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Abstract

With the development of side-channel attacks, a necessity arises to invent authenticated key exchange
protocols in a leakage-resilient manner. Constructing authenticated key exchange protocols using existing
cryptographic schemes is an effective method, as such construction can be instantiated with any appropriate
scheme in a way that the formal security argument remains valid. In parallel, constructing authenticated
key exchange protocols that are proven to be secure in the standard model is more preferred as they rely
on real-world assumptions. In this paper, we present a Diffie-Hellman-style construction of a leakage-
resilient authenticated key exchange protocol, that can be instantiated with any CCLA2-secure public-key
encryption scheme and a function from the pseudo-random function family. Our protocol is proven
to be secure in the standard model assuming the hardness of the decisional Diffie-Hellman problem.
Furthermore, it is resilient to continuous partial leakage of long-term secret keys, that happens even after
the session key is established, while satisfying the security features defined by the eCK security model.
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1 Introduction

Since the mid-twentieth century, Information age (also known as digital age or computer age) begins with the
rapid development of information technology. In the information age, the security of information arises as
an essential requirement. Authenticated key exchange (AKE) protocols play a crucial role in the context of
information security. AKE protocols enable two or more parties to authentically exchange a secret key (often
called as session key) by communicating over a public communication channel. The session key is used to
encrypt data that are exchanged between the parties, within a particular period of time known as session.

During the past couple of decades, many AKE protocols are invented, and various security models are
proposed to analyze their security. A security model is a formal statement that addresses potential attack
scenarios. The Bellare-Rogaway models (BR93 [BR93], BR95 [BR95]), the Canetti-Krawczyk (CK) model
[CK01], and the extended Canetti-Krawczyk (eCK) model [LLM07] are the renowned conventional security
models. Among them, the eCK model can be considered as a well-known security model that captures the
most demanding security features of AKE protocols [Ala17a].

With the advancement of side-channel attacks [Koc96, MDS02, BB03, HMF07], the discussion on counter-
measures against side-channel attacks become popular [HR07, AJR11, HAR13]. Thus, a necessity arises to
invent AKE protocols in a leakage-resilient manner. The aforementioned security models do not address the par-
tial leakage of long-term secret keys. Therefore, they are not suitable to analyze the security of AKE protocols
against side-channel attacks. Thus, new security models are proposed to address the side-channel attacks, in ad-
dition to the attack scenarios addressed in the conventional security models [ASB14, ABS14, MO11, CMY+16].
New AKE protocols are invented in a way that their security can be proven in the new security models
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[CAR17, YMSW13, ASB14, ABS14, MO11, CMY+16, ASB15, Ala17b, YCM+19, CMY+17], and they are
commonly known as leakage-resilient AKE protocols. Thus, there is a formal guarantee that the leakage-
resilient AKE protocols are robust against side-channel attacks and various other attack scenarios that are
addressed in the new security models.

Constructing AKE protocols using existing cryptographic building blocks is an effective way, because
such constructions can be instantiated with any appropriate building block such that the formal security
argument remains valid. This is also beneficial for cipher suits such as Transport Layer Security (TLS),
as they can use existing implementations of cryptographic building blocks with a minimal implementation
cost to convert them to a AKE protocol. There are several proven-secure AKE protocol constructions that
are transformations of existing cryptographic building blocks; some of them are non-leakage-resilient AKE
protocols [BCNP09, Ala17a] while the others are leakage-resilient AKE protocols [ASB14, ABS14].

Our Contribution. In this paper, our aim is to advance the constructions of leakage-resilient AKE protocols
that are proven to be secure in the standard model. We use a variant of generic after-the-fact leakage eCK
model, namely continuous after-the-fact leakage eCK (CAFL-eCK) model [ASB14], as a reasonably strong
and realistic security model for security analysis, because the CAFL-eCK model addresses continuous partial
leakage of long-term secret keys in addition to the attack scenarios modeled in the eCK model. The section 3
gives a detailed description of the CAFL-eCK model.

We construct a Diffie-Hellman-style λ− CAFL-eCK-secure AKE protocol, namely protocol P1.v2. As
the λ− CAFL-eCK model defines, our protocol is resilient to continuous partial leakage of long-term secret
keys (under a leakage bound λ), which happens even after the session key is established (hence, after-the-
fact leakage), while satisfying the security features defined by the eCK model. The protocol P1.v2 is a
transformation of a CCLA2-secure public-key encryption scheme into a CAFL-eCK-secure AKE protocol,
that can be instantiated with any CCLA2-secure public-key encryption scheme and a function from the
pseudo-random function family. The protocol P1.v2 uses the leakage-resilient storage scheme and the leakage-
resilient refreshing protocol of Dziembowski and Faust [DF11] (refer to the section 2.2) as the core building
block of the construction. The storage scheme encodes a secret value into two matrices, such that their inner
product gives back the secret value. Given the leakage information from the two matrices independently,
an adversary cannot obtain any information about the encoded secret value. Therefore, unless an attacker
obtains leakage information from the inner product of the two matrices, she cannot derive the secret value.

In protocol P1.v2, the leakage-resilient storage scheme is used to encode the Diffie-Hellman long-term
secret keys. The two matrices of the encoded long-term secret keys are stored in the memory. For all the
exponentiation computations that use a Diffie-Hellman long-term secret key, component-wise exponentiation
and multiplication operations are performed using the two matrices; the inner product is never computed.
The leakage-resilient refreshing protocol is used to refresh the Diffie-Hellman long-term secret keys to make
the protocol P1.v2 robust against continuous partial leakage attacks. The protocol P1.v2 can be considered
as an application that extends the use of leakage-resilient storage scheme and the leakage-resilient refreshing
protocol of Dziembowski and Faust.

The security of the protocol P1.v2 is proven in the standard model, assuming the hardness of the decisional
Diffie-Hellman (DDH) problem. Table 1 compares the protocol P1.v2 with couple of selected AKE protocols,
by means of the leakage model, after-the-fact leakage feature, the base security model and the proof model.
The protocol P1.v2 costs one multi-exponentiation and one encryption scheme key generation operation for
the initial key setup at a protocol principal. Then, for an execution of a session at a protocol principal, the
protocol P1.v2 costs (3n+ 2) exponentiation operations, one encryption operation, one decryption operation
and one pseudo-random function operation. Note that n ∈ N is the statistical security parameter, that is a
function of the security parameter k. Moreover, the protocol P1.v2 maintains a leakage bound of 1/n− o(1)
for a Diffie-Hellman long-term secret key. The leakage bound for a decryption secret key of the underlying
leakage-resilient public-key encryption scheme is specific to the particular public-key encryption scheme.

Being a transformation of a CCLA2-secure public-key encryption scheme into a CAFL-eCK-secure AKE
protocol based on the standard model assumptions, the protocol P1.v2 is a good AKE protocol candidate
for future TLS protocol suits, that can be implemented and deployed with minimal implementation cost,
given existing implementations of a CCLA2-secure public-key encryption scheme and a function from the
pseudo-random function family.
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Protocol Leakage Model After-the-fact Base Model Proof Model

NAXOS [LLM07] None No eCK Random oracle
Moriyama and Okamoto [MO11] Bounded No eCK Standard
Alawatugoda et al. [ASB14] Bounded Yes eCK Standard
Alawatugoda et al. [ASB15] Continuous Yes eCK Random Oracle
Chen et al. [CMY+17] Auxiliary input1 Yes eCK Standard
Chen et al. [CMY+16] Auxiliary input1 Yes eCK Standard
Protocol P1.v2 (This Paper) Continuous Yes eCK Standard

1 Auxiliary input model requires that it is computationally hard for an adversary to recover the secret key given
the leakage, and therefore it is a generalization of the bounded leakage model [CMY+17]. For our protocol
construction we consider continuous leakage model rather than the bounded leakage model.

Table 1: Comparison of (selected) AKE protocols

2 Preliminaries

2.1 Leakage Model

We frequently borrow notions for the leakage model from Dziembowski and Faust [DF11].

Leakage Game. Assume that secret key is stored in the memory as two encoded parts, say L and
R ∈ {0, 1}s, and an adversary A wants to learn information from L and R. For a positive integer λ, we define
λ-leakage game between an adaptive adversary A, called λ-limited adversary, and a leakage oracle Λ(L,R) as
follows: the adversary queries two adaptively-chosen leakage functions (f1, f2) to the oracle Λ(L,R). Then
the oracle replies with f1(L) and f2(R) with restriction that the adversary cannot learn more than λ-bits
from each L and R at the end of the game. We denote Out(A,Λ(L,R)) by the output of this game. Moreover,
the information from L and R are leaked independently from each other.

Leakage from Computations. We follow the axiom “only computations leak information” and assume
that only computations involving L or R leak their information to the adversary. This can be described in
the following setting.

Consider a two-party protocol between the parties PL and PR. Initially, the party PL (respectively, PR) is
given the input L (resp. R) and at the end of the protocol each party have the results L′ and R′, respectively.
The execution of the protocol proceeds in rounds. In each round, one party (owner) computes a message and
send it to the other. The message may be computed from owner’s input (eg. L or R), randomness chosen by
the owner, and the received message from the earlier rounds. In the setting that only computation leaks
information, the computations carried out by PL (resp. PR) with the initial state L (resp. R) in each round
may leak information on L (resp. R) independently from R (resp. L). Precisely, the adversary A adaptively
chooses two leakage functions (f j1 , f

j
2 ) and obtains f j1 (L) and f j2 (R) from each j-th round in the execution of

the protocol. At this time, the adversary is allowed to play the λ-leakage game with access to the leakage
oracle Λ((L, ρL,ML); (R, ρR,MR)), where ρx is the randomness used by x ∈ {L,R} and Mx is the previously
received message by user x ∈ {L,R} in the execution of the protocol. We sometimes omit ρx or Mx when
they are obviously null from the context.

2.2 Leakage-resilient Storage Scheme and it’s Refreshing Protocol

In Dziembowski and Faust [DF11], they used a leakage-resilient storage scheme to encode the secret key into
two parts and a refreshing protocol to construct public-key cryptosystems secure against continuous partial
leakage attacks.
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2.2.1 Leakage-resilient Storage

A leakage-resilient storage (LRS) Φ = (Encode,Decode) is a scheme to encode a message in M, where
Encode :M→ L×R is a probabilistic polynomial-time function and Decode : L×R →M is a deterministic,
polynomial-time function satisfying Decode(Encode(S)) = S for any S ∈M.

An LRS Φ is called (λ, ε)-secure if for any S, S′ ∈M and any λ-limited adversary A, we have

∆(Out(A,Λ(L,R)), Out(A,Λ(L′, R′))) ≤ ε,

where (L,R) := Encode(S) and (L′, R′) := Encode(S′). Here, ∆ denotes the statistical distance.
In Dziembowski and Faust [DF11], they use the fact that the LRS from inner product is (λ, ε)-secure for

some λ and ε > 0. Precisely, for a field F, an LRS Φn,mF = (Encoden,mF ,Decoden,mF ) is defined as follows:

• Encoden,mF (S) chooses L← Fn\{0n} and samples R← Fn×m such that L ·R = S.

• Decoden,mF (L,R) computes L ·R = S.

Corollary 2.0.1 ([DF11]). Suppose |F| = Ω(n) and m < n/20, then the LRS Φn,m
F is a (0.3|Fn|, ε)-secure

LRS, where ε is negligible in the statistical security parameter n ∈ N.

2.2.2 Refreshing Protocol

It is obvious that the above LRS scheme is not secure, if we allow an adversary to obtain leakage information
continuously from L and R. To prevent this obstacle, Dziembowski and Faust [DF11] introduced a refreshing
protocol Refresh of an LRS Φ. The main idea is to refresh the encoded secret (L,R) securely to a newly
encoded value (L′, R′) so that it does not reveal enough information to recover the secret key even when an
λ-limited adversary can observe the leakage continuously from the refreshing protocol.

Precisely, a refreshing protocol (L′, R′) ← Refresh(L,R) is a two-party protocol between PL and PR
holding L and R respectively. At the end of the protocol, each party outputs L′ and R′ respectively satisfying
Decode(L,R) = Decode(L′, R′).

Let Refresh a refreshing protocol, Φ = (Encode,Decode) an LRS, A an λ-limited adversary, ` ∈ N and
S ∈M. We consider the following experiments Exp(Refresh,Φ)(A, S, `):

• For a secret S, encode it by (L0, R0)← Encode(S).

• For i = 1 to `, run A against the refreshing protocol: A� (Refresh(Li−1, Ri−1)→ (Li, Ri)).

• Return b ∈ {0, 1} output by A.

As described in the previous paragraph, the leakage from each execution of the protocol is obtained via the
leakage oracle Λ((Li, ρLi

,MLi
); (Ri, ρRi

,MRi
)). Finally, the security of the refreshing protocol is defined by

indistinguishability notion.

Definition 2.1 (A (`, λ, ε1)-secure refreshing protocol [DF11]). For a LRS Φ with message space M and
` ∈ N number of leakage rounds, a refreshing protocol Refresh is (`, λ, ε1)-secure, if for any λ-limited adversary
A and any two secrets S, S′ ∈M, we have

∆(Exp(Refresh,Φ)(A, S, `),Exp(Refresh,Φ)(A, S′, `)) ≤ ε1.

Theorem 2.1 ([DF11]). Let m/3 ≤ n, n ≥ 16 and ` ∈ N. Let n,m and F be such that Φn,mF is (λ, ε)-secure
for some λ, ε > 0. Then the protocol Refreshn,mF is a (`, λ/2− 1, ε′)-secure refreshing protocol for Φn,mF with
ε′ = 2`|F|m(3|F|mε+m|F|−n−1).

Definition 2.2 (A (`, λ, ε1)-secure refreshing protocol with auxiliary information [DF11]). Let Z ⊂ Mm

be an m′ < m dimensional affine subspace defined by W and Q. For a LRS Φ with message space M and
` ∈ N, a refreshing protocol Refresh is (`, λ, ε1)-secure with auxiliary information (W,Q), if for any λ-limited
adversary A and any two secrets S, S′ ∈M, we have,

∆(Expaux
(Refresh,Φ)(A, S, `,W,Q),Expaux

(Refresh,Φ)(A, S′, `,W,Q)) ≤ ε1.
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Theorem 2.2 (Generalization of Theorem 1 [DF11]). Let m/4 ≤ n, n ≥ 16 and ` ∈ N. Let (W,Q) be as

above defining an m′ < m dimensional affine subspace Z. Let n,m′ and F be such that Φn,m
′

F is (λ, ε)-secure
for some λ, ε > 0. Then the protocol Refreshn,mF is a (`, λ/2− 1, ε′)-secure refreshing protocol with auxiliary
information defined by (W,Q) for Φn,mF with ε′ = 2`|F|m(3|F|2mε+m|F|−n−1).

Corollary 2.2.1 ([DF11]). Suppose |F| = Ω(n) and m = o(n), then the Refreshn,mF is a (`, 0.15n log |F|)−
1, ε1)-secure refreshing protocol for Φn,mF , where ` is a polynomial and ε1 is negligible in the statistical security
parameter n ∈ N.

2.3 Leakage-resilient CCA2-secure Public-key Encryption Scheme

For security parameter k, a public-key encryption scheme PKE = (KG,Enc,Dec) consists of the following
algorithms.

• (pk, sk)← KG(1k): It outputs a public/secret key pair.

• c← Enc(pk,m): A probabilistic polynomial-time algorithm that outputs c = Enc(pk,m) with inputs a
message m and the public key pk.

• m = Dec(sk, c): A deterministic algorithm that decrypts the ciphertext c together with the secret key
sk. We always have m = Dec(sk,Enc(pk,m)).

The strongest security notion for public-key encryption scheme is security against adaptively-chosen-
ciphertext attacks (CCA2-secure). In CCA2 attack against a public-key encryption scheme, the adversary who
is given pk picks two messages m0,m1 and guesses b ∈ {0, 1} on input c∗ = Enc(pk,mb) while the adversary
is allowed to ask for the decryption of chosen-ciphertexts prior and after to seeing c∗.

In the setting that computation leaks information, it is natural to consider leakage information from the
queries to the decryption oracle. This yields the following extension of CCA2-security against leakage attacks.

Definition 2.3 ([DF11], Security against Chosen Ciphertext Leakage Attacks (CCLA2)). Let k be the
security parameter. A public-key encryption scheme PKE = (KG,Enc,Dec) is CCLA2-secure if for any
λ′-limited adversary A the probability that the experiment below outputs 1 is at most 1/2 + negl(k).

1. The challenger runs (pk, sk)← KG(1k) and sends pk to A.

2. The adversary A asks for the decryption of a ciphertext c learning at most λ′-bits of the current secret
sk for each query: A� (Dec(sk, c)→ sk′). Set sk := sk′ for the next round.

3. A outputs two messages, m0,m1, and sends them to the challenger.

4. The challenger computes c∗ ← Enc(pk,mb) for b ∈ {0, 1} and gives it to A.

5. Repeat A� (Dec(sk, c)→ sk′) for c 6= c∗ learning at most λ′-bits of the current secret sk. Set sk := sk′

for the next round.

6. A outputs b′ ∈ {0, 1}. If b = b′, then output 1, otherwise output 0.

2.4 Diffie-Hellman Assumptions

We now describe two Diffie-Hellman assumptions which form the basis of security for many cryptographic
primitives. Let k be the security parameter, G be a group generation algorithm and (G, q, g)← G(1k), where
G is a cyclic group of prime order q and g is an arbitrary generator of G.

Definition 2.4 (Computational Diffie-Hellman (CDH) Assumption). We say that computational Diffie-
Hellman assumption holds in G if for all probabilistic polynomial-time algorithms A, the probability of solving
the CDH problem in G given as:

PrCDH
G,q (A) = Pr

(
A(g, q, ga, gb) = gab

)
is negligible for a given security parameter k.
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Definition 2.5 (Decisional Diffie-Hellman (DDH) Assumption). Consider the following two distributions:
DHG = {(g, ga, gb, gab); a, b← Zq} and RG = {(g, ga, gb, gc); a, b, c← Zq} . It is said that DDH assumption
holds in G if for all probabilistic polynomial-time algorithms A, the advantage in distinguishing the two
distributions DH and R given as:

AdvDDH
G,q (A) =

∣∣∣Pr[A(DHG) = 1]− Pr[A(RG) = 1]
∣∣∣

is negligible for a given security parameter k.

2.5 Pseudo-Random Functions

We now describe the security definition of pseudo-random functions according to Katz and Lindell [KL07].

Definition 2.6 (Pseudo-Random Functions). Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, length
preserving, keyed function. We say F is a pseudo-random function if for all probabilistic polynomial-time
adversaries A, there exists a negligible function εPRF in the security parameter k such that:∣∣∣Pr[AF (key,·)(1k) = 1]− Pr[Afrnd(·)(1k) = 1]

∣∣∣ ≤ εPRF,

where key ∈ {0, 1}k is chosen uniformly at random an frnd is chosen uniformly at random from the set of
functions mapping k-bit strings to k-bit strings.

3 Continuous After-the-fact Leakage eCK Model [ASB14]

In security experiments for public-key cryptosystems, the challenge to the adversary is, given a ciphertext,
distinguish the corresponding plaintext. In key exchange security models, the challenge to the adversary is to
identify the real session key of a chosen session from a random session key [BR93, CK01, LLM07]. Leakage
which happens after the challenge is given to the adversary is considered as after-the-fact leakage. In leakage
models for public-key cryptosystems, after-the-fact leakage is the leakage which happens after the challenge
ciphertext is given, whereas in leakage-resilient key exchange security models, after-the-fact leakage is the
leakage which happens after the session key is established.

The generic after-the-fact leakage eCK ((·)AFL-eCK) model is equipped with an adversary-chosen,
polynomial-time, adaptive leakage function f , in addition to the adversarial capabilities modeled in the eCK
model. Therefore, the (·)AFL-eCK model captures all the attacks captured by the eCK model, and captures
the partial leakage of long-term secret keys due to side-channel attacks.

In the eCK model, in sessions where the adversary does not modify the communication between parties
(passive sessions), the adversary is allowed to reveal both ephemeral secrets, long-term secrets, or one of each
from two different parties, whereas in sessions where the adversary may forge the communication of one
of the parties (active sessions), the adversary is allowed to reveal the long-term or ephemeral secret of the
other party. The security challenge is to distinguish the real session key from a random session key, in an
adversary-chosen protocol session.

The generic (·)AFL-eCK model can be instantiated in two different ways which leads to two security
models. Namely, bounded after-the-fact leakage eCK (BAFL-eCK) model and continuous after-the-fact
leakage eCK (CAFL-eCK) model. The BAFL-eCK model allows the adversary to obtain a bounded amount
of leakage of the long-term secret keys of the protocol principals, as well as reveal session keys, long-term
secret keys and ephemeral keys. Differently, the CAFL-eCK model allows the adversary to continuously
obtain arbitrarily large amount of leakage of the long-term secret keys of the protocol principals, enforcing
the restriction that the amount of leakage per observation is bounded. In this model, continuous leakage
of the ephemeral secret keys is not allowed; it is justifiable because the ephemeral secret keys are one-time
secrets that are less likely to be leaked continuously over number of computations.

Below we revisit the definitions of the CAFL-eCK model, and we also recall the definitions of the eCK
model as a comparison to the CAFL-eCK definitions.
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3.1 Partner Sessions in the CAFL-eCK Model

Definition 3.1 (Partner sessions in the CAFL-eCK model). Two oracles Πs
U,V and Πs′

U ′,V ′ are said to be
partners if all of the following hold:

1. both Πs
U,V and Πs′

U ′,V ′ have computed session keys;

2. messages sent from Πs
U,V and messages received by Πs′

U ′,V ′ are identical;

3. messages sent from Πs′

U ′,V ′ and messages received by Πs
U,V are identical;

4. U ′ = V and V ′ = U ;

5. Exactly one of U and V is the initiator and the other is the responder.

The protocol is said to be correct if two partner oracles compute identical session keys.

Note that the definition of partner sessions is the same as in the eCK model.

3.2 Leakage in the CAFL-eCK Model

A realistic way in which side-channel attacks can be mounted against key exchange protocols seems to be
to obtain the leakage information from the protocol computations which use the secret keys. Following the
previously used premise, “only computation leaks information”, leakage is modeled where any computation
takes place using secret keys. In conventional security models, by issuing a Send query, the adversary will
get a protocol message which is computed according to the normal protocol computations. Sending an
adversary-chosen, polynomial-time adaptive leakage function with the Send query reflects the premise “only
computation leaks information”.

A tuple of t adaptively-chosen polynomial-time leakage functions f = (f j1 , f
j
2 , . . . , f

j
t ) are introduced; j

indicates the j-th leakage occurrence (leakage happens at the j-th session of the protocol) and the size t of
the tuple is protocol-specific. A key exchange protocol may use more than one cryptographic primitive where
each primitive uses a distinct secret key. Hence, it is necessary to address the leakage of secret keys from each
of these primitives. On the other hand, some cryptographic primitives which have been used to construct an
AKE protocol, may have stored the secret key by encoding it into number of portions. Hence, it is necessary
to address the leakage of each of these portions of the encoded secret key. Note that the adversary is only
allowed to obtain the leakage from each portion of the encoded secret key independently. This prevents the
adversary from trivially deriving the secret key using the leakage from the portions of the encoded secret key.

3.3 Adversarial Powers of the CAFL-eCK Model

The adversary A controls the whole network. A interacts with a set of oracles which represent protocol
instances. The following query allows the adversary to run the protocol.

• Send(U, V, s,m, f) query: The oracle Πs
U,V , computes the next protocol message according to the

protocol specification and sends it to the adversary A, along with the leakage f(skU ). A can also use
this query to activate a new protocol instance as an initiator with blank m.

In the eCK model Send query is same as the above except the leakage function f .
The following set of queries allow the adversary A to compromise certain session specific ephemeral secrets

and long-term secrets from the protocol principals.

• SessionKeyReveal(U, V, s) query: A is given the session key of the oracle Πs
U,V .

• EphemeralKeyReveal(U, V, s) query: A is given the ephemeral keys (per-session randomness) of the
oracle Πs

U,V .

• Corrupt(U) query: A is given the long-term secrets of the principal U . Then A may set up long-term
secrets at principal U at will. This query does not reveal any session keys or ephemeral keys to A.
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SessionKeyReveal, EphemeralKeyReveal and Corrupt (Long-term key reveal) queries are the same in the
eCK model.

Once the oracle Πs
U,V has accepted a session key, asking the following query the adversary A attempt to

distinguish it from a random session key. The Test query is used to formalize the notion of the semantic
security of a key exchange protocol.

• Test(U, s) query: When A asks the Test query, the challenger first chooses a random bit b← {0, 1}
and if b = 1 then the actual session key is returned to A, otherwise a random string chosen from the
same session key space is returned to A. This query is only allowed to be asked once across all sessions.

The Test query is the same in the eCK model.

3.4 Freshness Definition of the CAFL-eCK Model

Definition 3.2 (λ− CAFL-eCK-freshness). Let λ = (λ1, . . . , λt) be a vector of t elements (same size as f
in Send query). Each λi denotes the leakage bound of each underlying primitive or each portion of an encoded
secret key. An oracle Πs

U,V is said to be λ− CAFL-eCK-fresh if and only if:

1. The oracle Πs
U,V or its partner, Πs′

V,U (if it exists) has not been asked a SessionKeyReveal.

2. If the partner Πs′

V,U exists, none of the following combinations have been asked:

(a) Corrupt(U) and EphemeralKeyReveal(U, V, s).

(b) Corrupt(V ) and EphemeralKeyReveal(V,U, s′).

3. If the partner Πs′

V,U does not exist, none of the following combinations have been asked:

(a) Corrupt(V ).

(b) Corrupt(U) and EphemeralKeyReveal(U, V, s).

4. For each Send(U, ·, ·, ·, f) query, size of the output of |f ji (skU i)| ≤ λi.
5. For each Send(V, ·, ·, ·, f) queries, size of the output of |f ji (skV i)| ≤ λi.

The eCK-freshness is slightly different from the λ− CAFL-eCK-freshness by stripping off points 4 and 5.

3.5 Security Game and Security Definition of the CAFL-eCK Model

Definition 3.3 (λ − CAFL-eCK security game). Security of a key exchange protocol in the CAFL-eCK
model is defined using the following security game, which is played by the adversary A against the protocol
challenger.

• Stage 1: A may ask any of Send, SessionKeyReveal, EphemeralKeyReveal and Corrupt queries to
any oracle at will.

• Stage 2: A chooses a λ− CAFL-eCK-fresh oracle and asks a Test query. The challenger chooses a
random bit b← {0, 1}, and if b = 1 then the actual session key is returned to A, otherwise a random
string chosen from the same session key space is returned to A.

• Stage 3: A continues asking Send, SessionKeyReveal, EphemeralKeyReveal and Corrupt queries.
A may not ask a query that violates the λ− CAFL-eCK-freshness of the test session.

• Stage 4: At some point A outputs the bit b′ ← {0, 1} which is its guess of the value b on the test
session. A wins if b′ = b.

The eCK security game is same as the above, except that in Stage 2 and Stage 3 eCK-fresh oracles are
chosen instead of λ− CAFL-eCK-fresh oracles. SuccA is the event that the adversary A wins the security
game in Definition 3.3.

Definition 3.4 (λ− CAFL-eCK security). A protocol π is said to be λ− CAFL-eCK secure if there is no
adversary A that can win the λ− CAFL-eCK security game with significant advantage. The advantage of an
adversary A is defined as Advλ−CAFL-eCK

π (A) = |2 Pr(SuccA)− 1|.
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3.6 Practical Interpretation of Security of CAFL-eCK Model

We review the relationship between the CAFL-eCK model and real world attack scenarios.

• Active adversarial capabilities: Send queries address the powers of an active adversary who can
control the message flow over the network. In the previous security models, this property is addressed
by introducing the send query.

• Side-channel attacks: Leakage functions are embedded with the Send query. Thus, assuming that the
leakage happens when computations take place in principals, a wide variety of side-channel attacks such
as timing attacks, EM emission based attacks, power analysis attacks, which are based on continuous
partial leakage of long-term secrets are addressed. This property is not addressed in the earlier security
models such as the BR models, the CK model, the eCK model.

• Malware attacks: EphemeralKeyReveal queries cover the malware attacks which steal stored
ephemeral keys, given that the long-term keys may be securely stored separately from the ephemeral
keys in places such as smart cards or hardware security modules. Separately, Corrupt queries address
malware attacks which steal the long-term secret keys of protocol principals.

• Weak random number generators: Due to weak random number generators, the adversary may
correctly determine the produced random number. EphemeralKeyReveal query addresses situations
where the adversary can get the ephemeral secrets.

4 Construction of a λ− CAFL-eCK-secure Protocol

In this section we present a construction of a new λ− CAFL-eCK-secure AKE protocol. Our new protocol
construction has a similar structure to the protocol P1 of Alawatugoda [Ala17a]. The Protocol P1 is eCK-
secure AKE protocol, that is constructed using a CCA2-secure public-key encryption scheme and a function
from the pseudo-random function family, and based on the DDH hardness assumption.

4.1 Construction Details

We name our new protocol construction as Protocol P1.v2. The protocol P1.v2 shown in Table 2 is a
Diffie-Hellman-style [DH76] AKE protocol. Let k be the security parameter and group G is generated using a
group generation algorithm G that takes k as an input, where G is a group of prime order q with generators
g1, g2 such that g2 = gα1 .

In Protocol P1.v2, we use a CCLA2-secure leakage-resilient public-key encryption scheme PKE =
(KG,Enc,Dec) (refer to the section 2.3) to encrypt protocol messages between parties. Given the security
parameter k, KG generates a pair of secret/public keys for the leakage-resilient encryption scheme PKE. Let
sk0
Alice, pkAlice be the secret/public keys of the PKE of Alice, and sk0

Bob, pkBob be the secret/public keys of
the PKE of Bob, at the initial key setup. Moreover, for the protocol P1.v2, we use the (`, λ/2, ε1)-secure
leakage-resilient refreshing protocol Refreshn,2Zq

(refer to the section 2.2) of the (λ, ε)-secure LRS scheme

Φn,2Zq
. Let a1, a2 and b1, b2 be the Diffie-Hellman long-term secret keys of Alice and Bob respectively. Then,

A← ga11 ga22 ga12 ga21 and B ← gb11 g
b2
2 g

b1
2 g

b2
1 be the corresponding public keys of Alice and Bob respectively. As

the secret key is of form (x1, x2), it is information theoretically hidden against unbounded adversaries as well.
As in Dziembowski and Faust [DF11], according to the point of view of Alice, we encode the secret key (a1, a2)
as (a0

L, a
0
R) ← Encoden,2Zq

(a1, a2) using an LRS scheme Φn,2
Zq

, such that a0
L = {a0

L0, a
0
L1, . . . , a

0
Ln} ∈ Znq and

a0
R = (a0

R1
, a0
R2

) =
{
{a0
R10

, a0
R11

, . . . , a0
R1n
}, {a0

R20
, a0
R21

, . . . , a0
R2n
}
}
∈ Zn×2

q . Note that the inner product

of the two matrices a0
L and a0

R give the secret key (a1, a2). After encoding the secret key (a1, a2) into two

matrices (a0
L, a

0
R), (a1, a2) is securely erased from the memory, and the encoded values (ajL, a

j
R) will be used

for protocol computations. This procedure similarly applies at Bob as well. In the protocol P1.v2, the initial
key setup (that is long-term public/secret key generation and encoding the Diffie-Hellman long-term secret
keys) is done offline to preserve higher security.

Let x, X and y, Y be the Diffie-Hellman ephemeral secret and public keys of Alice and Bob respectively,
of the current session. After exchanging the protocol messages (X̄ ← EncpkBob

(X) and Ȳ ← EncpkAlice
(Y )),
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both principals decrypt the incoming messages. Then Alice and Bob compute the Diffie-Hellman ephemeral
shared value of the current session (values Z1 and Z ′1 respectively in Alice and Bob). At the computations of
Z1 and Z ′1, we do not consider the partial leakage of ephemeral secret keys x and y, that happens continuously
over the computations, because they are one-time secrets that are only used for a single session. We can
reasonably assume that an adversary cannot obtain enough partial leakage through a side-channel attack over
computations to distinguish a ephemeral secret value, due to its short life time. The decryption operations
implicitly refresh the current j-th session’s long-term secret keys of PKE (skjAlice becomes skj+1

Alice and skjBob
becomes skj+1

Bob). The current j-th session’s encoded secret keys, (ajL, a
j
R) and (bjL, b

j
R) are refreshed, such

that (aj+1
L , aj+1

R )← Refreshn,2Zq
(ajL, a

j
R) and (bj+1

L , bj+1
R )← Refreshn,2Zq

(bjL, b
j
R), after the computation of the

Diffie-Hellman long-term shared values (values Z2 and Z ′2 respectively in Alice and Bob) of the current
session.

Finally, protocol principals compute the session key K using the function PRF from the pseudo-random
function family (refer to the section 2.5). Inputs to the PRF are the Diffie-Hellman ephemeral shared values
(Z1 at Alice and Z ′1 at Bob) and the Diffie-Hellman long-term shared values (Z2 at Alice and Z ′2 at Bob)
of the current session, together with the two protocol messages that are exchanged between Alice and Bob
(Alice‖X̄‖Bob‖Ȳ ).

4.2 Leakage-Resilient Exponentiation Computation from Encoded Secrets

It is good to explain details about the computation of the Diffie-Hellman long-term shared values of the
current session, namely Z2 at Alice and Z ′2 at Bob. Because this exponentiation computation is performed
using the encoded values of the long-term secret key. Note that encoding the secret key is the key mechanism
to achieve the leakage resiliency of the protocol P1.v2. In order to understand this computation, following we
explain how it is happened at the protocol principal Alice.

Let G be a group of prime order q with generators g1 and g2. Let a1, a2 ← Zq be the Diffie-Hellman
long-term secret key of Alice, and B be the Diffie-Hellman long-term public key of Bob. We need to compute
the value Z2 which is equivalent to Ba1 ·Ba2 at Alice, but instead of a1 and a2 we have to use the encoded
long-term secret keys of Alice. Let ajL = {ajL0, a

j
L1, . . . , a

j
Ln} ∈ Znq and ajR = (ajR1

, ajR2
) =

{
{ajR10

, ajR11
,

. . . , ajR1n
}, {ajR20

, ajR21
, . . . , ajR2n

}
}
∈ Zn×2

q are the encoded long-term secret values of Alice at the current

j-th session. Now we compute T1 = {T10, T11, . . . , T1n} = Ba
j
R1 �Ba

j
R2�, where � denotes component-wise

multiplication of vectors. Therefore, T1i = B
ajR1 i �Ba

j
R2 i . Next, we compute T2 = {T20, T21, . . . , T2n} = T

ajL
1 .

It gives, T2 = {T10
ajL1 , T11

ajL2 , . . . , T1n
ajLn}. Finally, we compute Z2 =

n∏
i=0

T2i. The protocol P1.v2 shown

in Table 2, this computation is emphasized in a box, that is indicated as exp(B, (ajL, a
j
R)). This procedure

similarly applies at Bob to compute Z ′2.

4.3 Security Analysis of the Protocol P1.v2

There is a leakage bound defined by the LRS scheme Φn,2
Zq

, that we call λ, and there is a leakage bound

defined by the CCLA2-secure leakage-resilient public-key encryption scheme PKE, that we call λ′. Thus, we
define a leakage bound λ for protocol P1.v2, such that λ = (λ, λ′). According to the CAFL-eCK model, the
adversary A is allowed to query leakage of the Diffie-Hellman long-term secret keys as well as the decryption
keys of the PKE under the leakage bounds λ and λ′ respectively, using separate leakage functions to each
of the building blocks. Let f j = (f jΦ, f

j
PKE) a tuple of leakage functions issues with a Send query, where j

indicates the j-th leakage occurrence (j-th protocol session). The leakage function f jΦ is computed over the

Diffie-Hellman long-term secret keys, and the leakage function f jPKE is computed over the decryption keys of
a protocol principal at the current j-th session, to produce the leakage information. This leakage information
is bounded by the corresponding leakage bound. Note that the Diffie-Hellman long-term secret keys and the
decryption keys are encoded into portions. The adversary is allowed to obtain the leakage from each of these
portions independently. The details about how the leakage is modelled from the encoded secrets is explained
in section 2.1.
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Alice (Initiator) G, q, g1, g2 ← G(1k) Bob (Responder)

Initial Key Setup (Offline)
a1, a2 ← Z2

q b1, b2 ← Z2
q

A← ga11 ga22 ga12 ga21 B ← gb11 g
b2
2 g

b1
2 g

b2
1

(a0
L, a

0
R)← Encoden,2Zq

(a1, a2) (b0L, b
0
R)← Encoden,2Zq

(b1, b2)

erase a1, a2 erase b1, b2
sk0
Alice, pkAlice ← KG(1k) sk0

Bob, pkBob ← KG(1k)

Protocol Execution
x← Zq, X ← gx1 y ← Zq, Y ← gy1

X̄ ← EncpkBob
(X)

Alice,X̄−−−−−→ Ȳ ← EncpkAlice
(Y )

Bob,Ȳ←−−−−
Y, skj+1

Alice ← DecskjAlice
(Ȳ ) X, skj+1

Bob ← DecskjBob
(X̄)

Z1 ← Y x Z ′1 ← Xy

exp(B,(ajL,a
j
R))

T1 ← Ba
j
R1 �Ba

j
R2 , T2 ← T

ajL
1

Z2 ←
n∏
i=0

T2i

exp(A,(bjL,b
j
R))

T3 ← Ab
j
R1 �Ab

j
R2 , T4 ← T

bjL
3

Z ′2 ←
n∏
i=0

T4i

(aj+1
L , aj+1

R )← Refreshn,1Zq
(ajL, a

j
R) (bj+1

L , bj+1
R )← Refreshn,1Zq

(bjL, b
j
R)

K ← PRF(Z1, Alice‖X̄‖Bob‖Ȳ )⊕ K ← PRF(Z ′1, Alice‖X̄‖Bob‖Ȳ )⊕
PRF(Z2, Alice‖X̄‖Bob‖Ȳ ) PRF(Z ′2, Alice‖X̄‖Bob‖Ȳ )

K is the session key

Table 2: Protocol P1.v2

First, we show that the leakage of Diffie-Hellman long-term secret keys from a single exp(·, ·) computation
of a protocol session can be simulated using a polynomial-time simulator S, which has access to a leakage
oracle Λ(L∗, R∗), and an auxiliary information aux. The following lemma is the analogous version of Lemma
7 in Dziembowski and Faust [DF11].

Lemma 4.1. The Diffie-Hellman long-term secret key of a protocol principal is a1, a2 ← Z2
q and the

corresponding public-key is A ← ga11 ga21 ga12 ga22 . Let B be a Diffie-Hellman long-term public key of another
protocol principal. The the secret key is encoded such that (L,R = (R1, R2))← Encoden,2Zq

(a1, a2). Let λ be
the leakage bound of each portion of the encoded secret key. Then, for a polynomial-time λ-limited adversary
A, there exists a polynomial-time λ-limited simulator S given access to the leakage oracle Λ(L∗, R∗) such that
for any b ∈ {0, 1}

Pr[Out(S(A, aux),Λ(L∗, R∗)) = b] = Pr[(A(A) � (exp(B, (L,R))) = b],

where (L∗, R∗)← Encoden,1Zq
(a1) and aux = (R1 +R2). Note that exp(B, (L,R)) denotes the exponentiation

computations of B, that are computed using the two encoded portions L and R, as emphasized in the protocol
diagram in Table 2.

The proof is similar to the proof of Lemma 7 of Dziembowski and Faust [DF11].

Proof. (Sketch) The simulation is described as follows:

1. The simulator S is given the auxiliary information aux = (R1 +R2), and given access to the leakage
oracle Λ(L∗, R∗). She sets L = L∗ and R1 = R∗.

2. S simulates the leakage of L and R1 using the leakage oracle Λ(L∗, R∗).
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3. The leakage of R2 can be described from the relation R2 = aux − R∗. Therefore, S can perfectly
simulate the leakage of R2 using the leakage oracle Λ(L∗, R∗) and the auxiliary value aux.

Above we have shown that the leakage of Diffie-Hellman long-term secret keys from a single protocol
session can be perfectly simulated. Then, we will use this observation to prove that the leakage from several
protocol sessions will also not help the adversary to learn about the encoded Diffie-Hellman long-term secret
keys. For this, we require to refresh the encoded secret key periodically. Therefore, after the exponentiation
computations (denoted by exp), the refreshing protocol Refreshn,2Zq

is executed on L and R to output L′

and R′ respectively. Then, we set (L′, R′) as the secret key for the next protocol session. We denote the
aforementioned combination of operations by expRef, that is exp followed by Refreshn,2Zq

. Now we show that
an adversary cannot learn enough information on the Diffie-Hellman long-term secret key, even she can issue
arbitrary ` number of leakage queries to the protocol principal. Recall that according to the CAFL-eCK
model leakage queries are issued with Send queries. The following is the analogous version of Lemma 8 in
Dziembowski and Faust [DF11].

Lemma 4.2. The Diffie-Hellman long-term secret key of a protocol principal is a1, a2 ← Z2
q and the

corresponding public-key is A ← ga11 ga21 ga12 ga22 . Let `, n ∈ N and suppose that Φn,2
Zq

is a (λ, ε)-secure LRS
where λ is the leakage bound of each portion of the encoded secret key. Let W be the vector that defines

auxiliary information. Then for every S = (a1, a2), S′ = (a′1, a
′
2) that satisfies ga11 ga22 ga12 ga21 = g

a′1
1 g

a′2
2 g

a′1
2 g

a′2
1 ,

and any (λ/2− 1)-limited adversary A, we have,

∆
(
Expaux

expRef((B,(L,R))(A, S, `,W,A),Expaux
expRef(B,(L,R))(A, S′, `,W,A)

)
≤ ε1 ,

where ε1 is negligible in the statistical security parameter n.

The proof is the same as the proof of Lemma 8 of Dziembowski and Faust [DF11].

Proof. (Sketch) Note that (W,A) defines a 1-dimensional subspace Z ⊂ (Zq)2 that contains all the pairs
(a1, a2) that correspond to the public key A. For any S, S′ ∈ Z and any (λ/2− 1)-limited adversary A we
have by the Theorem 2 (Generalization of Theorem 1) of Dziembowski and Faust [DF11], for refreshing of
Φn,2Zq

that,

∆(Expaux
expRef(B,(L,R))(A, S, `,W,A),Expaux

expRef(B,(L,R))(A, S′, `,W,A)) ≤ 2`p6(3ε+ 2p−n−5) . (1)

The above experiment addresses only the leakage from the refreshing operation of (L,R). In order to combine
this with leakage from exp, we use the leakage simulation from Lemma 4.1. We can apply this lemma since
(1)–equation 1 is shown by reduction to the (λ, ε)-security of Φn,2

Zq
and (2)–aux is known to the leakage

simulator. This completes the proof of Lemma 4.2, by proving that ε1 is negligible in the statistical security
parameter n.

Using Lemma 4.1 and Lemma 4.2, we prove that continuous, λ-limited leakage of the two encodings
of a Diffie-Hellman long-term secret key, that happens due to expRef computations (expRef + Refreshn,2Zq

),
will not reveal the Diffie-Hellman long-term secret key to an adversary. Using the aforementioned result,
now we prove that our construction, protocol P1.v2, is λ− CAFL-eCK-secure in the standard model. Here
we consider the λ′-limited leakage happens from the secret keys of the encryption scheme PKE, during the
decryption operation. It completes our security analysis for the protocol P1.v2. Since the protocol P1.v2 has
a similar structure to the Protocol P1 of Alawatugoda, the security analysis of the protocol P1.v2 also has a
similar security analysis to the Protocol P1, by means of different cases to be analyzed.

Theorem 4.3. If G is a group of a prime order q with generator g1, g2 such that g2 = gα1 , where the (DDH)
assumption holds, the underlying public-key encryption scheme PKE is CCLA2-secure against any λ′-limited
adversary, the function PRF is a function from the pseudo-random function family, and the refreshing protocol
Refreshn,2Zq

is (`, λ/2, ε1)-secure refreshing protocol of a (λ, ε)-secure leakage-resilient storage scheme Φn,2
Zq

,
then the protocol P1.v2 is secure in the CAFL-eCK model.
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Let U = {U1, . . . , UNP
} be a set of NP parties. Each party Ui owns at most Ns number of protocol sessions.

Let A be any adversary against the CAFL-eCK challenger of the protocol P1.v2. Then, the advantage of A
against the CAFL-eCK security challenge of the protocol P1.v2, Advλ−CAFL-eCK

P1.v2 is:

Advλ−CAFL-eCK
P1.v2 (A) ≤ N2

PN
2
s ·max

((
2ε1 + AdvDDH

G,q (C) + εPRF

)
,
(
εPRF + AdvCCLA2

PKE (D)
))

.

where C is the algorithm against a DDH challenger and D is the λ′-limited adversary against the CCLA2
challenger of the underlying public-key encryption scheme PKE.

Proof. We split the proof of Theorem 4.3 into two main cases and sub cases as mentioned below:

1. A partner to the test session exists.

(a) Adversary corrupts both the owner and the partner principals to the test session - Case 1a

(b) Adversary corrupts neither the owner nor the partner principal to the test session - Case 1b

(c) Adversary corrupts the owner to the test session, but does not corrupt the partner to the test
session - Case 1c

(d) Adversary corrupts the partner to the test session, but does not corrupt the owner to the test
session - Case 1d

2. A partner to the test session does not exist: the adversary is not allowed to corrupt the peer to the
target session.

(a) Adversary corrupts the owner to the test session - Case 2a

(b) Adversary does not corrupt the owner to the test session - Case 2b

Note that the secret keys (a1, a2) and (b1, b2) are securely erased from the memory at the initial key setup
phase. Therefore, the encoded values (ajL, a

j
R) and (bjL, b

j
R) are used to answer the Corrupt queries.

Case 1a: Adversary corrupts both the owner and partner principals to the test
session.

Game 1: This is the original game. When Test query is asked the game 1 challenger will choose a random
bit b← {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen from the same
session-key space is given. Hence,

AdvGame 1(A) = Advλ−CAFL-eCK
P1.v2,Case 1a (A) . (2)

Game 2: Same as game 1 with the following exception: before A begins, two distinct random principals
U∗, V ∗ ← {U1, ..., UNP

} are chosen and two random numbers s∗, t∗ ← {1, ...Ns} are chosen, where NP is the
number of protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗ is chosen

as the target session and the session Πt∗

V ∗,U∗ is chosen as the partner to the target session. If the test session

is not the session Πs∗

U∗,V ∗ or partner to the session is not Πt∗

V ∗,U∗ , the game 2 challenger aborts the game.
Unless the incorrect choice happens, the game 2 is identical to the game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A) . (3)

Game 3: Same as game 2 with the following exception: the game 3 challenger randomly chooses z ← Zq

and computes K according to the protocol description, using Z1 = gz1 . When the adversary asks the
Test(U∗, V ∗, s∗) query, the game 3 challenger will answer with the K.

We construct an algorithm C against a DDH challenger, using the adversary A as a sub routine. The
game 3 challenger sets the long-term secret/public key pairs (Diffie-Hellman and encryption key pairs) of
all the protocol principals. Note that the adversary A can also set long-term keys at corrupted principals.
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The algorithm C runs a copy of A and interacts with A, such that A is interacting with either game 2 or
game 3. The DDH challenger sends values (gx1 , g

y
1 , g

z
1), such that either z = xy or z ← Zq, as the inputs to

the algorithm C. The game 3 challenger sets X of the target session (Πs∗

U∗,V ∗) as gx1 , Y of the target session

(Πs∗

U∗,V ∗) as gy1 , and computes the K according to the protocol specification, using gz1 as Z1, upon receiving
the Test(U∗, V ∗, s∗) query. The game 3 challenger can answer all the other queries normally.

If C’s input is a Diffie-Hellman triple, simulation constructed by the game 3 challenger is identical to game
2, otherwise it is identical to game 3. If A can distinguish the difference between games, then C can answer
the DDH challenge. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ AdvDDH
G,q (C) . (4)

Game 4: Same as game 3 with the following exception: the game 4 challenger randomly chooses K ← {0, 1}k
and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.

The game 4 challenger sets the Diffie-Hellman long-term secret/public key pairs and the encryption key
pairs of all the protocol principals. Therefore, the challenger can answer all the queries normally.

If K is computed using the real PRF with a hidden key, the simulation is identical to game 3, whereas if
K is chosen randomly from the session key space, the simulation constructed is identical to game 4. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ εPRF . (5)

Semantic security of the session key in Game 4: Since the session key K of Πs∗

U∗,V ∗ is chosen randomly
and independently from all other values, A does not have any advantage in game 4. Hence,

AdvGame 4(A) = 0 . (6)

Using equations (2)–(6) we find,

Advλ−CAFL-eCK
P1.v2,Case 1a (A) ≤ N2

PNs
2
(

AdvDDH
G,q (C) + εPRF

)
.

Case 1b: Adversary corrupts neither the owner nor the partner principals to the
test session.

Game 1: This is the original game. When Test query is asked the game 1 challenger will choose a random
bit b← {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen from the same
session-key space is given. Hence,

AdvGame 1(A) = Advλ−CAFL-eCK
P1.v2,Case 1b (A). (7)

Game 2: Same as game 1 with the following exception: before A begins, two distinct random principals
U∗, V ∗ ← {U1, ..., UNP

} are chosen and two random numbers s∗, t∗ ← {1, ...Ns} are chosen, where NP is the
number of protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗ is chosen

as the target session and the session Πt∗

V ∗,U∗ is chosen as the partner to the target session. If the test session

is not the session Πs∗

U∗,V ∗ or partner to the session is not Πt∗

V ∗,U∗ , the game 2 challenger aborts the game.
Unless the incorrect choice happens, the game 2 is identical to the game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (8)

Game 3: Let (a1, a2) be the Diffie-Hellman long-term secret keys of U∗, that are set according to the
protocol specification. Let A be the Diffie-Hellman long-term public key, that is computed from (a1, a2),
according to the protocol specification. Moreover, the game 3 challenger sets the other Diffie-Hellman
long-term secret/public key pairs and all the encryption key pairs of protocol principals. This is as game 2
with the following changes:
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1. Sample (a′1, a
′
2) ← {(o, r)|g1

og2
rg2

og1
r = g1

a1g2
a2g1

a2g2
a1} at random and sets Encoden,2Zq

(a′1, a
′
2) as

the Diffie-Hellman long-term secret keys of U∗.

2. Compute the answers to the protocol queries and the leakage queries at U∗ with Encoden,2Zq
(a′1, a

′
2) until

the adversary asks for the Test(U∗, V ∗, s∗) query.

3. Compute the answer for the Test(U∗, V ∗, s∗) query by using (a1, a2) as in the previous game.

4. Answer the protocol queries and leakage queries at U∗ with Encoden,2Zq
(a′1, a

′
2) further.

Other than the aforementioned change, the game 3 challenger can answer all the other queries normally.
It is easy to see that the distance between game 2 and game 3 is negligible by the Lemma 4.2. Thus,

|AdvGame 2(A)−AdvGame 3(A)| ≤ ε1 . (9)

Game 4: Let (b1, b2) be the Diffie-Hellman long-term secret keys of V ∗, that are set according to the
protocol specification. Let B be the Diffie-Hellman long-term public key, that is computed from (b1, b2),
according to the protocol specification. Moreover, the game 4 challenger sets the other Diffie-Hellman
long-term secret/public key pairs and all the encryption key pairs of protocol principals. This is as game 3
with the following changes:

1. Sample (b′1, b
′
2)← {(o, r)|g1

og2
rg2

og1
r = g1

b1g2
b2g1

b2g2
b1} at random and sets Encoden,2Zq

(b′1, b
′
2) as the

Diffie-Hellman long-term secret keys of V ∗.

2. Compute the answers to the protocol queries and the leakage queries at V ∗ with Encoden,2Zq
(b′1, b

′
2) until

the adversary asks for the Test(U∗, V ∗, s∗) query.

3. Compute the answer for the Test(U∗, V ∗, s∗) query by using (b1, b2) as in the previous game.

4. Answer the relevant protocol queries and leakage queries at V ∗ with Encoden,2Zq
(b′1, b

′
2) further.

Other than the aforementioned change, the game 4 challenger can answer all the other queries normally.
It is easy to see that the distance between game 3 and game 4 is negligible by the Lemma 4.2. Thus,

|AdvGame 3(A)−AdvGame 4(A)| ≤ ε1 . (10)

Game 5: Same as game 4 with the following exception: the game 5 challenger randomly chooses δ ← Zq

and computes K according to the protocol description, using gδ1 for the computation of Z2. When the
adversary asks the Test(U∗, V ∗, s∗) query, the game 5 challenger will answer with K.

We construct an algorithm C against a DDH challenger, using the adversary A as a sub routine. Recall
that g2 = gα1 and the game 5 challenger knows α. The DDH challenger sends values (gβ1 , g

γ
1 , g

δ
1) such that

either δ = βγ or δ ← Zq, as the inputs to the algorithm C. The game 5 challenger sets the encryption key
pairs of all the protocol principals, and sets the Diffie-Hellman long-term secret/public key pairs of the other
protocol principals, except for U∗ and V ∗. For U∗ and V ∗, sets only one Diffie-Hellman long-term secret
value at each principal; precisely, a2 at U∗ and b2 at V ∗. Then, compute the Diffie-Hellman long-term public
value of U∗ as gβ1 g

a2
2 ga21 (gβ1 )α, and the Diffie-Hellman long-term public value of V ∗ as gγ1 g

b2
2 g

b2
1 (gγ1 )α. The

leakage of U∗ and V ∗ are computed as in game 3 and game 4. We explain it again here briefly: The game 5
challenger samples (a′1, a

′
2)← {(o, r)|g1

og2
rg2

og1
r = g1

βg2
a2g1

a2g1
αβ} at random and sets Encoden,2Zq

(a′1, a
′
2)

at U∗, and (b′1, b
′
2)← {(o, r)|g1

og2
rg2

og1
r = g1

γg2
b2g1

b2g1
αγ} at random and sets Encoden,2Zq

(b′1, b
′
2) at V ∗ as

the Diffie-Hellman long-term secret keys. Then, the leakage queries to U∗ and V ∗ are answered using them.
The game 5 challenger can answer all the other queries normally: it computes session keys according to the
protocol description, using gδ1 for the computation of Z2, at the sessions involving both U∗ and V ∗.

If C’s input is a Diffie-Hellman triple, simulation constructed by the game 5 challenger is identical to game
4, otherwise it is identical to game 5. If A can distinguish the difference between games, then C can answer
the DDH challenge. Hence,

|AdvGame 4(A)−AdvGame 5(A)| ≤ AdvDDH
G,q (C). (11)
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Game 6: Same as game 5 with the following exception: the game 6 challenger randomly chooses K ← {0, 1}k
and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.

The game 6 challenger sets the Diffie-Hellman long-term secret/public key pairs and the encryption key
pairs of all the protocol principals, as in the previous game. Therefore, the challenger can answer all the
queries normally.

If K is computed using the real PRF with a hidden key, the simulation is identical to game 5, whereas if
K is chosen randomly from the session key space, the simulation constructed is identical to game 6. Hence,

|AdvGame 5(A)−AdvGame 6(A)| ≤ εPRF . (12)

Semantic security of the session key in Game 6: Since the session key K of Πs∗

U∗,V ∗ is chosen randomly
and independently from all other values, A does not have any advantage in game 6. Hence,

AdvGame 6(A) = 0. (13)

Using equations (7)–(13) we find,

Advλ−CAFL-eCK
P1.v2,Case 1b (A) ≤ N2

PNs
2
(

2ε1 + AdvDDH
G,q (C) + εPRF

)
.

Case 1c: Adversary corrupts the owner to the test session, but does not corrupt
the partner.

Game 1: This is the original game. When Test query is asked the game 1 challenger will choose a random
bit b← {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen from the same
session-key space is given. Hence,

AdvGame 1(A) = Advλ−CAFL-eCK
P1.v2,Case 1c (A). (14)

Game 2: Same as game 1 with the following exception: before A begins, two distinct random principals
U∗, V ∗ ← {U1, ..., UNP

} are chosen and two random numbers s∗, t∗ ← {1, ...Ns} are chosen, where NP is the
number of protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗ is chosen

as the target session and the session Πt∗

V ∗,U∗ is chosen as the partner to the target session. If the test session

is not the session Πs∗

U∗,V ∗ or partner to the session is not Πt∗

V ∗,U∗ , the game 2 challenger aborts the game.
Unless the incorrect choice happens, the game 2 is identical to game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (15)

Game 3: Same as game 2 with the following exception: the game 3 challenger randomly chooses C from
the ciphertext space as encryption of the value X of the session Πs∗

U∗,V ∗ , and sends it to the session Πt∗

V ∗,U∗

as having come from the session Πs∗

U∗,V ∗ .
We introduce an algorithm D that is constructed using the adversary A. If A can distinguish the

difference between game 2 and game 3, then D can be used against the CCLA2 challenger of underlying
public-key cryptosystem, PKE. The game 3 challenger uses the public key of the CCLA2 challenger as the
encryption public key of the protocol principal V ∗, and sets the other long-term public/secret key pairs
(Diffie-Hellman and encryption keys) for protocol principals. D runs a copy of A and interacts with A, such
that it is interacting with either game 2 or game 3. D picks two random strings, X0, X1 ← Zq and passes
them to the CCLA2 challenger. From the CCLA2 challenger, D receives a challenge ciphertext C such that
C ← Enc(pkV ∗ , Xθ) where Xθ = X0 or Xθ = X1. The game 3 challenger uses X1 as the decryption of C
when answering the Test(U∗, V ∗, s∗) query. With the aid of the CCLA2 challenger the game 3 challenger
can compute the leakage of the decryption key of the principal V ∗, and the corresponding decryptions at V ∗,
to answer the queries of A. The game 3 challenger can answer all the other queries normally. Upon receiving
the Test(U∗, V ∗, s∗) query, X1 is used to compute the Z1 and K is computed using the Z1. Note that, the
CCLA2 challenger is allowed to answer the leakage queries and the decryption queries even after issuing the
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challenge ciphertext C. Therefore, the game 3 challenger can answer all the queries normally, even after the
Test(U∗, V ∗, s∗) query is answered. Recall that the leakage bound of the PKE is λ′.

If the value C is the encryption of the value X1, the simulation constructed by the game 3 challenger is
identical to the game 2, otherwise it is identical to game 3. If A can distinguish the difference between games,
then D can answer the CCLA2 challenge successfully. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ AdvCCLA2
PKE (D). (16)

Game 4: Same as game 3 with the following exception: the game 4 challenger randomly chooses K ← {0, 1}k
and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.

The game 4 challenger sets the Diffie-Hellman long-term secret/public key pairs and the encryption key
pairs of all the protocol principals, as in the previous game. Therefore, the challenger can answer all the
queries normally.

If K is computed using the real PRF with a hidden key, the simulation is identical to game 3, whereas if
K is chosen randomly from the session key space, the simulation constructed is identical to game 4. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ εPRF . (17)

Semantic security of the session key in Game 4: Since the session key K of Πs∗

U∗,V ∗ is chosen randomly
and independently from all other values, A does not have any advantage in game 4. Hence,

AdvGame 4(A) = 0. (18)

Using equations (14)–(18) we find,

Advλ−CAFL-eCK
P1.v2,Case 1c (A) ≤ N2

PNs
2
(
εPRF + AdvCCLA2

PKE (D)
)
.

Case 1d: Adversary corrupts the partner to the test session, but does not corrupt
the owner.

The analysis of this case is similar the analysis of case 1c. The only difference with the case 1c is that we
have to set the public key of the CCLA2 challenger at U∗. Therefore, we get,

Advλ−CAFL-eCK
P1.v2,Case 1d (A) ≤ N2

PNs
2
(
εPRF + AdvCCLA2

PKE (D)
)
.

Case 2a: Adversary corrupts the owner to the test session.

There is no partner existing to the test session. The adversary A computes the corresponding protocol
message as the partner principal and sends to the owner (U∗) of the test session. The analysis of this case is
the same as the analysis of case 1c. Therefore, we get,

Advλ−CAFL-eCK
P1.v2,Case 2a (A) ≤ N2

PNs
2
(
εPRF + AdvCCLA2

PKE (D)
)
.

Case 2b: Adversary does not corrupt the owner to the test session.

There is no partner existing to the test session. The adversary A computes the corresponding protocol
message as the partner principal and sends to the owner (U∗) of the test session. The analysis of this case is
the same as the analysis of case 1b. Therefore, we get,

Advλ−CAFL-eCK
P1.v2,Case 2b (A) ≤ N2

PNs
2
(

2ε1 + AdvDDH
G,q (C) + εPRF

)
.

17



Combining all the above cases: According to the analysis we can see the adversary A’s advantage of
winning against the CAFL-eCK challenger of the protocol P1.v2 is:

Advλ−CAFL-eCK
P1.v2 (A) ≤ N2

PN
2
s ·max

((
2ε1 + AdvDDH

G,q (C) + εPRF

)
,
(
εPRF + AdvCCLA2

PKE (D)
))

.

4.4 Practical Information of the Protocol P1.v2

Now we discuss about the practical information about the protocol P1.v2.

4.4.1 Leakage Bound

The leakage bound λ of the protocol P1.v2 is (λ, λ′). Trivially, the leakage bound λ of the Diffie-Hellman
long-term secret keys is as same as the leakage bound of the underlying refreshing protocol Refreshn,2Zq

. As

shown in Corollary 1 of Dziembowski and Faust [DF11], the leakage bound of the LRS Φn,2Zq
is 0.3|Zq|n bits,

for a statistical security parameter n. As shown in Corollary 2 of Dziembowski and Faust [DF11], the leakage
bound of the refreshing protocol Refreshn,2Zq

is 0.15|Zq|n − 1 = 0.15n log q − 1 bits. Therefore, per leakage
query 0.15n log q − 1 bits of leakage is allowed from each of the two encodes of the secret key, independently
from each other. For a security parameter k, log q ≥ k and n is a function of k. Thus, the λ is 1/n− o(1) of
a Diffie-Hellman long-term secret key. The leakage bound λ′ for a decryption secret key of the underlying
leakage-resilient public-key encryption scheme PKE is specific to the particular public-key encryption scheme.

4.4.2 Computation Cost

Now we look at the number of operations to be performed at a protocol principal for a single protocol
execution. We count the number of exponentiation operations only. Note that we ignored the multiplication
and addition operations since they are significantly lighter than the exponentiation operations. Table 3 shows
the details of performance analysis. Recall that n ∈ N is the statistical security parameter, that is a function
of the security parameter k.

Operation Computation Cost
(at initiator or responder)

Initial Key Setup
(Offline) Diffie-Hellman long-term key pair generation 1ME

Encryption scheme key pair generation 1KG
Encoding Diffie-Hellman long-term secret key 0

Protocol Execution
X̄/Ȳ computation 1E, 1Enc
Z1/Z

′
1 computation 1Dec, 1E

Z2/Z
′
2 computation (3n)E

K computation 1PRF
Refreshing 0

Key: E – exponentiation operation; ME – multi-exponentiation; KG – key generation; Enc – encryption
operation; Dec – decryption operation; PRF – pseudo-random function operation

Table 3: Overall computation cost at a protocol principal
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5 Conclusions and Future Works

In this paper, we have presented a Diffie-Hellman-style construction of a λ−CAFL-eCK-secure AKE protocol.
Our protocol is proven to be secure in the standard model and based on the hardness assumption of the
DDH problem. Our protocol can be instantiated with any CCLA2-secure public-key encryption scheme and
a function from the pseudo-random function family. Hence, our protocol is a good AKE protocol candidate
for future TLS protocol suits, that can be implemented and deployed with minimal implementation cost,
given existing implementations of a CCLA2-secure public-key encryption scheme and a function from the
pseudo-random function family.

Encoding the secret key into two portions and allowing only independent leakage from them seems
somewhat strong assumption. Therefore, as a future work, it is better to advance the knowledge towards
stripping off this strong assumption, while preserving the security features of this protocol in the standard
model. Further, reducing the computation cost and reaching to the optimum leakage bound of 1 − o(1)
should be valuable directions to work on. On the other hand, research on quantum-safe leakage-resilient AKE
constructions are worthwhile as the quantum computers will be a reality in the near future.
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