
CONCRETE EVALUATION OF THE RANDOM PROBING SECURITY

A PREPRINT

Vahid Jahandideh
v.jahandideh@gmail.com

June 19, 2021

ABSTRACT

We study the security of Boolean masking countermeasure when an adversary randomly probes
internal variables of the masked algorithm, intending to recover non-trivial knowledge about its
secrets. We introduce a novel metric called Secret Recovery Probability (SRP) for assessing the
informativeness of the probing leakages about the masked secrets. To evaluate SRP , our starting
point is to describe the relations of the intermediate variables with a parity equation system where
the target secret is an unknown of this system. By a quantitative estimation of the SRP (n, ϵ), it
is possible to measure the security as a function of the masking order n and the leakage rate ϵ for
various masked constructions.
In contrast to the previous results in the asymptomatic model, our approach is in a concrete setting.
Therefore, it can be used as an analysis tool for practical engineering purposes. Moreover, for the
multiplication gadget proposed in Ches 2016, with some modifications in the construction, we put
forward an upper bound for the SRP (n, ϵ) regarding the secret operands. The given upper-bound
proves the multiplication gadget’s security in the random probing for constant leakage rates ϵ < .07.
So, we provide the first secure and practical multiplication gadget in the random probing model.
As another contribution, leakage effects of refreshing construction is modeled with an equivalent
erasure channel. Appropriate handling of the leakage of refreshing gadgets, instead of neglecting,
was a long-standing challenge in the random probing environment. This modeling helps to estimate
the SRP (n, ϵ) for complex structures. In this way, we give an unprecedented masked S-Box imple-
mentation with proved security for ϵ < 0.03. We also study SRP (n, ϵ) of arbitrary order masking
of AES, where we derive an innovative security bound that is independent of the size of masked
implementation. Furthermore, in this paper, new insights into the connections of the SNI security
in the threshold probing model with the security results obtained in the random probing model are
developed.

1 Introduction

After more than a couple of decades since the introduction, side-channel attacks are a widely understood concept now.
Indeed, multiple times, it is proved that direct implementation of a cryptographic algorithm without any protection
might open the door for various adversarial attacks. In these attacks, leakages through physical measurements (also
known as side-channel leakages) equip the adversary with extra information. This additional information, combined
with publicly known parts of the input/output of the cryptographic algorithm, can even lead to the secret key recovery.
Sources of leakages are various; among them are the algorithm execution time, instantaneous power consumption, and
electromagnetic emanations of the device [1, 2, 3].

1.1 Modeling side-channel leakages

Expressing the knowledge that an adversary can extract from a side-channel leakage with a proper mathematical model
is an essential prerequisite for designing a countermeasure. Various models for bounding the leakage data are given in
the literature. However, none of them tightly formulates all kinds of leakage information that an adversary can access,
see [4] for a recent review on the leakage models.

A PREPRINT - JUNE 19, 2021

For power measurement leakages, the only computation leaks (OCL) assumption [5] matches the experiments well.
The OCL assumption, at each interval of time, confines the leakage information to be a function of the variables
accessed at that interval. Variables of an algorithm include all the operands appearing in the course of its execution.

For a software implementation, the list of variables is dependent on the architecture of the computing processor and the
compiler optimization level. Here, we assume that algorithm code is written with the basic operations such as AND,
XOR, and the randomness generation gates. So, the compiler does not intervene with processing steps. In our settings,
the operands of these operations are variables of the algorithm. Some authors, refer to these operands as wires.

The independent leakage (IL) hypothesis simplifies the OCL assumption further. The IL conjecture states that the
leakage corresponding to a variable is independent of other variables of the algorithm. In this way, IL implies that
one can partition a given power leakage trace into non-overlapping intervals, where each interval provides information
about a single variable of the algorithm.

The IL assumption is complying with the single-thread single-task software implementations. However, there are
situations (especially at hardware implementations) where the IL assumption does not hold. See [6] and [7] for
examples of dependent leakage.

The practically comprehensible noisy leakage model is based on the OCL and IL assumptions. According to this
model, a noisy version of each variable is leaked to the adversary [8]. Authors of [9] demonstrated that statistical
distance is an admissible metric for quantifying the noise of leakages. For a variable V in the algorithm, the adversary
receives a function ν(V,R) as a final result of processing the leakages corresponding to this variable. Random variable
R is the randomness used for modeling the noise. Function ν(.) is defined δ-noisy if SD(V, V |ν(V,R)) ≤ δ. Except
for being δ-noisy, there is no other restriction over the function ν(.).

Definition 1. Noisy leakage. For a constant parameter δ ∈ [0, 1], the adversary in each execution of the algorithm
learns variables of the algorithm with a δ-noisy function.

A somewhat simpler model compared to the noisy leakage model is the random probing model (RPM). In this model,
the adversary gets (the exact value of) each intermediate variable independently and randomly with constant probability
ϵ, and with probability 1 − ϵ learns nothing about this variable. The value of ϵ is constant over the alphabet of the
variable, and the adversary has no control over the randomness of the disclosure event. In this way, our definition
for RPM is in line with the ϵ-random probing definition given in [9]. Parameter ϵ is also known as leakage rate. A
somewhat similar definition for random probing is given in [10], which they call ϵ-average probing. In ϵ-average
probing, it is assumed that different values of a variable V can experience non-identical values of ϵ. However, we
make no such assumption.

Definition 2. Random probing leakage. For a constant parameter ϵ ∈ [0, 1], the adversary in each execution of the
algorithm learns variables of the algorithm with probability ϵ.

For a practitioner assessing power-traces of cryptographic devices, it seems that the noisy leakage model better fits
with the observations. However, the breakthrough work of [9] proved that the (for sufficiently small values of δ) noisy
leakage model is reducible to the (noise-free) random probing model (RPM). This means that the security results
-irrespective of the metric used for measuring the security- obtained in the random probing model can be directly
translated to the noisy leakage model.

As pointed in [11], the output of random probing leakage for a variable is distributed identically to its reception via an
erasure channel. In this paper, as our main technical tool, we will expand this resemblance from just a single variable
to more complex structures.

The list of leakage models has another member namely the threshold probing model (TPM). In TPM, the adversary
learns at most a fixed number of variables of the algorithm [12].

Definition 3. Threshold probing leakage. For a constant parameter t ∈ N, the adversary in each execution of the
algorithm learns the value of at most t variables of the algorithm.

TPM is mathematically tractable and straightforward. Nevertheless, the assumption that leakage information is re-
stricted to a limited number of variables is superficial. Not quite surprisingly, various works have shown that TPM
does not conceivably capture real leakage scenarios [13].

For the three discussed leakage models, masking is a well studied and practically used countermeasure. A review of
Boolean masking with the developed techniques for applying it over block ciphers is presented in part 2.1. At masking
order n, the masked counterpart of an algorithm A is denoted by A′(n) in this paper.

For assessing the effectiveness of a countermeasure, a precise definition of the security is needed.

2

A PREPRINT - JUNE 19, 2021

1.2 Definitions of the security

Security in TPM is stated as a threshold number t, where any set of variables in A′(n) with at most t members reveal
nothing about the variables of A. To be more accurate, not all of the variables of A are interesting for the adversary.
Only the so-called sensitive variables that are key-dependent are important.

Definition 4. Security in TPM. Algorithm A′ is secure if any collection of at most t variables of A′ is independent
of the variables of A.

t should be less than n; the optimum choice then would be t = n − 1. There are firm tools and proof methods for
achieving TPM security with t = n − 1. The t-SNI criteria for building gadgets of A′ defined in [14] guarantee that
composition in A′ will be TPM secure. Constructions for AND and refresh gadgets with proved t-SNI security for
t = n− 1 are available [14].

The unfortunate part of the story is that TPM security cannot assure RPM security. See part 2.4 for their relations. The
dominant example is the case of the AND (that is a non-affine field multiplication) algorithm given in [12], for which
in [14] t-SNI security for t = n− 1 is proved. However, based on the results of [13, 11] it is easy to show that for any
fixed (and arbitrarily small) ϵ, there exists an order ñ, beyond which the random probing leakage of this construction
will reveal its internal secrets (i.e., its operands) with increasingly high probability.

For RPM, in [8], the authors used mutual information between leakage data and input plain-text and encryption key
as a metric for rating the security of A′(n). In [9], A′(n) is defined secure in RPM if receiving leakage of random
probing gives no extra benefit to the adversary, as entailed in the definition below.

Definition 5. Security in RPM (informal) [9]. Algorithm A′ is secure if for any adversary S1 that is observing
input/output ofA′ and is receiving random probing leakage, there be an adversary S2 with only access to input/output
ofA′, such that SD(out(S1), out(S2)) is sufficiently small. Here, out(.) denotes the output of its argument algorithm.
See [9] for the formal definition.

The mutual information metric given in [8] and the indistinguishability definition with the statistical distance measure
given in [9] are both of theoretical interest. They just investigate the effectiveness of masking countermeasure when
the masking order n is arbitrarily large.

In [15], the authors studied the success probability of the adversary at guessing a target secret of the masked structure.
In the direction of their work, this paper gives a new definition for security in the RPM, which we call RPM security in
the sequel. This definition seems to be more natural and relevant to the practical viewpoint. It is measurable and thus
allows us to compare the security of different constructions. We will give multiple linear and non-linear algorithms
satisfying RPM security. Further more, we develop techniques for quantitative evaluation of the RPM security of
various structures.

Definition 6. RPM security [this paper]. The algorithm A′ is RPM secure if there is a fixed ϵo, that for any
adversary observing leakage of A′ with ϵ ≤ ϵo, the advantage of recovering each secret of A -over trivial guessing- is
a monotonically decreasing toward zero by increasing the order n.

A common belief is that in a general non-linear A′(n), random probing leakages at rates ϵ > 1/n will reveal secrets
of A. Even providing an algorithm for simple multiplication that can withstand constant leakage rates is still an
unanswered challenge in the RPM.

In this paper, RPM secure constructions for refresh and multiplication (for constant leakage rates) will be given.
Composition rules for assessing the RPM security of complex structures also will be provided. Our contributions are
explicitly listed in 1.4.

1.3 Metrics for quantifying the security definitions

Assume variable V is one of the secrets of a masked circuit A′(n). For simple structures, like refreshing gadgets or
even masked S-Box, secret V is unambiguously defined. However, for a complex structure as a masked implementation
of the AES, many sensitive variables can be considered as the target secret.

In RPM, the side-channel adversary, receiving leakage L, which is collection of ϵ-random probings of the variables
of A′(n), aims to gain more knowledge about the secret V . Mutual information criteria for security in RPM, esti-
mates MI(V ;L). In this measure, A′(n) is secure if MI(V ;L) is sufficiently small. Value of MI(V ;L), among the
other parameters, is a function of the masking order n and the leakage rate ϵ. For proving the security of a masked
implementation of block ciphers in RPM, [8] used this metric, but they proof relied on the existence of leakage-free
refreshing gadgets, which is often deemed as an impractical assumption.

3

A PREPRINT - JUNE 19, 2021

For evaluation of security based on definition 5, the main technique is to show that the leakage L and the secret V are
independent. For this purpose, one proves that a new L∗ distribution can be created from scratch (without knowing
the realized value of V). Such that, SD(L,L∗) = 0. In this case, leakage L is called simulatable. Not, all leakages are
simulatable. In the sense of definition 5,A′(n) is secure, if at given (n, ϵ), with sufficiently high probability, a random
instance of leakage L is simulatable. With at least the same probability, L and the secret V are independent. This
approach’s main drawback is that it works in asymptotic settings and rarely can be used as piratical security measuring
tool.

In our definition of security (definition 6), we also measure the relation of leakage L and the secret variable V . We
estimate how much is probable that an adversary can correctly estimate the k-bit, initially random, secret V with
observation of the leakage L. Let the estimation of the adversary for the value of V be Ṽ , our measure for security,
which we call Secret Recovery Probability (SRP) is defined as

SRP (n, ϵ) = |Pr(Ṽ = V |L)− 1

2k
|. (1)

The adversary for which the SRP is the highest is defined as the MAP adversary. Decision rule of the MAP adversary
(that is, the optimal rule) is discussed in part 2.3. Afterward, we will only compute and consider SRP for the MAP
adversary. When the secret variable is not unique, we specify it with a subscript as SRPV .

In the sense of our definition,A′(n) is secure in RPM if SRP (n, ϵ) for a region of values of ϵ is a decreasing function
of n. Compared to definition 5 and its evaluation method, our new definition and SRP metric are measurable and well
defined for any masking order and leakage rate.

This paper develops various methods for the evaluation of SRP for both linear and non-linear masked circuits. We
will also use this measure for assessing RPM security of a masked implementation of AES.

The main reason for introducing a new security definition and a new measure is that it is practically computable and
more sound from the engineering perspective. More on the comparison of definitions 5 and 6 is given in part 2.6.

1.4 Our contributions

In RPM, during each execution of A′, the adversary probes variables of A′ independently with probability ϵ. The
primary question is: how much is probable that this leakage information discloses anything about sensitive variables
of A? To answer this question, a simple but still novel technique of utilizing the inter-variables parity relations for
assessing the RPM security of A′ is developed.

Governing relations describing a masked circuit is reformulated with a linear (or a non-linear) system of equations.
Secrets of masking are also unknowns of this system. Then, the derived parity system’s informativeness against ϵ
random leakage at various orders n is assessed.

Belief propagation is a well-known technique for studying parity systems. As its main limitation, belief propagation
requires a sparse representation of equations in the system. Even with sufficiently sparse relations, it can only provide a
lower bound on the system’s informativeness. However, this paper’s approach gives an exact bound for linear systems.
It provides upper and lower bounds for non-linear systems to characterize what adversary can achieve with ϵ random
probing.

In the following, we briefly give the contributions that are made in this paper

• A systematic approach for evaluating the RPM security of different linear masked implementations is de-
veloped. The results are in the concrete (not asymptotic) setting and work for any order n. To our best
knowledge, it is the first time that concrete results for arbitrary order of masking are provided.

• For constant leakage rate ϵ, independent of the masking order n, a non-affine multiplication gadget with
RPM security is provided. Before the results in this paper, proving RPM security for a non-affine field
multiplication circuit was an open issue.

• We rather tightly bound the leakage effects of refreshing gadgets. Handling leakage of refreshing circuits,
instead of neglecting them, was a long-standing challenge in the RPM security evaluation frameworks.

• For X−1 S-Box used in AES, we give an arbitrary-order masked implementation with proved RPM security
for ϵ < 0.03.

• By developing equivalent erasure model for various gadgets and simple combinations, we are able to give a
masked AES implementation with proved RPM security. For the first time, our result provides a bound that

4

A PREPRINT - JUNE 19, 2021

is independent of the size of the masked circuit. Previous results were confined to the size of the masked
implementation.

We are pretty sure that the tools in this paper will help to explore more masked structures than those considered here.

2 Preliminaries

In this section, introductory concepts in Boolean masking of block ciphers are presented. MAP criterion for making
an optimal decision based on observations is explored. Moreover, misleading intuitions that are reached by applying
t-SNI security results in RPM are also discussed in this section. In the end, state of the art in RPM security proofs is
reviewed.

2.1 Boolean Masking

Masking, controlled by a parameter n ∈ N, is an algebraic tool for re-enforcing the security of a given algorithm A
against an adversary empowered with probing knowledge.

Variable n, also called masking order, plays the role of security parameter. Increasing n adds to the computational
complexity, and one naturally hopes that this will result in a more resistant countermeasure against side-channel
leakage.

Boolean masking is the most studied among others. In its simplest form, to mask a stand-alone variable V ∈ Fq=2k , a
vector of n variables as

−→
V = (V1, V2, . . . , Vn) ∈ (Fq)

n are randomly chosen in a way that ⊕n
i=1Vi = V .

Boolean masking of a single variable V is best described by two polynomial-time algorithms. One is Enc(.), a
probabilistic sampling function identified by its output vector as

−→
V ← Enc(V), and the other is a deterministic

function given by Dec(V) = ⊕n
i=1Vi. Using fresh randomness, the Output of Enc(.) should uniformly sample

−→
V

from (Fq)
n such that, collectively, members of

−→
V uniquely determine V , and any subset of

−→
V with at most n−1 entry

is independent of V . Following similarities with secret sharing schemes [16], members of
−→
V are sometimes called

shares of V , and
−→
V itself is called n-sharing of V . In this paper, an over variable right arrow is used to quickly identify

the corresponding secret variable of a sharing.

In [17], the soundness of masking is demonstrated in the noisy leakage model with the following experiment; for a
binary secret V , an adversary executes

−→
V ← Enc(V) l times and each time learns a noisy version of resulted shares.

The noise being additive with i.i.d zero-mean Gaussian distribution. They showed that, in this case, non-trivially
correct guessing of V would require l to be an exponential function of n.

Constructing a Enc(.) for a single variable V is straightforward; the main challenge of masking (which is the target
of numerous research papers) is to develop routines for performing all of the operations respectively on the shares,
instead of the initial variables.

2.2 Block ciphers as a common target

Block ciphers are a dominant primitive of cryptography. They usually use the same fixed encryption key during
consecutive runs, making them a suitable target for power analysis side-channel attacks. An adversary can combine
power traces obtained during different runs to recover some bits or whole of the secret encryption key.

Block ciphers are unvarying function designed with feedforward structure without any feedback loop. Their internal
computation is performed in several quite similar rounds. Furthermore, their execution path is branch free and is
independent of the values of input and intermediate variables. In this paper, these features will be very beneficial for
RPM security analysis of their masked implementations.

2.2.1 Masking a block cipher

Think of A as a code written to implement a block cipher C = BC(P,K). Boolean masking provides a systematic
way for generating a new code A′ based on A, in a way that for any n, A′ on input

−→
P and

−→
K (which are n-sharing of

the plain-text P and the encryption key K, respectively) produces
−→
C (which is an n-sharing of the cipher-text C) as

output. A′ is required to be more robust against probing leakages.

5

A PREPRINT - JUNE 19, 2021

Inputs and output of BC are not single elements of Fq . They are usually a block of elements. Generalization of n-
sharing for a block of m concatenated Fq elements as W = W1||W2||...||Wm is defined with the following relation.

−→
W ← Enc(W) = Enc(W1)||Enc(W2)||...||Enc(Wm) (2)

The pioneering work of [12] founded arbitrary-order Boolean masking. The initial study in [12] was limited to op-
erations in a binary field. The negative impact of this limitation is an undesirably massive overhead in the masking
complexity. In [18], an extension to bigger fields took place, which made masking at higher orders computationally
affordable.

There are exact steps to mask A. Here we informally sketch them.

At first, based on the bit-length of variables in A, an appropriate Galois field Fq is chosen. Then, computation in A
is decomposed into so-called elementary gates and S-Box evaluations. Elementary gates include AND operation and
all affine operations of the field. Permutations over field elements (if any) are left as is. However, permutations over
bits (which are not field members) are replaced by their equivalent lookup-tables. This means that they are modeled
as new S-Boxes. For most block ciphers, this step is obvious and does not require much effort.

The next step is to evaluate S-Boxes using elementary gates. Amay incorporate different S-Box structures. For each of
them, the common paradigm is to use Lagrange interpolation to expand the S-Box output with a polynomial-function
of its input, as shown in (3) [19].

S-Box(X) =

q−1∑
i=0

αiX
i with αi ∈ Fq (3)

This polynomial representation can be directly evaluated with elementary gates. But, this trivial approach usually
results in high calculation overhead. Many research papers aim to reduce this computational burden by decreasing the
total number of non-affine AND invocations [19, 20]. It is proven that for an S-Box representable in a k-bit Galois
field, this process will need Ω(2k/2/

√
k) AND operations [21]. For X−1 S-Box in the AES, only 4 AND gates are

required.

The third step is to replace each elementary gate G with its shared or vectorized counterpart, denoted by SG and is
called shared gadget. For a gate G with inputs X and Y (if it has two input operands), and output Z, gadget SG, at any
order n, on input

−→
X and

−→
Y produces

−→
Z , where the vectors are n-sharing of their respective secrets. Moreover, gadget

SG should fulfill some security notions.

Z = G(X,Y)
replaced by−−−−−−→

−→
Z = SG(

−→
X,
−→
Y) (4)

In this paper, shared gadget for AND is represented by SAND, and similarly, SXOR stands for the shared implementa-
tion of XOR operation. The structure of SG when G is an affine gate is apparent [18]. The main challenge is providing
a shared counterpart for AND gate. In [12], SAND-ISW is provided. In [13], a new SAND, which we, with some
modifications in this paper, call SAND-Rec, is put forward. Other SAND constructions are given in [22, 23].

The final step of masking is to insert a refreshing gadget before each reuse of sharing vectors. A refreshing gadget
on input

−→
X produces a new n-sharing for the same secret X . The principal role of a refreshing gadget is to avoid a

fixed n-sharing vector to be the operand of multiple SGs. This step requires many refreshing gadgets. Some works,
especially in TPM, argue how to decrease SR invocations [14].

Hereafter, a refreshing gadget is denoted by SR. In the literature, various candidate constructions for SR are given.
Some of them are SR-Simple given in [18], SR-SNI [14], and SR-Rot [24]. Other structures for SR are also studied in
[9, 25]. To mitigate ambiguities, we have adopted unified names for different SG (including SR) algorithms that we
will study in this paper.

The thus generated circuit above is a masked counterpart of A, and we label it by A′.

An alternative method for computing an S-Box for an n-sharing input is given in [26]. Their approach is based on
the table-randomization method. In this paper, our analysis best fits with the polynomial based S-Box evaluation.
However, it would be an interesting objective to develop similar results for table-randomization based methods.

6

A PREPRINT - JUNE 19, 2021

2.3 MAP adversary

The adversary that makes her decisions based on the Maximum A Posterior probability rule is called the MAP adversary.
For estimating a secret V ∈ V , observing leakage L, the MAP adversary outputs the value Ṽ by the following rule as
her guess for the value of the V .

Ṽ = argmax
v

Pr(V = v|L) =(a) argmax
v

Pr(L|V = v) Pr(V = v)∑
µ∈V Pr(V = µ) Pr(L|V = µ)

= argmax
v

Pr(L|V = v) Pr(V = v)

=(b) argmax
v

Pr(L|V = v)

(5)

Where (a) is by Bayes theorem, and (b) follows from the fact that for the cases we will face in this paper, Pr(V) is
uniform. We define the Secret Recovery Probability (SRP) as SRP = |Pr(Ṽ = V |L)− 1

|V| | for future references.

The decision of MAP adversary requires knowledge of the joint distribution of Pr(L, V). In the side-channel literature,
adversary by profiling [27, 28] and some dimensional reduction [29] can estimate this joint probability. For the
profiling stage, the adversary should sufficiently run the target device with known and random inputs and record its
leakage traces.

If Pr(L, V) is not available, the MAP rule is not applicable. Various sub-optimal decision principles such as correla-
tion attack and differential attack are developed [30].

MAP adversary is computationally unbounded, and for the goal of maximizing Pr(Ṽ = V |L), this adversary outper-
forms any other adversary [31].

A closely related alternative is the Bayesian adversary given in [15]. In their definition, the adversary considers the
first o top values of Pr(V |L) instead of the single maximum value. Except for adversary definition, our approach for
security rating is entirely different from [15].

In the analysis of this paper, we focus on the results for the MAP adversary. Therefore, obtained probability bounds
and estimations can be considered as a limit for what all other adversaries might achieve with the same leakage access.

2.4 Implications of t-SNI security in RPM

Security proofs in TPM are simulation-based. In this method, at any order n, the distribution of values of any t
intermediate variables in A′ is shown to be independent of sensitive variables of A. Usually, there is a group of
t + 1 variables, knowledge of which will disclose the corresponding secret in the A. To put it short, in the context
of threshold probing, for a fixed order n, at any number of probes t, A′ is either completely secure or completely
insecure.

In the light of works of [9, 10], we roughly sketch what t-SNI security means in RPM.

Let A be a multi-round block cipher. Exploiting the method explained in part 2.2.1, at any order n, one can derive
algorithm A′, where A′ is only composed of SAND, SXOR, and SR gadgets. The total number of these gadgets is
shown by |A′|.
Assume h(n) is an upper bound for the number of variables appearing in any of these gadgets. In this setting, A′ will
include at most h(n)|A′| variables; each of which, in RPM, is independently known to the adversary with the same
probability ϵ.

In each execution of A′, let random variable Z be the number of variables leaked to the adversary. Based on the
independent nature of leakages, we can bound the expected value of Z as E[Z] ≤ ϵh(n)|A′|.
Conditioned on Z ≤ t, sinceA′ is assumed to be t-SNI secure for say t = n−1, leakages in RPM will be independent
of the secrets of A. As a result, A′ is threshold secure with probability at least p = Pr(Z ≤ t).

For practically used shared gadgets, h(n) is bounded as h(n) ≤ an2 for some constant a. By application of Markov
inequality, to ensure that p ≥ 1−1/k for an arbitrary k ∈ N, the expected value of Z should be bounded as E[z] ≥ t/k.

7

A PREPRINT - JUNE 19, 2021

By substituting for t and h(n), we can drive an upper bound over ϵ as

ϵ ≤ 1

ak|A′|n
. (6)

As long as ϵ satisfies (6), A′ is guaranteed with probability at least 1 − 1/k to be secure. By closer inspection of (6),
the following two counterintuitive corollaries are obtained.

1. For constant ϵ, there is an order n, beyond which, t-SNI security of A′ cannot assure concealment of the
secrets ofA. In other words, increasing the masking order may decrease the security of the masked algorithm.

2. At constant n, as |A′| grows (for example, by adding to the rounds of the corresponding block cipher), the
margin for safe ϵ will shrink. |A′| is independent of n and is directly proportional to the number of rounds of
A. So, one may conclude that if rounds of A increases, its security will not be assured.

By developing a new measure for assessing RPM security, this paper will give a clear picture to resolve the above
strange conclusions.

2.5 State of security proofs in RPM

Thanks to the equivalence proved in [10], one can use the corollaries obtained for either the noisy leakage model and
the RPM interchangeably.

In [8], an upper bound for the mutual information between noisy leakage (with their definition of the noise) and
the secret operands for specific instantiations of SAND and SXOR are given. With these upper bounds in hand, by
neglecting possible leakage from SR gadgets, and by summing up the information leakages corresponding to the
individual shared gadgets, they gave an information-theoretic bound for the overall leakage of A′.

In [9], state of the art in the RPM analysis was brightly improved. The authors of [9] included leakages of SR gadgets
and avoided the arguable random message model adopted in [8]. They also used the more realistic simulation-based
method instead of the mutual information metric. Their results inspire the discussion in part 2.4.

In [10], security proof for constant (independent of n) probability ϵ was given for the first time. The results were
further improved in [32]. However, their method only works with leak-free SR gadgets. The leakage of SR gadget for
a construction similar to SR-Simple [18] is studied in [33]. They could prove the RPM security of their SR gadget.

In a recent work, [34] has considered the security of Boolean masking in the RPM. Our leakage models are identical.
However, their security definition is based on the threshold probing criteria, which is stronger and different from our
security measure.

In [34], with listing all variables of the target algorithm, subsets of the variables with different sizes are considered.
Assume W is the number of variables. For a subset of size w ≤ W , they have counted the number combinations that
result in a simulatable leakage. Let cw ≤

(
W
w

)
be the number of the subsets that are not simulatable. By doing so, for

different subsets of size up to W , they have reached the following measure for the security

f(ϵ) =

W∑
w=t

cwϵ
w(1− ϵ)W−w

Where t is the TPM security margin. f(ϵ) is an estimate for the probability that a random leakage may reveal informa-
tion about the secrets. Because of the exhaustive search approach, their computation load is exponential in the number
of variables of the target algorithm. However, for some small gadgets, they have computed the corresponding f(ϵ).
Their main technical tool is an expansion strategy that in several rounds re-mask the masked algorithm of the previous
round.

A→ A′ → (A′)′ → . . .→ (. . . (A′)′ . . .)′

This expansion drastically increase the size of the final circuit. However, they have proved the security of the final
masked result, for particular constructions, at constant leakage rates as ϵ = 2−8, which is a notable contribution. Our
security definition and its evaluation techniques are different from theirs. We prove security at substantially higher
leakage rates, with ordinary single-round masking.

8

A PREPRINT - JUNE 19, 2021

2.6 More on the new RPM security definition

Our new RPM security given in definition 6, in line with the security notion in [15], considers only a single (not a
combination of) variables of A(n) as the target of the side-channel adversary. This makes definition 6 theoretically
weaker than one given by definition 5.

For SR gadgets, only one secret variable is present, so the limitation to a single target variable is not a problem. For
assessing the RPM security of SAND gadgets, we will consider the case of identical input operands as a marginal
condition. This choice of input operands will limit the secrets of SAND to one. So, again, the limitation of definition
5 will not be an issue. For masked S-Box implementation, again, the secret is uniquely and unambiguously defined.

The pitfall of definition 5 is highlighted when we are considering RPM security of complex structures such as AES
masked implementation. For AES, we will prove RPM security (definition 6) by targeting any variable of unmasked
AES. Practical side-channel research works try to use all the leakage information to recover or estimate a single
variable (usually round-keys of AES). Our RPM security proof for masked AES assures that no adversary can recover
any secret of the corresponding (unmasked) AES. However, it does not prove that an adversary cannot obtain an
algebraic function of multiple secrets of AES. Nevertheless, there is no evidence that how targeting such algebraic
combinations will benefit the adversary. This should not be confused by the concept of the so-called higher-order
attacks. In those attacks, the adversary combines multiple leakage information in order to gain knowledge about a
single secret variable.

With the aforementioned shortcoming of the new definition, one may wonder what the point of working with a weaker
definition is. The answer is that this new definition with the SRP metric is practically measurable, and the limitation
of security definition is only of theoretical importance.

As another point, it is needed to note that, definition 6 if fulfilled implies some stronger corollary stated in the following
Lemma.

Lemma 1. Given leakage L, if for variable V derived SRPV (n, ϵ) tends to zero by increasing order n, then for any
function of V as f(V), SRPf(V)(n, ϵ) will also limit to zero.

Proof. In Appendix A

2.7 Overview of our approach

For each value of order n, we describeA′(n) with a system of parity equations such as P(n). Secret V is also assumed
to be an unknown of P(n). Then, for random sets of leaked variables, we argue the decision rule of the MAP adversary
and also calculate the SRP of the MAP adversary in guessing the secret V at different pairs of (n, ϵ).

For linear algorithms, it is relatively easy to approximate SRP . When P(n) is linear, we can use the Gaussian
elimination technique to see whether P(n) with the leaked variables can determine V or not. However, for non-linear
systems, the problem will be more challenging.

In section 3, we study different linear systems and provide tools for approximating SRP . This section is the foundation
for the other parts of the paper. For linear P(n), we show that an instance of leakage either uniquely determines the
secret V or the P(n) cannot distinguish between different choices for the secret V with this instance of leakage. This
phenomenon will be described by an equivalent erasure channel.

The main examples of linear gadgets are SR gadgets. SR gadgets are mediators between the other gadgets of a complex
structure. For SR gadgets, we derive an equivalent model that lets us reduce the RPM security of complex structures to
the RPM security of their building gadgets. These results presented in section 4 paves the road for studying non-linear
P(n) systems.

An SAND gadget is described with a non-linear P(n). For a non-linear set of parity equations, our approach is to find
a more (or a less) informative but linear counterpart. With this linearization, estimation of SRP will be possible for
non-linear SAND gadgets. An SAND gadget with RPM security is presented in section 5.

SAND security estimation and SR modeling are enough tools to evaluate S-Box security in section 6. Compared to
a single S-Box, a complex structure like AES has many more secret variables, and their parity relations are deeply
interwoven. For exploring the RPM security of AES, we combine the techniques developed for linear P(n) and the
equivalent erasure channel obtained for the S-Box. Results are presented in section 7. Quite surprisingly, we show that
RPM security of AES is not much decreasing with increasing its rounds.

9

A PREPRINT - JUNE 19, 2021

3 EEC for linear masked circuits

In the RPM, during each execution, the adversary learns variables of A′ independently with probability ϵ. The main
question is whether these leaked variables will disclose anything about the secrets of A or not. In this section, for a
restricted class of algorithms, which we call linear, a systematic answer for this question is developed.

For linear A′ with a single secret (like SR gadgets), we prove that disclosing a random set of variables either reveals
the secret ultimately or expresses nothing about it. This two-level marginal behavior of each leakage instance can be
described with an Equivalent Erasure Channel (EEC) with the secret as the input of this channel.

An erasure channel conveys its input V to the output with probability e and puts a special erase symbol ⊥ at output
otherwise. In the latter case, the input is concealed. Parameter e for the EEC of A′ is denoted by eA′(n, ϵ), which is
the probability that a random instance of leakage variables reveals the secret V .

V V w.p. eA′(n, ϵ)

⊥ w.p. 1− eA′(n, ϵ)
EEC for A′(n)

A′ may contain many variables (especially at higher values of order n), so the direct calculation of eA′(n, ϵ) is
impractical. Instead, at each pair of (n, ϵ), we give an estimate of eA′(n, ϵ) with a Mont Carlo based simulation.

As a use case for the developed methods, EEC for different SR gadgets is computed and compared at the end of this
section. Interestingly, the results obtained put doubts on a widely recognized sense about the security of the SR-Simple
gadget and its computationally intensive counterpart SR-SNI.

Recently, [33] also considered SR-Simple in RPM. They demonstrated that SR-Simple, which is deemed insecure
(actually, without t-SNI security) in TPM, is still reliable in RPM. Compared to [33], our methods here are more
general and, albeit entirely different.

3.1 Preliminary Definitions

Before proceeding further, we pause to give precise definitions of some of the terms already mentioned.

Definition 7. Set of variables of an algorithm. From the perspective of computational complexity theory, A′ is a
non-uniform family of circuits. For each value of the order n, there is a unique circuit A′(n) belonging to the family.
Circuits contain no-loop, and their execution path is branch free.

For each A′(n), there is a fixed ordered list of variables denoted by Σ(n). The list Σ(n) includes all the operands
valued during the computation of A′(n). Each entry of Σ(n) is valued only once. The terms A′ and Σ (without
explicit parameter n) refer to the families, with no interest in a particular value of n.

Definition 8. Erasure channel for a single variable. An erasure channel in a field Fq is a probabilistic function
ϕ : Fq → {Fq,⊥} defined by the following relation.

ϕ(x) =

{
x with probability e

⊥ otherwise
(7)

Where ⊥ is a special symbol to denote the erasure of the input. In RPM with parameter ϵ, the adversary learns each
element of Σ(n) through an erasure channel with e = ϵ.

Definition 9. Linear Algorithm. A linear A′ is only composed of degree-one affine operations. Degree-one affine
operations include field XOR and scalar multiplication. Linear A′ will not use higher-degree affine operations such as
field squaring. A′ may contain a special Rand gate that, at each invocation, outputs a uniformly random element of
Fq .

Definition 10. RPM security (for linear algorithms). A′ is called RPM secure if there is a constant ϵo that for any
ϵ < ϵo, eA′(n, ϵ) monotonically decreases towards zero as the order n increases.

For a fixed security level, a faster decline of eA′(n, ϵ) will ease the required order n, and consequently, reduce the
computational overhead of masking.

Generally, eA′(n, ϵ) decays exponentially with n. However, to remain flexible, we omitted any restriction on the speed
of lessening in the definition of RPM security.

10

A PREPRINT - JUNE 19, 2021

3.2 Linear dependencies between variables

Let Σ(n) = [X1, X2, . . . , XT (n)] with T (n) elements all in the same field Fq . Some entries of Σ(n) may be lin-
early dependent on the others. The secret V ∈ Fq is also linearly related to the Xis. The adversary may use these
interconnections in her benefit, like parity equations that are used in the coding theory.

Our first target is to extract these dependencies and then assess the power they give to the adversary for estimating the
secret V .

A linear relation, also called a parity relation, over T (n) + 1 elements of the vector [V,Σ(n)] can be expressed by a
same-length constant vector of coefficients in Fq as U = [u1, u2, . . . , uT (n)+1], where in each run of A′(n) with a
random secret V , the following identity always holds.

⊕T (n)
i=1 ui+1Xi ⊕ u1V = 0 (8)

At each order n, collections of constant vectors like U that are perpendicular to [V,Σ(n)] form a vector space. We
denote this vector space by Vn.

By assumption, A′(n) is composed of only affine gates. Therefore, the realizations of [V,Σ(n)] also form a vector
space. We denote this later vector space by Sn. By definition, Vn is the null space of Sn. This implies that vectors in
Vn are orthogonal to the vectors of Sn.

Set Σ(n) can include constant values. In this case, Sn will not be a vector space. However, constant values do not
convey any information about the random secret V . So, we can remove them from the definition of Σ(n).

A basis B for a vector space is a finite collection of particular vectors called component vectors or coordinate vectors.
Any vector in a vector space can be uniquely constructed by a (finite) linear combination of these component vectors.
The component vectors belonging to a basis B are linearly independent of each other. In finite fields, there are finitely
many basis for a vector space. The number of vectors in each basis is constant and is a feature of the vector space.
This number is called the dimension of the vector space and is represented by Dim(.). The rank-nullity theorem from
linear algebra implies the following identity [35].

Dim(Vn) + Dim(Sn) = T (n) + 1 (9)

Assume Bn is the basis for Vn, and the dimension of Vn is D(n). We create a new matrix Pn
Lin by the component

vectors in Bn. Each row of Pn
Lin is a component vector. In this way, Pn

Lin would have D(n) rows and T (n) + 1
columns. Since D(n) ≤ T (n), the rank of Pn

Lin equals D(n).

By the construction, for each realization of [V,Σ(n)], the following identity should hold.

Pn
Lin × [V,Σ(n)]⊤ = 0 (10)

Where ⊤ denotes matrix transpose.

Interestingly, as far as A′(n) is linear, Pn
Lin gives a complete and alternative description of A′(n) in the sense that

each (T (n) + 1)-tuple vector satisfying (10) should be realizable by A′(n), and each realization of [V,Σ(n)] should
satisfy (10).

From the T (n) element of Σ(n), some are input variables of A′(n), and some are randomness variables (i.e., they are
outputs of Rand gadgets). Let R(n) represents the number of non-input and non-randomness variables of Σ(n).
Lemma 2. If for an algorithmA′(n) the relation D(n) = T (n)+1−R(n) holds, then there is a one-to-one mapping
between (T (n) + 1)-tuples that satisfy equation (10) and (T (n) + 1)-tuples that are generated in A′(n).

Proof. In Appendix B

It is easy to see that the condition required in Lemma 2 is always satisfied with linear algorithms. So, for linearA′(n),
one can examine the coefficient matrix Pn

Lin, instead of directly working with A′(n).

In the sequel, our main target will be evaluating the benefits that the equations described by Pn
Lin give to the adversary.

The adversary in the RPM, thorough leakage, learns some unknowns of the system of equations given in (10). After
substituting for the learned values, the next step is to process the resulting system to find the most probable estimate
for the secret V .

11

A PREPRINT - JUNE 19, 2021

Before proceeding in this direction further, we take a short detour to provide a handy technique for extracting Pn
Lin

for a given linear algorithm A′(n).

3.3 Extracting the linear relations

Although the pseudocode of an algorithm gives a complete description of the relations between the elements of its Σ,
here we provide an alternative and more straightforward procedure for extracting parity relations in a linear algorithm.

Thanks to the versatile tools of linear algebra, we can derive a complete basis for Vn in the following steps, without
dealing directly with the expressions inside A′(n).

At first, for the desired order n, enumerate variables ofA′(n) and create the list Σ(n). The initial order of variables in
Σ(n), once decided, should be kept unchanged; but has no impact on the final results. We assume that all the variables
and operations are in an appropriate field Fq .

Then, by k(n) ≫ T (n) times executing A′(n) with fresh randomness and a new random secret V , create a k(n) ×
(T (n) + 1) matrix M. During each execution of A′(n), a new row of M is filled. The secret V is placed in the first
column of the current row, and the T (n) values of the list Σ(n) are inserted in the next columns, respectively.

Algorithm 1 Create-M
Input A′(n) , Σ(n)
Output k(n)× (T (n) + 1) matrix M

1: for i = 1 to k(n) do
2: V ←$ Fq

3: M(i, 1) = V
4: Execute A′(n)
5: M(i, 2 : T (n) + 1) = Σ(n)

6: return M

The symbol←$ is used for the random selection of an element from a set, and the symbol : is used to specify a range
of columns or rows of a matrix. If : is used without start and end values, it means all the rows or the columns.

Counting the variables depends on the language used for writing the script of the construction and even depends on
the target processor’s architecture and the used compiler. For the results in this paper, pure C-style coding with no
compiler optimization is assumed. Minor modifications in the code scripts may alter the numerical results but seem to
be without effect on the main conclusions.

The next step is to apply Gaussian elimination on the rows of M to compute the corresponding row reduced echelon
form of M, which we represent by E = Gaussian-Elim(M). The pseudocode for Gaussian-Elim(M) is given in
algorithm 2.

Algorithm 2 Gaussian-Elim
Input k(n)× (T (n) + 1) matrix M
Output Row reduced echelon form of M

1: pivot_row = 1 ◃ Initialize the pivot row
2: for col = 1 to T (n) + 1 do
3: for row = pivot_row to k(n) do
4: if M(row, col) ̸= 0 then
5: M(row, :) = M(row, :)/M(row, col) ◃ Normalize M(row, col) to 1
6: M(pivot_row, :) � M(row, :) ◃ Swap the rows
7: for i = 1 to T (n) + 1 , i ̸= pivot_row do
8: M(i, :) = M(i, :)− M(i,col)

M(pivot_row,col)M(pivot_row, :)
9: break

10: pivot_row = pivot_row + 1 ◃ Increase the pivot row
11: E = M
12: return E

Finally, the so-called free columns, also known as free variables, in the resultant matrix E are dependent on the other
columns. Their corresponding relation also can be directly identified from E. Dependency equations obtained will

12

A PREPRINT - JUNE 19, 2021

constitute the rows of Pn
Lin. With algorithm 3, we have Pn

Lin = Extract-Linear(E). The number of free variables in
E is equal to the dimension of Vn.

Algorithm 3 Extract-Linear
Input k(n)× (T (n) + 1) matrix E
Output D(n)× (T (n) + 1) matrix Pn

Lin

1: rowE = 1
2: rowP = 1
3: for colE = 1 to T (n) + 1 do
4: if E(rowE , colE) = 0 then ◃ This column of E is a free column
5: Pn

Lin(rowP , :) = 0 ◃ Add a new row to Pn
Lin and initialize it to all-zero

6: for j = 1 to rowE − 1 do
7: Pn

Lin(rowP , P ivots(j)) = E(j, colE)

8: rowP = rowP + 1 ◃ Increment current row of Pn
Lin

9: else ◃ This column of E is a pivot column
10: Pivots(rowE) = colE ◃ Record pivot column of each row
11: rowE = rowE + 1; ◃ Increment current row of E
12: return E

Rows of derived Pn
Lin are component vectors for the vector space Vn. So, they form a basis for Vn. Given one basis

for Vn, it is straightforward to construct many other basis for it. Each of these basis -irrespective of their sparsity- will
work the same for our purpose. Belief propagation based methods for solving a system of equation dominantly require
sparse representation for the parity equations [36]. Fortunately, our study here has no such prerequisite.

The reliability of the above procedure depends on the value of k(n). An inadequate number of k(n) may introduce
erroneous rows in the Pn

Lin. As stated in the following lemma, increasing k(n) rejects out the accidental parity
relations.
Lemma 3. With k(n) = T (n) +m, by application of the method described above, for m > 1, E will incorporate a
complete basis for the vector space Vn, and the probability of introducing a wrong linear relation over [V,Σ(n)] is
not more than (T (n) + 1)q−(m−1).

Proof. See Appendix C

From a practical point of view, Gaussian-Elim and Extract-Linear are agile polynomial-time algorithms; hence, pro-
ducing Pn

Lin for reasonable values of the order n is relatively fast.

3.4 Driving EEC for a linear A′

Before exploring the informativeness of Pn
Lin in RPM, we focus on what a single instance of random leakage can

disclose about the secret V .

3.4.1 Single instance of random leakage

Assume some indexes of Σ(n) are declared to the adversary. Let the list of remaining unknown indexes be Σ†(n).
With direct substitution of the known values in (10), the following (possibly) non-homogeneous reduced system of
equations will result.

P†n
Lin × [V,Σ†(n)]⊤ = b (11)

The D(n)-element column vector b on the right-hand side of (11) appears after the substitution, and P†n
Lin only

contains coefficients corresponding to the remaining unknowns.

Equations in Pn
Lin are linearly independent; however, some rows of P†n

Lin may be linearly dependent (i.e., the rank of
P†n

Lin may fall below D(n)). The presence of these redundant parities (as will be evident by inspecting the proofs in
the rest) will not affect the adversary’s success probability.

The adversary knows P†n
Lin and can directly calculate vector b. Then, by obeying the MAP decision rule, she tries to

find the most probable value for the -initially random- secret V by listing all the possible solutions of (11).

13

A PREPRINT - JUNE 19, 2021

Assume set S contains non-redundant solutions of (11). Members of S are |Σ†(n)| + 1 length vectors Si that are
satisfying P†n

Lin × [V,Σ†(n)]⊤ = b. The first entry of each Si is the corresponding value for V and is denoted by
S1,i. A posterior probability distribution (i.e., the probability after observation) of the secret V , which we denote by
Pr(Ṽ) can be directly calculated by partitioning the members of S based on their first entry. For each value α ∈ Fq

Pr(Ṽ = α) =
|Si ∈ S , S1,i = α|

|S | . (12)

Where |.| represents the cardinality of a set. The MAP adversary would declare the argument of maxα Pr(Ṽ = α) as
her guess for the secret V .

To solve (11), one can apply Gaussian elimination to the rows of P†n
Lin and compute the row reduced echelon form of

it as G = Gaussian-Elim(P†n
Lin). Coefficients of V reside in the first column of the P†n

Lin. The secret V is linearly
dependent on the variables of Σ(n). Therefore, at least one entry of the first column of P†n

Lin is non-zero. This means
that V is a pivot variable in G, and V will not appear in any other equation of G.
Lemma 4. Suppose the only equation that contains V (i.e., the first row of G) does not include any other variable.
In that case, the adversary can uniquely determine V . Otherwise, any other variable in the first row of G completely
hides the secret V .

Proof. In Appendix D.

Based on Lemma 4, for the leakage of any subset of Σ(n), either of the following two cases below will happen.

1. The distribution Pr(Ṽ) is non-zero only on a particular value of the secret V . In this case, the first entry of
all the members of S are equal. This implies that the adversary can uniquely determine the secret V .

2. The distribution Pr(Ṽ) is uniform over Fq . In this case, each candidate value for the secret V occurs with the
same abundance in the set S . This uniform distribution is another interpretation for the independence of the
secret V from the leaked variables.

For a fixed set Σ†(n), utilizing different randomness in each execution of A′(n) only alters the corresponding vector
b and does not affect the coefficient matrix P†n

Lin. A useful observation made in the proof of Lemma 4 is that only
P†n

Lin determines whether there is a unique answer for V or not, and the right-hand side vector b has no effect. So the
behavior of a fixed Σ†(n) is deterministic. This corollary eases our study of random leakage in the sequel. We need
to study any Σ†(n) only once.

3.4.2 Random instance of leakage

In the RPM with parameters ϵ, Σ†(n) is a probabilistic set. T (n) is a polynomial in the security parameter n, and the
members of Σ†(n) are independently and identically decided. Therefore, set Σ†(n) is efficiently samplable from the
mother set Σ(n). This means that for simulation purposes, we can create indistinguishable (for the MAP adversary)
Σ†(n) samples. Each Σ†(n) either discloses the secret V or completely conceals it. One can model this, from the
MAP adversary perspective, as an EEC with parameter eA′(n, ϵ) and V as input.

Our next goal is to find eA′(n, ϵ), which is the percentage of the cases that the sampled Σ†(n) results in complete
disclosure of the secret V . For this purpose, instead of cumbersome analytic calculations, we estimate the required
probability with a Monte Carlo approach [37]. At each desired pair of (n, ϵ), for a sufficiently large number of times
N , different Σ†(n)s are sampled from Σ(n). Then, the portion of these samples that reveal the secret V is figured out.

Sampling Σ†(n) and then computing the associated P†n
Lin can be simplified. For each leaked variable, the corre-

sponding column is removed from the Pn
Lin, and finally, only the columns for the unknown variables remain in P†n

Lin.
By closer inspection of the Gaussian-Elim algorithm, it is seen that instead of removing columns, we can multiply
the leaked columns by zero. With this alternative method, P†n

Lin will have a fixed number of columns, where the
columns corresponding to the leaked variables are all-zero. The pseudocode for sampling P†n

Lin from the main system
of equations Pn

Lin is given in algorithm 4.

Assume ẽN (n, ϵ) is an estimation of eA′(n, ϵ) with the specified number of trials N . According to the law of big
numbers, the empirical probability of an experiment eventually leads to the expected probability of that event [37]. The

14

A PREPRINT - JUNE 19, 2021

Algorithm 4 Sampl P†n
Lin

Input Pn
Lin and ϵ

Output Random P†n
Lin

1: P†n
Lin = Pn

Lin ◃ P†n
Lin and Pn

Lin are of the same size
2: for col = 2 to T (n) + 1 do ◃ Secret is in the first column
3: r ←$ [0, 1]
4: if r ≤ ϵ then ◃ This happens with probability ϵ

5: P†n
Lin(:, col) = 0 ◃ All the rows of this column are set to zero

6: return P†n
Lin

difference between the empirical measurements and the expected probability lessens as the number of runs increases.
Therefore, we can write

lim
N→∞

ẽN (n, ϵ) = eA′(n, ϵ). (13)

The necessary condition is that the variance of the empirical estimation (i.e., the variance of ẽN (n, ϵ)) decreases by in-
creasing N , at the desired set of (n, ϵ). For the reported results in this paper, sample variance h(N) = Ṽ ar(ẽN (n, ϵ))
is evaluated at various values of N . It is observed that h(N) is acceptably decreasing function of N . So, the prerequi-
site of the limit in (13) is satisfied.

As N increase, the reliability of the estimation increases, but the required time also escalates. So, a middle ground
must be chosen. this paper’s results, we have verified that the following heuristic thumb rule is passed N .

N >
104

ẽN (n, ϵ)
(14)

Pseudocode for approximating eA′(n, ϵ) in a range of distinct ϵ and n values is given in algorithm 5, which is essentially
a collection of the already described procedures.

Algorithm 5 Approx eA′(n, ϵ)

Input The family A′(n)
Output EEC parameter eA′(n, ϵ)

1: for n = 2 to nmax do ◃ Selecting a sufficient nmax depends on the application
2: M = Create-M(A′(n),Σ(n)) ◃ This and the following two lines are independent of ϵ
3: E = Gaussian-Elim (M)
4: Pn

Lin = Extract-Linear(E)
5: for ϵ = ϵmin to ϵmax do ◃ Recommended values are ϵmin = 0.01, step = 0.01, and ϵmax = 0.3
6: j = 0
7: for i = 0 to N do
8: P†n

Lin ← Sampl(Pn
Lin, ϵ)

9: G = Gaussian-Elim (P†n
Lin)

10: if G(1, 2 : T (n)) == 0 then ◃ The secret recovered
11: j = j + 1

12: ẽN (n, ϵ) = j/N ◃ Work for this (n, ϵ) pair finished
13: return eA′(n, ϵ)

In relation to the given producer for approximating e, some points are highlighted here.

• Although the presented algorithms are general and work for any extension field of F2, for the implementations
in this paper, we have used an 8-bit field with the irreducible polynomial given by X8 ⊕X4 ⊕X3 ⊕X ⊕ 1.

• Run-time for approximating eA′(n, ϵ) in a single pair of (n, ϵ) at values of n < 10, for the results that are
presented throughout this paper, was usually less that one minute.

• Interpolation and extrapolation methods can be used to approximate eA′(n, ϵ) beyond the simulation points.

15

A PREPRINT - JUNE 19, 2021

• Based on the physical situation, non-equal values for the leakage rates of different variables can be applied.
This may be useful for studying the effects of imperfect randomness.

• Assuring relation (14) may require running the algorithm several times.

3.5 Driving SRP for a linear A′

In part 2.3, we defined SRP as the success probability of the MAP adversary at the correct estimation of the secret V .
Based on the EEC result; we can derive an approximate value for the SRPA′(n, ϵ).

Note that, when the adversary learns nothing from the leaked set of variables, she still has the chance to find the secret
value V by simply guessing it, which will be right with probability 1/q. So, the SRP corresponding to the linear
algorithm A will be as the following.

SRPA′(n, ϵ) = |eA′(n, ϵ) +
1

q
[1− eA′(n, ϵ)]− 1

q
| = q − 1

q
eA′(n, ϵ) (15)

However, in the rest of the paper, especially when handling non-linear systems, we define SRP as the probability of
extracting the secret (without the random guessing). In this way, we ignore the multiplicative term q−1

q .

3.6 Examining different SR gadgets

In this section, the corresponding e for different linear SR gadgets is evaluated and compared. An SR gadget takes
as input an n-sharing vector

−→
V 0 and produces a new n-sharing

−→
V 1 for the same secret V . SR gadgets like the other

shared gadgets are composed of elementary field gates.

A construction composed of k similar SR gadget in tandem is used for our studies. The output of the ith SR gadget is
denoted by

−→
V i. Repetitive refreshing of the same secret V , as pointed in [33], has various practical use cases.

−→
V 0

−→
V 1

−→
V 2

−→
V k−1

−→
V k

SR1 SR2 SRk
. . .

The obtained eSR→...→SR(n, ϵ) will directly depend on the k. For a valid comparison between different SR candidates,
we use a fixed k = 10 for deriving the results. The main target of RPM security analysis is to study the dependency
of the eSR→...→SR(n, ϵ) value to the order n at the desired values of ϵ. the leakage rate is specified from the physical
leakage situation. See [38] for estimation of ϵ.

SR-Simple. The first SR candidate is SR-Simple [18], whose pseudocode is given in algorithm 6. This SR implemen-
tation once was used in almost any Boolean masking scheme.

Algorithm 6 SR-Simple

Input The n-sharing
−→
V 0 = (V1,0, V2,0, . . . , Vn,0)

Output An n-sharing
−→
V 1 = (V1,1, V2,1, . . . , Vn,1) for the same secret V

1: rn = 0
2: for i = 1 to n− 1 do
3: ri ←$ Fq

4: Vi,1 = Vi,0 ⊕ ri
5: rn = rn ⊕ ri
6: Vn,1 = Vn,0 ⊕ rn

7: return
−→
V 1

The SR-Simple in each invocation requires n − 1 new randomness. Its computational complexity is O(n) and the
number of its variables is |ΣSR-Simple(n)| = 4n−1. n input elements, rn before the for loop, 3(n−1) variables inside
the for loop, and one variable after the for loop. With the method described in part 3.3, D(n) = 3n is obtained.

Since the composition SR→ . . .→ SR is linear, we can derive the family of relations Pn
Lin for it. With the procedure

given in algorithm 4, for k = 10, at order n = 5, with leakage rate ϵ = 0.1, we obtained eSR→...→SR(n, ϵ) ≈ 4×10−4,
for SR-Simple. In figure 3, the approximation results for a constant ϵ = 0.1, at different values of order n, are plotted.

16

A PREPRINT - JUNE 19, 2021

SR-SNI. The next linear SR candidate is SR-SNI. Which is proved to be SNI secure in TPM, for t = n − 1. Its
pseudocode is given in algorithm 7. In each invocation, this SR gadget requires n2−n

2 new randomness and has
O(n2) computational complexity. Common sense is that this extra randomness consumption combined with its higher
processing complexity makes the SR-SNI more secure than the SR-Simple. However, quite surprisingly, for k = 10
consecutive refreshing structure, our results show that in any point (n > 2, ϵ), the value of eSR→...→SR(n, ϵ) is higher
with SR-SNI than with the SR-Simple. For example, with n = 5 and ϵ = .1, we obtained eSR→...→SR(n, ϵ) ≈ 3×10−3,
which is nearly ten times more than the corresponding value for SR-Simple.

Algorithm 7 SR-SNI

Input The n-sharing
−→
V 0 = (V1,0, V2,0, . . . , Vn,0)

Output An n-sharing
−→
V 1 = (V1,1, V2,1, . . . , Vn,1) for the same secret V

1: for i = 1 to n do
2: for j = i+ 1 to n do
3: r ←$ Fq

4: Vi,0 = Vi,0 ⊕ r
5: Vi,0 = Vj,0 ⊕ r

6: for i = 1 to n do
7: Vi,1 = Vi,0

8: return
−→
V 1

Compared to SR-simple, the defining relations for SR-SNI are symmetric over the elements
−→
V 0 and the elements of

−→
V 1. In SR-simple, the last share of

−→
V 0 (i.e., Vn,0) participates in different equations. However, in SR-SNI, relations

are indifferent to members of
−→
V 0 and

−→
V 1. In the SR-SNI, symmetry is apparent. This feature will be very beneficial

in proving the RPM security of complex structures in the rest of this paper.

SR-Rot. The third SR candidate is SR-Rot. It requires n randomness in each invocation, and its computational
complexity is O(n). The pseudocode given in algorithm 8 describes it.

This gadget is introduced in [39], and its SNI security is studied in [40]. The format of SR-Rot that is presented here
has not SNI security for t = n − 1 at orders n > 4. For all values of ϵ, our evaluations show that SR-Rot is RPM
secure. The algorithm is symmetric over the input and the output variables. So, it has the above-mentioned symmetry
future.

SR-Rot has comparatively higher leakage rates than SR-Simple. With k = 10, n = 5, and ϵ = 0.1, we obtained
eSR→...→SR(n, ϵ) ≈ 6.5× 10−4, which is approximately twice the corresponding value for SR-Simple.

For the three SR gadgets, at k = 10, and ϵ = 0.1, results for eSR→...→SR(n, ϵ) are plotted in figure 1.

Algorithm 8 SR-Rot

Input The n-sharing
−→
V 0 = (V1,0, V2,0, . . . , Vn,0)

Output An n-sharing
−→
V 1 = (V1,1, V2,1, . . . , Vn,1) for the same secret V

1: for i = 1 to n do
2: ri ←$ Fq

3: for i = 1 to 2 do
4: for j = 1 to n do
5: ind = mod(i+ j − 2, n) + 1 ◃ To apply a cyclic shift in the used randomness variables
6: Vi,0 = Vi,0 ⊕ rind
7: for i = 1 to n do
8: Vi,1 = Vi,0

9: return
−→
V 1

3.6.1 Insecurity of SR-SNI at high leakage rates

Before the results in this paper, SR-SNI was considered the most secure linear candidate for refreshing an n-sharing.
However, by performing a thorough assessment, we observed that at any order n > 2, and any ϵ, eSR-SNI has higher

17

A PREPRINT - JUNE 19, 2021

2 3 4 5 6 7

−1

−2

−3

−4

−5

SR-Simple
SR-Rot
SR-SNI

Masking order n

lo
g
1
0
(e

S
R
→

..
.→

S
R
)

eSR→...→SR(n, ϵ) for k = 10 and ϵ = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eSR-Rot n = 5
eSR-Rot n = 20
eSR-SNI n = 5
eSR-SNI n = 20

Leakage rate ϵ

e

eSR-SNI(n, ϵ) and eSR-Rot(n, ϵ) at different orders

Figure 1: (Left) eSR→...→SR(n, ϵ) for different SR gadgets at k = 10 and leakage rate ϵ = 0.1. (Right) eSR-SNI(n, ϵ)
and eSR-Rot(n, ϵ) at different orders for ϵ < .09

values compared to the other two SR gadgets. As another negative point for this refreshing, we observed that at higher
leakage rates, increasing the masking order also increases the eSR-SNI. A similar event does not happen for the other
two SR gadgets.

In figure 1, eSR-SNI and eSR-Rot are plotted at different orders n. For ϵ > 0.45, the behavior of eSR-SNI changes, and it
begins to be insecure. In other words, for a single SR-SNI at ϵ > 0.45, there is an order ñ, beyond which the MAP
adversary with an increasingly high probability can recover the secret of the input n-sharing. This is what simulation
results tell. Nevertheless, it is not clear what is a valid justification for this behavior.

Note that, according to our definition of RPM security, we cannot tell that SR-SNI is insecure. In fact, for at least
ϵ < 0.15, by exploring and curve-fitting the results of various orders, we can give the following exponentially decaying
relation for eSR-SNI.

eSR-SNI(n, ϵ) ≤ ϵ0.6n (16)

4 Modeling leakage of SR gadgets

According to part 2.2.1, in the masking procedure, all the computations are rewritten with elementary gates after some
preprocessing. Then, these elementary gates are replaced with their shared counterparts, which we call SGs. As the
next step, SR gadgets are inserted between any two consecutive SGs that have a common secret.

Assume SG1 and SG2 both are computing on the same secret V .The output of SG1,
−→
V 0, which is an n-sharing of the

secret V , instead of directly passing to SG2, is first fed into an SR gadget, and then
−→
V 1, which is a new n-sharing for

the secret V , is given to SG2. Each variable of the whole construction independently may leak to the adversary. The
adversary’s goal -as before- is to obtain the most probable guess for the secret V .

−→
V 0

−→
V 1

SG1 SR SG2

Intuitive justification of the role of SR is quite tricky. It should be noted that SR makes no change in the results of the
computations. However, by introducing fresh randomness, it tries to decrease the usefulness of leaked variables. SR
disconnects boundary variables of SG1 and SG2. As another role, SR facilitates the reduction of the RPM security of
the compound construction SG1 → SR → SG2 to its building gadgets’ RPM security. This reduction is a significant
step toward evaluating the security of more sophisticated constructions like a masked implementation of the S-Box of
the AES.

18

A PREPRINT - JUNE 19, 2021

4.1 Reduction with leak-free SR gadgets

In [8], by assuming that SR gadgets are leak-free (i.e., an adversary cannot probe their internal variables), the authors
could decompose the security of the construction SG1 → SR → SG2 -in their metric for the security- to the security
of SG1 and SG2. A leak-free SR gadget is required for preserving the conditional independence of

−→
V 0 and

−→
V 1. This

independence is critical for the proofs given in [8].

In the software implementations, the SR gadget (like the other SGs) is a piece of code. The adversary can access its
internal variables like any other variable of the entire masked algorithm. Therefore, in software implementations, the
requirement of leak-free SR gadgets cannot be fulfilled.

Effectively taking into account the SR gadgets leakages, instead of neglecting, is a long-standing open problem in the
RPM. As an answer to this problem, in this section, we provide a quite tight bound on what extra-benefit the adversary
can get from the leakage of an SR gadget.

Effects of leakage from SR gadgets. Before diving into the detailed assessments, we briefly describe the conse-
quences of the leakage from SR gadgets.

Leakage from ΣSR has two effects.

1. Since the secret V depends on the ΣSR, if an adversary learns a good portion of variables in ΣSR, she may
uncover the secret V with this knowledge directly.

2. As an indirect effect, by leakage of ΣSR, extra parity relations between
−→
V 0 and

−→
V 1 will emerge. These new

equations interconnect parity relations of SG1 and SG2; this consequently reduces the RPM security of the
whole structure.

4.2 A describing system of equations

Up-to here, we were confined to linear algorithms for which a linear system of equations thoroughly describes the
relations. Now, in the construction given by SG1(n)→ SR(n)→ SG2(n), not all the relations are linear. Variables of
ΣSG1

(n) and ΣSG2
(n) may have non-linear dependencies.

We separate the boundary variables and decompose the sets as ΣSG1(n) = [ΣI
SG1(n)

,
−→
V 0], ΣSR(n) = [ΣI

SR(n),
−→
V 0,
−→
V 1],

and finally ΣSG2(n) = [ΣI
SG2(n)

,
−→
V 1]. Based on this new ordering, the system of equations defining SR is de-

noted as LSR(n)(Σ
I
SR(n),

−→
V 0,
−→
V 1, V), and the governing system of SG1(n) with possibly non-linear relations as

NLSG1(n)(Σ
I
SG1(n)

,
−→
V 0, V). Equations set for SG2(n) is defined similarly. It is supposed that all the variables and

operations are in an appropriate field Fq . The secret V is common to the three sets of equations. Relations in each set
are confined only to their argument variables. By merging the three, the system of equations that completely describes
SG1(n)→ SR(n)→ SG2(n) will be as follows.

P(n) =

NLSG1(n)(Σ

I
SG1(n)

,
−→
V 0, V) = 0

LSR(n)(Σ
I
SR(n),

−→
V 0,
−→
V 1, V) = 0

NLSG2(n)(Σ
I
SG2(n)

,
−→
V 1, V) = 0

(17)

To highlight the dependency of the derived relations to the order n, we denote the system (17) with P(n).

Intuitively, the combination of the three equations set in P(n) will give the adversary more power than a separate
assessment of them. As an extreme case, the three combined may uniquely determine the secret V , but V appears to
be uniformly random in considering each system alone.

4.3 Strategy of the MAP adversary

The MAP adversary is aware of the construction and the order n. Thus, she can develop a describing system of
equations similar to P(n).

Before receiving any leakage, the secret V is entirely random. Upon learning some unknowns of the P(n) through leak-
age, she will substitute the disclosed variables in P(n). Hence, she will reach to a new (possibly) non-homogeneous
system of equations, which we call P†(n). The secret V still is an unknown of this resultant system. Next, she will

19

A PREPRINT - JUNE 19, 2021

list all the possible solutions of P†(n). By partitioning the list of answers based on their value for V , she will finally
announce the V ’s most frequent value as her estimate for the secret.

Our main work in this section will be to provide an upper bound on the success probability of the MAP adversary.
Note that listing all the solutions of P†(n) is impractical for high values of the order n. So we cannot directly evaluate
the SRPSG1→SR→SG2

(n, ϵ). Instead, we will use tricky ideas to estimate an upper bound on this probability.

Order of variables As for linear gadgets, for non-linear gadgets, any reordering of the variables will change the de-
scribing equations. However, the solution set is independent of the representation chosen for the describing equations.
As a result, the probability of correct estimation of the secret given any leakage will be invariant to P(n) changes.

4.4 Related definitions

Before proceeding further, we pause to give two more definitions.

Definition 11. Primary solution. Among all the solutions of P(n), we denote the primary solution by S∗, which is
the actual values realized in the current execution of the experiment. In this notation, the realized value of the secret is
denoted by V ∗.

Definition 12. Helper H. A new entity titled H, who is aware of S∗, and may give some of S∗’s unleaked elements
to the adversary. Undoubtedly, the MAP adversary that is receiving help fromH performs better in guessing the secret
V .

4.5 Requirements on the gadgets

To reduce the RPM security of the chain SG1 → SR→ SG2 to RPM security of its composing gadgets; some limitation
on the structure of the participating gadgets is required. It is assumed that the SR gadget is linear. No such restriction
on the structure of SG1 and SG2 is required. There are two mild prerequisites for the internal relation of variables in
P(n), which we explain next.

Condition 1. Considering the SR gadget alone that is described by LSR(n)(Σ
I
SR(n),

−→
V 0,
−→
V 1, V), the only relation

between the input and the output vectors,
−→
V 0 and

−→
V 1, should be their defining equality as ⊕

−→
V 0 = ⊕

−→
V 1 = V .

Equivalently, conditioned on the value of V ,
−→
V 0 and

−→
V 1 should be independent. The SR candidates studied in part

3.6 satisfy this prerequisite.

For a given SR gadget, verification of this condition is straightforward; in section 3.3, it is outlined how to find the
linear relations in an ordered set of variables by generating an appropriate matrix M, and computing its row reduced
echelon form E. The same procedure can be applied to extract the linear relations of 2n-tuple [

−→
V 0,
−→
V 1]. Condition 1

requires that there be exactly one free variable in the resultant matrix E.

It is to be noted that the requirement for linear SR gadgets discussed here is not a restriction of our proof methods.
We think this condition can be considered as a design role for SR gadgets. In other words, a well-designed SR gadget
should satisfy condition 1.

Condition 2. P(n) should be symmetric in the elements of
−→
V 0 and also in the elements of

−→
V 1.

We count on the symmetry of the describing pseudocode of each gadget for justification of this condition. For example,
it is clear from the SR-Rot and the SR-SNI pseudocodes that they have at least one system of parity relations, which is
symmetric over members of

−→
V 0 and

−→
V 1. However, in the SR-Simple, variable Vn,0 is treated differently. So, Vn,0 may

participate in more parity relations than others. Thus, the SR-Simple does not fulfill the requirement of this condition.

For SG1 and SG2 again, the symmetry of the construction, if such symmetry exists, will guarantee that condition 2
holds. We explain more on this when SAND candidates in part 5 are introduced.

4.6 Reduction of the security in RPM

As in the previous section for linear systems, we first focus on a single instance of leakage. Then, we extend the
obtained results to the general case of random leakage.

20

A PREPRINT - JUNE 19, 2021

Let the adversary learn some elements of the primary solution S∗. By direct substitution of these values in P(n), a
new system of equations as (18), denoted by P†(n), will emerge. Description of P†(n) depends on the set of leaked
variables and their values.

P†(n) =

NL

†
SG1(n)

(Σ†I
SG1(n)

,
−→
V †

0, V) = b1

L
†
SR(n)(Σ

†I
SR(n),

−→
V †

0,
−→
V †

1, V) = b2

NL
†
SG2(n)

(Σ†I
SG2(n)

,
−→
V †

1, V) = b3

(18)

In (18), the upper script † is used to specify the remaining unknown variables and the relations among these variables.
The secret V shall be unknown up to this point. b1 to b3 are known vectors that are emerged after substitutions.

Some members of
−→
V 0 and

−→
V 1 may have leaked to the adversary. The terms

−→
V †

0 and
−→
V †

0 denote the remaining
unknowns of these vectors. Based on the leaked members, we have the following identities.{

V = (⊕
−→
V †

0)⊕ b4

V = (⊕
−→
V †

1)⊕ b5
(19)

Where ⊕ operator before a vector means XOR of all its members, and scalar values b4 and b5 depend on the leaked
variables.

The equation in the first row of (19) exists in both of NL†SG1(n)
and L

†
SR(n), and similarly, the second equation exists in

both of NL†SG2(n)
and L

†
SR(n).

We continue by investigating P†(n) for this instance of leakage. The lemma given below, which is proved in Appendix
E, can simplify P†(n).

Lemma 5. By applying elementary row operations, the subsystem which is given by L†SR(n)(Σ
†I
SR(n),

−→
V †

0,
−→
V †

1, V) = b2

can be partitioned into two linearly independent sets of equations; without changing the space of solutions of P†(n).
These two subsystems are as follows.{

L1(Σ
†I
SR(n)) = L2(

−→
V †

0,
−→
V †

1, V)⊕ b1
2

L3(
−→
V †

0,
−→
V †

1, V) = b2
2

(20)

Where b1
2 and b2

2 are constant vectors dependent on the value of the leaked variables, and equations specified by L1
are linearly independent of each other.

For two equation sets as L1 and L2 in (20), equivalence means that their respective lines are equal. So, L1 and L2 must
have the same number of equations.

The description provided in (20) separates relations containing variables of Σ†I
SR(n) from the other equations in the

subsystem L
†
SR(n)(Σ

†I
SR(n),

−→
V †

0,
−→
V †

1, V) = b2.

Since relations in L1 are linearly independent, any non-trivial linear combination of the equations in L1(Σ
†I
SR(n)) =

L2(
−→
V †

0,
−→
V †

1, V)⊕ b1
2 will still have variables from Σ†I

SR(n) with non-zero coefficients.

Next, we show that the subsystem given in the first row of (20) does not change the probability distribution of Ṽ .

Lemma 6, which is proved in Appendix F, provides a mathematical condition to rule out the relations containing
variables of Σ†I

SR(n).

Lemma 6. In a system of equations containing both linear and non-linear relations as{
L4(Σ1) = L5(V,Σ2)

NL1(V,Σ2,Σ3) = 0
(21)

If variables specified by Σ1, Σ2, and Σ3 are segregate, and equations in L4 are linearly independent of each other, then
the probability distribution of Ṽ will only depend on the system NL1(V,Σ2,Σ3) = 0. So, as much as the estimation
of the secret V is concerned, the subsystem given by L4(Σ1) = L5(V,Σ2) can be ignored from (21).

21

A PREPRINT - JUNE 19, 2021

By applying Lemma 5, P†(n) given in (18) can be decomposed as follows.

P†(n) =

NL

†
SG1(n)

(Σ†I
SG1(n)

,
−→
V †

0, V) = b1

LSR-1(Σ
†I
SR(n)) = LSR-2(

−→
V †

0,
−→
V †

1, V)⊕ b1
2

LSR-3(
−→
V †

0,
−→
V †

1, V) = b2
2

NL
†
SG2(n)

(Σ†I
SG2(n)

,
−→
V †

1, V) = b3

(22)

Where the linear equation sets denoted by LSR-1(.) to LSR-3(.) are created from the subsystem defined by
L
†
SR(n)(Σ

†I
SR(n),

−→
V †

0,
−→
V †

1, V) = b2, and b1
2 and b2

2 are constant vectors dependent to b2.

Note that subsystems represented by NL
†
SG1(n)

and NL
†
SG2(n)

are transferred intact from (18) to (22).

By using Lemma 6, we can remove the subsystem in the second row of (22), without affecting the probability distri-
bution of Ṽ . The resulted system is shown by P††(n) and is as follows.

P††(n) =

NL

†
SG1(n)

(Σ†I
SG1(n)

,
−→
V †

0, V) = b1

LSR-3(
−→
V †

0,
−→
V †

1, V) = b2
2

NL
†
SG2(n)

(Σ†I
SG2(n)

,
−→
V †

1, V) = b3

(23)

We can simplify P††(n), especially the subsystem LSR-3(
−→
V †

0,
−→
V †

1, V) = b2
2, further. Let ESR be the event that the

subsystem LSR-3(
−→
V †

0,
−→
V †

1, V) = b2
2 alone determines the secret V .

For a given set of equations as LSR-3 by Lemma 4, it is straightforward to find out whether ESR has occurred or not. If
ESR occurs, the job is finished, and the secret is uniquely identified.

Because we have preserved the probability distribution of Ṽ , by the connection of the event ESR and the EEC of SR,
at each pair of (n, ϵ), we can write

Pr(ESR) = eSR(n, ϵ). (24)

Assume ESR has not occurred, we can process LSR-3(
−→
V †

0,
−→
V †

1, V) = b2
2, and remove the secret V from it. As noted in

(19), the following equations belong to P††(n) even if we delete LSR-3(
−→
V †

0,
−→
V †

1, V) = b2
2 from P††(n).

{
V = (⊕

−→
V †

0)⊕ b4

V = (⊕
−→
V †

1)⊕ b5
(25)

For each equation in LSR-3(
−→
V †

0,
−→
V †

1, V) = b2
2, if the coefficient of V is non-zero, we can add either of the identities in

(25) and hence remove V from it. At this point, the trivial relation

(⊕
−→
V †

0)⊕ b4 = (⊕
−→
V †

1)⊕ b5 (26)

will always exist in this system. based on condition 1 given in part 4.5, we know that no other omnipresent equation
will exist in this system.

Relation (26) is a dependent equation in P††(n). Because, this identity comes from the XOR of the first line of (25),
which is present in the NL†SG1(n)

, and the second line of (25), which belongs to the NL†SG2(n)
. Therefore, we can remove

it from this system. The final system is shown by LSR-4(
−→
V †

0,
−→
V †

1) = b3
2. By substituting in (23), we get

P††(n) =

NL

†
SG1(n)

(Σ†I
SG1(n)

,
−→
V †

0, V) = b1

LSR-4(
−→
V †

0,
−→
V †

1) = b3
2

NL
†
SG2(n)

(Σ†I
SG2(n)

,
−→
V †

1, V) = b3

. (27)

22

A PREPRINT - JUNE 19, 2021

Our next goal is to partition P††(n) into two subsystems, one including NL
†
SG1(n)

, and the other including NL
†
SG2(n)

.

For this objective, the relations in LSR-4(
−→
V †

0,
−→
V †

1) = b3
2 are the main obstacle.

Most of the time (especially when ϵ is small enough), the system described by LSR-4 contains no equation. For the case
that LSR-4 is not empty, if H gives the present unknowns in LSR-4(

−→
V †

0,
−→
V †

1) = b3
2 to the adversary, then we can do the

desired partitioning of the P††(n). This extra leakage will increase the success probability of the MAP adversary.

We show the present unknowns (i.e., unknowns of the system with non-zero coefficients) with
−→
V ††

0 and
−→
V ††

1 , corre-
spondingly.

Let vectors b6 and b7 be the values of
−→
V ††

0 and
−→
V ††

1 . H will give the b6 and b7 to the adversary. In this way, the new
governing system of equation will be

NL
†
SG1(n)

(Σ†I
SG1(n)

,
−→
V †

0, V) = b1
−→
V ††

0 = b6−→
V ††

1 = b7

NL
†
SG2(n)

(Σ†I
SG2(n)

,
−→
V †

1, V) = b3

. (28)

Before proceeding in this direction further, we need to point to a practically important issue.

Requesting the minimal help from H. As stated, the disclosed vectors b6 and b7 will increase the success proba-
bility of the MAP adversary, equations in the system LSR-4(

−→
V †

0,
−→
V †

1) = b3
2 can be linearly processed to make them as

spars as possible. A sparse representation will have fewer present variables.

Since for practical evaluations in this paper the size of subsystem LSR-4 is not so big, we can find the most sparse
representation by exhaustive search. In general, finding the most sparse representation for a given system of equations
is a difficult task. Some papers suggest heuristic methods for finding a sparser basis for a given linear system [41].

Back to the study of (28), considering that the secret V is the only common variable of (28), we partition this compound
system into the following two subsystems.

P††
1 (n) =

{
NL

†
SG1(n)

(Σ†I
SG1(n)

,
−→
V †

0, V) = b1
−→
V ††

0 = b6

(29)

And similarly,

P††
2 (n) =

{
NL

†
SG2(n)

(Σ†I
SG2(n)

,
−→
V †

1, V) = b3
−→
V ††

1 = b7

(30)

The probability distribution of Ṽ can be calculated for P††
1 (n) and P††

2 (n) separately, and then the results can be
properly combined to get the final approximation of Pr(Ṽ).

Note that we are handling a single instance of random leakage. We showed that by getting help from H, it is possible
to bound knowledge of the MAP adversary by two separate systems of equations given in (29) and (30). To simplify
these systems further, we need to make use of the probabilistic nature of leakage.

In the random leakage,
−→
V ††

0 and
−→
V ††

1 are random sets. These vectors provide extra leakage for the adversary that is
studying NL

†
SG1(n)

(Σ†I
SG1(n)

,
−→
V †

0, V) = b1 and NL
†
SG2(n)

(Σ†I
SG2(n)

,
−→
V †

1, V) = b3.

We aim to utilize the symmetry introduced with condition 2 given in part 4.5, and model the extra random leakage
provided via

−→
V ††

0 and
−→
V ††

1 as an equivalent leakage rate ϵ′ on the elements of boundary vectors
−→
V 0 and

−→
V 1.

The expected cardinality of
−→
V ††

0 and
−→
V ††

1 is a function of SR and is independent of SG1 and SG2. We define fSR(n, ϵ)
for the most sparse representation of LSR-4 as

fSR(n, ϵ) =
1

2
E[|
−→
V ††

0 |+ |
−→
V ††

1 |]. (31)

23

A PREPRINT - JUNE 19, 2021

By the symmetry of the studied SR gadgets in this paper, and the identity |
−→
V 0| = |

−→
V 1|, one may expected a simpler

definition as fSR(n, ϵ) = E[|
−→
V ††

0 |]. Note that, by appropriately sparsing LSR-4, we want to minimize the information
that H should give to the adversary. However, sparsing with the only target of decreasing |

−→
V ††

0 | may give a non-
optimal value for |

−→
V ††

1 |. For establishing an upper bound on the success probability of the MAP adversary, we should
ensure thatH gives strictly enough information to the adversary.

Computing fSR(n, ϵ), defined in relation (31), for desired pairs of (n, ϵ), can be directly done with a Monte Carlo
approach. For a sufficiently big number of times N , in the ith trial, an instance of random leakage is sampled, and the
described procedure to find hN (i) = 1

2 (|
−→
V ††

0 |+ |
−→
V ††

1 |) is carried out. The sample average 1
N

∑N
i=1 hN (i) is reported

as fSR(n, ϵ).

The following lemma defines the equivalent leakage rate ϵ′ as a function of fSR(n, ϵ).

Lemma 7. In RPM with parameter ϵ, the probability distribution of Ṽ conditioned on

{
NLSG1(n)(Σ

I
SG1(n)

,
−→
V 0, V) = 0

−→
V ††

0 = b6

(32)

is statistically equivalent to the probability distribution of Ṽ conditioned on

NLSG1(n)(Σ
I
SG1(n)

,
−→
V 0, V) = 0. (33)

Where in the latter case, the members of
−→
V 0, instead of ϵ, leak with the higher rate

ϵ′ = ϵ+
fSR(n, ϵ)

n
− ϵ

fSR(n, ϵ)

n
≈ ϵ+

fSR(n, ϵ)

n
. (34)

Proof. See Appendix G.

Combining separate leakages for the secret V . Until here, we have identified three separate sources of information
regarding the secret V . First is the occurrence of the event ESR, which reveals the secret. The second is the subsystem
defined by NLSG1(n)(Σ

I
SG1(n)

,
−→
V 0, V) where the member of ΣI

SG1(n)
leak with probability ϵ and the members of

−→
V 0

leak with parameter ϵ′(n, ϵ). The third is the subsystem defined by NLSG2(n)(Σ
I
SG2(n)

,
−→
V 1, V) with the leak conditions

similar to the second case.

Combining leakage information from different sources in general can be quite challenging. Thanks to the derived
EECs for the shared gadgets, this combination will be an easy task.

EEC in the next sections is developed for the type of shared non-linear gadgets that we will encounter. These EECs
(in contrast to the case of linear gadgets) are valid only for a limited (but still practical) region of ϵ values.

Lemma 8. If the MAP adversary learns V through a set of independent EECs with parameters {e1, e2, ..., ek}, then
this knowledge is equivalent to a new EEC with parameter e∗ ≤ e1 + e2 + ...+ ek.

Proof. The lemma is obtained by applying the union bound on the probabilities.

At least for linear gadgets, considering different leakage rates on the elements of its Σ is technically feasible. However,
to provide closed-form formulations, we assume that all the members of Σ are leaking to the adversary with the higher
probability ϵ′. This assumption, of course, will increase the success probability of the MAP adversary further and
hence worsen the obtained bounds. With a simple reduction, it is easy to show that for any gadget SG, at any fixed
order n, eSG(n, ϵ) is a monotonically increasing function of ϵ.

24

A PREPRINT - JUNE 19, 2021

By directly applying Lemma 8, we can finally give an EEC for the chain SG1 → SR → SG2 with the following
parameter.

eSG1→SR→SG2
(n, ϵ) = Pr(Ṽ = V)

= Pr(Ṽ = V |ESR) Pr(ESR) + Pr(Ṽ = V |ESR) Pr(ESR)

≤ Pr(ESR) + Pr(Ṽ = V |ESR)

= eSR(n, ϵ) + Pr(Ṽ = V |ESR)

≤ eSR(n, ϵ) + eSG1
(n, ϵ′) + eSG2

(n, ϵ′)

(35)

Where ϵ′ is given in the (34).

Bound given in (35) is derived for those values of ϵ that the corresponding EECs for SG1 and SG2 are valid. In the
next section, for an SAND gadget, EEC and its validity region will be given.

Condition 1 in part 4.5 for SR-Simple is not satisfied. For SR-SNI by the described procedure, we computed fSR-SNI
at various pairs of (n, ϵ). By curve-fitting the obtained results, we have found the following estimations.

fSR-SNI(n, ϵ) ≤
1

3
nϵ valid for (n ≥ 3, ϵ ≤ 0.1)

fSR-SNI(n, ϵ) ≤ 5nϵ2 valid for (n ≥ 4, ϵ ≤ 0.15)

fSR-SNI(n, ϵ) ≈ 2nϵ2 valid for (n→∞, ϵ ≤ 0.15)

(36)

Unfortunately, 1
nfSR-Rot(n, ϵ) at any value of ϵ grows unboundedly. So, we cannot use SR-Rot for proofing the RPM

security of a composition of different gadgets.

It is interesting to note that SR-SNI has the highest leakage rate. Nevertheless, its leakage propagation is much less
than SR-Rot.

4.7 Multiple SR gadgets at the output

In the next section, we will encounter structures as in figure 2, where the output of one shared gadget is fed into
multiple SR gadgets. In this case, the reduction provided is still possible with some modifications. Parity equations
related to each SR gadget is decomposed as in Lemma 5, and the equations containing internal variables are discarded
as in Lemma 6. For SRi, the remaining relations (after sparsing) are of the format LSRi−4(

−→
V †

0,
−→
V †

i). H will give the
present unknowns to the adversary. The rest of the proof steps are straight-forward, so we state the final result.

For the construction given in figure 2, assuming that the SR gadgets are similar, parameter e(n, ϵ) is obtained as
follows.

e(n, ϵ) ≤ keSR(n, ϵ) + eSG(n, ϵ+ k
fSR(n, ϵ)

n
) (37)

4.8 Multiple SR gadgets in the input

In figure 2, if SG1 was absent, then we face a problem for k > 1. In this case, multiple (more than one) SR gadgets
are feeding from the input point. This is what happens in the analysis of the S-Box in figure 5.

Taking a similar approach as was done in this section, the following bound for e(n, ϵ) in this case can be obtained.

e(n, ϵ) ≤ keSR(n, ϵ) + [ϵ+ k
fSR(n, ϵ)

n
]n (38)

5 An SAND with RPM security

As an introduction to the rest of this paper, after a brief note on the importance of non-linear algorithms, we point to
the primary method for probability analysis over non-linear systems. Then, the crucial role of the SAND algorithm for
masking of non-linear functions is stated.

25

A PREPRINT - JUNE 19, 2021

−→
V 0

−→
V 0

−→
V 1

−→
V k

...
...SG(n)

SR1(n)

SRk(n)

Figure 2: The output of one gadget is feeding multiple SR gadgets.

Role of non-linear algorithms. Linear algorithms cover only a minimal portion of cryptographic functions. In many
primitives, including block ciphers, non-linear parity relations are present. Non-linearity is an indispensable ingredient
for the security of block ciphers. However, unfortunately, compared to linear systems, for general non-linear systems,
Algebra has much fewer tools, so direct approximation of the SRP (as we did for linear systems) is not feasible.

Belief propagation algorithm. For characterizing approximate probability distribution of a random variable V ∈ Fq

conditioned on (non-)linear equations P(V, .), belief propagation (BP), also known as message passing, is a preva-
lently used tool.

The BP algorithm’s performance dominantly depends on the sparsity of underlying equations in P(V, .). An equation
is labeled as sparse if it is composed of a minimal number of variables. The sparsity of the equations in P(V, .) directly
affects reliability and the workload of BP.

BP is used in some RPM security evaluations [11, 42]. The inherent suboptimality of this algorithm prohibits it from
being a security proof tool [43]. MAP adversary is not computationally bounded and, by definition, outperforms any
suboptimal procedure. Therefore, to prove an algorithm’s security against a MAP adversary, new technical mecha-
nisms rather than BP are required.

Non-linearity translates to SAND. In part 2.2.1, it made clear that through Lagrange interpolation for each S-Box,
the SAND gadget handles the non-linearity of the block cipher. Higher degree affine operations such as field squaring
are also out of our definitions for linear algorithms. Nevertheless, the main challenge in investigating the after-effect
of random leakage will be the intricate SAND gadget.

5.1 Candidates for SAND gadget

The SAND gadget with two n-sharing inputs
−→
X and

−→
Y outputs an n-sharing vector

−→
Z , where the relation between

participating secrets is Z = XY .

The prominent candidate for SAND realization is the SAND-ISW, which was initially proved threshold secure with
t = ⌊n/2⌋ [12]. In [18], operations were generalized to extended fields, and security proof modifications were made
to declare it secure against t = n− 1 probes.

The SAND-ISW construction, with the pseudocode given in algorithm 9, uses n2 field multiplication and requires
(n2 − n)/2 randomness variables. Numerous research works and practical implementations have used this SAND
candidate. In TPM, it is proved to be t-SNI secure for t = n − 1 [14]. However, in RPM with a method similar to
BP, it is shown to be insecure for ϵ > 1/n [11, 13]. From then, providing a new realization for the SAND with proved
RPM security is still an open problem.

In this part, we analyze the SAND candidate introduced in [13], which we call SAND-Rec. With some modifications
in the original construction, we prove the RPM security of SAND-Rec for constant values of ϵ. As for the linear
algorithms, we give an EEC for SAND-Rec for a region of ϵ values. This EEC will help us to propose an RPM secure
S-Box implementation for the AES block cipher in the next section.

To bound the success probability of the MAP adversary, conditioned on a non-linear system of equations governing
the SAND-Rec, our primary tool is to introduce a more (and a less) informative but linear conditions to obtain an upper
(and a lower) bounds on the success probability of the MAP adversary.

26

A PREPRINT - JUNE 19, 2021

Algorithm 9 SAND-ISW

Input The n-sharings
−→
X and

−→
Y

Output An n-sharing for
−→
Z where Z = XY

1: for i = 1 to n do
2: for j = i+ 1 to n do
3: ri,j ←$ Fq

4: rj,i = (ri,j ⊕XiYj)⊕XjYi ◃ Order of the ⊕ operations are important
5: for i = 1 to n do
6: Zi = XiYi

7: for j = 1 to n , j ̸= i do
8: Zi = Zi ⊕ ri,j
9: return

−→
Z = (Z1, Z2, . . . , Zn)

−→
X n-sharing

−→
Y n-sharing

B n2-sharing for Z −→
Z n-sharing

Mat-Mult(n) Compression(n)

Figure 3: The SAND-Rec composed of the Mat-Mult and the Compression sub-algorithms

5.2 Structure of SAND-Rec

In [13], the authors introduced the idea of recursive refreshing and multiplication for implementing an SAND algo-
rithm. They provided a heuristic justification for the RPM security of their algorithm.

Here, we review this construction with some changes. The modifications are done to increase the security in RPM and
decrease the algorithm’s overall computational load. However, the critical idea of recursive refreshing is still intact.
For a description of the original algorithm, refer to [13].

SAND-Rec, as shown in figure 3, is composed of two sub-algorithms working in tandem named Mat-Mult and
Compression, respectively. Mat-Mult as input receives 2n elements for the two n-sharings of

−→
X and

−→
Y and pro-

duces an n2-sharing for the secret Z = XY . These n2 values are stored in an n × n matrix B for further processing.
Next, the Compression algorithm takes B and uses new fresh randomness to output

−→
Z , which is an n-sharing for the

secret Z.

The pseudocode of Mat-Mult given in [13] is limited to the values of n that are powers of 2. Here we give a description
suitable for all values of n.

5.2.1 Mat-Mult sub-algorithm

The pseudocode for Mat-Mult is presented in algorithm 10. We give an explanation of its structure in the following.

Mat-Mult is a recursive algorithm. At the first invocation, it takes nX -sharing
−→
X and nY -sharing

−→
Y . In this call to

Mat-Mult, as initial call, nX and nY are equal to the order n.

If nX and nY both be 1, then B = X1Y1 and the function invocation terminates. Otherwise, each of the input vectors
−→
X and

−→
Y are partitioned into two left and right subvectors. For

−→
X , the resultant subvectors will be denoted by

−→
XL

and
−→
XR.

−→
XL = (X1, X2, . . . , X⌊n/2⌋)

−→
XR = (X⌊n/2⌋+1, . . . , Xn) (39)

If nX is even, the length of these left and right vectors will be the same. However, if nX is odd, then the length of
−→
XL

will be one less than the length of
−→
XR.

−→
Y is partitioned similarly. Following this principle, if nX = 1 and nY > 1,

then
−→
XL will be an empty vector. Empty vectors are represented by the [] symbol.

27

A PREPRINT - JUNE 19, 2021

The rest of the computations are carried on the four above-generated subvectors. The guiding rule for the follow-up is
the below simple identity.

XY = (XL ⊕XR)(YL ⊕ YR) = XLYL ⊕XLYR ⊕XRYL ⊕XRYR

= ⊕Mat-Mult(
−→
XL,
−→
YL)⊕Mat-Mult(

−→
XL,
−→
YR)⊕Mat-Mult(

−→
XR,
−→
YL)⊕Mat-Mult(

−→
XR,
−→
YR)

(40)

According to our notations, XL = ⊕
−→
XL, and the other secrets are defined similarly.

The output of Mat-Mult for
−→
XL and

−→
YL as inputs will be placed in the sub-matrix BLL. The other three Mat-Mult

calls will generate BLR, BRL, and BRR, respectively. The final B matrix will be

B =

[
BLL BLR

BRL BRR

]
. (41)

The key heuristics observation in [13] was that refreshing of input vectors before each call to Mat-Mult -by incorpo-
rating fresh extra randomness in the algorithm- may increase the security against random probing leakages.

For length-one inputs, the refreshing gadget will be the identity function. If
−→
XL is empty, then BLL and BLR both

will be empty. Similarly, if
−→
YL happens to be empty, then BLL and BRL will be empty.

Algorithm 10 Mat-Mult

Input The n-sharings
−→
X and

−→
Y

Output An n2-sharing for Z = XY saved in the matrix B

1: if nX = 1 and nY = 1 then
2: B = X1Y1 ◃ This is the return point for the recursive calls
3: else
4:

−→
XL = (X1, X2, . . . , X⌊nX/2⌋)

−→
XR = (X⌊nX/2⌋+1, . . . , XnX

)

5:
−→
YL = (Y1, Y2, . . . , Y⌊nY /2⌋)

−→
YR = (Y⌊nY /2⌋+1, . . . , YnY

)

6: if
−→
XL ̸= [] and

−→
YL ̸= [] then

7: BLL = Mat-Mult(SR(
−→
XL),SR(

−→
YL)) ◃ Even in this call SR is used

8: if
−→
XL ̸= [] and

−→
YR ̸= [] then

9: BLR = Mat-Mult(SR(
−→
XL),SR(

−→
YR))

10: if
−→
XR ̸= [] and

−→
YL ̸= [] then

11: BRL = Mat-Mult(SR(
−→
XR),SR(

−→
YL))

12: if
−→
XR ̸= [] and

−→
YR ̸= [] then

13: BRR = Mat-Mult(SR(
−→
XR),SR(

−→
YR))

14: B =

[
BLL BLR

BRL BRR

]
15: return B

In algorithm 10, input vectors, before each new call to Mat-Mult, are refreshed. In [13], the call corresponding to the
BLL is done without refreshing (its input vectors). The tools that we provide in this section can be used to investigate
the role of each refreshing in the overall RPM security of the Mat-Mult algorithm.

The SR gadget that is used in [13] is the SR-SNI. In section 3, it was demonstrated that SR-SNI leaks more informa-
tion than its lightweight counterpart SR-Simple. We use SR-Simple as the SR gadget in Mat-Mult. This choice in
comparison with SR-SNI results in much fewer parity relations, which substantially decreases the success probability
of the MAP adversary for a given couple of (n, ϵ).

5.2.2 Compression sub-algorithm

The output of Mat-Mult is Bn×n, which is an n2-sharing for the Z = XY . The Compression algorithm squeezes this
n2-sharing into an n-sharing vector for the secret Z.

28

A PREPRINT - JUNE 19, 2021

The pseudocode presented in algorithm 11 is the Compression given in [13]. The security evaluation framework
developed in this section can be used to study the effect of different (linear) candidate structures for the Compression
gadget.

Algorithm 11 Compression

Input The n2-sharing for Z = XY saved in the matrix Bn×n

Output An n-sharing
−→
Z

1: for i = 1 to n do
2: for j = i+ 1 to n do
3: ri,j ←$ Fq

4: rj,i = (ri,j ⊕Bi,j)⊕Bj,i

5: for i = 1 to n do
6: Zi = Bi,i

7: for j = 1 to n , j ̸= i do
8: Zi = Zi ⊕ ri,j
9: return

−→
Z = (Z1, Z2, . . . , Zn)

The n2-element input and n-element output vectors for the Compression algorithm are linearly independent of each
other (see section 4.5). This can be directly verified by the method discussed in part 3.3. Furthermore, both the
input vector and the output vector are sharing’s for the same secret Z. These similarities with SR gadgets allow us to
use results developed in the last section for assessing the RPM security of the combined Mat-Mult → Compression
construction.

5.3 Bounds for the security of SAND-Rec

We first study the RPM security of the Mat-Mult sub-algorithm alone, neglecting the Compression’s presence in its
output. For this non-linear construction, an upper and a lower bound for the success probability of the MAP adversary
is derived. These bounds are denoted by SRP+

Mat-Mult(n, ϵ) and SRP−
Mat-Mult(n, ϵ).

Then, utilizing the similarities of Compression with SR gadgets, we derive an EEC for the combination of Mat-Mult
and Compression. However, in contrast to the EEC for linear algorithms, the obtained EEC for SAND-Rec is valid
only for a limited portion of ϵ values.

5.3.1 Proof idea

The MAP adversary -observing a set of leaked variables- aims to find the most probable guess for the secrets. The
secret can be each of the X , Y , and Z in the SAND gadget.

Our main observation is that the default parity relations describing the Mat-Mult are in a specific format. These parity
relations are non-linear; however, we can replace them with linear systems by paying a price. The price is that instead
of SRPMat-Mult, we approximate an upper and a lower value for it.

Technique for deriving SRP+
Mat-Mult(n, ϵ). Based on the set of variables leaked to the adversary, entity H (defined

in part 4.4) will reveal some extra information to the adversary to omit non-linear terms. With only a linear parity
system left, estimating the SRP is straightforward. The result will be an upper bound for the SRPMat-Mult(n, ϵ).

Technique for deriving SRP−
Mat-Mult(n, ϵ). By assuming that a certain subset of ΣMat-Mult(n) will not leak to the

adversary, the effective parity relations for describing Mat-Mult will again become a linear system. The result obtained
with this linear system will be a lower bound for SRPMat-Mult(n, ϵ).

For ϵ < .15, estimations for SRP+
Mat-Mult(n, ϵ) and SRP−

Mat-Mult(n, ϵ) exponentially (in the order n) tend to zero.
In these leakage rates, we will approximate SRPMat-Mult(n, ϵ), and based on this approximation, an EEC for the
Mat-Mult will be given.

5.3.2 Computing SRP+
Mat-Mult(n, ϵ)

The pseudocode for Mat-Mult (as any other gadget) describes the relations of the variables in ΣMat-Mult(n). We call
this direct formulation of the parity equations as the standard-description and denote it by PS(n).

29

A PREPRINT - JUNE 19, 2021

Variables in the standard-description can be partitioned into two disjoint sets. One set contains only the output variables
stored in matrix B, and the other set is composed of all other variables.

For a variable U ∈ B, there exist a couple of variables in ΣMat-Mult(n) such as X1 and Y1, that U −X1Y1 = 0. In the
standard-description, U , except for U −X1Y1 = 0, does not appear in any other relation. Intuitively, for X1 and Y1,
the multiplication X1Y1 is the last step of computation, and no further processing on the X1Y1 is done.

The main observation regarding the standard-description of Mat-Mult is stated in Lemma 9.

Lemma 9. If U ∈ B is not leaked to the adversary, then the relation U − X1Y1 = 0 can be removed from the
standard-description without affecting the success probability of the MAP adversary.

Proof. See Appendix H.

However, if U leaks to the adversary, then she learns X1Y1. In this case, H will reveal both of the X1 and Y1 to the
adversary. This extra information will definitely increase the success probability of the MAP adversary. By substituting
X1 and Y1 (and U), the relation U −X1Y1 = 0 will be trivial with no unknowns.

Parity equations like U −X1Y1 = 0 are the only non-linear relations in PS(n). For a given set of leakage variables,
thanks to Lemma 9, and the extra leakage given by H, the non-linear relations either can be removed from P†

S(n) or
are trivial. Therefore, P†

S(n) becomes a linear system for which we can calculate SRP . Here, P†
S(n) is a system of

equations obtained from PS(n) after substituting for the leaked variables.

Choosing the appropriate secret. Our discussion in section 3 was confined to the case of a single secret. However,
the SAND gadget has three secrets with a non-linear dependency among them. Then the question is: SRP should be
based on which of these variables? To solve this challenge, again, the structure of standard-description will help.

Computations on X and Y are carried separately until the ending point multiplications. As a consequence, in P†
S(n),

after removing the non-linear relations by the described procedure, the parity equations for X and Y are separable
into two disjoint subsystems. In a way that, each parity relation resides only in one subsystem. In other words,
each equation gives information about only X or Y , not both. Parity equations will provide their best benefit to the
adversary if they are aligned to the same target. By choosing X = Y as the secret, any parity equation in P†

S(n) will
be useful.

5.3.3 Computing SRP−
Mat-Mult(n, ϵ)

If we assume that members of B will not leak to the adversary, then based on Lemma 9, we know that P†
S(n) will be

a linear system. For this linear system, SRP can be directly calculated.

Since we have assumed that some variables will not leak, the SRP results will be a lower bound for the success
probability of the MAP adversary. For this case, we also assume that X = Y is the secret of the system.

5.3.4 Estimation results for the RPM security of Mat-Mult

For the upper bound, we replace every U ∈ B with its corresponding X1 and Y1 variables in the matrix M. So,
for each U , two new columns will be added to M. These new variables, with probability ϵ, both will be known to
the adversary. Deriving Pn

Lin is done with the Extract-Linear algorithm. However, Sampl(Pn
Lin, ϵ) function should

be slightly modified. One random variable r ←$ [0, 1] should control the leakage event of each pair of the above
mentioned X1 and Y1 auxiliary variables. The rest of the work is done according to algorithm 5. For the lower bound,
variables U ∈ B are crossed out from M, and the next steps are done based on algorithm 5. Note that non-linear parity
relations are ignored (with no modification in the procedures).

In figure 4, the estimation results for SRP+
Mat-Mult(n, ϵ) and SRP−

Mat-Mult(n, ϵ) are plotted. For obtaining these results,
SR-Simple is used for the realization of the SR functions.

By curve-fitting the results for n < 30, the following two approximations, for region ϵ < 0.15, are derived.

SRP+
Mat-Mult(n, ϵ) ≤ ϵ0.3n

SRP−
Mat-Mult(n, ϵ) ≈ ϵ0.8n

(42)

30

A PREPRINT - JUNE 19, 2021

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRP+ n=5
SRP+ n=10
SRP+ n=15

SRP− n=3
SRP− n=5
SRP− n=15

Leakage rate ϵ

S
R
P

Figure 4: SRP+ and SRP− for Mat-Mult at different orders

By the linearity of the final systems of parity equations, we can write

SRP−
Mat-Mult(n, ϵ) ≤ eMat-Mult(n, ϵ) ≤ SRP+

Mat-Mult(n, ϵ). (43)

Considering the plotted upper bound in figure 4, it is clearly seen that for ϵ > 0.22, as the masking order increases,
the upper bound for RPM security of the structure also increases. Hence, Mat-Mult may be insecure for ϵ > 0.22.
Interestingly, for Mat-Mult with SR-SNI, SRP− starts being insecure for ϵ > 0.3. So, Mat-Mult with SR-SNI is
definitely insecure for ϵ > 0.3.

5.3.5 Adding the leakage of Compression

From algorithm 10 and 11, it is clear that Mat-Mult and Compression are symmetric. So, condition 2 of section 4.5 is
satisfied. For Compression, we have verified condition 1, and it is also satisfied.

With almost the same procedure used in section 4, we can find an upper bound on eSAND-Rec(n, ϵ). The only difference
is that the Compression input vector has n2 variables, so the computation of ϵ′ should be modified.

For Compression, the definition of fCompression(n, ϵ) should be modified. In this linear refreshing algorithm, the input is
an n2-sharing, and the output is an n-sharing. After applying Lemmas 5 and 6, a linear system as LCompression-4(B

†,
−→
Z †)

will appear. In this system, B† are the remaining unknowns of the input B, and
−→
Z † are the remaining unknowns of

the
−→
Z .

Here, we only need to define ϵ′ for the connection between Mat-Mult and Compression. For this purpose, based on
the present unknowns of LCompression-4, after sparsing, we define fCompression as follows.

fCompression(n, ϵ) = E[|B††|] (44)

With this definition, with a procedure similar to Lemma 7, ϵ′ for output port of Mat-Mult is obtained as

ϵ′ ≈ ϵ+
fCompression(n, ϵ)

n2
. (45)

The final bound on eSAND-Rec(n, ϵ) will be

eSAND-Rec(n, ϵ) ≤ eMat-Mult(n, ϵ
′) + eCompression(n, ϵ). (46)

31

A PREPRINT - JUNE 19, 2021

In a region of ϵ values, fCompression(n, ϵ) and eCompression(n, ϵ), for n < 30, are approximated by a sufficiently large
number of trails. The results are as follows.

fCompression(n, ϵ) ≤ ϵn2 valid for (n ≥ 4, ϵ ≤ .07)

eCompression(n, ϵ) ≤ ϵ0.6n valid for (n ≥ 2, ϵ ≤ 0.15)
(47)

5.4 EEC for the SAND-Rec

By substituting estimations in (47) and (42), in the eSAND-Rec(n, ϵ) relation given in the (46), for (n ≥ 4, ϵ ≤ .07), we
will have

eSAND-Rec(n, ϵ) ≤ (2ϵ)0.3n + (ϵ)0.6n ≈ (2ϵ)0.3n. (48)

This proves the RPM security of the proposed SAND-Rec structure.

The implementation provided in this paper for Mat-Mult exhibits a much lower arithmetic workload compared to its
counterpart given in [13]. This reduction in the complexity gets practically more critical for higher values of n.

The computational complexity of the SAND given in [13] is O(n2 log(n)), and the complexity of SAND-Rec in this
paper is O(n2), which is the same as SAND-ISW [12].

This section’s results put an end to the first counterintuitive corollary made in part 2.4 by giving the first practically-
used (non-affine) gadget with proved RPM security at constant (independent of n) ϵ values. The second corollary will
also be proved to be incorrect in the rest of this paper.

6 RPM secure masking for X−1 S-Box

For X−1 S-Box used in the AES, RPM security for a new arbitrary-order masking construction is proved in this section.
Based on our notations, the masked counterpart of S-Box is denoted by S-Box′. For the proposed S-Box′, SAND-Rec
is used to realize the SAND gadgets, and SR-SNI is used for the SR gadgets.

In a limited region of ϵ values, an EEC for the new masked construction is derived. EEC models the random leakage
consequences as a black-box that either reveals X with probability eS-Box′(n, ϵ) or conveys nothing about X . The
results will help characterize the RPM security of a masked AES at arbitrary order n in the next section.

For an X ∈ Fq , S-Box′ accepts an n-sharing
−→
X as input and outputs an n-sharing

−→
Y , where Y = S-Box(X). In [18],

the authors used the following identity to implement their S-Box′.

X−1 = X254 = [(X2X)(X2X)4]16(X2X)4X2 (49)

The multiplication X2X is performed just once. Computing X2i is an affine operation in Fq=28 . The given identity
has only four non-affine multiplications. These multiplications are done with SAND gadgets. S-Box in the AES also
has a constant XOR operation in its output, which we have ignored here for simplicity.

Our implementation, given in figure 5, for the shared computation of X−1 is different from the one given in [18]. We
have used more refreshing gadgets, one between any consecutive SGs with a common secret. The extra SR gadgets
enable usage of the results that we have developed so far.

By directly applying the upper bound given in section 4, we can reduce the RPM security of the composition in figure
5 to the RPM security of its building gadgets. Furthermore, since we have already developed EEC for the individual
gadgets, by Lemma 8, we can derive an EEC for the entire S-Box′.

Choosing the appropriate secret. Secrets of the SGs in figure 5 are not the same; they are different powers of the
input X . To provide an upper bound, we assume that by the knowledge of Xj , the MAP adversary will determine X
uniquely. Mathematically, this is true only if gcd(j, 255) = 1. Some power of X appearing in the construction fail
to satisfy this condition. To solve this issue, we can assume that H (defined in part 4.4) helps the adversary and, by
receiving (j,Xj), gives X to the adversary. Obtaining help from H will increase the success probability of the MAP
adversary.

32

A PREPRINT - JUNE 19, 2021

−→
X

(.)2

SR1

−→
X2

SAND1

−→
X3

SR2 SR3

(.)4

−−→
X12

SR4

SAND2

−−→
X15

(.)16 −−−→
X240

SR5

SR6

SAND3

−−−→
X252

SR7 SAND4

−−−→
X254

SR8

Figure 5: Proposed masked implementation for the X−1 S-Box

ϵ′ ≈ ϵ+ 3
fSR
n

SR1

ϵ

SAND1

ϵ′ ≈ ϵ+ 3
fSR
n

SR2

ϵ

SR3

ϵ

SR4 ϵ

SAND2

ϵ

ϵ′ ≈ ϵ+
fSR
n

SR5 ϵ

SR6 ϵ

SAND3

ϵ′ ≈ ϵ+
fSR
n

SR7

ϵ

SAND4

ϵ′ ≈ ϵ+
fSR
n

SR8 ϵ

Figure 6: Equivalent leakage rate ϵ′ for each gadget in the proposed construction

Including leakage of affine gadgets. Affine operations, such as (.)2
i

, introduce no extra intermediate variable and
are operated on each share separately. Therefore, taking their leakage effect into account is relatively easy. Consider a

simple composition as (.)2
i → SR with

−→
X l as input. From Lemma 7, we know that the SR gadget increases ϵ value on

the output of (.)2
i

to ϵ′ ≈ ϵ+ fSR(n, ϵ)/n. Random leakage on the shares of X l2i is equivalent to random leakage on
the input X l shares, because we have assumed that adversary with knowledge of (j,Xj) can recover X . So, we can
ignore the presence of (.)2

i

gadget, and conclude that shares of input X l are leaking randomly with ϵ′.

In figure 5, input vector X l is feeding three SR gadgets, so ϵ′ at input point will be ϵ′ ≈ ϵ + 3fSR(n, ϵ)/n. Also,
SAND1 is connected to three SR gadgets in its output. The detail parameters for ϵ′ corresponding to each SG is written
in its vicinity in figure 6.

To use the previous EEC results, we have confined the leakage rate to ϵ < 0.03 and the masking order to n ≥ 4.

Finally, by Lemma 8, the EEC for the construction given for X−1 evaluation in figure 6 will be as follows.

eS-Box′(n, ϵ) ≤ 8eSR-SNI(n, ϵ)

+ 3eSAND-Rec(n, ϵ+
fSR-SNI(n, ϵ)

n
) + eSAND-Rec(n, ϵ+ 3

fSR-SNI(n, ϵ)

n
)

+(a) [ϵ+ 3
fSR-SNI(n, ϵ)

n
]n

≤ 8ϵ0.6n + 3(
8

3
ϵ)0.3n + (4ϵ)0.3n + (2ϵ)n ≈ 4(4ϵ)0.3n

(50)

33

A PREPRINT - JUNE 19, 2021

Where we used the approximation fSR-SNI(n, ϵ) ≤ 1
3nϵ that was given in (36). The reason for the additive term

specified by (a) is explained in part 4.7. From (50), by increasing the order n, eS-Box′ will decrease, which proves the
given structure’s RPM security.

6.1 Relation of the RPM security with the number of used gadgets

From relation (50), it seems that the RPM security of a construction is inversely proportional to its complexity. i.e., as
the number of utilized SGs in a construction increases, its overall RPM security decreases. This is rather easy to justify
in the case of our proposed masked S-Box; in this structure, there are a lot of leaking gadgets, and all these leakages
are about the same secret.

One may deduce that, in general, as the number of SGs in a masked implementation grows, its RPM security declines
(see part 2.4 and relation (6) with its accompanying explanation). However, in the next section, we will show that this
conclusion is not correct for the AES, which is much more complicated than a single S-Box.

As another point, it worth noting that connecting the output of one SAND gadget to multiple SR gadgets substan-
tially decreases the RPM security of the entire structure. In the proposed S-Box′, the output of SAND1 is effectively
connected to three SR gadgets. Consequently, admissible ϵ values are limited to a narrower region compared to a
stand-alone SAND-Rec gadget. It would be an interesting topic to find a remedy for this situation. Maybe designing a
new refresh gadget that can provide multiple output vectors alleviates this issue.

7 RPM secure masking of AES

As our last contribution, we study the RPM security of a masked implementation for the AES at arbitrary order n. In
the AES, S-Box is the only non-linear function, and all the other operations are affine in Fq=28 . Details of Boolean
masking of AES can be found in [18]. Here, we analyze the RPM security of AES′, using the S-Box′ implementation
given in the last section.

Effect of complexity on the RPM security. As was explained in part 2.4, previous bounds suggest that RPM
security is inversely proportional to the number of participating SGs. In a complex structure like AES′, there are many
gadgets. In RPM, each gadget leaks information about its secrets. The proposed S-Box′ is made out of only 4 SAND
gadgets. However, AES′ is roughly composed of 600 SAND gadgets, which shows an about 150 fold increase in the
used SANDs. SR gadgets are also much more compared to a single S-Box′. In this regard, the main question is: to
what extent are these leaking gadgets reinforcing each other. To be more specific, is it possible that they sum up and
reveal the secrets of AES, even at moderately small ϵ values?

In [11, 42], the authors have used the BP algorithm to combine the leakages throughout the entire masked implementa-
tion. In contrast to expectations, their results demonstrate no sign of massive advantage over targeting a single gadget.
Since the BP algorithm is suboptimal, its failure at combining leakage of different gadgets does not mean that such a
combination cannot occur. Our results in this section will give a clear explanation for this contradiction.

In the remainder of this section, we first briefly review the structure of AES′ with a focus on the initial rounds. Then,
explain our method for approximating the RPM security of the presented AES′. In the end, the success probability of
the MAP adversary targeting the first sub-key of the first round is approximated.

7.1 Structure of the AES′

AES is a symmetric-key block cipher that operates on 128-bit blocks of plain-text inputs and has several variants for
the input key-length. The one with a 128-bit key is the most used option. In this choice for the key-length, computation
of the 128-bit cipher-text is carried in 10 rounds.

Operations are in an 8-bit field. So, the input plain-text is partitioned into 16 concatenated bytes. We use boldface
letters with a vector over them, such as

−→
P , for denoting the associated 16 concatenated n-sharing vectors.

−→
P =

−→
P1||
−→
P2|| . . . ||

−→
P16 (51)

Based on the 16-byte input key, different keys are produced for each round of AES. Keys for each round are 16-byte
and are called round-keys.

In the first round, the plain-text is bit-wise XORed with its round-key. The operations in the 2nd to the 9th rounds are
similar. Three functions, S-Box, Shift-Rows, and Mix-Columns, are applied on the 16-byte input of each round. At the

34

A PREPRINT - JUNE 19, 2021

end of each round, the 16-byte round-keys are XORed with the results. The last round is quite different. In that round,
the Mix-Columns is absent.

AES is composed of non-linear S-Box calculation and affine Shift-Rows and Mix-Columns functions. For the masked
implementation, input to both of the Shift-Rows′ and Mix-Columns′ are 16 n-sharings. Their outputs are also 16
n-sharings. Detail description of these two algorithms can be found in [44].

In algorithm AES′-Rounds(1 : 2), which shows the procedures in the first two rounds of AES′, the masked functions
Shift-Rows′ and Mix-Columns′ are used. For our study here, since these two algorithms are affine, their internal
structure makes no difference. So, we do not point to their interior structure, even though their effects are precisely
taken into account in the RPM security results.

Algorithm 12 AES′-Rounds(1 : 2)

Input 16 n-sharings of input plain-text, represented by
−→
P =

−→
P1||
−→
P2|| . . . ||

−→
P16

Output 16 n-sharings as input to third round, represented by
−→
V =

−→
V1||
−→
V2|| . . . ||

−→
V16

1: for i = 1 to 16 do
2:

−→
K1

i ← SR(
−→
K1

i) ◃ Round-keys are refreshed before each new run

3:
−→
Ti =

−→
Pi ⊕

−→
K1

i

4:
−→
Ri ← SR(

−→
Ti) ◃ End of round 1

5:
−→
Si = S-Box′(

−→
Ri)

6:
−→
Si ← SR(

−→
Si)

7:
−→
U = Shift-Rows′(

−→
S)

8:
−→
U = Mix-Columns′(

−→
U)

9: for i = 1 to 16 do
10:

−→
K2

i ← SR(
−→
K2

i)

11:
−→
Vi =

−→
Ui ⊕

−→
K2

i ◃ End of round 2
12: return

−→
V =

−→
V1||
−→
V2|| . . . ||

−→
V16

In algorithm AES′-Rounds(1 : 2), round-keys for different rounds are specified by an upper script. Since the round-
keys are fixed, they can be computed once and saved in a memory for future uses, instead of recalculating them in
each encryption.

The ⊕ operation over two same-length vectors is defined as XOR of their respective elements. SR gadget in algorithm
AES′-Rounds(1 : 2) is SR-SNI. For better readability, some variables in the algorithm are valued multiple times. This
makes no issue in RPM security evaluation, in matrix M, we will give separate names (and so, separate columns) for
each usage of a variable. Furthermore, We assume that the MAP adversary is aware of the used plain-texts; this means
that she knows the 16 secrets of the

−→
P .

7.2 Approximating the RPM security of the AES′

Each variable of AES can be considered as a target for the MAP adversary. However, since the input plain-text is
assumed known, the sub-keys of the first rounds, i.e., K1

i s, for i = 1 to 16, are mostly targeted. Here we study RPM
security with K1

1 as the secret.

P1 (the secret of the n-sharing
−→
P1) is known to the adversary. So, if the adversary learns K1

1 , she learns S1 (the secret
of the n-sharing

−→
S1). Also, by using the relation S-Box−1(.), knowledge of S1 leads to K1

1 . Therefore, we can write

SRPK1
1
(n, ϵ) = SRPS1(n, ϵ). (52)

The only non-linear operation in the first two rounds of the AES′ is the 16 S-Box′ calculations of the second round.
In the last section, we derived and EEC for the S-Box′. This EEC can help us eliminate the non-linear parities, and
consequently, calculate SRPS1 directly with the methods presented for the linear algorithms.

35

A PREPRINT - JUNE 19, 2021

Lemma 10. In the RPM, for algorithm AES′-Rounds(1 : 2), in i = 1 to 16, at region (n ≥ 4, ϵ < 0.02), leakage from
the lines

−→
K1

i ← SR(
−→
K1

i)

−→
Ti =

−→
Pi ⊕

−→
K1

i
−→
Ri ← SR(

−→
Ti)

−→
Si = S-Box′(

−→
Ri)

(53)

can be replaced with Φ(Si), where the function Φ(.) is an erasure channel with parameter ϕ(n, ϵ) = eS-Box′(n, ϵ
′) +

2eSR(n, ϵ) + 2(ϵ′)n, where ϵ′ = ϵ+ fSR(n, ϵ)/n.

Proof. See Appendix I.

With the direct application of Lemma 10, we can approximate SRPs1(n, ϵ) using algorithm Approx eA′(n, ϵ) with
some considerations.

The function Create-M should be modified to include equivalent leakages from the secret Sis. For i = 1 to 16, Sis
are placed in the first 16 columns of M. Rest of the variables in algorithm AES′-Rounds(1 : 2), corresponding to the
lines 6 to the end, will be the next columns of M.

Members of
−→
Vi for i = 1 to 16 are also in M. However, we cannot assume that their shares are just leaking with

probability ϵ.
−→
Vis are the only variables that bridge the second round with the next rounds. So, they should, in some

way, reflect the leakage consequences of the next rounds. To provide an answer, we consider two marginal cases.

• As one extreme, we consider that leakages in rounds 3 to end are very high, such that shares of
−→
Vi are

completely extractable for the adversary. In this case, we show the success probability of the MAP adversary
by SRP+

S1
(n, ϵ).

• As the other extreme, we assume that leakages in rounds 3 to the end have a minimal effect on the recovery
of the shares of

−→
Vis, and they are only leaking with probability ϵ. In this case, the success probability of the

MAP adversary is denoted by SRP−
S1
(n, ϵ).

Deriving the corresponding Pn
Lin is done with Extract-Linear algorithm. However, P†n

Lin = Sampl(Pn
Lin, ϵ) function

should apply different probabilities on its columns. The columns 1 to 16 corresponding to S1 to S16 will leak with
probability eS-Box′(n, ϵ

′). Note that S1 is our target, that we also assume leaks with probability eS-Box′(n, ϵ
′). Share of

−→
Vis, for computing SRP+

S1
(n, ϵ), should leak with probability one. The remaining columns will leak independently

with probability ϵ.

If S1 is leaked to the adversary, then there is no need to solve P†n
Lin. However, if S1 still to be unknown, G = Gaussian-

Elim (P†n
Lin) should be invoked. The rest of Approx eA′(n, ϵ) (algorithm 5) is routinely computed.

7.3 Approximation results

Secret S1 is known directly with probability ϕ(n, ϵ) (given in Lemma 10), and also may be recovered with the system
of equations described by G. Simulation results demonstrate that the probability ϕ(n, ϵ) is much higher than the
probability of recovering secret S1 from G. For this reason, we estimate the latter probability separately, and at the
end, use union bound to combine the two probabilities.

For ϵ < 0.02, the difference between SRP−
S1
(n, ϵ) and SRP+

S1
(n, ϵ) is very faint and practically negligible. Therefore,

we assume that SRP−
S1
(n, ϵ) ≈ SRP+

S1
(n, ϵ) ≈ SRPS1

(n, ϵ). With curve-fitting the obtained results, we put forward
the following estimations.

SRPS1
(n, ϵ) ≤ ϕ(n, ϵ) + 3(ϵ)n−1 ≈ eS-Box′(n,

4

3
ϵ) ≈ 4(5.3ϵ)0.3n (54)

The derived bound for SRPS1
(n, ϵ) is exponentially decaying, and this proves the RPM security of the proposed

masking for the AES.

36

A PREPRINT - JUNE 19, 2021

Practical equivalence of SRP+
S1
(n, ϵ) and SRP−

S1
(n, ϵ) means that increasing the rounds does not appreciably affect

the RPM security. By inspecting the relations in Pn
Lin, it becomes clear that the main reason for why leakages in

different rounds are not amplifying each other hides in the confusion that round-keys are introducing. They act as a
barrier and avoid the spread of leakage results between the rounds.

8 Conclusion and future works

Studying the RPM security of masked implementations by utilizing their defining parity equations is a new idea
founded in this paper. With this approach, we could provide RPM secure gadgets. Moreover, with appropriately
modeling leakage of SR gadgets, we could prove the RPM security of a combination of gadgets as in a masked S-Box
and a masked AES.

The techniques developed in this paper can be used to evaluate the RPM security of more structures than those worked
on here. Furthermore, our results demonstrated that most of the constructions are insecure for high values of leakage
rates such as ϵ > 0.2. Designing alternative gadgets (or proof techniques) that are able to withstand more leakages is
an exciting challenge for future works.

References

[1] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In Neal
Koblitz, editor, Advances in Cryptology — CRYPTO ’96, pages 104–113, Berlin, Heidelberg, 1996. Springer
Berlin Heidelberg.

[2] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael Wiener, editor, Advances
in Cryptology — CRYPTO’ 99, pages 388–397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[3] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis: Concrete results. In Çetin K.
Koç, David Naccache, and Christof Paar, editors, Cryptographic Hardware and Embedded Systems — CHES
2001, pages 251–261, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[4] Yael Tauman Kalai and Leonid Reyzin. A Survey of Leakage-Resilient Cryptography, pages 727–794. Associa-
tion for Computing Machinery, New York, NY, USA, 2019.

[5] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In Theory of Cryp-
tography, First Theory of Cryptography Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004,
Proceedings, volume 2951 of Lecture Notes in Computer Science, pages 278–296. Springer, 2004.

[6] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully attacking masked aes hardware im-
plementations. In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware and Embedded Systems –
CHES 2005, pages 157–171, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[7] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-Xavier Standaert. On the cost
of lazy engineering for masked software implementations. In Marc Joye and Amir Moradi, editors, Smart Card
Research and Advanced Applications - 13th International Conference, CARDIS 2014, Paris, France, November
5-7, 2014. Revised Selected Papers, volume 8968 of Lecture Notes in Computer Science, pages 64–81. Springer,
2014.

[8] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A formal security proof. In
Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, 32nd Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May
26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science, pages 142–159. Springer, 2013.

[9] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models: From probing attacks to
noisy leakage. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT
2014, pages 423–440, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[10] Stefan Dziembowski, Sebastian Faust, and Maciej Skorski. Noisy leakage revisited. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015, pages 159–188, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[11] Qian Guo, Vincent Grosso, and François-Xavier Standaert. Modeling soft analytical side-channel attacks from a
coding theory viewpoint. IACR Cryptol. ePrint Arch., 2018:498, 2018.

[12] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing attacks. In
Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 463–481, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

37

A PREPRINT - JUNE 19, 2021

[13] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun. Horizontal side-channel attacks
and countermeasures on the isw masking scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2016, pages 23–39, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[14] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub,
and Rébecca Zucchini. Strong non-interference and type-directed higher-order masking. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pages 116–129, 2016.

[15] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified framework for the analysis of side-channel
key recovery attacks. In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009, pages 443–461,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[16] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612613, November 1979.
[17] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound approaches to counteract

power-analysis attacks. In Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages 398–412,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[18] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of aes. In Stefan Mangard and
François-Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES 2010, pages 413–
427, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[19] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michael Quisquater, and Matthieu Rivain. Higher-order mask-
ing schemes for s-boxes. In Anne Canteaut, editor, Fast Software Encryption, pages 366–384, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[20] Arnab Roy and Srinivas Vivek. Analysis and improvement of the generic higher-order masking scheme of fse
2012. In Guido Bertoni and Jean-Sébastien Coron, editors, Cryptographic Hardware and Embedded Systems -
CHES 2013, pages 417–434, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[21] Jean-Sébastien Coron, Arnab Roy, and Srinivas Vivek. Fast evaluation of polynomials over binary finite fields
and application to side-channel countermeasures. In Lejla Batina and Matthew Robshaw, editors, Cryptographic
Hardware and Embedded Systems – CHES 2014, pages 170–187, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

[22] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan. Protecting circuits from
leakage: the computationally-bounded and noisy cases. In Henri Gilbert, editor, Advances in Cryptology –
EUROCRYPT 2010, pages 135–156, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[23] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud.
Private multiplication over finite fields. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
– CRYPTO 2017, pages 397–426, Cham, 2017. Springer International Publishing.

[24] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-Xavier Standaert, and Pierre-
Yves Strub. Parallel implementations of masking schemes and the bounded moment leakage model. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, pages 535–566,
Cham, 2017. Springer International Publishing.

[25] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers with O(1/ log n) leakage
rate. In Proceedings, Part II, of the 35th Annual International Conference on Advances in Cryptology — EURO-
CRYPT 2016 - Volume 9666, page 586615, Berlin, Heidelberg, 2016. Springer-Verlag.

[26] Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q. Nguyen and Elisabeth Oswald,
editors, Advances in Cryptology – EUROCRYPT 2014, pages 441–458, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

[27] François-Xavier Standaert, François Koeune, and Werner Schindler. How to compare profiled side-channel
attacks? In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors, Applied
Cryptography and Network Security, pages 485–498, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[28] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S. Kaliski, çetin K. Koç, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2002, pages 13–28, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

[29] Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Damien Marion, and Olivier Rioul. Less is more. In Tim
Güneysu and Helena Handschuh, editors, Cryptographic Hardware and Embedded Systems – CHES 2015, pages
22–41, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[30] Carolyn Whitnall and Elisabeth Oswald. A fair evaluation framework for comparing side-channel distinguishers.
Journal of Cryptographic Engineering, 1(2):145, Aug 2011.

38

A PREPRINT - JUNE 19, 2021

[31] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good is not good enough. In Lejla Batina and Matthew Rob-
shaw, editors, Cryptographic Hardware and Embedded Systems – CHES 2014, pages 55–74, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

[32] Stefan Dziembowski, Sebastian Faust, and Maciej Skórski. Optimal amplification of noisy leakages. In Eyal
Kushilevitz and Tal Malkin, editors, Theory of Cryptography, pages 291–318, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[33] Stefan Dziembowski, Sebastian Faust, and Karol Żebrowski. Simple refreshing in the noisy leakage model. In
Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology – ASIACRYPT 2019, pages 315–344,
Cham, 2019. Springer International Publishing.

[34] Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Abdul Rahman Taleb. Random
Probing Security: Verification, Composition, Expansion and New Constructions. In CRYPTO 2020 - 40th Annual
International Cryptology Conference, volume 12170 of Lecture Notes in Computer Science, pages 339–368,
Santa Barbara, CA / Virtual, United States, August 2020. Springer.

[35] S. Banerjee and A. Roy. Linear Algebra and Matrix Analysis for Statistics. Chapman & Hall/CRC Texts in
Statistical Science. CRC Press, 2014.

[36] Judea Pearl. Reverend bayes on inference engines: A distributed hierarchical approach. In Proceedings of the
Second AAAI Conference on Artificial Intelligence, AAAI’82, page 133136. AAAI Press, 1982.

[37] M. Mazhdrakov, D. Benov, and N. Valkanov. The Monte Carlo Method: Engineering Applications. Acmo
Academic Press, 2018.

[38] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making masking security proofs concrete. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, pages 401–429,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[39] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-Xavier Standaert, and Pierre-
Yves Strub. Parallel implementations of masking schemes and the bounded moment leakage model. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, pages 535–566,
Cham, 2017. Springer International Publishing.

[40] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, François-Xavier
Standaert, and Pierre-Yves Strub. Improved parallel mask refreshing algorithms: generic solutions with
parametrized non-interference and automated optimizations. Journal of Cryptographic Engineering, 10(1):17–
26, Apr 2020.

[41] Lee-Ad Gottlieb and Tyler Neylon. Matrix sparsification and the sparse null space problem. Algorithmica,
76(2):426–444, Oct 2016.

[42] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft analytical side-channel attacks.
In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014, pages 282–296, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[43] J. M. Mooij and H. J. Kappen. Sufficient conditions for convergence of the sumproduct algorithm. IEEE Trans-
actions on Information Theory, 53(12):4422–4437, 2007.

[44] Morris J. Dworkin, Elaine B. Barker, James R. Nechvatal, Lawrence James Foti, E. Bassham, E. Roback, and
James F. Dray Jr. Advanced Encryption Standard. (NIST FIPS) - 197. Federal Inf. Process. Stds., 2001.

39

A PREPRINT - JUNE 19, 2021

Appendices
A Proof of Lemma 1

Assume V is a k-bit uniformly distributed random variable, and L is a random instance of leakage. For simplicity of
notations, we define a new random variable V ′ as V ′ = (V |L). Note that, here L is a realization of leakage. So the
defining conditional probability of V ′ is unambiguous. For SD(V ;V ′) we can write

SD(V ;V ′) =
1

2

∑
v∈V
|Pr(V = v)− Pr(V ′ = v)| = 1

2

∑
v∈V
| 1
2k
− Pr(V ′ = v)|

=(a)

∑
v∈V,Pr(V ′=v)> 1

2k

[Pr(V ′ = v)− 1

2k
] ≤ 2k max [Pr(V ′ = v)− 1

2k
] = 2kSRPV (n, ϵ),

(55)

where (a) can be derived by a simple partitioning of the given summation. By the above relation and noting that

max [Pr(V ′ = v)− 1

2k
] ≤

∑
v∈V,Pr(V ′=v)> 1

2k

[Pr(V ′ = v)− 1

2k
], (56)

we conclude that

SRPV (n, ϵ) ≤ SD(V ;V ′) ≤ 2kSRPV (n, ϵ). (57)

For function f : V → Y , we show that SD(f(V); f(V ′)) ≤ SD(V ;V ′).

SD(f(V); f(V ′)) =
1

2

∑
y∈Y
|Pr(f(V) = y)− Pr(f(V ′) = y)|

=
1

2

∑
y∈Y
|Pr(V ∈ f−1(y))− Pr(V ′ ∈ f−1(y))|

=
1

2

∑
y∈Y
|

∑
t∈f−1(y)

[Pr(V = t)− Pr(V ′ = t)]|

≤ 1

2

∑
y∈Y

[
∑

t∈f−1(y)

|Pr(V = t)− Pr(V ′ = t)|]

= SD(V ;V ′).

(58)

Now we have the following chain of inequalities

SRPf(V)(n, ϵ) ≤ SD(f(V); f(V ′)) ≤ SD(V ;V ′) ≤ 2kSRPV (n, ϵ). (59)

Since k is fixed, if SRPV (n, ϵ) moves toward zero by increasing n, so will do SRPf(V)(n, ϵ).

B Proof of Lemma 2

In Fq with a D(n)× (T (n) + 1) matrix Pn
Lin of rank(Pn

Lin) = D(n), the equation system defined by

Pn
Lin × [V,Σ(n)]⊤ = 0D(n)×1 (60)

40

A PREPRINT - JUNE 19, 2021

has T (n) + 1−D(n) free, and D(n) pivot variables. Therefore, the number of different solutions for (60) in
(Fq)

T (n)+1 are qT (n)+1−D(n). We call the collection of these solutions set S1.

On the other hand, in A′(n), The R(n) randomness and input variables are free to take any value in Fq . So, the vector
[V,Σ(n)] should have at least qR(n) realizations. Let the collection of these realizations be set S2.

By the assumption in the lemma, we have D(n) = T (n) + 1 − R(n). Therefore, for the cardinality of the two sets,
we can write

|S2| ≤ |S2|. (61)

By definition of Pn
Lin, any T (n) + 1 element vector [V,Σ(n)] in S2 is in S1. Thus, we conclude that

S1 = S2. (62)

C Proof of Lemma 3

Matrix M is formed by k(n) times executing A′(n) and putting the realized values of the vector [V,Σ(n)], in a fixed
order at the consecutive rows of M.

We show that if in [V,Σ(n)], the jth element is dependent on the previous j − 1 entries, then column j of E will be
a free variable. For instance, there will be a linear combination of initial j − 1 columns of M that produces the jth
column. To prove this, we do the following reasoning.

First, note that in E = Gaussian-Elim(M), only linear operations are done over the rows of M. So, any linear relation
on its columns should be preserved and reflected equivalently in the columns of E. For contradiction, assume that j
is not a free variable in E. This means that E(I, j) = 1 for some I , and E(i, j) = 0 for any i < I . In this case, it is
easy to see that no combination of columns 1 to I − 1 of E (or of M) can create the jth column of E (or M), and this
inconsistency completes our proof.

We proved that a dependent column in M always will be a free variable in E. In other words, dependent relations will
be correctly identified by the given algorithms.

On the other hand, if the jth column of M is independent, it is possible to be erroneously declared as a free variable in
E. Let the (T (n)+1)-length coefficients vector U describes the dependency relation obtained for this falsely-identified
free variable. It is required that U be perpendicular to all of the rows of M. Since a free variable in column j means
that this column is dependent only on the columns 1 to j − 1, U(j) should be 1 and U(j : T (n) + 1) should be 0.

Mathematically, the event of incorrectly declaring column j as a free variable is the same as that a fixed set of co-
efficients in U(1 : j − 1) be orthogonal to each row of sub-matrix M(1 : j, pivot_row : k(n)). It can be shown
by the independence of the rows, and the uniformity of the randomness variables, that the probability of this event is
qk(n)−pivot_row. This probability decrease as the variable pivot_row increases. The maximum possible value for the
pivot_row is D(n). So, the probability of introducing a wrong relationship in a column is at most qk(n)−D(n).

For matrix M, initially, we are not aware of D(n). However, from algebra, we know that D(n) ≤ T (n) + 1. So, in
the absence of extra knowledge, we conclude that a false relation is possible only with probability qk(n)−T (n)+1. By
substituting k(n) = T (n) +m, the final probability will be qm−1.

It is recommended for a safe margin to choose k(n) = 2T (n). In this way, we are pretty sure that no column will give
an invalid relation.

D Proof of Lemma 4

From linear algebra, we know when a non-homogeneous linear system given below has a solution and what is the
general structure of its solutions.

P†n
Lin × [V,Σ†(n)]⊤ = b (63)

Since the adversary’s probing is noiseless, this system has at least one solution. Because it is based on a physical
experiment, unknown variables of (63) were valued in that experiment, and these values satisfy (63).

41

A PREPRINT - JUNE 19, 2021

The complete collection of unique vectors [V,Σ†(n)] that satisfies (63) are representable as follows.

[V,Σ†(n)] = [V,Σ†(n)]p ⊕ [V,Σ†(n)]f (64)

Where [V,Σ†(n)]p is called the particular solution of (63). A particular solution is any solution of (63), and
[V,Σ†(n)]f can be any vector in the vector space defined by

P†n
Lin × [V,Σ†(n)]⊤ = 0. (65)

The number of unique solutions of (65) directly depends on the number of free variables of P†n
Lin. Assume P†n

Lin has l
free variables, and label them as Z1, Z2, ..., Zl.

As stated in the text, the coefficients of V are in the first column of P†n
Lin. The secret V is linearly dependent on the

variables of Σ(n). Therefore, at least one entry of the first column of P†n
Lin is non-zero. Consequently, V is not a free

variable.

The final relation for the solution of V (based on (64)) will be

V = vp ⊕ Z1v1 ⊕ Z2v2...⊕ Zlvl. (66)

Where vp is the value of V in [V,Σ†(n)]p, and vi is the value of V in (65) when all the free variables are set to zero,
except Zi, which is set to 1.

In relation (66), Z1 to Zl are free to take any value in Fq . So, any value for V (irrespective of vp) will have the same
abundance.

To find a unique answer for V , it is necessary that all the vi = 0. By algebra, we know that in the row reduced
echelon form of P†n

Lin as G = Gaussian-Elim(P†n
Lin), values of vis are vi = −G(1, i). Therefore, if the condition

G(1, 2 : T (n) + 1) = 0 is satisfied , then V is uniquely determined. Any non-zero value in G(1, 2 : T (n) + 1) with
its accompanying free variable Zi, will hide the particular solution vp.

Note that, behaviors described above do not depend on the right-hand side constant vector b. In other words, as long
as, b is based on a real experiment, the number of solutions for V is independent of the realized values in b.

E Proof of Lemma 5

Let Pn be the coefficient matrix for the system of equations defined by L
†
SR(n)(Σ

†I
SR(n),

−→
V †

0,
−→
V †

1, V) = b2. In this
way, we can write

Pn × [Σ†I
SR(n),

−→
V †

0,
−→
V †

1, V]⊤ = b2. (67)

Define augmented matrix P′n by appending the column vector b2 to the right of Pn as P′n = [Pn|b2]. Next, obtain
the row reduced echelon form of P′n as G = Gaussian-Elim(P′n). From G, we can derive the L1, L2, and L3 as
defined in the lemma.

The system defined in (67) has at least one solution. Because it is based on a physical experiment and the noise-less
information (ϵ random probing leakage) that the adversary has received.

By the structure of G, we know that if row i of G is all-zero, then all the rows beneath the ith row should be all-zero.
Assume I is the first row of G that is all-zero. In any row i < I of G, there exist a column J such that G(i, J) = 1,
and for every j < J , G(i, j) = 0. Column J is called a pivot variable. Let function A(.), for each row i < I , give its
corresponding column J . It can be seen that A(.) is a monotonically increasing function.

In Pn, define the last column containing elements of Σ†I
SR(n) with k = |Σ†I

SR(n)|.

We can partition G’s columns into three parts as G = [G1|G2|G3]. Where, G1 = G(:, 1 : k), G2 = G(:, k + 1 :

end− 1), and G3 = G(:, end). G1 is over Σ†I
SR(n), and G3 is the last column which was initially filled by b2.

Parity equations are rows of G. Next, We partition rows of G into the following disjoint sets.

42

A PREPRINT - JUNE 19, 2021

• Rows i = 1 to R = min[I − 1,A−1(k)]. In these rows, the corresponding parity equations will have a pivot
variable from set Σ†I

SR(n). Because, at least we have G(i,A(i)) = 1. Since A(.) is monotonically increasing,
A(i) ≤ A(R) = min[A(I − 1), k] ≤ k. For these parity equations we can write

G1(i, :)× [Σ†I
SR(n)]

⊤ ⊕G2(i, :)× [
−→
V †

0,
−→
V †

1, V]⊤ = G3(i). (68)

Based on (68), we label the equations defined by G1(1 : R, :) as L1, the equations defined by G2(1 : R, :) as
L2, and the constants at the column vector G3(1 : R) as b1

2.
Each row of G1(1 : R, :) has a pivot variables. So, these rows (that are also shown by L1) are linearly
independent.

• Rows i = R + 1 to I − 1. These rows exist only if A−1(k) < I − 1. For these rows, we have A(i) > k.
Consequently, G1(i, :) = 0. So, no variable from Σ†I

SR(n) will exist in the equations defined by these rows.
For these equations that are corresponding to the rows R+ 1 : I − 1, we can write

G2(i, :)× [
−→
V †

0,
−→
V †

1, V]⊤ = G3(i). (69)

Based on (69), we label the equations defined by G2(R+ 1 : I − 1, :) as L3, and the constants at the column
vector G3(R+ 1 : I − 1) as b2

2.

Finally, collection of the parity equations in G will be of the following structure.{
L1(Σ

†I
SR(n)) = L2(

−→
V †

0,
−→
V †

1, V)⊕ b1
2

L3(
−→
V †

0,
−→
V †

1, V) = b2
2

(70)

F Proof of Lemma 6

We know that a system of equations in a finite field Fq has a limited number of unique solutions. Assume, S1 to SN are
all the solutions of the system defined by NL1(V,Σ2,Σ3) = 0, where Si is a vector of values as Si = (V i,Σi

2,Σ
i
3).

If we show that corresponding to each Si, there a fixed number of unique answers for Σ1 that the system L4(Σ1) =
L5(V,Σ2) is satisfied, then the lemma is proved (see relation (12)).

For each Si, L5(V,Σ2) is a known and fixed vector, and for simplicity, we denote it with di. We are seeking the
number of solutions of L4(Σ1) = di. Because it is assumed that the equations in L4 are independent of each other,
from linear algebra, we know that this system has at least one solution. This solution is labeled [Σ1]p and is called
particular solution. Structure of answers for L4(Σ1) = di is given in the following.

Σ1 = [Σ1]p ⊕ [Σ1]f (71)

Where [Σ1]f is any vector satisfying the homogeneous system defined by

L4(Σ1) = 0. (72)

The cardinality of answers in (71) is independent of the value of di. So, we conclude that the frequency of answers
for V is solely controlled by sub-system defined by NL1(V,Σ2,Σ3) = 0.

G Proof of Lemma 7

The set of equations defined by NLSG1 is deterministic, and only their set of known variables are probabilistic. More-
over, the set of known variables in the two systems are distributed identical, except (possibly) for the known elements
of
−→
V 0. Therefore, we just need to show that the distribution of the known elements of input

−→
V 0 are also identical in

the two systems.

In the first system, members of
−→
V 0 are known to the adversary from two separate sources. One is the usual ϵ probing

on the SG1 side, and the other is
−→
V ††

0 , resulted from the SR side. Since the parities corresponding to the SR gadget

43

A PREPRINT - JUNE 19, 2021

−→
K1

i

−→
K1

i
SR1

ϵ

⊕ SR2

ϵ

−→
Ti

−→
Ri

−→
Pi

S-Box

−→
Si

ϵ′2 ≈ ϵ+
fSR
n

ϵ′1 ≈ (1 + ϵ)(ϵ+
fSR
n

)

Figure 7: Operations before S-Box evaluations in the first round of AES, with equivalent leakage rate ϵ′ for each gadget
in the construction

are symmetric on the members of
−→
V 0 and

−→
V 1, we are sure that each member of

−→
V 0 will be in the set

−→
V ††

0 indepen-
dently with probability E(|

−→
V ††

0 |)/n = fSR(n, ϵ)/n. Finally, because the two leakage sources are independent, their
combination will give the following probability for leakage of each member of

−→
V 0.

ϵ′ = ϵ+
fSR(n, ϵ)

n
− ϵ

fSR(n, ϵ)

n
(73)

In the second system, members of
−→
V 0 are directly leaking with probability ϵ′. So, the inputs to the two systems are

statistically equivalent. Consequently, they should produce statistically equivalent results.

H Proof of Lemma 9

Consider the following system of equations.

{
U −X1Y1 = 0

NL(V,Σ, X1, Y1) = 0
(74)

Where V is the target secret and U /∈ Σ. We want to show that the relation U − X1Y1 = 0, does not affect the
distribution of Ṽ .

Our reasoning in the proof of this lemma is similar to those in Lemma 6.

A system of equations in a finite field Fq has a limited number of unique solutions. Let, S1 to SN be all the solutions
of NL(V,Σ, X1, Y1) = 0. where Si is a vector of values as Si = (V i,Σi, Xi

1, Y
i
1).

For each Si, the relation U −X1Y1 = 0, after substitution, will be U = Xi
1Y

i
1 . So, associated with each solution for

NL(V,Σ, X1, Y1) = 0, there is a unique solution for U −X1Y1 = 0. Therefore, the frequency of values of V in the
solutions of (74) is solely determined by NL(V,Σ, X1, Y1) = 0.

I Proof of Lemma 10

The block diagram of the operations for a single value of i is depicted in figure 7.

From all the variables in the lemma, only the members of
−→
Si and its secret, Si, are present in the rest of the compu-

tations. So, variables such as shares of
−→
K1

i ,
−→
Ti , and

−→
Ri, are important as much as they give information about the

members of
−→
Si , and the Si itself.

Since Pi is assumed known, recovery of K1
i is sufficient to derive Ti, Ri, and Si. In this way, we can assume that the

only secret of the construction in figure 7 is Si.

Except for the SXOR (the shared XOR), computing the secret recovery probability is directly possible with Lemma 7
and Lemma 8.

The probability of recovering the secret at the SXOR gadget is estimated in the following. Considering SXOR gadget,
the secret is recovered only if

1. Each share of Ti is known, or the corresponding shares of Pi and K1
i are both known.

44

A PREPRINT - JUNE 19, 2021

2. Each share of K1
i is known, or the corresponding shares of Pi and Ti are both known.

Shares of Ti and K1
i (without using the algebraic relation

−→
Ti =

−→
K1

i ⊕
−→
Pi) are known independently with the probability

ϵ + fSR(n, ϵ)/n, and each share of Pi is independently known with probability ϵ. So, each share of Ti (by using the
algebraic relation), utilizing the union bound, will be known to the adversary with the probability

ϵ′1 ≤ ϵ(ϵ+
fSR(n, ϵ)

n
) + (ϵ+

fSR(n, ϵ)

n
) ≈ ϵ+

fSR(n, ϵ)

n
. (75)

The interesting regions for ϵ and fSR(n, ϵ)/n are usually in (0 to .1). The probability of the cases 1 and 2, above, are
equal and are (ϵ′1)

n.

Not that the output of S-Box is directly connected to an SR gadget (not shown in figure 7). From the perspective of the
output (and the input), we derive the ϵ′2 by Lemma 7 as ϵ′2 ≈ ϵ+ fSR(n, ϵ)/n.

Finally, the overall probability for the leakage of Si by Lemma 8 will be

2eSR(n, ϵ) + eS-Box′(n, ϵ
′
2) + 2(ϵ′1)

n. (76)

This completes the proof.

45

	Introduction
	Modeling side-channel leakages
	Definitions of the security
	Metrics for quantifying the security definitions
	Our contributions

	Preliminaries
	Boolean Masking
	Block ciphers as a common target
	Masking a block cipher

	MAP adversary
	Implications of t-SNI security in RPM
	State of security proofs in RPM
	More on the new RPM security definition
	Overview of our approach

	EEC for linear masked circuits
	Preliminary Definitions
	Linear dependencies between variables
	Extracting the linear relations
	Driving EEC for a linear A'
	Single instance of random leakage
	Random instance of leakage

	Driving SRP for a linear A'
	Examining different SR gadgets
	Insecurity of SR-SNI at high leakage rates

	Modeling leakage of SR gadgets
	Reduction with leak-free SR gadgets
	A describing system of equations
	Strategy of the MAP adversary
	Related definitions
	Requirements on the gadgets
	Reduction of the security in RPM
	Multiple SR gadgets at the output
	Multiple SR gadgets in the input

	An SAND with RPM security
	Candidates for SAND gadget
	Structure of SAND-Rec
	Mat-Mult sub-algorithm
	Compression sub-algorithm

	Bounds for the security of SAND-Rec
	Proof idea
	Computing SRP+Mat-Mult(n,)
	Computing SRP-Mat-Mult(n,)
	Estimation results for the RPM security of Mat-Mult
	Adding the leakage of Compression

	EEC for the SAND-Rec

	RPM secure masking for X-1 S-Box
	Relation of the RPM security with the number of used gadgets

	RPM secure masking of AES
	Structure of the AES'
	Approximating the RPM security of the AES'
	Approximation results

	Conclusion and future works
	Appendices
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 9
	Proof of Lemma 10

