarding
messages to/from the environmentZ. The simulator S simu-
lates the functionality F offline

GM [G,M].

Indistinguishability. This is a trivial case. Since both %1 and
%2 are controlled by the adversaryA, no message is simulated
by S.
This concludes the proof. �

15

https://github.com/emp-toolkit/

B Security Proof of Theorem. 2

Proof: To prove Thm. 2, we construct a simulator S such that
no ppt environment Z can distinguish between (i) the real
execution execF

offline
GM [G,M]
ΠII

GM [G,M],A,Z
where the parties P := {%1, %2}

run protocol ΠII
GM [G,M] in the F offline

GM [G,M]-hybrid model
and the corrupted parties are controlled by a dummy adversary
A who simply forwards messages from/to Z, and (ii) the
ideal execution execFGM [G,M],S,Z where the parties %1 and
%2 interact with functionality FGM [G,M] in the ideal world,
and corrupted parties are controlled by the simulator S. We
consider following cases.

Case 1: %1 is corrupted; %2 is honest.

Simulator. The simulator S internally runs A, forwarding
messages to/from the environmentZ. S simulates the inter-
face of F offline

GM [G,M] as well as honest %2. In addition, the
simulator S simulates the following interactions with A.

• Upon receiving (InputNotify,sid, %2) for the honest
%2 from the external FGM [G,M], the simulator S sends
(Prepare-II,sid) to F offline

GM [G,M] on behave of %2. S
then picks random 02← G, 12←M and sends (02, 12)
to %1 behave of %2.

• When the dummy party %1 in the ideal world receives
(Input-II,sid, 61, ℎ1) from the environment Z, S di-
rectly forwards (Input-II,sid, 61, ℎ1) to the external ideal
functionality FGM [G,M].

Indistinguishability. The indistinguishability is proven
through hybrid worldsH0,H1.
Hybrid H0: It is the real protocol execution
execF

offline
GM [G,M]
ΠII

GM [G,M],A,Z
.

HybridH1:H1 is the same asH0 except that inH1, %2 sends
a random 02←G, 12←M to %1 instead of 02 := 62 ·D−1

2 and
12 := 62 · (ℎ2− E2).

Claim 3 H1 andH0 are perfectly indistinguishable.

Proof: Since D2 ∈ G, E2 ∈M are uniformly random, the dis-
tribution of 02 and 12 are also uniformly random regardless
62, ℎ2. Therefore,H1 andH0 are perfectly indistinguishable.

�
The adversary’s view of H1 is identical to the simulated

view execFGM [G,M],S,Z . Therefore, we have

execF
offline
GM [G,M]
ΠII

GM [G,M],A,Z
≡ execFGM [G,M],S,Z .

Case 2: %2 is corrupted; %1 is honest.

Simulator. The simulator S internally runs A, forwarding
messages to/from the environmentZ. S simulates the inter-
face of F offline

GM [G,M] as well as honest %1. In addition, the
simulator S simulates the following interactions with A.

• Upon receiving (InputNotify,sid, %1) for the honest
%1 from the external FGM [G,M], the simulator S sends
(Prepare-II,sid) to F offline

GM [G,M] on behave of %1. S
then picks random 01← G, 11←M and sends (01, 11)
to %2 behave of %1.

• When the dummy party %2 in the ideal world receives
(Input-II,sid, 62, ℎ2) from the environment Z, S di-
rectly forwards (Input-II,sid, 62, ℎ2) to the external ideal
functionality FGM [G,M].

Indistinguishability. The indistinguishability is proven
through hybrid worldsH0,H1.
Hybrid H0: It is the real protocol execution
execF

offline
GM [G,M]
ΠII

GM [G,M],A,Z
.

HybridH1:H1 is the same asH0 except that inH1, %2 sends
a random 01←G, 11←M to %1 instead of 01 := 61 ·D−1

1 and
11 := 61 · (ℎ1− E1) to %2.

Claim 4 H1 andH0 are perfectly indistinguishable.

Proof: Since D1 ∈ G, E1 ∈M are uniformly random, the distri-
bution of 01 and 11 are also uniformly random regardless 61
and ℎ1. Therefore,H1 andH0 are perfectly indistinguishable.

�
The adversary’s view of H1 is identical to the simulated

view execFGM [G,M],S,Z . Therefore, we have

execF
offline
GM [G,M]
ΠII

GM [G,M],A,Z
≡ execFGM [G,M],S,Z .

Case 3: Both %1 and %2 are corrupted.

Simulator. The simulator S internally runs A, forwarding
messages to/from the environmentZ. The simulator S simu-
lates the functionality F offline

GM [G,M].
Indistinguishability. This is a trivial case. Since both %1 and
%2 are controlled by the adversaryA, no message is simulated
by S.
This concludes the proof. �

C Security Proof of Theorem. 3

Proof: To prove Thm. 3, we construct a simulator S such that
no ppt environment Z can distinguish between (i) the real
execution execF

offline
GM [G,M]
ΠIII

GM [G,M],A,Z
where the parties P := {%1, %2}

run protocol ΠIII
GM [G,M] in the F offline

GM [G,M]-hybrid model
and the corrupted parties are controlled by a dummy adversary
A who simply forwards messages from/to Z, and (ii) the
ideal execution execFGM [G,M],S,Z where the parties %1 and
%2 interact with functionality FGM [G,M] in the ideal world,
and corrupted parties are controlled by the simulator S. We
consider following cases.

16

Case 1: %1 is corrupted; %2 is honest.

Simulator. The simulator S internally runs A, forwarding
messages to/from the environmentZ. S simulates the inter-
face of F offline

GM [G,M] as well as honest %2. In addition, the
simulator S simulates the following interactions with A.

• Upon receiving (InputNotify,sid, %2) for the honest
%2 from the external FGM [G,M], the simulator S sends
(Prepare-III,sid) to F offline

GM [G,M] on behave of %2. S
then picks random 02← G and sends 02 to %1 behave
of %2.

• When the dummy party %1 in the ideal world receives
(Input-III,sid, ℎ1) from the environmentZ, S directly
forwards (Input-III,sid, ℎ1) to the external ideal func-
tionality FGM [G,M].

Indistinguishability. The indistinguishability is proven
through hybrid worldsH0,H1.
Hybrid H0: It is the real protocol execution
execF

offline
GM [G,M]
ΠIII

GM [G,M],A,Z
.

HybridH1:H1 is the same asH0 except that inH1, %2 sends
a random 02← G to %1 instead of 02 := ℎ2−F2.

Claim 5 H1 andH0 are perfectly indistinguishable.

Proof: Since F2 ∈M is uniformly random, the distribution of
02 is also uniformly random regardless ℎ2. Therefore,H1 and
H0 are perfectly indistinguishable. �
The adversary’s view of H1 is identical to the simulated

view execFGM [G,M],S,Z . Therefore, we have

execF
offline
GM [G,M]
ΠIII

GM [G,M],A,Z
≡ execFGM [G,M],S,Z .

Case 2: %2 is corrupted; %1 is honest.

Simulator. The simulator S internally runs A, forwarding
messages to/from the environmentZ. S simulates the inter-
face of F offline

GM [G,M] as well as honest %1. In addition, the
simulator S simulates the following interactions with A.

• Upon receiving (InputNotify,sid, %1) for the honest
%1 from the external FGM [G,M] and 02 from %2, the
simulatorS sends (Prepare-III,sid) to F offline

GM [G,M] on
behave of %1. S then picks random 01← G and sends
01 to %2 behave of %1.

• When the dummy party %2 in the ideal world receives
(Input-III,sid, ℎ2) from the environmentZ, S directly
forwards (Input-III,sid, ℎ2) to the external ideal func-
tionality FGM [G,M].

Indistinguishability. The indistinguishability is proven
through hybrid worldsH0,H1.

Common input: Z= ,Z2;
%1’s input: 8 ∈ Z=
%2’s input: (G0 , . . . , G=−1) ∈ Z=2;

• Offline: %0 generate randomly 8̃ ∈ Z= and (G̃0 , . . . , G̃=−1) ∈ Z=2; , and
compute D := G̃8̃ . Then %0 send 8̃, D to %1 and send (G̃0 , . . . , G̃=−1) to
%2;

• Online: %1 compute X8 := 8− 8̃ ∈ Z= , and sent X8 to %2;

• %2 compute XG := L-ShiftX8 (G) − G̃ ∈ Z=2; and send XG to %1;

• %1 compute E := (XG)8̃ +D1, and return E .

Protocol Π=,ℓOT2

Figure 18: The 2-round OT Protocol Π=,ℓOT2

Common input: Z= ,Z2;
%1’s input: 8 ∈ Z=
%2’s input: (G0 , . . . , G=−1) ∈ Z=2;

• Offline: %0 generate randomly 8̃ ∈ Z= and (G̃0 , . . . , G̃=−1) ∈ Z=2; , and
D1 ∈ Z2; , and compute D2 := G̃8̃ −D1. Then %0 send 8̃, D1 to %1 and
send (G̃0 , . . . , G̃=−1) , D2 to %2;

• Online: %1 compute X8 := 8− 8̃ ∈ Z= , and sent X8 to %2;

• %2 compute XG := L-ShiftX8 (G) − G̃ ∈ Z=2; and send XG to %1.

• %1 compute E1 := (XG)8̃ +D1, and return E1;

• %2 return D2.

Protocol Π=,ℓS-OT2

Figure 19: The 2-round Shared OT Protocol Π=,ℓS-OT2

Hybrid H0: It is the real protocol execution
execF

offline
GM [G,M]
ΠIII

GM [G,M],A,Z
.

HybridH1:H1 is the same asH0 except that inH1, %2 sends
a random 01← G to %1 instead of 01 := D−1 · (ℎ1 −F1 + 02)
to %2.

Claim 6 H1 andH0 are perfectly indistinguishable.

Proof: Since D ∈ G is uniformly random, the distribution of
01 is also uniformly random regardless ℎ1 and 02. Therefore,
H1 andH0 are perfectly indistinguishable. �
The adversary’s view of H1 is identical to the simulated

view execFGM [G,M],S,Z . Therefore, we have

execF
offline
GM [G,M]
ΠIII

GM [G,M],A,Z
≡ execFGM [G,M],S,Z .

Case 3: Both %1 and %2 are corrupted.
Simulator. The simulator S internally runs A, forwarding
messages to/from the environmentZ. The simulator S simu-
lates the functionality F offline

GM [G,M].
Indistinguishability. This is a trivial case. Since both %1 and
%2 are controlled by the adversaryA, no message is simulated
by S.
This concludes the proof. �

17

Common input: Z?
%1’s input: G1 ∈ Z2
%2’s input: G2 ∈ Z2

Offline phase:

• (generates random D ∈ Z2, then splits D into (D1 , D2) ∈ Z2 ×Z2 and
� (D) ∈ Z? into (11 , 12) ∈ Z? ×Z? , and finally sends (D1 , 11) to %1,
send (D2 , 12) to %2 respectively;

Online phase:

• %1 computes I1 := 01 −D1 locally.

• %2 computes I2 := 02 −D2 locally.

• %1 and %2 reconstruct I := 0−D by interchanging I1 and I2;

• %1 computes H1 := (−1)I11 ∈ Z? .
• %2 computes H2 := (−1)I12 + I ∈ Z? .
• %1 outputs H1 and %2 outputs H2.

Protocol Π2, ?
convert

Figure 20: The share conversion protocol Π2, ?
convert

D Two-round (shared) OT

We introduce a protocol of two online round for OT in Fig-
ure 18. Its offline communication is ℓ bits, and its online
communication is =ℓ + log= bits in 2 round.

It is easy to be modified to a protocol for shared OT of two
online round (Figure 19). Its offline communication is ℓ bits,
and its online communication is =ℓ + log= bits in 2 round.

E Share Conversion Z2→ Z?

In this section, we recap the share conversion protocolΠ2, ?
convert

proposed in [Cou18] in server-aid model. In the share conver-
sion protocol Π2, ?

convert, %1 and %2 hold shares of G ∈ Z2 over
Z2, and after the protocol execution, they obtains shares of G
over Z? . Let

� : Z2 ↦→ Z?
be the module transformmap defined by � (0) := 0 and � (1) = 1.
The protocol is described in Fig. 20.

This protocol needs 2 rounds, and its communication is
2(log ? +2) bits. However if we use the PRF improvement,
we need log ? bits communication in offline phase, and 2
bits communication in 1 round in online phase per calling as
shown in Table. 1.1.

18

	Introduction
	Preliminaries
	Security Model
	The ideal world execution
	The real/hybrid world execution

	Secure Computation for G-module
	Instantiations and Applications
	Secure Comparison
	Secure computation for DReLU and ReLU
	Related Work
	Conclusion
	Security Proof of Theorem. 1
	Security Proof of Theorem. 2
	Security Proof of Theorem. 3
	Two-round (shared) OT
	Share Conversion Z 2 Z p

