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Abstract

In this work we resolve the open problem raised by Prabhakaran and Rosulek at CRYPTO
2007, and present the first anonymous, rerandomizable, Replayable-CCA (RCCA) secure
public-key encryption scheme. This solution opens the door to numerous privacy-oriented
applications with a highly desired RCCA security level. At the core of our construction
is a non-trivial extension of smooth projective hash functions (Cramer and Shoup, EURO-
CRYPT 2002), and a modular generic framework developed for constructing rerandomiz-
able RCCA-secure encryption schemes with receiver-anonymity. The framework gives an
enhanced abstraction of the original Prabhakaran and Rosulek’s scheme (which was the first
construction of rerandomizable RCCA-secure encryption in the standard model), where
the most crucial enhancement is the first realization of the desirable property of receiver-
anonymity, essential to privacy settings. It also serves as a conceptually more intuitive and
generic understanding of RCCA security, which leads, for example, to new implementations
of the notion. Finally, note that (since CCA security is not applicable to the privacy applica-
tions motivating our work) the concrete results and the conceptual advancement presented
here, seem to substantially expand the power and relevance of the notion of rerandomizable
RCCA-secure encryption.
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1 Introduction

RCCA security. Security against adaptive chosen-ciphertext attacks (CCA) is widely consid-
ered as a de facto security standard for public-key encryption (PKE). However, it is evidenced
that for some practical purposes, a somewhat weaker security notion than CCA security is al-
ready sufficient [Kra01, Sho01, ADR02]. To this end, Canetti et al. [CKN03] introduced the
notion of Replayable-CCA (RCCA) security, which is essentially the same as CCA security,
except that no guarantees are given against adversaries with the capability of malleating a ci-
phertext into a new one of the same plaintext. Such a relaxation endows PKE with desirable
features such as rerandomizable RCCA (Rand-RCCA) security which was proposed by Canetti
et al. [CKN03] and later formalized by Groth [Gro04]. This notion turns out to have numer-
ous practical applications, such as: cryptographic reverse firewalls [MS15, DMSD16, GMV20],
mixnets [GJJS04, PR17] and controlled-malleable NIZK [FFHR19].

Constructing Rand-RCCA-secure PKE has been generally considered a difficult problem,
and was posed as an open problem in [CKN03]. The difficulty is mainly due to the fact that
RCCA security and rerandomizability are seemingly incompatible in some sense. In particular,
the construction has to be almost CCA secure while at the same time has special mathematical
structure for realizing rerandomizability. A notable construction was by Prabhakaran and
Rosulek [PR07] at CRYPTO 2007 (hereafter referred to as PR scheme) which is the first perfect
Rand-RCCA-secure PKE based on the DDH assumption in the standard model.

Receiver-anonymity in the RCCA setting. In [PR07], Prabhakaran and Rosulek further
defined a new notion called RCCA receiver-anonymity which is similar to the notion of key-
privacy introduced by Bellare et al. in [BBDP01] but in the RCCA setting. For an RCCA
receiver-anonymous encryption scheme, the generated ciphertext should not tell the adversary
any information about the underlying public key. Such a property turns out to be essential
in privacy-oriented applications where ciphertext-rerandomizability, adaptive security (i.e., per-
mitting strong adversary who may probe the system with ciphertexts), and receiver-anonymity
are required simultaneously.

A typical example—given by Prabhakaran and Rosulek [PR07]—is the application of reran-
domizable encryption in mixnets where receiver-anonymity is indispensable. More precisely,
consider an anonymous communication (AC) protocol based on universal mixnet [GJJS04] where
a set of message relays (called mixnodes or mixes) receive a batch of encrypted messages, reran-
domize and randomly permute them, and send them on their way forward. Unfortunately, the
requirement of ciphertext-rerandomizability, while enabling unlinkability of multiple ciphertexts
in terms of their contents, contradicts the desirable strong CCA security. Thus, as it turned
out, only rerandomizable CPA-secure encryption schemes are used in previous universal mixnet-
based AC protocols [GJJS04]. To strengthen the security to the adaptive one (i.e., allowing
an adversary of the network to attempt sending ciphertexts of its own to the network as part
of its attack), RCCA security is the alternative as it reconciles the required rerandomizability
and adaptive security (this active attacker, in fact, is what most earlier works on anonymity
are not protected against due to the encryption being CPA-secure only). However, as pointed
out by Prabhakaran and Rosulek, without receiver-anonymity, the attacker might still be able
to correlate the ciphertexts for the same recipient (i.e., sender-receiver relationships are not
broken by the mixing!). This example application demonstrates that anonymous Rand-RCCA-
secure PKE is meaningful to strengthening the security of universal mixnet-based AC protocol
on the one hand, and to allowing it to achieve anonymity (breaking completely sender-receiver
relationship) at the same time. More broadly, for various other privacy-oriented applications
[SRS04, PNDD06, SBT+14, YY18], RCCA receiver-anonymity is also desirable for privacy pro-
tection while withstanding strong adversary with decryption query capability (see Appendix A
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for further motivating applications).

The open problem. Unfortunately, the PR scheme [PR07] does not achieve receiver-anonymity,
and therefore, how to construct an anonymous Rand-RCCA-secure PKE to support the above
mentioned applications under strong adversary was left as an explicit open problem by Prab-
hakaran and Rosulek in [PR07]:

“Adding anonymity brings out the power of rerandomizability and yields a potent crypto-
graphic primitive. We note that our scheme does not achieve this definition of anonymity,
and leave it as an interesting open problem.”

Somewhat surprisingly, in spite of further developments in constructing Rand-RCCA en-
cryption throughout many years [Gro04, GJJS04, PR07, CKLM12, LPQ17, FFHR19, FF20],
the above open problem remains unsolved to date. The main technical challenge of achieving
RCCA receiver-anonymity arises from the fact that different from the typical CCA game, the
decryption oracle in the RCCA game would output “replay” if the query decryption result
equals to either of the challenge plaintexts. Such a relaxation, in fact, gives the adversary more
power and consequently raises the difficulty to achieve receiver-anonymity in the RCCA set-
ting. Specifically, the adversary can guess the underlying public key, re-encrypt the challenge
ciphertext and verify its guess via querying the decryption oracle. Thus, to defend against
this attack, it is required that the rerandomization of ciphertext should not involve the public
key. Such a feature was originally referred to as “universal rerandomization” by Golle et al.
[GJJS04]. However, achieving receiver-anonymity is more challenging than realizing universal
rerandomizability, since there may exist other ways allowing the adversary to rerandomize a
ciphertext using the public key. In other words, receiver-anonymity is strictly stronger than
universal rerandomizability. An example is the PR scheme which is universally rerandomizable
but not receiver-anonymous (see Section 2 for the detailed analysis).

Motivated by the aforementioned state of affairs and the requirement of receiver-anonymity
for privacy-oriented applications, our main goal in this work is to resolve the above challenging
problem of achieving RCCA receiver-anonymity. More specifically, we ask whether it is possible
to achieve receiver-anonymity in the RCCA setting; and if the answer is positive, how to attempt
a solution which is as generic as possible. Our second question is motivated by the fact that
a generic paradigm would enable a better understanding of the underlying key ideas and more
diversified constructions of anonymous Rand-RCCA-secure encryption in a conceptually clear
and modular way. Also, a framework using abstract building blocks enables more concrete
instantiations from various assumptions, leading to better security (as will be demonstrated by
our additional results below).

Our Results. We resolve the Prabhakaran and Rosulek’s open problem in this work. We design
a modular framework for constructing anonymous Rand-RCCA-secure PKE via an extension of
the notion of smooth projective hash functions by Cramer and Shoup [CS02]. Our contributions
can be summarized as follows:

• We formalize a novel extension of smooth projective hash function with various types of
rerandomizability (Re-SPHF), and redefine the property of smoothness which is crucial
to generally realize Rand-RCCA security with receiver-anonymity;

• We design a framework for constructing anonymous Rand-RCCA-secure PKE from Re-
SPHFs, and rigorously prove its RCCA security and receiver-anonymity. These turn out to
provide a conceptually intuitive understanding of RCCA security and receiver-anonymity;

• We provide the first anonymous Rand-RCCA-Secure PKE scheme from k-linear (k-Lin)
assumption, which—putting anonymity aside—also improves the PR scheme with its more
general hardness assumption.

3



Remark. It is worth noting that in [PR07], Prabhakaran and Rosulek also pointed out the
potential of generalizing their scheme by following the Cramer-Shoup paradigm [CS02] (hereafter
referred to as CS-paradigm), but they left such an investigation open as well. In fact, as we
will illustrate in this work, our proposed framework can, in fact, be viewed as an abstraction
of a modified PR scheme. Thus, while mainly motivated by achieving a solution to the RCCA
receiver-anonymity, our work also closes Prabhakaran and Rosulek’s second open question of
generalization via SPHFs.

2 Technical Overview and Related Work

First, let us explain why the PR scheme does not satisfy receiver-anonymity. As a countermea-
sure, we introduce a concrete approach to achieving RCCA receiver-anonymity based on the PR

scheme. To generalize our proposed approach, following the SPHF-based CS-paradigm [CS02],
we then define an extension of SPHF that could well explain the modified PR scheme and its
security. To this end, we successfully design a general framework for anonymous, Rand-RCCA-
secure PKE, which can, in turn, be instantiated based on different assumptions.

Why the PR scheme is not receiver-anonymous? We start by reviewing the PR scheme
and its core idea leading to the RCCA security. The crucial idea toward achieving this goal is
using two “strands” of Cramer-Shoup ciphertexts [CS02] which can be “uniquely” recombined
with each other for rerandomization without changing the underlying plaintext.

Overview of the PR scheme. Let G, G be two cyclic groups of prime orders p, q where p = 2q+1

where G is also a subgroup of Z∗p. Let g and g be generators of G and G respectively, [a]
denotes vector (ga1 , · · · , gan) for a = (a1, · · · , an) ∈ Znp , and [a] denotes vector (ga1 , · · · , gan)
for a = (a1, · · · , an) ∈ Znq . The ciphertext of the PR scheme is

ζ :=
(

[u(x + z)] ,M ·
[
b>x

]
,
[
α>x

]
︸ ︷︷ ︸

C1: message-carrying strand

, [uy] ,
[
b>y

]
,
[
α>y

]
︸ ︷︷ ︸
C2: rerandomization strand

, %
)

% :=
(

[x] , u ·
[
b
>

x
]
,
[
c>x

]
︸ ︷︷ ︸

C3: mask-carrying strand

, [y] ,
[
b
>

y
]
,
[
c>y

]
︸ ︷︷ ︸
C4: rerandomization strand

) (1)

where u ∈ G, given fixed g ∈ Z4
p and g ∈ Z2

q , x,y, z,b, c,d ∈ Z4
p with x = xg, y = yg for

x, y ∈ Zp and z 6= zg for any z ∈ Zp, x,y,b, c ∈ Z2
q with x = xg, y = yg for x, y ∈ Zq,

α = c + τd, τ = Ψ(M) and Ψ : G → Zp is a collision-resistant hash function. % is the
ciphertext of random mask u under a malleable (and also rerandomizable) encryption scheme
(see Section 3.1). At the high level, the strand C1 carries the message while the strand C2

is to help rerandomize C1 without public key. The encrypted mask u shared between C1

and C2 disables the adversary to mix together strands from two different ciphertexts (of the
same plaintext) to obtain a valid ciphertext. The exponents of strand C1 are perturbed by an
additional vector z to restrict the manner of recombining the two strands. Consequently, to
rerandomize ciphertext ζ, one randomly picks υ ∈ G, s, t ∈ Z∗p, s, t ∈ Z∗q and computes

C ′1 :=
(
[υ · u(x + z) + sυ · uy] , M ·

[
b>x

]
·
[
sb>y

]
,
[
α>x

]
·
[
sα>y

])
,

C ′3 :=
(

[x + s · y] , υ · u ·
[
b
>

x
]
·
[
sb
>

y
]
,
[
c>x

]
·
[
sc>y

])
,

C ′2 :=
(
[tυ · uy] ,

[
tb>y

]
,
[
tα>y

])
and C ′4 :=

([
t · y

]
,
[
tb
>

y
]
,
[
tc>y

])
.
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Partial rerandomizability breaking the receiver-anonymity. It is shown in [PR07] that the above
is the only valid way for full rerandomization of ciphertext. However, one can note that strands

C3 and C4 can also be rerandomized with public keys
[
b
>

g
]

and
[
c>g

]
as follows.

C ′3 :=
(

[x + s · g] , u ·
[
b
>

x
]
·
[
sb
>

g
]
,
[
c>x

]
·
[
sc>g

])
,

C ′4 :=
([

y + t · g
]
,
[
b
>

y
]
·
[
tb
>

g
]
,
[
c>y

]
·
[
tc>g

])
,

where s, t ∈ Z∗q . We now demonstrate why the PR scheme is not RCCA receiver-anonymous.
Recalling the game of RCCA receiver-anonymity in Fig. 2, the adversary has access to a guarded
decryption oracle which on input ζ, first computes M0 = Dec(SK0, ζ) and M1 = Dec(SK1, ζ),
then checks if M ∈ {M0,M1}. If so, it returns replay, otherwise it returns (M0,M1). As for
the PR scheme, adversary could obtain a ciphertext ζ∗0 by rerandomizing strands C3 and C4

in the challenge ciphertext ζ∗ with public key PK0 in the above way. If b = 0, ζ∗0 is a valid
ciphertext of M ; otherwise, ζ∗0 is invalid. With the response of the guarded decryption oracle,
the adversary is able to distinguish these two cases.

Our concrete treatment of the PR scheme for RCCA receiver-anonymity. To achieve
RCCA receiver-anonymity, we have to disable the rerandomization of strands C3 and C4 em-
ploying the public key. Note that the rerandomization of strands C1 and C2 is restricted by
mask u and vector z. If we also apply this technique to C3 and C4, extra strands are required
to encrypt the mask in C3 and C4, which would incur the partial rerandomization of ciphertext
employing the public key again. To bypass this problem, we move the masks and additional
vectors to the validity checking components of strands. Since the validity checking part contains
only one component, an additional component is appended to each strand for perturbation on
the validity checking part. Concretely, the ciphertext of our variant is:

ζ :=
(

[x] ,M ·
[
b>x

]
,
[
uα>x†

]
,
[
uβ>x‡

]
︸ ︷︷ ︸

C1: message-carrying strand

, [y] ,
[
b>y

]
,
[
uα>y

]
,
[
uβ>y

]
︸ ︷︷ ︸

C2: rerandomization strand

, %
)
,

% :=
(

[x] , u ·
[
b
>

x
]
,
[
uc>x†

]
,
[
ud
>

x‡
]

︸ ︷︷ ︸
C3: mask-carrying strand

, [y] ,
[
b
>

y
]
,
[
uc>y

]
,
[
ud
>

y
]

︸ ︷︷ ︸
C4: rerandomization strand

) (2)

where u ∈ G, x† = x + z1g, x‡ = x + z2g for z1, z2 ∈ Z∗p with z1 6= z2, x† = x + z1g,

x‡ = x + z2g for z1, z2 ∈ Z∗q with z1 6= z2, c,d, e, f ∈ Z2
p, α = c +md, β = e +mf , m = Ψ(M)

and Ψ : G→ Zp is a collision-resistant hash function. The rerandomization of strands C1, C2 is
still restricted by mask u and vector (z1, z2). As for strands C3, C4, their rerandomization can
be restricted by mask u and vector (z1, z2), since u is placed on validity checking part.

We stress that the above modifications are carefully conducted to preserve the RCCA secu-
rity of the encryption scheme. First of all, extra secret keys (e.g., e, f and d) are introduced to
compute the additional component in validity checking part such that, given a valid ciphertext
ζ, the attacker cannot infer a new validity checking part for particular [x] or [x] (that cannot be
obtained by re-encrypting ζ). Secondly, the usage of mask u in strands C3, C4 is safe and sound.
Taking component

[
uc>x†

]
as example, it is equivalent to the value of

[
(u mod q)c>x†

]
, as

mask u is an integer in Z∗p. Since the modular operation satisfies the homomorphism property,
the re-encryption on strands C3, C4 maintains correctness. Note that a component in the va-
lidity checking part actually corresponds to two different masks u, u′ with u′ = u mod q. We
remark that this would not affect the RCCA security as long as the size of the modulus q is
large enough so that the attacker cannot guess the value of mask u trivially.

5



Generalization of our approach. Note that the ciphertext structure of our above variant
still shares some similarities with that of the PR scheme which is essentially a double “strand” of
Cramer-Shoup ciphertext. We turn to explore whether it is possible to generalize our treatment
following the CS-paradigm [CS02].

We start by recalling the CS-paradigm based on SPHF, and then seek to extend the notion
of SPHF to interpret our proposed variant and its security.

Recalling Cramer-Shoup paradigm from SPHFs. Smooth Projective Hash Function (SPHF) was
originally proposed by Cramer and Shoup [CS02] for generally constructing practical CCA-
secure PKE. Roughly, SPHF is a family of hash functions H = (Hsk)sk∈K indexed by K that
map the non-empty element set X onto the hash value set Π. Each SPHF is associated with
an NP-language L ⊂ X where elements in L are computationally indistinguishable from those
in X\L (i.e., hard subset membership problem). For any x ∈ L, Hsk(x) could be efficiently
computed using either the hashing key sk ∈ K, i.e., Priv(sk, x) = Hsk(x) (private evaluation
mode), or the projection key pk = φ(sk) ∈ P with the witness w ∈ W to the fact x ∈ L, i.e.,
Pub(pk, x, w) = Hsk(x) (public evaluation mode). The notion of SPHF could be generalized
to tag-based SPHF where a tag τ is also taken as an auxiliary input by H(·),Priv and Pub.
The CS-paradigm is based on a Smooth1 SPHF = (H(·), φ,Priv,Pub) and a Smooth2 tag-based

ŜPHF = (Ĥ(·), φ̂, P̂riv, P̂ub). The public key is (pk, p̂k) = (φ(sk), φ̂(ŝk)) and the ciphertext is

ζ :=
(
x, M · Pub(pk, x, w), P̂ub(p̂k, x, w, τ)

)
=
(
x, M ·Hsk(x), Ĥ

ŝk
(x, τ)

)
,

where x ∈ L, w is the witness of x, τ = Ψ (x, M ·Hsk(x)) and Ψ is a collision-resistant hash
function. To make our later argument easier to follow, below we first provide an overview of jus-
tification of CCA security from SPHF. Consider the challenge ciphertext ζ∗ = (x∗, Mb · π∗, π̂∗)
in the CCA security game.

1) Due to the hard subset membership problem, we can replace x∗ ∈ L in ζ∗ with x∗ ∈ X\L
and compute π∗ = Priv(sk, x∗), π̂∗ = P̂riv(ŝk, x∗, τ∗).

2) By the Smooth2 property of tag-based ŜPHF, any “bad” ciphertext ζ including x 6= x∗ ∈
X\L will be rejected by the decryption oracle as π̂ = Ĥ

ŝk
(x, τ) is uniformly distributed,

even conditioned on p̂k and π̂∗.

3) By the Smooth1 property of SPHF, π∗ in ζ∗ is uniformly distributed and thus ζ∗ perfectly
hides Mb, which yields the CCA security.

Generalization of our construction via newly extended SPHFs. As the first attempt to general-
ize our variant, we abstract strands C1 and C2 in Eq. (2) using the following SPHFs:

SPHF = (H(·), φ,Priv,Pub), ŜPHF = (Ĥ(·), φ̂, P̂riv, P̂ub), S̃PHF = (H̃(·), φ̃, P̃riv, P̃ub),

based on which C1 and C2 in our variant could be written as

C1 :=

(
[x], M ·Hsk([x]), Ĥ

ŝk
([x], τ)

)
, C2 :=

(
[y], Hsk([y]), H̃

s̃k
([y], τ)

)
, (3)

where tag τ = (u,m), hashing key ŝk = (c,d, e, f) and s̃k = ŝk. Note that these SPHFs are
defined on the same set X =

{
[a]
∣∣a ∈ Z2

p

}
with NP-language L = {[rg]|r ∈ Zp} for g ∈ Z2

p. The
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rerandomization of C1 and C2 is defined as

C ′1 =
(

[x + sy], M ·

Hsk([x])·(Hsk([y]))s︷ ︸︸ ︷[
b>x

]
·
[
sb>y

]
,

(Ĥŝk
([x],τ))

υ ·(H̃s̃k
([y],τ))

sυ︷ ︸︸ ︷[
υuα>x†

]
·
[
sυuα>y

]
,
[
υuβ>x‡

]
·
[
sυuβ>y

])

C ′2 =
(

[ty] ,

(Hsk([y]))t︷ ︸︸ ︷[
tb>y

]
,

(H̃s̃k
([y],τ))

tυ︷ ︸︸ ︷[
tυ · uα>y

]
,
[
tυ · uβ>y

])
,

where υ←$G, s, t←$Z∗p. The generalization of strand C3(C4) is similar to that of C1(C2)

and can be denoted by SPHFs defined on the same set X =
{

[a]
∣∣a ∈ Z2

q

}
with NP-language

L = {[rg]|r ∈ Zq} for g ∈ Z2
q . The ciphertext rerandomization in our variant could be classified

with respect to SPHFs as follows.

• Self-rerandomization within same SPHF, e.g.,

(Hsk([x]), Hsk([y])) Hsk([x]) · (Hsk([y]))s

• Pairwise-rerandomization between different SPHFs, e.g.,(
Ĥ

ŝk
([x], τ), H̃

s̃k
([y], τ)

)
 
(
Ĥ

ŝk
([x], τ)

)υ
·
(
H̃

s̃k
([y], τ)

)sυ
Motivated by these observations, we put forward the notion of rerandomizable SPHF (Re-

SPHF) which is a regular SPHF augmented with self- and pairwise-rerandomizability. Specif-
ically, based on the typical definition of SPHF, we formalize three extra algorithms namely
RandX, RandT and RandH to capture both cases of rerandomization. The correctness of cipher-
text in our variant is guaranteed by the rerandomization correctness with respect to RandX,
RandT and RandH in Re-SPHF, while the perfect rerandomization of ciphertext is captured by
the notion of perfect rerandomization in Re-SPHFs.

Arguments of RCCA security with receiver-anonymity. Analogous to the classification of reran-
domization, we redefine two types of smoothness for Re-SPHF as below. Let CRX(x∗) denote
the set of all rerandomization of x∗ obtained via RandX, CRX(x∗1, x

∗
2) denote the set of all reran-

domization of x∗1 obtained via RandX with x∗2 and CRT(τ∗) denote the set of all rerandomization

of τ∗ obtained via RandT. Let
s≡ denote statistical indistinguishability between distributions.

– Controlled-Self-Rerandomizable Smoothness (CSR-Smooth). For any x∗ ∈ X , τ∗ ∈ T and
(x, τ) ∈ X\L × T with x /∈ CRX(x∗) or τ /∈ CRT(τ∗),(

pk, Hsk(x
∗, τ∗), Hsk(x, τ)

)
s≡
(
pk, Hsk(x

∗, τ∗), π ←$ Π
)
.

– Controlled-Pairwise-Rerandomizable Smoothness (CPR-Smooth). For any x∗1, x∗2 ∈ X , τ∗ ∈ T
and (x, τ) ∈ X\L × T with x /∈ CRX(x∗1, x

∗
2) or τ /∈ CRT(τ∗),(

p̂k, Ĥ
ŝk

(x∗1, τ
∗), H̃

s̃k
(x∗2, τ

∗), Ĥ
ŝk

(x, τ)
)

s≡
(
p̂k, Ĥ

ŝk
(x∗1, τ

∗), H̃
s̃k

(x∗2, τ
∗), π ←$ Π̂

)
,

where ŝk = s̃k. Also, we redefine two enhanced Smooth1 for Re-SPHF as below.
– Self-Twin 1-Smoothness (ST-Smooth1). For x1, x2←$X\L and τ ←$ T ,(

pk, Hsk(x1, τ) , Hsk(x2, τ)
)

s≡
(
pk, π1 ←$ Π, π2 ←$ Π

)
.
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– Pairwise-Twin 1-Smoothness (PT-Smooth1). For x1, x2←$X\L and τ ←$ T ,(
p̂k, Ĥ

ŝk
(x1, τ) , H̃

s̃k
(x2, τ)

)
s≡
(
p̂k, π1 ←$ Π̂, π2 ←$ Π̃

)
.

We now show how to realize RCCA security and receiver-anonymity with these new prop-
erties. Consider a challenge ciphertext ζ∗ with words [x∗], [y∗] ∈ L and [x∗], [y∗] ∈ L in the
RCCA security game. Similar to the security justification of CS-paradigm, below we provide
the arguments to justify the RCCA security of our variant.

1) Due to the hard subset membership problems on (X ,L) and (X ,L), the challenge ci-
phertext ζ∗ generated by alternative encryption algorithm, where [x∗], [y∗] ∈ L and
[x∗], [y∗] ∈ L are replaced with non-words (i.e., [x∗], [y∗] ∈ X\L and [x∗], [y∗] ∈ X\L)
and the corresponding hash values are computed with hashing keys, is computationally
indistinguishable from one generated by original encryption algorithm.

2) Note that the Smooth2 property used for proving the CS-paradigm is not satisfied here as
the adversary may construct a valid ciphertext with at least one non-word via rerandomiz-
ing ζ∗. Fortunately, the manner to rerandomize ζ∗ in our variant is restricted by z1, z2, z1,
z2, u and querying such a “valid” rerandomization of ζ∗ will not leak information about
private key. To the end, a computationally unbounded decryption oracle with public key
and challenge ciphertext ζ∗ only will reject “bad” ciphertext ζ that includes at least one
non-word but is not a “valid” rerandomization of ζ∗, as the corresponding hash values
(e.g., H̃

s̃k
([y], τ) and Ĥ

ŝk
([x], τ)) in ciphertext ζ are uniformly distributed by properties

CSR-Smooth and CPR-Smooth.

3) By properties ST-Smooth1 and PT-Smooth1, all the hash values in ζ∗ are uniformly dis-
tributed conditioned on public key, and Mb is perfectly hidden in ζ∗, which yields the
RCCA security of our variant.

Note that RCCA security guarantees the privacy of the underlying plaintext, while RCCA
receiver-anonymity captures the privacy of the public key. The justification for receiver-anonymity
is indeed similar to the above arguments. In particular, the decryption oracle also relies on
CSR-Smooth and CPR-Smooth properties to reject all the “bad” ciphertexts. In the end, the
uniform distributions of all the hash values in ζ∗ imply the receiver-anonymity in RCCA setting.

Related Work. Here we illustrate several previous constructions of Rand-RCCA-secure PKE
and provide an efficiency comparison with our scheme, putting aside the receiver-anonymity.
Also, some related SPHFs variants will be given.

Non-anonymous constructions. Groth [Gro04] presented a perfect Rand-RCCA-secure scheme,
where the ciphertext can be rerandomized into another one in an unlinkable way, under the
generic group model, and the ciphertext size expansion is as large as the bit-length of the
plaintext. Phan and Pointcheval [PP04] then designed an efficient framework of RCCA-secure
scheme, while Faonio and Fiore [FF20] showed that the rerandomizability of its ElGamal-based
instantiation in [PR17] cannot resist any active attacks. Chase et al. [CKLM12] introduced a
new way to construct perfect Rand-RCCA-secure PKE from a malleable NIZK system, where
their construction has public verifiability property. Libert et al. [LPQ17] proposed a new con-
struction that improves on Chase et al.’s scheme but still suffers from high computational costs
and large ciphertext size (of 62 group elements) due to the adoption of NIZK. Recently, Faonio
et al. [FFHR19] gave a new construction of perfect Rand-RCCA-secure PKE from Dk-MDDH
assumption. The ciphertext in their scheme (when k=1) is extremely short and consists of only
6 group elements. In a most recent work, Faonio and Fiore [FF20] proposed a more efficient
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Table 1: Comparison of Rand-RCCA-secure PKE schemes (k=2). |PK| and |CT | represent the
number of elements in public key and ciphertext, where ` denotes the bit-length of plaintext.
Here G and G are standard DDH groups that satisfy certain requirements. G1,G2 and GT are
groups in bilinear pairing. Here E,E,E1, E2, ET denote the execution time of exponentiation
on G,G,G1,G2,GT and the time cost of pairing is P. “Std” refers to standard model, “GGM”
refers to generic group model, and “NPR” refers to non-programmable random oracle model.
“Perfect” indicates perfect rerandomizability, “Universal” indicates that ciphertext rerandom-
ization does not require the public key, and “Anonymity” refers to RCCA receiver-anonymity.

PKE [Gro04] [PR07] [LPQ17] [FFHR19] [FF20] Ours (k-Lin)

|PK| O(`)G 4G+ 7G 11G1 + 16G2 7G1 + 7G2 + 2GT 11G 6G+ 10G
|CT | O(`)G 8G+ 12G 42G1 + 20G2 3G1 + 2G2 +GT 11G 12G+ 12G
Enc O(`)E 8E + 14E 79E1 + 64E2 4E1 + 5E2 + 3ET + 5P 15E 12E + 16E

Dec O(`)E 8E + 24E 1E1 + 142P 8E1 + 4E2 + 4P 18E 18E + 18E

Rerand O(`)E 8E + 16E 48E1 + 24E2 6E1 + 7E2 + 3ET + 9P 11E 14E + 14E

Model GGM Std Std Std NPR Std

Assumption DDH DDH SXDH Dk-MDDH DDH k-Linear

Perfect X X X X × X
Universal × X × × × X
Anonymity × × × × × X

Rand-RCCA-secure PKE with only weak rerandomizability, and where security is justified in
the random oracle model.

In Table 1, we compare our scheme with previous works, putting aside our exclusive property
of receiver-anonymity. Compared with the recent work of Faonio et al. [FFHR19], our 2-Lin-
based instantiation, although based on special groups which are larger than a regular setting,
does not involve any pairing computations.

SPHF variants. Variants of SPHF with new properties have also been proposed in the literature
[CMY+16, Wee16, BBL17, HLLG19, FFHR19]. Here we briefly introduce two works that are
closely related to our Re-SPHF. Wee [Wee16] built the frameworks for constructing PKE sat-
isfying key-dependent message (KDM) security using SPHF with homomorphic hash function.
Faonio et al. [FFHR19] presented controlled-malleable smooth-projective hash function (cm-
SPHF), an extension of malleable smooth-projective hash function (mSPHF) by Chen et al. in
[CMY+16] with respect to elements and tags. However, the cmSPHF cannot support universal
rerandomizability.

3 Preliminaries

Notations. Let n ∈ N denote the security parameter and negl(·) denote the negligible function.
For x = (x1, · · · , xn) ∈ Znp and g ∈ G, [x] denotes vector (gx1 , · · · , gxn). For set X , x←$X
denotes that x is sampled uniformly from X at random. For any randomized algorithm F ,
y←$F(x) denotes the random output of F .

3.1 Public-Key Encryption (PKE)

A PKE scheme consists of algorithms (KGen,Enc,Dec): KGen(1n) takes as input the security
parameter 1n, and outputs the key pair (PK, SK); The encryption algorithm Enc(PK,M) takes
as input the public key PK and the plaintext M , and outputs the ciphertext ζ; The decryption
algorithm Dec(SK, ζ) takes as input the secret key SK and the ciphertext ζ, and outputs the
plaintext M or ⊥.
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IND-RCCAAPKE(n)

(PK,SK)←$KGen(1n)

(M0,M1)← ADOSK(PK)

b←$ {0, 1}
ζ∗←$Enc(PK,Mb)

b′ ← AGDO
M0,M1
SK (PK, ζ∗)

if b = b′, return 1

else return 0

DOSK(ζ)

return Dec(SK, ζ)

GDOM0,M1

SK (ζ)

M := Dec(SK, ζ)

if M ∈ {M0,M1}, return replay

else return M

Figure 1: Definition of IND-RCCA game.

A PKE scheme should satisfy decryption correctness which captures the fact that, for
(PK,SK)←$KGen(1n), for any M ∈M (in valid message space),

Pr[Dec(SK, ζ) 6= M : ζ←$Enc(PK,M)] ≤ negl(n) .

Below we provide the definitions of rerandomizable PKE. As mentioned above, in this work,
we are mainly interested in “universal rerandomization” that does not require the public key,
which is crucial to realize receiver-anonymity. Therefore, we mainly follow the definitions given
in [PR07].

Rerandomizable PKE. We say a PKE scheme is (universally) rerandomizable if there exists
algorithm Rerand that takes as input ciphertext ζ and outputs a new ciphertext ζ ′; and for
(PK,SK)←$KGen(1n), any (possibly malicious) ciphertext ζ,

Pr
[
Dec(SK, ζ ′) 6= Dec(SK, ζ) : ζ ′←$Rerand(ζ)

]
≤ negl(n) .

Definition 3.1 (Perfectly Rerandomizable PKE [FFHR19]). Assume PKE = (KGen, Enc,Dec,
Rerand) is rerandomizable. We say PKE is perfectly rerandomizable if following properties are
satisfied.

• For (PK,SK)←$KGen(1n), any M ∈M and any (honestly generated) ciphertext ζ in the
support of Enc(PK,M), the distribution of Rerand(ζ) is identical to that of Enc(PK,M).

• For (PK, SK)←$KGen(1n) and any (possibly unbounded) adversary A, given PK, the
probability of A generating a ciphertext ζ such that Dec(SK, ζ) = M 6= ⊥ for some M
and ζ is not in the range of Enc(PK,M) is negligible.

Coupled with the second property, called the tightness of decryption in both [PR07] and
[FFHR19], the first property can be extended to any malicious ciphertext that decrypts suc-
cessfully.

Malleable PKE. We say a PKE scheme is malleable if there exists an algorithm Maul that
takes as input a ciphertext ζ and a message M ′, and outputs a new ciphertext ζ ′; and for
(PK,SK)←$KGen(1n), any M,M ′ ∈M and ζ←$Enc(PK,M),

Pr
[
Dec(SK, ζ ′) 6= M ·M ′ : ζ ′←$Maul(ζ,M ′)

]
≤ negl(n) .

W.l.o.g., we assume that message space M is a multiplicative group, and let “ · ” denote
multiplication operation on M.

Security definitions. We follow the definitions of RCCA security and RCCA receiver-
anonymity in [PR07].

10



ANON-RCCAAPKE(n)

(PK0,SK0)←$KGen(1n)

(PK1,SK1)←$KGen(1n)

M ← ADOSK0,SK1 (PK0,PK1)

b←$ {0, 1}
ζ∗←$Enc(PKb,M)

b′ ← AGDO
M
SK0,SK1 (PK0,PK1, ζ

∗)

if b = b′, return 1

else return 0

DOSK0,SK1(ζ)

return (Dec(SK0, ζ),Dec(SK1, ζ))

GDOMSK0,SK1
(ζ)

M0 := Dec(SK0, ζ); M1 := Dec(SK1, ζ)

if M ∈ {M0,M1}, return replay

else return (M0,M1)

Figure 2: Definition of ANON-RCCA game.

Definition 3.2 (RCCA Security). Let PKE = (KGen,Enc,Dec) be a PKE scheme. Consider the
security game IND-RCCAAPKE(n) in Fig. 1. We say PKE is RCCA-secure if for any PPT algorithm
A in game IND-RCCAAPKE(n),

AdvIND-RCCA
A,PKE (n) :=

∣∣∣∣Pr
[
IND-RCCAAPKE(n) = 1

]
− 1

2

∣∣∣∣ ≤ negl(n) .

Definition 3.3 (RCCA Receiver-Anonymity). Let PKE = (KGen,Enc,Dec) be a PKE scheme.
Consider the security game ANON-RCCAAPKE(n) in Fig. 2. We say PKE is RCCA receiver-
anonymous if for any PPT algorithm A in game ANON-RCCAAPKE(n),

AdvANON-RCCA
A,PKE (n) :=

∣∣∣∣Pr
[
ANON-RCCAAPKE(n) = 1

]
− 1

2

∣∣∣∣ ≤ negl(n) .

3.2 Smooth Projective Hash Function (SPHF)

In this work, we focus on a more general version of smooth projective hash function, called tag-
based smooth projective hash function (tag-SPHF)[CS02]. The regular SPHF can be regarded
as a special case of tag-SPHF with empty tag space T = ∅. A tag-SPHF is associated with set
X , NP-language L where L ⊂ X , and defined by four algorithms (Setup, φ,Priv,Pub) as follows:

• Setup(1n) takes as input a security parameter 1n, and outputs public parameters pp =(
K, T ,Π, H(·)

)
, where K is the hashing key space, T is the tag space, Π is the hash value

space, H(·) : X × T → Π is an efficiently computable hash function family indexed by
hashing key sk ∈ K.

• φ(sk) derives the projection key pk from the hashing key sk ∈ K.

• Priv(sk, x, τ) takes as input an element x ∈ X , tag τ ∈ T and hashing key sk, and outputs
hash value π = Hsk(x, τ) ∈ Π.

• Pub(pk, x, w, τ) takes as input a word x ∈ L with witness w, tag τ and projection key pk,
and outputs hash value π = Hsk(x, τ) ∈ Π.

In regular SPHF, both the input of algorithms Priv(sk, x) and Pub(pk, x, w) do not include
tag τ , and the outputted hash value is π = Hsk(x).
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Definition 3.4 (Correctness). For pp←$Setup(1n), sk←$K and pk = φ(sk), any x ∈ L with
witness w to the fact of x ∈ L and any τ ∈ T ,

Pr[Priv(sk, x, τ) 6= Pub(pk, x, w, τ)] ≤ negl(n).

Assume that SPHF = (Setup, φ,Priv,Pub) is associated with X , L and T .

Definition 3.5 (1-Smoothness). We say SPHF is Smooth1 if for pp←$Setup(1n), sk←$K,
pk = φ(sk) and any (x, τ) ∈ X\L × T , the following two distributions are statistically in-
distinguishable:

V1 = {(pk, x, τ, π)|π = Hsk(x, τ)}, V2 = {(pk, x, τ, π′)|π′←$ Π}.

For certain tag-SPHFs, the smoothness property may be enhanced as follows.

Definition 3.6 (2-Smoothness). We say SPHF is Smooth2 if for pp←$ Setup(1n), sk←$K, pk =
φ(sk), any (x∗, τ∗) ∈ X × T and any (x, τ) ∈ X\L× T with (x, τ) 6= (x∗, τ∗), the following two
distributions are statistically indistinguishable:

V1 = {(pk, x∗, τ∗, x, τ,Hsk(x
∗, τ∗), π)|π = Hsk(x, τ)},

V2 = {(pk, x∗, τ∗, x, τ,Hsk(x
∗, τ∗), π′)|π′←$ Π}.

We assume that it is efficient to sample elements from set X and L. Below we define the
hard subset membership problem (SMP) between X and L.

Definition 3.7 (Hard Subset Membership Problem). We say the subset membership problem
is hard on (X ,L) if for any PPT adversary A,∣∣Pr[A(x) = 1]− Pr

[
A(x′) = 1

]∣∣ ≤ negl(n) ,

where x←$L and x′←$X .

4 Rerandomizable Tag-SPHF

4.1 Syntax of Rerandomizable Tag-SPHF

We slightly extend the typical SPHF syntax in such a way that the hash function family H is
indexed not only by the hashing key sk ∈ K (as the typical case) but also by some (possible)
auxiliary information ax, which is fixed as part of the public parameter. For generality and
simplicity considerations, hereafter we assume that such information is public and implicitly
included in the description of hash function family, and remain to use H(·) instead of Hax,(·).
Note that ax is set as “null” for typical SPHFs. We remark that since now the hash function
family is not solely indexed by the hash key, for two SPHFs that are even with the same
(X ,L,K, T ,Π), their corresponding hash function families are not necessarily the same due to
the possibly different auxiliary index ax.

Definition 4.1 (Rerandomizable Tag-SPHF (Re-T-SPHF)). Let I and I ′ be two tag-SPHFs
associated with same sets X and L, sharing partially the same public parameter (K, T ,Π)
but having (possibly) different hash function families H(·) and H ′(·). We say I is pairwise-

rerandomizable with respect to I ′ if:

• There exist three efficient algorithms as below.
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– I.RandX(x, x′, rx) takes as input elements x, x′ ∈ X and randomness rx ∈ Rx, outputs
a new element x∗ ∈ X ;

– I.RandT(τ, rτ ) takes as input tag τ ∈ T and randomness rτ ∈ Rτ , outputs a new tag
τ∗ ∈ T ;

– I.RandH(π, π′, rx, rτ ) takes as input hash values π, π′ ∈ Π and randomnesses rx ∈
Rx, rτ ∈ Rτ , outputs a rerandomized hash value π∗ ∈ Π,

where Rx and Rτ are randomness space for element and tag respectively.

• For sk←$K, any x, x′ ∈ X , any τ ∈ T , let π = Hsk(x, τ) and π′ = H ′sk(x
′, τ),

Pr

Hsk(x
∗, τ∗) 6= π∗ :

rx←$Rx; rτ ←$Rτ
x∗ := I.RandX(x, x′, rx);
τ∗ := I.RandT(τ, rτ )
π∗ := I.RandH(π, π′, rx, rτ )

 ≤ negl(n) .

If I ′ = I1, we say that I is self-rerandomizable. In this case, the input x and x′ for
algorithm RandX could be the same element. We say that I is linearly rerandomizable if
for any π, π′,∆ ∈ Π (w.l.o.g., considering Π as a multiplicative group), rx←$Rx, rτ ←$Rτ ,
I.RandH(π ·∆, π′, rx, rτ ) = I.RandH(π, π′, rx, rτ ) ·∆.

Remark (Re-SPHF). For a regular rerandomizable SPHF (hereafter referred to as Re-SPHF)
where tag space T = ∅, the algorithm RandT is absent and the parameter rτ in the input of
algorithm RandH is explicitly omitted.

Definition 4.2 (Perfect Re-T-SPHF). Assume I is pairwise-rerandomizable with respect to
I ′. We say that I is perfectly rerandomizable on Ts with respect to I ′ if for sk←$K, any
x, x′ ∈ X , any τ ∈ Ts ⊆ T , rx←$Rx, rτ ←$Rτ and π = Hsk(x, τ), π′ = H ′sk(x

′, τ), the following
distributions are identical:

V1 = {(x′′, τ ′′, π′′)|x′′←$X ; τ ′′←$ Ts; π′′ = Hsk(x
′′, τ ′′)},

V2 =

{
(x∗, τ∗, π∗)

∣∣∣∣ x∗ := I.RandX(x, x′, rx); τ∗ := I.RandT(τ, rτ )
π∗ := I.RandH(π, π′, rx, rτ )

}
.

If Ts = T , we say I is perfectly pairwise-rerandomizable with respect to I ′. If I ′ = I, we
say I is perfectly self-rerandomizable on Ts.

Example (DDH-Based). Let G be a cyclic group of prime order p. Consider Re-T-SPHF I

associated with set X = {[x]|x ∈ Z2
p}, L = {[rg]|r ∈ Zp} for [g] ∈ G2 and tag space T = Zp.

Hashing key is sk = a ∈ Z2
p, and the corresponding projection key is pk = [a>g] ∈ G. For any

x = [x] ∈ X , any τ ∈ T , the hash value of (x, τ) under sk is π = Hsk(x, τ) = [τa>x].

• I.RandX(x, x′, rx). For x = [x], x′ = [x′] and rx ∈ Zp, outputs x∗ = [x + rxx
′];

• I.RandT(τ, rτ ). For tag τ ∈ T and rτ ∈ Zp, outputs τ∗ = rττ ;

• I.RandH(π, π′, rx, rτ ). For hash value π = [τa>x], π′ = [τa>x′] and rx, rτ ∈ Zp, outputs
π∗ = [rτ (τa>x + rxτa

>x′)] = [rττa
>(x + rxx

′)].

1That is, H(·) and H ′(·) have the same auxiliary index (which could be “null”), and thus are the same (since
they work on the same K).
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Obviously, I is perfectly self-rerandomizable. Here we provide another Re-T-SPHF I ′ that is
nearly the same as I but has additional auxiliary index ax = z ∈ Zp, and the hash value of (x, τ)
under sk is π = H ′sk(x, τ) = [τa>(x + zg)]. I ′.RandX and I ′.RandT are the same as I.RandX
and I.RandT. As for I ′.RandH, the second hash value π′ of input must be chosen from I.

• I ′.RandH(π, π′, rx, rτ ). For π = [τa>(x + zg)], π′ = [τa>x′] and rx, rτ ∈ Zp, outputs
π∗ = [rτ (τa>(x + zg) + rxτa

>x′)] = [rττa
>(x + rxx

′ + zg)].

I ′ is perfectly pairwise-rerandomizable with respect to I. Note that if the tag of hash value in
I and I ′ is a constant from Zp, both I and I ′ are also linearly rerandomizable.

4.2 Redefining Smoothness for Re-T-SPHFs

We define the property of smoothness for Re-T-SPHFs as below.

Definition 4.3 (Controlled-Self-Rerandomizable Smoothness). Let I be self-rerandomizable.
Assume it is associated with sets X and L, and the public parameter is (K, T ,Π, H(·)). Denote
CRX(x) = {I.RandX(x, x, rx)|rx ∈ Rx} and CRT(τ) = {I.RandT(τ, rτ )|rτ ∈ Rτ}. We say
I satisfies controlled-self-rerandomizable smoothness (CSR-Smooth) if for sk←$K and
pk := I.φ(sk), any (x∗, τ∗) ∈ X×T and any (x, τ) ∈ X\L×T with x /∈ CRX(x∗) or τ /∈ CRT(τ∗),
the following two distributions are statistically indistinguishable,

V1 = {(pk, x∗, x,Hsk(x
∗, τ∗), π)|π = Hsk(x, τ)},

V2 = {(pk, x∗, x,Hsk(x
∗, τ∗), π′)|π′←$ Π}.

Intuitively, the above property states that, even knowing the fixed pk = φ(sk) and the
hash value Hsk(x

∗, τ∗) where (x∗, τ∗) ∈ X × T , one cannot guess Hsk(x, τ) correctly for any
(x, τ) ∈ X\L × T if x /∈ CRX(x∗) or τ /∈ CRT(τ∗).

Definition 4.4 (Controlled-Pairwise-Rerandomizable Smoothness). Let I be pairwise-rerandomi-
zable with respect to I ′. Assume they are associated with sets X and L, and work on (K, T ,Π).
Let H(·) and H ′(·) be the hash function family of I and I ′ respectively. Denote CRX(x, x′) =

{I.RandX(x, x′, rx)|rx ∈ Rx} and CRT(τ) = {I.RandT(τ, rτ )|rτ ∈ Rτ}. We say I satisfies
controlled-pairwise-rerandomizable smoothness (CPR-Smooth) with respect to I ′ if for
sk←$K and pk := I.φ(sk), any (x∗1, τ

∗
1 ), (x∗2, τ

∗
2 ) ∈ X ×T with τ∗1 = τ∗2 and any (x, τ) ∈ X\L×T

with x /∈ CRX(x∗1, x
∗
2) or τ /∈ CRT(τ∗1 ), the following two distributions are statistically indistin-

guishable:
V1 = {(pk, x∗1, x∗2, x,Hsk(x

∗
1, τ
∗
1 ), H ′sk(x

∗
2, τ
∗
2 ), π)|π = Hsk(x, τ)},

V2 = {(pk, x∗1, x∗2, x,Hsk(x
∗
1, τ
∗
1 ), H ′sk(x

∗
2, τ
∗
2 ), π′)|π′←$ Π}.

Intuitively, I satisfying CPR-Smooth with respect to I ′ means that, even given the fixed pk =
φ(sk) and the hash value Hsk(x

∗
1, τ
∗
1 ) and H ′sk(x

∗
2, τ
∗
2 ) where both (x∗1, τ

∗
1 ) and (x∗2, τ

∗
2 ) ∈ X × T

with τ∗1 = τ∗2 , one cannot guess Hsk(x, τ) correctly for any (x, τ) ∈ X\L× T if x /∈ CRX(x∗1, x
∗
2)

or τ /∈ CRT(τ∗1 ).

Definition 4.5 (Self-Twin 1-Smoothness). Let I be self-rerandomizable. Assume it is associ-
ated with sets X and L, and the public parameter is (K, T ,Π, H(·)). We say I satisfies self-twin
1-smoothness (ST-Smooth1) if for sk←$K and pk := I.φ(sk), x∗, x←$X\L, τ ←$ T , the fol-
lowing two distributions are statistically indistinguishable:

V1 = {(pk, x∗, x, τ, π∗, π)|π∗ = Hsk(x
∗, τ), π = Hsk(x, τ)},

V2 = {(pk, x∗, x, τ, π′′, π′)|π′′, π′←$ Π}.
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Definition 4.6 (Pairwise-Twin 1-Smoothness). Let I be pairwise-rerandomizable with respect
to I ′. Assume they are associated with sets X and L, and work on (K, T ,Π). Let H(·) and
H ′(·) be the hash function family of I and I ′ respectively. We say I satisfies pairwise-twin

1-smoothness (PT-Smooth1) with respect to I ′ if for sk←$K and pk := I.φ(sk), x∗, x←$X\L,
τ ←$ T , the following two distributions are statistically indistinguishable:

V1 = {(pk, x∗, x, τ, π∗, π)|π∗ = Hsk(x
∗, τ), π = H ′sk(x, τ)},

V2 = {(pk, x∗, x, τ, π′′, π′)|π′′, π′←$ Π}.

5 A General Framework of Rand-RCCA-secure PKE

5.1 Our Generic Construction

The generic construction of the anonymous Rand-RCCA-secure scheme PKE =(KGen, Enc, Dec,
Rerand) is depicted in Fig. 3 where the sub-scheme MPKE =(MKGen, MEnc, MDec, MRerand,
Maul) is given in Fig. 4.

KGen(1n)

sk0←$K0; sk1←$K1

pk0 := I0.φ(sk0); pk1 := I1.φ(sk1)

sk2 := sk1; pk2 := pk1

(mpk,msk)←$MKGen(1n)

SK := (sk0, sk1, sk2,msk)

PK := (pk0, pk1, pk2,mpk)

return (PK,SK)

Enc(PK,M ∈ Π0)

x1←$L with witness w1

x2←$L with witness w2

u←$ Π0; τ := (u, ψ(M))

e1 := I0.Pub(pk0, x1, w1) ·M
π̂1 := I1.Pub(pk1, x1, w1, τ)

π2 := I0.Pub(pk0, x2, w2)

π̃2 := I2.Pub(pk2, x2, w2, τ)

%←$MEnc(mpk, u)

return ζ := (x1, e1, π̂1, x2, π2, π̃2, %)

Dec(SK, ζ)

u := MDec(msk, %); if u = ⊥, return ⊥
π′1 := I0.Priv(sk0, x1); π′2 := I0.Priv(sk0, x2)

M := e1 · π′−1
1 ; τ := (u, ψ(M))

π̂′1 := I1.Priv(sk1, x1, τ)

π̃′2 := I2.Priv(sk2, x2, τ)

if (π̂′1, π̃
′
2, π
′
2) 6= (π̂1, π̃2, π2), return ⊥

else return M

Rerand(ζ)

r1, r2←$Rx; rτ ←$ Π0

x′1 := I0.RandX(x1, x2, r1)

x′2 := I0.RandX(x2, x2, r2)

e′1 := I0.RandH(e1, π2, r1)

π̂′1 := I1.RandH(π̂1, π̃2, r1, rτ )

π′2 := I0.RandH(π2, π2, r2)

π̃′2 := I2.RandH(π̃2, π̃2, r2, rτ )

%′ := MRerand(Maul(%, rτ ))

return ζ ′ := (x′1, e
′
1, π̂
′
1, x
′
2, π
′
2, π̃
′
2, %
′)

Figure 3: Our anonymous Rand-RCCA-secure scheme PKE

Descriptions of underlying SPHFs. We firstly describe the details of all the building blocks,
i.e., the underlying Re-(T)-SPHFs, in Table 2.

For the Rand-RCCA security of the PKE, the underlying subset membership problems
must be hard. Besides, we require that both I0 and I0 are perfectly self-rerandomizable and
ST-Smooth1; and I1 is perfectly pairwise-rerandomizable on Π0×{s} for any s ∈ Z, CPR-Smooth
and PT-Smooth1 with respect to I2; and I2 is perfectly self-rerandomizable on Π0 × {s} for
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MKGen(1n)

sk0←$K0; sk3←$K3

pk0 := I0.φ(sk0)

pk3 := I3.φ(sk3)

sk4 := sk3; pk4 := pk3

msk := (sk0, sk3, sk4)

mpk := (pk0, pk3, pk4)

return (mpk,msk)

MEnc(mpk, u ∈ Π0)

x3←$L with witness w3

x4←$L with witness w4

τ := u

e3 := I0.Pub(pk0, x3, w3) · u
π̂3 := I3.Pub(pk3, x3, w3, τ)

π4 := I0.Pub(pk0, x4, w4)

π̃4 := I4.Pub(pk4, x4, w4, τ)

% := (x3, e3, π̂3, x4, π4, π̃4)

return %

MDec(msk, %)

π′3 := I0.Priv(sk0, x3); u := e3 · π′−1
3

π′4 := I0.Priv(sk0, x4)

π̂′3 := I3.Priv(sk3, x3, u); π̃′4 := I4.Priv(sk4, x4, u)

if (π̂′3, π̃
′
4, π
′
4) 6= (π̂3, π̃4, π4), return ⊥

else return u

Maul(%, rτ ∈ Π0)

π̂′3 := I3.RandH(π̂3, π̃4, 1Rx
, rτ )

π̃′4 := I4.RandH(π̃4, π̃4, 1Rx
, rτ )

return %′ := (x3, e3 · rτ , π̂′3, x4, π4, π̃
′
4)

MRerand(%)

r3, r4←$Rx
x′3 := I0.RandX(x3, x4, r3);x′4 := I0.RandX(x4, x4, r4)

e′3 := I0.RandH(e3, π4, r3);π′4 := I0.RandH(π4, π4, r4)

π̂′3 := I3.RandH(π̂3, π̃4, r3, 1Π0
)

π̃′4 := I4.RandH(π̃4, π̃4, r4, 1Π0
)

return %′ := (x′3, e
′
3, π̂
′
3, x
′
4, π
′
4, π̃
′
4)

Figure 4: Generic rerandomizable and malleable encryption scheme MPKE

Table 2: Descriptions of Re-(T)-SPHFs in the PKE. The first four rows describe the sets on
which subset membership problems are defined, hash value spaces, tag spaces and hashing key
spaces respectively. The rest of rows indicate certain algorithms in these Re-(T)-SPHFs are
required to be identical.

SPHF I0 I1 I2 I0 I3 I4

SMP (X ,L) (X ,L)

Hash Value Π0 Π1 Π0 Π3

Tag − Π0 × Z − Π0

Hashing Key K0 K1 K0 K3

Alg. φ I0.φ I1.φ I0.φ I3.φ

Alg. RandX I0.RandX I0.RandX

Alg. RandT − I1.RandT − I3.RandT

any s ∈ Z and CSR-Smooth; and I3 is perfectly pairwise-rerandomizable, CPR-Smooth and
PT-Smooth1 with respect to I4; and I4 is perfectly self-rerandomizable and CSR-Smooth.

To ensure the consistency of rerandomization, we require that I0 and I0 are linearly reran-
domizable. Let ψ be an injection that maps Π0 into Z, T1 = Π0×Z and T3 = Π0. It is required
that I1.RandT(τ, rτ ) = (rτ · u, ψ(M)) and I3.RandT(τ ′, rτ ) = rτ · u for any τ = (u, ψ(M)) ∈ T1,
any τ ′ = u ∈ T3 and any rτ ∈ Π0. In algorithms Maul and MRerand, 1Rx and 1Π0

denote the

identity elements in groups Rx and Π0 respectively.
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Correctness. Below we analyze the correctness of the MPKE and then the PKE.

Theorem 5.1. For any key pair (mpk,msk), any randomness rτ ∈ Π0, any ciphertext % and
%′ = MRerand(Maul(%, rτ )) in the scheme MPKE, we have

MDec(msk, %′) =

{
rτ ·MDec(msk, %), MDec(msk, %) 6= ⊥
⊥, MDec(msk, %) = ⊥ .

Proof. Let % = (x3, e3, π̂3, x4, π4, π̃4), msk = (sk0, sk3, sk4) and u = MDec(msk, %). If u 6= ⊥, then
e3·u−1 = I0.Priv(sk0, x3) holds and validity checking on % passes. Let %′ = (x′3, e

′
3, π̂
′
3, x
′
4, π
′
4, π̃
′
4) =

MRerand(Maul(%, rτ )). By the requirement on I3.RandT, the linear rerandomizability of I0

and the consistency of rerandomization in I0, I3 and I4, let u′ = rτ · u, we have e′3 · u′−1 =
I0.Priv(sk0, x

′
3) and the validity checking on %′ also passes. Thus, MDec(msk, %′) = rτ · u =

r ·MDec(msk, %).
If u = ⊥, then π4 6= I0.Priv(sk0, x4), π̂3 6= I3.Priv(sk3, x3, u) or π̃4 6= I4.Priv(sk4, x4, u) holds.

In this case, the corresponding inequalities also hold in %′, then MDec(msk, %′) = ⊥. �

Theorem 5.2. For any public/private key pair (PK,SK), any ciphertext ζ and ζ ′ = Rerand(ζ)
in the scheme PKE, we have Dec(SK, ζ) = Dec(SK, ζ ′).

Proof. Let ζ = (x1, e1, π̂1, x2, π2, π̃2, %) and ζ ′ = (x′1, e
′
1, π̂
′
1, x
′
2, π
′
2, π̃
′
2, %
′) be a rerandomized

ciphertext of ζ. Let SK = (sk0, sk1, sk2,msk), u = MDec(msk, %), M = Dec(SK, ζ) and τ =
(u, ψ(M)).

If M 6= ⊥, then u = MDec(msk, %) 6= ⊥, e1 · M−1 = I0.Priv(sk0, x1) and the validity
checking on ζ passes. By the requirement on I1.RandT, the linear rerandomizability of I0 and
the consistency of rerandomization in I0, I1 and I2, we have e′1 ·M−1 = I0.Priv(sk0, x

′
1) and the

validity checking on %′ passes. Thus, we have Dec(SK, ζ ′) = M .
IfM = ⊥, then u = ⊥, π2 6= I0.Priv(sk0, x2), π̂1 6= I1.Priv(sk1, x1, τ) or π̃2 6= I2.Priv(sk2, x2, τ)

holds. In this case, u′ = ⊥, by Theorem 5.1, or the corresponding inequalities hold in ζ ′ as well,
and then Dec(SK, ζ ′) = ⊥. �

5.2 Security Analysis

Noting that the scheme MPKE is a sub-scheme of PKE, below we will provide the security of PKE
as the whole but will not separately give one regarding MPKE.

Theorem 5.3 (Perfect Rerandomization). The scheme PKE is a perfectly rerandomizable en-
cryption scheme.

Proof. Given fixed plaintext M , key pair (PK,SK), the distribution of the ciphertexts of M
is determined by x1, x2, x3, x4 and u. Let ζ∗ be a ciphertext in the support of Enc(PK,M).
Consider random variables ζ←$Enc(PK,M) and ζ ′←$Rerand(ζ∗). In ciphertext ζ, u is uni-
formly sampled from Π0, while u′ = rτ · u∗ in ζ ′ is also uniformly distributed on Π0 as rτ is
randomly picked from Π0. By the perfect rerandomizability of I0, I3 and I4, the distribution
of % and %′ is identical. Since I0 is perfectly self-rerandomizable, the distribution of (x1, e1)
(resp. (x2, π2)) in ζ is identical to that of (x′1, e

′
1) (resp. (x′2, π

′
2)) in ζ ′. The distributions of

(x1, π̂1) and (x′1, π̂
′
1) are identical by the perfect pairwise-rerandomizability of I1. Similarly,

the distribution of (x2, π̃2) is the same as that of (x′2, π̃
′
2) by the perfect self-rerandomizability

of I2. The 1-smoothness of all the Re-(T)-SPHFs guarantees that any (possibly unbounded)
adversary is unable to generate a malicious ciphertext that is decryptable. Put it all together,
the theorem follows. �
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Theorem 5.4 (RCCA Security). For any (X ,L) and (X ,L) where subset membership problems
are hard, the proposed PKE in Fig. 3 is RCCA-secure.

Proof. We prove the RCCA security of the scheme PKE by constructing a sequence of games
G0-G3 and demonstrating the indistinguishability between them.

Game G0: This is the IND-RCCA game. Specifically, challenger generates key pair (PK,SK) via
KGen, and sends PK to adversary A. After querying decryption oracle DOSK, A chooses two
plaintexts M0, M1. Then, challenger randomly picks b ∈ {0, 1} and sends ζ∗←$Enc(PK,Mb) to
A. Finally, A outputs b′ after querying guarded decryption oracle GDOM0,M1

SK .
Let Si denote the event that b = b′ in game Gi, we have AdvIND-RCCA

A,PKE (n) = |Pr[S0 ] − 1/2|.
Let the challenge ciphertext be ζ∗ = (x∗1, e

∗
1, π̂
∗
1, x
∗
2, π
∗
2, π̃
∗
2, %
∗) and %∗ = (x∗3, e

∗
3, π̂
∗
3, x
∗
4, π
∗
4, π̃
∗
4).

Below we describe the modifications in G1-G3.

Game G1: This game is the same as G0 except that challenge ciphertext ζ∗ is generated by
using secret key. Specifically, for the challenge ciphertext ζ∗, all the hash values are computed
using hashing key. By the correctness of Re-(T)-SPHFs, same values would be computed in G0.
The differences between G0 and G1 are only syntactical.

We call a ciphertext ζ bad if it is invalid (i.e., Dec(SK, ζ) = ⊥) or at least one of its elements is
non-language (i.e., x1 ∈ X\L, x2 ∈ X\L, x3 ∈ X\L or x4 ∈ X\L) unless it is a rerandomization
of the challenge ciphertext.

Lemma 5.5. In game G1, the decryption oracle rejects all the bad ciphertexts except with
negligible probability.

Proof. First, querying a valid ciphertext ζ with x1, x2 ∈ L and x3, x4 ∈ L does not reveal more
information about the secret key SK.

Consider the first bad ciphertext ζ submitted to the decryption oracle. If at least one of
its elements is non-language, by the 1-smoothness of I0, I1, I2, I0, I3 and I4, the corresponding
hash value is uniformly distributed over appropriate domain and the probability that ζ is valid
is negligible. If ζ is invalid, the decryption oracle rejects it with probability 1. Meanwhile, the
rejection from decryption oracle rules out a negligible faction of secret keys, and the correct
secret key is still uniformly distributed among the rest of secret keys in adversary’s view. Since
the number of query is polynomial, the probability that adversary generates a “valid” bad
ciphertext is negligible. �

Game G2: This game is the same as G1 except that challenge ciphertext ζ∗ is generated with
x∗3, x

∗
4←$X\L and x∗1, x

∗
2←$X\L. That is, ζ∗ is generated using AltEnc in Fig. 5. By the hard-

ness of SMP on (X ,L) and (X ,L), games G1 and G2 are of computational indistinguishability.
Here we omit the details of reduction.

Lemma 5.6. In game G2, if the decryption oracles reject all the bad ciphertexts except with
negligible probability, then the challenge ciphertext ζ∗ is distributed independently of plaintext
Mb and mask u∗, even given public key PK.

Proof. Since x∗1, x
∗
2 ∈ X\L, by the pairwise-twin 1-smoothness of I1 with respect to I2, π̂∗1

and π̃∗2 are uniformly distributed over appropriate domains given pk1(pk2). Similarly, π̂∗3 and
π̃∗4 are uniformly distributed over appropriate domains given pk3(pk4) by the pairwise-twin 1-
smoothness of I3 with respect to I4. By the self-twin 1-smoothness of I0, both π∗1 and π∗2 are
statistically close to random. Similarly, π∗3 and π∗4 are statistically close to random by the
self-twin 1-smoothness of I0. �
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AltEnc(SK,M ∈ Π0)

x1, x2←$X\L
u←$ Π0; τ := (u, ψ(M))

e1 := I0.Priv(sk0, x1) ·M
π̂1 := I1.Priv(sk1, x1, τ)

π2 := I0.Priv(sk0, x2)

π̃2 := I2.Priv(sk2, x2, τ)

%←$AltMEnc(msk, u)

return ζ := (x1, e1, π̂1, x2, π2, π̃2, %)

AltMEnc(msk, u ∈ Π0)

x3, x4←$X\L
e3 := I0.Priv(sk0, x3) · u
π̂3 := I3.Priv(sk3, x3, u)

π4 := I0.Priv(sk0, x4)

π̃4 := I4.Priv(sk4, x4, u)

return % := (x3, e3, π̂3, x4, π4, π̃4)

Figure 5: Modified encryption algorithms AltEnc and AltMEnc

By Lemma 5.5, in Phase 1, the decryption oracle rejects all the bad ciphertexts except with
negligible probability. Thus, before Phase 2, u∗ is uniformly distributed in adversary’s view.
This is crucial to the proof of Lemma 5.8.

Game G3: This game is the same as G2 except that both decryption oracle DOSK (in Phase
1) and guarded decryption oracle GDOM0,M1

SK (in Phase 2) return the output of alternate de-
cryption algorithm AltDec (described below) that uses public keys and challenge ciphertext to
decrypt ciphertexts instead of secret keys. We now prove that G2 and G3 are statistically indis-
tinguishable. Note that in this case AltDec is allowed to run in unbounded time. In fact, this
is essentially why AltDec is able to answer any decryption query using the public key and the
challenge ciphertext only.

For any decryption query ζ = (x1, e1, π̂1, x2, π2, π̃2, %), we first describe the sub-algorithm
AltMDec which is called by AltDec to decrypt % = (x3, e3, π̂3, x4, π4, π̃4). Let %∗ = (x∗3, e

∗
3, π̂
∗
3, x
∗
4,

π∗4, π̃
∗
4) denote the encryption of u∗ in challenge ciphertext ζ∗. To decrypt %, AltMDec performs

as below.

(i) Check that x3, x4 ∈ L. If not, go to (ii). Otherwise, let w3, w4 be the witnesses of
x3, x4, check that π4 = I0.Pub(pk0, x4, w4) holds. If not, output ⊥. Otherwise, compute
u = e3 · (I0.Pub(pk0, x3, w3))−1, and check that π̂3 = I3.Pub(pk3, x3, w3, u) and π̃4 =
I4.Pub(pk4, x4, w4, u) hold. If not, output ⊥. Otherwise, output (σ = u, s = 0).

(ii) If AltMDec is called in Phase 1, output ⊥. Otherwise, check that there exist r3, r4 ∈ Rx
and rτ ∈ Π0 such that % = MRerand(Maul(%∗, rτ )). If r3, r4 or rτ does not exist, output
⊥. Otherwise, output (σ = rτ , s = 1).

The correctness of AltMDec is proved in Lemma 5.7.

Lemma 5.7. Let (mpk,msk) be a public/secret key pair of the MPKE and %∗ be a ciphertext
generated using AltMEnc. Let (σ, s) = AltMDec(mpk, %∗, %), if (σ, s) 6= ⊥, then MDec(msk, %) =
σ ·MDec(msk, %∗)s.

Proof. If s = 0, % is a fresh encryption of u with x3, x4 ∈ L. By the correctness of I0, I3 and I4,
MDec also decrypts % into u. If s = 1, % is a derivative ciphertext of %∗. Although % and %∗ both
are not generated by MEnc, one can verify that MDec(msk, %) = rτ ·u∗ = rτ ·MDec(msk, %∗). �

Now we are ready to describe AltDec. Let ζ∗ = (x∗1, e
∗
1, π̂
∗
1, x
∗
2, π
∗
2, π̃
∗
2, %
∗) be the challenge

ciphertext. AltDec then decrypts ζ = (x1, e1, π̂1, x2, π2, π̃2, %) with PK and ζ∗ as below.
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(i) Compute (σ, s) = AltMDec(mpk, %∗, %). If AltMDec returns ⊥, then also return ⊥.

(ii) If s = 0, then σ = u. Check that there exist message M and witnesses w1, w2 such that
x1, x2 ∈ L and

e1 = I0.Pub(pk0, x1, w1) ·M π2 = I0.Pub(pk0, x2, w2)
π̂1 = I1.Pub(pk1, x1, w1, τ) π̃2 = I2.Pub(pk2, x2, w2, τ),

where τ = (u, ψ(M)). If not, output ⊥. If M /∈ {M0,M1}, output M ; otherwise, output
replay.

(iii) If s = 1, then σ = rτ . Check that there exist randomnesses r1, r2 ∈ Rx such that following
equalities hold.

x1 = I0.RandX(x∗1, x
∗
2, r1) x2 = I0.RandX(x∗2, x

∗
2, r2)

e1 = I0.RandH(e∗1, π
∗
2, r1) π2 = I0.RandH(π∗2, π

∗
2, r2)

π̂1 = I1.RandH(π̂∗1, π̃
∗
2, r1, rτ ) π̃2 = I2.RandH(π̃∗2, π̃

∗
2, r2, rτ ).

If not, output ⊥. Otherwise, output replay.

Lemma 5.8. The output of DOSK(resp. GDOM0,M1

SK ) in G3 agrees with the output of DOSK(resp.

GDOM0,M1

SK ) in G2 with overwhelming probability.

Proof. In the cases where DOSK(resp. GDOM0,M1

SK ) in G3 outputs M , DOSK(resp. GDOM0,M1

SK ) in

G2 also outputs M by Lemma 5.7 and the correctness of decryption. Similarly, when GDOM0,M1

SK

in G3 outputs replay, GDOM0,M1

SK in G2 also outputs replay by Lemma 5.7 and correctness of
decryption and rerandomization.

We now prove that when DOSK(resp. GDOM0,M1

SK ) in G3 outputs ⊥ on query ζ, DOSK(resp.

GDOM0,M1

SK ) in G2 also would output⊥ with overwhelming probability. That is, when AltDec out-
puts⊥, Dec also would output⊥ with overwhelming probability. Let ζ∗ = (x∗1, e

∗
1, π̂
∗
1, x
∗
2, π
∗
2, π̃
∗
2, %
∗)

denote the challenge ciphertext where %∗ = (x∗3, e
∗
3, π̂
∗
3, x
∗
4, π
∗
4, π̃
∗
4) and ζ = (x1, e1, π̂1, x2, π2, π̃2, %)

denote the decryption query input where % = (x3, e3, π̂3, x4, π4, π̃4).
Case 1. If AltDec outputs ⊥ due to AltMDec returning ⊥, there are following possible sub-cases.

• In Phase 1, x3 /∈ L or x4 /∈ L. By the 1-smoothness of I0, π3 = e3 ·u−1 or π4 is statistically
close to random, and thus ζ will be rejected by Dec with overwhelming probability.

• In Phase 2, r3, r4 ∈ Rx or rτ ∈ Π0 does not exist for % = MRerand(Maul(%∗, rτ )) with x3

or x4 /∈ L. If rτ does not exist, by the CPR-Smooth of I3 or CSR-Smooth of I4, π̂3 or π̃4 is
close to random, as x3 or x4 /∈ L. If r3 does not exist and x3 /∈ L, π̂3 is close to random
by the CPR-Smooth of I3. If r4 does not exist and x4 /∈ L, π̃4 is close to random by the
CSR-Smooth of I4. If r3 does not exist and x3 ∈ L, then x4 /∈ L. In this case, we assume
that there exists r4 such that x4 = I0.RandX(x∗4, x

∗
4, r4). Since u∗ is uniformly sampled

from Π0 at random, the underlying u of π̃4 equals to rτ ·u∗ which is uniformly distributed
over Π0. Then, π̂3 is close to random, as u is uniformly distributed and π̂3 is independent
of π̂∗3. Similarly, we can prove that π̃4 is close to random when r4 does not exist, r3 exists,
x4 ∈ L and x3 /∈ L.

• In both Phase 1 and 2, π4 6= I0.Pub(pk0, x4, w4), π̂3 6= I3.Pub(pk3, x3, w3, u) or π̃4 6=
I4.Pub(pk4, x4, w4, u) holds. Obviously, MDec would reject % and Dec would reject ζ.

Case 2. Suppose that (σ, s) = AltMDec(mpk, %∗, %) and (σ, s) 6= ⊥. There are following sub-
cases where AltDec outputs ⊥.
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• In Phase 1, (σ, s) = (u, 0) and x1 or x2 /∈ L. By the 1-smoothness of I0, I1 and I2, π2, π̂1

or π̃2 is statistically close to random. Suppose x1, x2 ∈ L and pk0, pk1(pk2) are fixed. If
any equation in decryption rule (ii) of AltDec does not hold for any M ∈ Π0, ζ would be
rejected due to the validity checking.

• In Phase 2, (σ, s) = (u, 0) and x1 or x2 /∈ L. If x1 = I0.RandX(x∗1, x
∗
2, r1) or x2 =

I0.RandX(x∗2, x
∗
2, r2), the underlying tag τ = (u, ψ(M)) of π̂1 or π̃2 which is derived from

π̂∗1 and π̃∗2 via I1.RandH or I2.RandH would be related to τ∗ = (u∗, ψ(M∗)) where u∗ is
uniformly distributed over Π0. However, s = 0 indicates that the value of u is fixed and
u = σ. Thus, the validity checking on ζ would fail. Otherwise, x1 6= I0.RandX(x∗1, x

∗
2, r1)

and x2 6= I0.RandX(x∗2, x
∗
2, r2). Given fixed pk1, π̂∗1 and π̃∗2, the value of π̂1 is statistically

close to random as I1 is CPR-Smooth.

• In Phase 1 and 2, (σ, s) = (u, 0) and x1, x2 ∈ L. If equations in rule (ii) of AltDec do not
hold simultaneously for any M ∈ Π0, the validity checking on ζ in Dec would fail.

• In Phase 2, (σ, s) = (rτ , 1), and there do not exist r1, r2 ∈ Rx such that equations in
decryption rule (iii) of AltDec hold at the same time. If x1 6= I0.RandX(x∗1, x

∗
2, r1) for any

r1 ∈ Rx or τ 6= I0.RandT(τ∗, rτ ), due to the fact that I1 is CPR-Smooth, π̂1 is statistically
indistinguishable from random hash value given fixed pk1, π̂∗1 and π̃∗2. Similarly, if x2 6=
I0.RandX(x∗2, x

∗
2, r2) for any r2 ∈ Rx or τ 6= I0.RandT(τ∗, rτ ), due to the fact that I2 is

CSR-Smooth, π̃2 is statistically close to random hash value given fixed pk2 and π̃∗2. Suppose
that x1 = I0.RandX(x∗1, x

∗
2, r1), x2 = I0.RandX(x∗1, x

∗
2, r2) and τ = I0.RandT(τ∗, rτ ). If

equations in rule (iii) of AltDec do not hold simultaneously, the validity checking on ζ in
Dec would fail.

In conclusion, The output of DOSK(resp. GDOM0,M1

SK ) in G3 is the same as that in G2 in
every case with overwhelming probability. �

Lemma 5.9. Pr[S3 ] = 1/2.

Proof. Note that AltMDec and AltDec do not use secret key to perform decryption. The de-
cryption oracle responses in game G3 do not provide extra information about secret key besides
public key and challenge ciphertext ζ∗ generated using AltEnc. Lemma 5.6 shows that ζ∗ is
distributed independently of bit b, from which the lemma follows. �

Putting it all together, the theorem follows. �

Theorem 5.10 (RCCA Receiver-Anonymity). For any (X ,L) and (X ,L) where subset mem-
bership problems are hard, the proposed PKE in Fig. 3 is RCCA receiver-anonymous.

Proof. We prove the receiver-anonymity of PKE by constructing a sequence of games G0-G3 and
demonstrating the indistinguishability between them.

Game G0: This is the ANON-RCCA game. Specifically, challenger generates two key pairs
(PK0, SK0) and (PK1, SK1) via KGen, and sends (PK0,PK1) to adversary A. After querying de-
cryption oracle DOSK0,SK1 , A chooses a plaintext M . Then, challenger randomly picks b ∈ {0, 1}
and sends ζ∗←$Enc(PKb,M) to A. Finally, A outputs b′ after querying guarded decryption
oracle GDOMSK0,SK1

.

Let Si denote the event that b = b′ in game Gi, we have AdvANON-RCCA
A,PKE (n) = |Pr[S0 ]− 1/2|.

Game G1: This game is the same as G0 except that challenge ciphertext ζ∗ is generated by
using secret key SKb. According to the analysis in Theorem 5.4, game G1 is identical to G0 by
the correctness of SPHFs.
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Game G2: This game is the same as G1 except that challenge ciphertext ζ∗ is generated with
x∗3, x

∗
4←$X\L and x∗1, x

∗
2←$X\L. That is, ζ∗ is generated using AltEnc in Fig. 5. By the hard-

ness of SMP on (X ,L) and (X ,L), games G1 and G2 are of computational indistinguishability.

Game G3: This game is the same as G2 except that both decryption oracle DOSK0,SK1 (in
Phase 1) and guarded decryption oracle GDOMSK0,SK1

(in Phase 2) work as follows. First, it
runs alternative decryption algorithm AltDec∗, which is the same as AltDec in Theorem 5.4
except that it outputs replay when decryption result equals to M , with PK0 and PK1 respec-
tively. If AltDec∗ outputs replay, it returns replay, otherwise, it returns the results of running
AltDec∗. By Lemma 5.8, the output of DOSK0,SK1(GDOMSK0,SK1

) in G3 agrees with the output

of DOSK0,SK1(GDOMSK0,SK1
) in G2 with overwhelming probability. Thus, games G2 and G3 are

statistically indistinguishable.
Note that AltDec∗ does not use secret key to perform decryption. The decryption oracle

responses in game G3 do not provide extra information about secret key SKb besides public keys
PK0,PK1 and challenge ciphertext ζ∗ generated using AltEnc. By Lemma 5.6, ζ∗ is distributed
independently of PKb. Thus, we have Pr[S3 ] = 1/2, from which the theorem follows. �

6 Instantiations

In this section, we show how to instantiate our framework from the k-Lin assumption. More
generally, it could be constructed from graded rings [BBC+13] and we provide the details in
Appendix B.

6.1 Regular SPHF from k-Lin assumption

Let G be a cyclic group with prime order p. The k-Lin assumption says that
[
r>gk+1

]
is

pseudorandom given [g>], [gk+1], [r>G] where r,g←$Zkp, gk+1←$Zp and G = diag(g>) ∈ Zk×kp ,

gk+1 = (gk+1, · · · , gk+1)> ∈ Zkp.
Let element set X =

{[
x>
]∣∣x ∈ Zk+1

p

}
and L =

{[
w>P

]∣∣w ∈ Zkp
}

where P = (G gk+1) ∈
Zk×(k+1)
p . Below is a regular SPHF from k-Lin assumption.

• Setup(1n). Let K = Zk+1
p , Π = G and T = ∅. Since the tag space is empty, H(·) : X → G

is an efficient hash function family indexed by sk ∈ Zk+1
p .

• φ(sk). For sk = a ∈ Zk+1
p , outputs pk = [Pa] ∈ Gk.

• Priv(sk, x). For sk = a ∈ Zk+1
p and x =

[
x>
]
∈ X , outputs π =

[
x>a

]
∈ G.

• Pub(pk, x, w). For pk = [Pa] ∈ Gk and x =
[
w>P

]
∈ L with witness w ∈ Zkp, outputs

π =
[
w>(Pa)

]
∈ G.

Since
[
w>(Pa)

]
=
[
(w>P)a

]
, the correctness of SPHF holds. For any x /∈ L and pk = [Pa],

vector x> is not in the linear span of P, then hash value Hsk(x) =
[
x>a

]
is independent from

pk = [Pa]. This guarantees the 1-smoothness.

6.2 Instantiating the underlying Re-(T)-SPHFs of Our Framework

We show how to instantiate the required Re-(T)-SPHFs for our generic construction from k-Lin
assumption.
(1) Construction of I0 and I0. The algorithms (I0.Setup, I0.φ, I0.Priv, I0.Pub) are the same
as those of regular SPHF from k-Lin assumption, and thus the 1-smoothness of I0 is obvious.
Below we provide the remaining algorithms, i.e., I0.RandX and I0.RandH.
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• I0.RandX(x, x′, rx). For x =
[
x>
]
, x′ =

[
x′>
]
∈ X and rx ∈ Zp, outputs x∗ =

[
x> + rxx

′>].
• I0.RandH(π, π′, rx). For π =

[
x>a

]
, π′ =

[
x′>a

]
∈ G and rx ∈ Zp, outputs π∗ = π·(π′)rx =[

x>a + rxx
′>a
]
.

Since π∗ =
[
(x> + rxx

′>)a
]

= I0.Priv(sk, I0.RandX(x, x′, rx)), the correctness of rerandom-
ization holds. For any π, π′,∆ ∈ G and any rx ∈ Zp, we have I0.RandH(π · ∆, π′, rx) =
(π ·∆) · (π′)rx = (π · (π′)rx) ·∆ = I0.RandH(π, π′, rx) ·∆ and I0 is linearly rerandomizable.

Theorem 6.1. I0 is perfectly self-rerandomizable.

Proof. Given fixed sk0, the distribution of V1 = (x′′, Hsk0(x′′)) is determined by x′′ that is
uniformly distributed on X . For V2 = (I0.RandX(x, x′, rx), I0.RandH(π, π′, rx)) with fixed x =[
x>
]

and x′ =
[
x′>
]
, its distribution is determined by x∗ =

[
x> + rxx

′>]. Since rx is sampled
from Zp uniformly, x∗ is uniformly distributed on X , from which the theorem follows. �

Theorem 6.2. I0 is ST-Smooth1 when k ≥ 2.

Proof. We prove that given a fixed projective key pk = [Pa], for random non-language elements
x∗ = [(x∗)>] and x = [x>], the probability of event that P, (x∗)> and x> are linearly dependent
is negligible if k ≥ 2. Since P and (x∗)> are linearly independent, they form the basis of a
hyperplane. If x> lies on this hyperplane, π = [x>a] can be derived from π∗ = [(x∗)>a] and
pk. The probability of x> on the hyperplane is p2/p(k+1) which is negligible when k ≥ 2. Thus,
from the 1-smoothness of I0, the theorem holds. �

The construction of I0 is exactly the same as I0. In concrete scheme, it is associated with

X and NP-language L that are defined over Gk+1
where G is a cyclic group with prime order

q and a subgroup of Z∗p. Specifically, X =
{[

x>
]∣∣x ∈ Zk+1

q

}
, and L =

{[
w>P

]∣∣w ∈ Zkq
}

where

P = (G gk+1) ∈ Zk×(k+1)
q , G = diag(g>) ∈ Zk×kq , gk+1 = (gk+1, · · · , gk+1)> ∈ Zkq , g←$Zkq ,

gk+1←$Zq.
(2) Construction of I1 and I2. We first describe the framework of I1 as below.

• I1.Setup(1n). Let K1 = (Zk+1
p )4, Π1 = G2, T1 = G× Z∗p. Pick λ1,λ2←$Zkp with λ1 6= λ2,

ax = (λ1,λ2). Ĥ(·) : X × T1 → G2 is indexed by sk1 ∈ K1 and ax.

• I1.φ(sk1). For sk1 = (b, c,d, e) ∈ (Zk+1
p )4, outputs

pk1 = ([Pb], [Pc], [Pd], [Pe]).

• I1.Priv(sk1, x, τ). For sk1 = (b, c,d, e), x =
[
x>
]

and τ = (τ0, τ1), outputs hash value

π = Ĥsk1(x, τ) = (π1, π2) =([
(x> + λ>1 P)(τ0(b + τ1c))

]
,
[
(x> + λ>2 P)(τ0(d + τ1e))

])
.

• I1.Pub(pk1, x, w, τ). For pk1 = ([Pb], [Pc], [Pd], [Pe]), x =
[
w>P

]
with witness w and

τ = (τ0, τ1), outputs π = Ĥsk1(x, τ) = (π1, π2) =([
(w> + λ>1 )(τ0(Pb + τ1Pc))

]
,
[
(w> + λ>2 )(τ0(Pd + τ1Pe))

])
.

• I1.RandX(x, x′, rx). For x =
[
x>
]
, x′ =

[
x′>
]

and rx ∈ Zp, outputs x∗ =
[
x> + rxx

′>] .
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• I1.RandT(τ, rτ ). For τ = (τ0, τ1) and rτ ∈ Zp, outputs τ∗ = (rτ · τ0, τ1).

• I1.RandH(π, π′, rx, rτ ). For π = (π1, π2), π′ = (π′1, π
′
2), rx ∈ Zp and rτ ∈ Zp, outputs

π∗ = ((π1 · (π′1)rx)rτ , (π2 · (π′2)rx)rτ ).

As for I2, its algorithms I2.φ, I2.RandX, I2.RandT and I2.RandH are the same as I1.φ, I1.RandX,
I1.RandT and I1.RandH. Besides, I2.Setup is the same as I1.Setup except that ax is null and the
hash function family is H̃(·) : X × T2 → G2 where T2 = T1. I2.Priv and I2.Pub are equivalent to
I1.Priv and I1.Pub with λ1 = λ2 = 0.

• I2.Priv(sk2, x, τ). For sk2 = (b, c,d, e) ∈ (Zk+1
p )4, x =

[
x>
]

and τ = (τ0, τ1), outputs hash

value π = H̃sk2(x, τ) = (π1, π2) =([
x>(τ0(b + τ1c))

]
,
[
x>(τ0(d + τ1e))

])
.

• I2.Pub(pk2, x, w, τ). For pk2 = ([Pb], [Pc], [Pd], [Pe]), x =
[
w>P

]
with witness w and

τ = (τ0, τ1), outputs π = H̃sk2(x, τ) = (π1, π2) =([
w>(τ0(Pb + τ1Pc))

]
,
[
w>(τ0(Pd + τ1Pe))

])
.

One can verify the correctness of I1 and I2 easily. For any x /∈ L, any τ ∈ T1 and pk1 =
([Pb], [Pc], [Pd], [Pe]), vector x> is not in the linear span of P, then

([
(x> + λ>1 P)(τ0(b + τ1c))

]
,
[
(x> + λ>2 P)(τ0(d + τ1e))

])
is independent of pk1, from which the 1-smoothness property

holds for both I1 and I2. As for the correctness of rerandomization, we consider π = Ĥsk1(x, τ)
and π′ = H̃sk2(x′, τ) as I1 is rerandomizable with respect to I2. For rx, rτ ∈ Zp, one can
verify that rerandomized hash value π∗ = I1.RandH(π, π′, rx, rτ ) = I1.Priv(sk1, x

∗, τ∗) where
x∗ = I1.RandX(x, x′, rx) and τ∗ = I1.RandT(τ, rτ ). This also holds for π = H̃sk2(x, τ) and
π′ = H̃sk2(x′, τ).

Theorem 6.3. Let T1(s) = G × {s} ⊆ T1 with s ∈ Z∗p. I1 is perfectly pairwise-rerandomizable
on T1(s) with respect to I2 for any s ∈ Z∗p.

Proof. Given fixed sk1 and s ∈ Zp, the distribution of V1 = (x′′, τ ′′, Ĥsk1(x′′, τ ′′)) is deter-
mined by x′′ and τ ′′ which are uniformly distributed on X and T1(s) respectively. For V2 =
(I1.RandX(x, x′, rx), I1.RandT(τ, rτ ), I1.RandH(π, π′, rx, rτ )) with fixed x =

[
x>
]
, x′ =

[
x′>
]
∈

X and τ = (τ0, τ1) ∈ T1(s), its distribution is determined by x∗ =
[
x> + rxx

′>] and τ∗ =
(rτ · τ0, τ1). Since rx, rτ are sampled from Zp uniformly, x∗ and τ∗ are uniformly distributed on
X and T1(s), from which the theorem follows. �

Theorem 6.4. Let T2(s) = G × {s} ⊆ T2 with s ∈ Z∗p. I2 is perfectly self-rerandomizable on
T2(s) for any s ∈ Z∗p.

Proof. Analogous to the proof of above theorem, the distributions of V1 and V2 are determined
by (x′′, τ ′′) and (x∗, τ∗) respectively, where x∗ =

[
x> + rxx

>] and τ∗ = (rτ · τ0, τ1). Since rx, rτ
are sampled from Zp uniformly, x∗ and τ∗ are uniformly distributed on X and T2(s). �

Theorem 6.5. I1 is PT-Smooth1 with respect to I2 when k ≥ 2.

Proof. Since I0, I1 and I2 share same element space, according to the analysis in Theorem 6.2,
the probability that P, (x∗)> and x> are linearly dependent is negligible if k ≥ 2. Similarly, by
the 1-smoothness of I1 and I2, the theorem holds. �

24



Theorem 6.6. I1 is CPR-Smooth with respect to I2.

Proof. According to I1.RandX and I1.RandT, for any x =
[
x>
]
, x′ =

[
x′>
]
∈ X , τ = (τ0, τ1) ∈

T1, we have CRX(x, x′) =
{[

x> + rxx
′>]∣∣rx ∈ Zp

}
and CRT(τ) = {(rτ · τ0, τ1)|rτ ∈ Zp}. Let

A be a PPT adversary whose goal is to compute the hash value π∗ of (x∗, τ∗) ∈ X\L × T1

with x∗ /∈ CRX(x, x′) or τ∗ /∈ CRT(τ), conditioned on pk1 = pk2 = ([Pb], [Pc], [Pd], [Pe]),
π = Ĥsk1(x, τ) and π′ = H̃sk2(x′, τ) where sk1 = sk2. We rewrite pk1, π = (π1, π2), π′ = (π′1, π

′
2)

and π∗ = (π∗1, π
∗
2) in the form of matrix as follows.

P 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

τ0(x> + λ>1 P) τ0τ1(x> + λ>1 P) 0 0
0 0 τ0(x> + λ>2 P) τ0τ1(x> + λ>2 P)

τ0x
′> τ0τ1x

′> 0 0
0 0 τ0x

′> τ0τ1x
′>

τ∗0 ((x∗)> + λ>1 P) τ∗0 τ
∗
1 ((x∗)> + λ>1 P) 0 0

0 0 τ∗0 ((x∗)> + λ>2 P) τ∗0 τ
∗
1 ((x∗)> + λ>2 P)



b
c
d
e



Since x, x′, x∗ /∈ L, x>,x′> and (x∗)> are not in the linear span of P. We assume that π∗

is a linear combination of pk1, π and π′. Otherwise, π∗ is uniformly distributed over G2 by the
1-smoothness. If τ∗ /∈ CRT(τ), then there are two following cases.

• τ∗1 6= τ1. In this case, the matrix above is non-singular and the value of π∗ is independent
from pk1, π and π′.

• τ∗1 = τ1 and τ∗0 6= t · τ0 for any t ∈ Zp. If τ∗0 ((x∗)> + λ>1 P) is a linear combination
of P, τ0(x> + λ>1 P) and τ0x

′>, then there exists t ∈ Zp such that τ∗0 = t · τ0, which is
contradict to current case. Thus, π∗ is independent from pk1, π and π′.

Suppose that τ∗ ∈ CRT(τ) and (τ∗0 , τ
∗
1 ) = (t · τ0, τ1), then x∗ /∈ CRX(x, x′) which implies

(x∗)> = r1x
> + r2x

′> + λ>r P with r1 6= 1 or λ>r 6= 0. We have

τ∗0 ((x∗)> + λ>1 P) = t · τ0(r1x
> + r2x

′> + (λ>r + λ>1 )P)
= tr1 · τ0(x> + λ>1 P) + tr2 · τ0x

′> + tτ0(λ>r + (1− r1)λ>1 )P;
τ∗0 ((x∗)> + λ>2 P) = t · τ0(r1x

> + r2x
′> + (λ>r + λ>2 )P)

= tr1 · τ0(x> + λ>2 P) + tr2 · τ0x
′> + tτ0(λ>r + (1− r1)λ>2 )P.

Note that τ0 is uniformly distributed over G on A’s view. Then, coefficients (λ>r + (1− r1)λ>1 )
and (λ>r + (1 − r1)λ>2 ) should equal to 0 at the same time, which is contradict to r1 6= 1 or
λ>r 6= 0. Thus, π∗ is independent from pk1, π and π′. �

Theorem 6.7. I2 is CSR-Smooth.

Proof. According to I2.RandX and I2.RandT, for any x =
[
x>
]
∈ X and any τ = (τ0, τ1) ∈ T2,

we have CRX(x) =
{[
rxx
>]∣∣rx ∈ Zp

}
and CRT(τ) = {(rτ · τ0, τ1)|rτ ∈ Zp}. Let A be a PPT

adversary whose goal is to compute the hash value π∗ of (x∗, τ∗) ∈ X\L×T2 with x∗ /∈ CRX(x)
or τ∗ /∈ CRT(τ), conditioned on pk2 = ([Pb], [Pc], [Pd], [Pe]) and π = H̃sk2(x, τ). We rewrite
pk2, π and π∗ in the form of matrix as follows.
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P 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

τ0x
> τ0τ1x

> 0 0
0 0 τ0x

> τ0τ1x
>

τ∗0 (x∗)> τ∗0 τ
∗
1 (x∗)> 0 0

0 0 τ∗0 (x∗)> τ∗0 τ
∗
1 (x∗)>




b
c
d
e



Since x, x∗ /∈ L, x> and (x∗)> are not in the linear span of P. We assume that π∗ is a linear
combination of pk2 and π. Otherwise, π∗ is uniformly distributed over G2 by the 1-smoothness.
If τ∗ /∈ CRT(τ), then there are two following cases.

• τ∗1 6= τ1. In this case, the matrix above is non-singular and the value of π∗ is independent
from pk2 and π.

• τ∗1 = τ1 and τ∗0 6= t · τ0 for all t ∈ Zp. If τ∗0 (x∗)> is a linear combination of P and τ0x
>,

then there exists t ∈ Zp such that τ∗0 = t · τ0, which is contradict to current case. Thus,
π∗ is independent from pk2 and π.

Suppose that τ∗ ∈ CRT(τ) and (τ∗0 , τ
∗
1 ) = (t · τ0, τ1), then x∗ /∈ CRX(x) which implies that

(x∗)> = rx> + λ>r P with λ>r 6= 0. We have

τ∗0 (x∗)> = t · τ0(rx> + λ>r P) = tr · τ0x
> + tτ0λ

>
r P.

Note that τ0 is uniformly distributed over G on A’s view, so is coefficient tτ0λ
>
r as λ>r 6= 0 and

t 6= 0. Thus, π∗ is independent from pk2 and π on A’s view. �

(3) Construction of I3 and I4. We first describe the framework of I3 as below.

• I3.Setup(1n). Let K3 = (Zk+1
q )2, Π3 = G2

and T3 = G. Pick λ1,λ2←$Zkq with λ1 6= λ2,

ax = (λ1,λ2) and Ĥ(·) : X × T3 → G2
is indexed by sk3 ∈ K3 and ax.

• I3.φ(sk3). For sk3 = (b, c) ∈ (Zk+1
q )2, outputs pk3 =

(
[Pb], [Pc]

)
.

• I3.Priv(sk3, x, τ). For sk3 = (b, c) ∈ (Zk+1
q )2, x =

[
x>
]

and τ ∈ G, outputs hash value

π = (π1, π2) =
([

(x> + λ
>
1 P)τb

]
,
[
(x> + λ

>
2 P)τc

])
.

• I3.Pub(pk3, x, w, τ). For pk3 =
(
[Pb], [Pc]

)
, x =

[
w>P

]
with witness w and τ ∈ G,

outputs π = (π1, π2) =
([

(w> + λ
>
1 )τPb

]
,
[
(w> + λ

>
2 )τPc

])
.

• I3.RandX(x, x′, rx). For x =
[
x>
]
, x′ =

[
x′>
]
∈ X and rx ∈ Zq, outputs x∗ =

[
x> + rxx

′>].
• I3.RandT(τ, rτ ). For τ ∈ G and rτ ∈ Zq, outputs τ∗ = rτ · τ .

• I3.RandH(π, π′, rx, rτ ). For π = (π1, π2), π′ = (π′1, π
′
2), rx ∈ Zq and rτ ∈ Zq, outputs

π∗ = ((π1 · (π′1)rx)rτ , (π2 · (π′2)rx)rτ ).

As for I4, its algorithms I4.φ, I4.RandX, I4.RandT and I4.RandH are the same as I3.φ, I3.RandX,
I3.RandT and I3.RandH. Besides, I4.Setup is the same as I3.Setup except that ax is null and the

hash function family is H̃(·) : X × T4 → G2
where T4 = T3. I4.Priv and I4.Pub are equivalent to

I3.Priv and I3.Pub with λ1 = λ2 = 0.
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• I4.Priv(sk4, x, τ). For sk4 = (b, c) ∈ (Zk+1
q )2, x =

[
x>
]
∈ X and τ ∈ G, outputs π =

(π1, π2) =
([

x>τb
]
,
[
x>τc

])
.

• I4.Pub(pk4, x, w, τ). For pk4 =
([

Pb
]
,
[
Pc
])

, x =
[
w>P

]
with witness w and τ ∈ G,

outputs π = (π1, π2) =
([

w>τPb
]
,
[
w>τPc

])
.

One can verify the correctness and 1-smoothness of I3 and I4. Analogous to the proofs
of Theorem 6.3, 6.4, 6.5, 6.6 and 6.7, one can easily obtain that if k ≥ 2, I3 is perfectly
pairwise-rerandomizable, PT-Smooth1 and CPR-Smooth with respect to I4, and I4 is perfectly
self-rerandomizable and CSR-Smooth.

Theorem 6.8. I3 is perfectly pairwise-rerandomizable with respect to I4.

Proof. Given fixed sk3, the distribution of V1 = (x′′, τ ′′, Ĥsk3(x′′, τ ′′)) is determined by x′′ and
τ ′′ which are uniformly distributed on X and G respectively. For V2 = (I3.RandX(x, x′, rx),
I3.RandT(τ, rτ ), I3.RandH(π, π′, rx, rτ )) with fixed x =

[
x>
]
, x′ =

[
x′>
]
∈ X and τ ∈ G, its

distribution is determined by x∗ =
[
x> + rxx

′>] and τ∗ = rτ · τ . Since rx, rτ are sampled from
Zq uniformly, x∗ and τ∗ are uniformly distributed on X and G respectively. �

Theorem 6.9. I4 is perfectly self-rerandomizable.

Proof. Given fixed sk4, the distribution of V1 = (x′′, τ ′′, H̃sk4(x′′, τ ′′)) is determined by x′′ and
τ ′′ which are uniformly distributed on X and G respectively. For V2 = (I4.RandX(x, x, rx),
I4.RandT(τ, rτ ), I4.RandH(π, π, rx, rτ )) with fixed x =

[
x>
]
∈ X and τ ∈ G, its distribution is

determined by x∗ =
[
(rx + 1)x>

]
and τ∗ = rτ · τ . Since rx, rτ are sampled from Zq uniformly,

x∗ and τ∗ are uniformly distributed on X and G, from which the theorem follows. �

Theorem 6.10. I3 is PT-Smooth1 with respect to I4 when k ≥ 2.

Proof. I0 is ST-Smooth1 when k ≥ 2. Since I0, I3 and I4 share same element space, the
probability that P, (x∗)> and x> are linearly dependent is negligible if k ≥ 2. By the 1-
smoothness of I3 and I4, the theorem holds. �

Theorem 6.11. I3 is CPR-Smooth with respect to I4.

Proof. According to I3.RandX and I3.RandT, for any x =
[
x>
]
, x′ =

[
x′>
]
∈ X and any τ ∈ G,

we have CRX(x, x′) =
{[

x> + rxx
′>]∣∣rx ∈ Zq

}
and CRT(τ) = {rτ · τ |rτ ∈ Zq}. Let A be a PPT

adversary whose goal is to compute the hash value π∗ of (x∗, τ∗) ∈ X\L×G with x∗ /∈ CRX(x, x′)
or τ∗ /∈ CRT(τ), conditioned on pk3 = pk4 =

(
[Pb], [Pc]

)
, π = Ĥsk3(x, τ) and π′ = H̃sk4(x′, τ)

where sk3 = sk4. We rewrite pk3, π, π
′ and π∗ in the form of matrix as follows.

P 0
0 P

τ
(
x> + λ

>
1 P
)

0

0 τ
(
x> + λ

>
2 P
)

τx′> 0
0 τx′>

τ∗
(

(x∗)> + λ
>
1 P
)

0

0 τ∗
(

(x∗)> + λ
>
2 P
)



[
b
c

]

Since x, x′, x∗ /∈ L, x>,x′> and (x∗)> are not in the linear span of P. We assume that π∗

is a linear combination of pk3, π and π′. Otherwise, π∗ is uniformly distributed over G2
by the

1-smoothness property.
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If τ∗ /∈ CRT(τ), then τ∗ 6= t · τ for any t ∈ Zq. If τ∗
(

(x∗)> + λ
>
1 P
)

is a linear combination

of P, τ
(
x> + λ

>
1 P
)

and τx′>, then there exists t ∈ Zq such that τ∗ = t · τ , which is contradict

to current case. Thus, π∗ is independent from pk3, π and π′.
Suppose that τ∗ ∈ CRT(τ) and τ∗ = t · τ , then x∗ /∈ CRX(x, x′) which implies that (x∗)> =

r1x
> + r2x

′> + λ
>
r P with r1 6= 1 or λ

>
r 6= 0. We have

τ∗
(

(x∗)> + λ
>
1 P
)

= t · τ
(
r1x
> + r2x

′> + (λ
>
r + λ

>
1 )P

)
= tr1 · τ

(
x> + λ

>
1 P
)

+ tr2 · τx′> + tτ
(
λ
>
r + (1− r1)λ

>
1

)
P;

τ∗
(

(x∗)> + λ
>
2 P
)

= t · τ
(
r1x
> + r2x

′> + (λ
>
r + λ

>
2 )P

)
= tr1 · τ

(
x> + λ

>
2 P
)

+ tr2 · τx′> + tτ
(
λ
>
r + (1− r1)λ

>
2

)
P.

Note that τ is uniformly distributed over G on A’s view. Then, coefficients
(
λ
>
r + (1− r1)λ

>
1

)
and

(
λ
>
r + (1− r1)λ

>
2

)
should equal to 0 at the same time, which is contradict to r1 6= 1 or

λ
>
r 6= 0. �

Theorem 6.12. I4 is CSR-Smooth.

Proof. According to I4.RandX and I4.RandT, for any x =
[
x>
]
∈ X and any τ ∈ G, we have

CRX(x) =
{[
rxx
>]∣∣rx ∈ Zq

}
and CRT(τ) = {rτ · τ |rτ ∈ Zq}. Let A be a PPT adversary whose

goal is to compute the hash value π∗ of (x∗, τ∗) ∈ X\L×G with x∗ /∈ CRX(x) or τ∗ /∈ CRT(τ),
conditioned on pk4 =

(
[Pb], [Pc]

)
and π = H̃sk4(x, τ). We rewrite pk4, π and π∗ in the form of

matrix as follows. 
P 0
0 P
τx> 0
0 τx>

τ∗(x∗)> 0
0 τ∗(x∗)>


[
b
c

]

Since x, x∗ /∈ L, x> and (x∗)> are not in the linear span of P. We assume that π∗ is a linear
combination of pk4 and π. Otherwise, π∗ is uniformly distributed over Π4 by the 1-smoothness
property. If τ∗ /∈ CRT(τ), then τ∗ 6= t · τ for all t ∈ Zq. If τ∗(x∗)> is a linear combination of
P and τx>, then there exists t ∈ Zq such that τ∗ = t · τ , which is contradict to current case.
Thus, π∗ is independent from pk4 and π.

Suppose that τ∗ ∈ CRT(τ) and τ∗ = t · τ , then x∗ /∈ CRX(x) which implies that (x∗)> =

rx> + λ
>
r P with λ

>
r 6= 0. We have

τ∗(x∗)> = t · τ(rx> + λ
>
r P) = tr · τx> + tτλ

>
r P.

Note that τ is uniformly distributed over G on A’s view, so is coefficient tτλ
>
r as λ

>
r 6= 0 and

t 6= 0. Thus, π∗ is independent from pk4 and π on A’s view. �

6.3 Concrete PKE from k-Lin Assumption

Fig. 6 depicts the full concrete scheme PKE based on k-Lin assumption. Note that the group
G and G should be chosen relevantly to ensure that u in tag τ could be encrypted with proper
group. Concretely, let G = QR∗2q+1 and G = QR∗2p+1 be two groups of quadratic residues where
p = 2q + 1 and (q, 2q + 1, 4q + 3) is a sequence of primes, called a Cunningham chain (of the
first kind) of length 3.
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KGen(1n)

a←$Zk+1
p ; A := [Pa] ; (b, c,d, e)←$ (Zk+1

p )4

(B,C,D,E) := ([Pb], [Pc], [Pd], [Pe])

(mpk,msk)←$ MKGen(1n)

msk := (a,b, c)←$Zk+1
q

A := [Pa]

(B,C) := ([Pb], [Pc])

mpk := (A,B,C)

return (mpk,msk)

PK := (A,B,C,D,E,mpk)

SK := (a,b, c,d, e,msk)

return (PK,SK)

Enc(PK,M ∈ G)

[x>1 ], [x>2 ]←$L with witness w1,w2

u←$G; m := ψ(M)

%←$ MEnc(mpk, u ∈ G)

[x>3 ], [x>4 ]←$L with witness w3,w4

e3 := u · [w>3 Pa]; π4 := [w>4 Pa]

π̂31 :=
[
(w>3 + λ

>
1 )uPb

]
π̂32 :=

[
(w>3 + λ

>
2 )uPc

]
π̃41 :=

[
w>4 uPb

]
; π̃42 :=

[
w>4 uPc

]
π̂3 := (π̂31, π̂32); π̃4 := (π̃41, π̃42)

return % := ([x>3 ], e3, π̂3, [x
>
4 ], π4, π̃4)

e1 := M · [w>1 Pa]; π2 := [w>2 Pa]

π̂11 :=
[
(w>1 + λ>1 )(u(Pb +mPc))

]
π̂12 :=

[
(w>1 + λ>2 )(u(Pd +mPe))

]
π̃21 :=

[
w>2 (u(Pb +mPc))

]
π̃22 :=

[
w>2 (u(Pd +mPe))

]
π̂1 := (π̂11, π̂12); π̃2 := (π̃21, π̃22)

return ζ := ([x>1 ], e1, π̂1, [x
>
2 ], π2, π̃2, %)

Dec(SK, ζ)

M := e1 · [x>1 a]−1; m := ψ(M)

u := MDec(msk, %)

u := e3 · [x>3 a]−1

π̂′31 :=
[
(x>3 + λ

>
1 P)ub

]
π̂′32 :=

[
(x>3 + λ

>
2 P)uc

]
; π′4 := [x>4 a]

π̃′41 :=
[
x>4 ub

]
; π̃′42 :=

[
x>4 uc

]
π̂′3 := (π̂′31, π̂

′
32); π̃′4 := (π̃′41, π̃

′
42)

if (π̂′3, π̃
′
4, π
′
4) 6= (π̂3, π̃4, π4), return ⊥

else return u

if u = ⊥, return ⊥
π̂′11 :=

[
(x>1 + λ>1 P)(u(b +mc))

]
π̂′12 :=

[
(x>1 + λ>2 P)(u(d +me))

]
π̃′21 :=

[
x>2 (u(b +mc))

]
π̃′22 :=

[
x>2 (u(d +me))

]
π′2 := [x>2 a]; π̂′1 := (π̂′11, π̂

′
12); π̃′2 := (π̃′21, π̃

′
22)

if (π̂′1, π̃
′
2, π
′
2) 6= (π̂1, π̃2, π2), return ⊥

else return M

Rerand(ζ)

r, r′←$Zp; r∗←$G; [x′>1 ] := [x>1 + rx>2 ]

e′1 := e1π
r
2; π̂′1 := ((π̂11π̃

r
21)r

∗
, (π̂12π̃

r
22)r

∗
)

[x′>2 ] := [r′x>2 ]; π′2 := πr
′

2 ; π̃′2 := (π̃r
′r∗

21 , π̃r
′r∗

22 )

%′ := MRerand(Maul(%, r∗))

e′3 := r∗ · e3; r, r′←$Z∗q
([x′>3 ], e′′3) := ([x>3 + rx>4 ], e′3π

r
4)

([x′>4 ], π′4) := ([r′x>4 ], πr
′

4 )

π̂′3 := ((π̂31π̃
r
41)r

∗
, (π̂32π̃

r
42)r

∗
)

π̃′4 := (π̃r
′r∗

41 , π̃r
′r∗

42 )

return %′ := ([x′>3 ], e′′3 , π̂
′
3, [x

′>
4 ], π′4, π̃

′
4)

return ζ ′ := ([x′>1 ], e′1, π̂
′
1, [x

′>
2 ], π′2, π̃

′
2, %
′)

Figure 6: k-Lin-based anonymous Rand-RCCA-secure scheme PKE
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A Further Applications of RCCA Receiver-Anonymity

Here we further discuss several practical applications of anonymous, Rand-RCCA-secure en-
cryption schemes.

As pointed out by Young and Yung [YY18], in some privacy-oriented applications, such as
RFID anonymization [SRS04], Klein bottle routing [PNDD06], and mobile private microblog-
ging [SBT+14], the key-anonymity (i.e., receiver-anonymity in our work) in both the encryption
function and re-encryption function is essential to realizing the corresponding security goal.
Specifically, RFID (Radio Frequency Identification) tag that emits an ID in response to a query
from the reader, a radio communication device, is widely used for the management of goods and
has a strong tracing ability. To protect the privacy of consumers, previous work [SRS04] adopts
the universal re-encryption scheme by Golle et al. [GJJS04] to encrypt the ID. However, due to
the semantic security only property of this scheme, an attacker can actively modify the ID on
RFID arbitrarily. In this case, Rand-RCCA secure encryption scheme is a solution to defend-
ing against modification attack without compromising rerandomizability; (in all applications if
active or decryption query attacks are allowed, a variant of CCA security is needed, in fact).
Meanwhile, the property of receiver-anonymity can unlink RFIDs whose IDs are encrypted un-
der the same public key. Klein bottle routing [PNDD06], in turn, is a combination of onion
routing and universal mixnet. The AC protocol based on Klein bottle routing can be viewed as
a variant of the regular one based on universal mixnet. Thus, again anonymous Rand-RCCA
security is of vital importance in preserving the user privacy under active attacks. Private
microblogging allows users to broadcast messages on the Internet anonymously. In [SBT+14],
again, active attacks on re-encryption can be prevented via our construction.

It is worth noting that Kohlweiss et al. [KMO+13] also considered the receiver-anonymity
in the setting of constructive cryptography, and showed that IK-RCCA security (i.e., RCCA
receiver-anonymity) is necessary for the construction of confidential anonymous channel. An-
other potential application of RCCA receiver anonymity is to strengthen the security in the
cryptographic reverse firewall model. The notion of reverse firewall was originally proposed by
Mironov and Stephens-Davidowitz [MS15] to defend against subversion attacks. In [DMSD16],
Dodis et al. showed that a perfect Rand-RCCA secure PKE trivially implies a one-round CCA
secure message transmission protocol with a reverse firewall which could sanitize each outgoing
ciphertext (via re-encryption) to eliminate subliminal channels. However, an “honest but curi-
ous” reverse firewall might learn the corresponding receiver of the outgoing ciphertext. In this
case, RCCA receiver-anonymity is desirable as it could prevent leaking the receiver identity to
the reverse firewall (which, due to this, stop being a potential side channel on the communica-
tion’s destinations).

B Instantiation from Graded Rings

B.1 Graded Rings

Graded rings proposed by Benhamouda et al. [BBC+13] are a formalization of various groups
including cyclic, bilinear and multilinear groups. Before introducing the formal definition of
graded rings, we first consider an indexes set Λ = {0, · · · , κ}t ⊂ Nt that forms a bounded lattice.
For any ~v = (v1, · · · , vt), ~v′ = (v′1, · · · , v′t) ∈ Λ, let sup(~v,~v′) = (max(v1, v

′
1), · · · ,max(vt, v

′
t)).

Definition B.1 (Graded Ring [BBC+13]). The (κ, t)-graded ring for indexes set Λ = {0, · · · , κ}t
and commutative ring R is a set G = Λ× R = {[~v, x]|~v ∈ Λ, x ∈ R}. Two operations ⊕ and �
on set G are defined as follows.

• For any u1 = [~v1, x1], u2 = [~v2, x2] ∈ G, u1 ⊕ u2 = [sup(~v1, ~v2), x1 + x2];
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• For any u1 = [~v1, x1], u2 = [~v2, x2] ∈ G,

u1 � u2 =

{
[~v1 + ~v2, x1 · x2], ~v1 + ~v2 ∈ Λ
⊥, ~v1 + ~v2 /∈ Λ

,

where ⊥ means the operation is invalid.

Now we consider graded ring G with R = Zp and show how to represent cyclic and bilinear
groups as follows.

• Let G be a cyclic group of prime order p, g be a generator of G and Λ = {0, 1}, then [0, x]
represents x ∈ Zp and [1, x] represents gx ∈ G;

• Let (p,G,GT , e) be a symmetric bilinear group, g be a generator of G and Λ = {0, 1, 2},
then [0, x] represents x ∈ Zp, [1, x] represents gx ∈ G and [2, x] represents e(g, g)x ∈ GT ;

• Let (p,G1,G2,GT , e) be an asymmetric bilinear group, g1 and g2 be generators of G1 and
G2, and Λ = {0, 1}2, then [(0, 0), x] represents x ∈ Zp, [(1, 0), x] represents gx1 ∈ G1,
[(0, 1), x] represents gx2 ∈ G2 and [(1, 1), x] represents e(g1, g2)x ∈ GT .

Taking asymmetric bilinear group as example, for any x, x′ ∈ Zp, u1, u
′
1 ∈ G1, u2, u

′
2 ∈ G2

and uT , u
′
T ∈ GT , we have

• x⊕ x′ = x+ x′, u1 ⊕ u′1 = u1 · u′1, u2 ⊕ u′2 = u2 · u′2, uT ⊕ u′T = uT · u′T ;

• x� y = x · y, x� u1 = ux1 , x� u2 = ux2 , x� uT = uxT , u1 � u2 = e(u1, u2).

B.2 Regular SPHF from Graded Rings

Let X be the element set, Γ : X → Gm×` be a function that generates the basis of element and
Θaux : X → G1×` be a function specified by parameter aux. Then, x ∈ L if and only if there
exists λ ∈ Z1×m

p such that Θaux(x) = λ� Γ(x). It is required that λ can be efficiently derived
from the witness w of x ∈ L and the subset membership problem on X and L is hard. Below
is the framework of regular SPHF from graded rings.

• Setup(1n). Let K = Z`p, Π = G and T = ∅. Since the tag space is empty, H(·) : X → G is

an efficient hash function family indexed by sk ∈ Z`p.

• φ(sk). For sk = α ∈ Z`p, outputs pk = γ(x) = Γ(x)�α for x ∈ X .

• Priv(sk, x). For sk = α ∈ Z`p and x ∈ X , outputs π = Θaux(x)�α.

• Pub(pk, x, w). For pk = γ(x) and x ∈ L with witness w, outputs π = λ� γ(x).

Since Θaux(x) � α = λ � Γ(x) � α = λ � γ(x), the correctness of SPHF holds. For any
x /∈ L and pk = Γ(x) � α, vector Θaux(x) is not in the linear span of Γ(x), then hash value
Hsk(x) = Θaux(x)�α is independent from pk = Γ(x)�α. This guarantees the 1-smoothness.

B.3 Instantiations of Re-(T)-SPHFs in Our Framework

(1) Construction of I0 and I0. The algorithms (I0.Setup, I0.φ, I0.Priv, I0.Pub) are the same
as those of regular SPHF from graded rings, and thus the 1-smoothness of I0 is obvious. Below
we provide the remaining algorithms.

• I0.RandX(x, x′, rx). For x, x′ ∈ X and rx ∈ Zp, outputs x∗ = Θaux(x)⊕ (rx �Θaux(x
′)).

33



• I0.RandH(π, π′, rx). For π, π′ ∈ G and rx ∈ Zp, outputs π∗ = π ⊕ (rx � π′).

For π = Θaux(x) � α, π′ = Θaux(x
′) � α and rx ∈ Zp, rerandomized hash value π∗ =

I0.RandH(π, π′, rx) = Θaux(x)�α⊕ (rx � (Θaux(x
′)�α)) = (Θaux(x)⊕ (rx �Θaux(x

′)))�α =
I0.Priv(sk, I0.RandX(x, x′, rx)). The correctness of rerandomization holds. For any π, π′,∆ ∈ G
and any rx ∈ Zp, we have I0.RandH(π ⊕∆, π′, rx) = π ⊕∆ ⊕ (rx � π′) = π ⊕ (rx � π′) ⊕∆ =
I0.RandH(π, π′, rx)⊕∆ and I0 is linearly rerandomizable.

Theorem B.1. I0 is perfectly self-rerandomizable if Θaux is an identity function.

Proof. Given fixed sk0, the distribution of V1 = (x′′, Hsk0(x′′)) is determined by x′′ that is
uniformly distributed on X . For V2 = (I0.RandX(x, x′, rx), I0.RandH(π, π′, rx)) with fixed x and
x′, its distribution is determined by Θaux(x) ⊕ (rx � Θaux(x

′)). Since rx is sampled from Zp
uniformly and Θaux is an identity function, x ⊕ (rx � x′) is uniformly distributed on X , from
which the theorem follows. �

Theorem B.2. I0 is ST-Smooth1 if Γ is a constant function, Θaux is an identity function and
` ≥ 3.

Proof. We prove that for x∗, x←$X\L and any pk = Γ(x) � α, the probability that vector
Θaux(x) is in the linear span of Γ(x) and Θaux(x

∗) is negligible. Since Γ(x) and Θaux(x
∗) are

linearly independent, they form the basis of a hyperplane. If Θaux(x) lies on this hyperplane,
π = Θaux(x)�α can be derived from π∗ = Θaux(x

∗)�α and pk. The probability of Θaux(x) on
the hyperplane is 1/|G|`−2 which is negligible when ` ≥ 3. Thus, from the 1-smoothness of I0,
the theorem holds. �

The construction of I0 is exactly the same as I0. In concrete schemes, it is associated with
X and NP-language L. We assume that K0 = Z`q and Π0 = G where G is a multiplicative group
with prime order q.

(2) Construction of I1 and I2. We first describe the framework of I1 as below.

• I1.Setup(1n). Let K1 = (Z`p)4, Π1 = G2 and T1 = G × Z. Pick λ1,λ2←$Z1×m
p with

λ1 6= λ2, ax = (λ1,λ2) and Ĥ(·) : X × T1 → G2 is indexed by sk1 ∈ K1 and ax.

• I1.φ(sk1). For sk1 = (α1,α2,α3,α4) ∈ (Z`p)4, outputs

pk1 = (γ1(x), γ2(x), γ3(x), γ4(x)) = Γ(x)� (α1,α2,α3,α4).

• I1.Priv(sk1, x, τ). For sk1 = (α1,α2,α3,α4) ∈ (Z`p)4, x ∈ X and τ = (τ0, τ1), outputs hash

value π = Ĥsk1(x, τ) = (π1, π2) =

(Θ†aux(x)� (τ0 � (α1 ⊕ (τ1 �α2))),Θ‡aux(x)� (τ0 � (α3 ⊕ (τ1 �α4)))).

where Θ†aux(x) = Θaux(x)⊕ (λ1 � Γ(x)), Θ‡aux(x) = Θaux(x)⊕ (λ2 � Γ(x)).

• I1.Pub(pk1, x, w, τ). For pk1 = (γ1(x), γ2(x), γ3(x), γ4(x)), x ∈ L with witness w and
τ = (τ0, τ1), outputs π = Ĥsk1(x, τ) = (π1, π2) =

((λ⊕ λ1)� (τ0 � (γ1(x)⊕ (τ1 � γ2(x)))), (λ⊕ λ2)� (τ0 � (γ3(x)⊕ (τ1 � γ4(x))))).

• I1.RandX(x, x′, rx). For x, x′ ∈ X and rx ∈ Zp, outputs

x∗ = Θaux(x)⊕ (rx �Θaux(x
′)).
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• I1.RandT(τ, rτ ). For τ = (τ0, τ1) and rτ ∈ Zp, outputs τ∗ = (rτ � τ0, τ1).

• I1.RandH(π, π′, rx, rτ ). For π = (π1, π2), π′ = (π′1, π
′
2), rx ∈ Zp and rτ ∈ Zp, outputs

π∗ = (rτ � (π1 ⊕ (rx � π′1)), rτ � (π2 ⊕ (rx � π′2))).

As for I2, its algorithms I2.φ, I2.RandX, I2.RandT and I2.RandH are the same as I1.φ, I1.RandX,
I1.RandT and I1.RandH. Besides, I2.Setup is the same as I1.Setup except that ax is null and the
hash function family is H̃(·) : X × T2 → G2 where T2 = T1. I2.Priv and I2.Pub are equivalent to
I1.Priv and I1.Pub with λ1 = λ2 = 0.

• I2.Priv(sk2, x, τ). For sk2 = (α1,α2,α3,α4) ∈ (Z`p)4, x ∈ X and τ = (τ0, τ1), outputs

π = H̃sk2(x, τ) = (π1, π2) =

(Θaux(x)� (τ0 � (α1 ⊕ (τ1 �α2))),Θaux(x)� (τ0 � (α3 ⊕ (τ1 �α4)))).

• I2.Pub(pk2, x, w, τ). For pk2 = (γ1(x), γ2(x), γ3(x), γ4(x)), x ∈ L with witness w and
τ = (τ0, τ1), outputs π = H̃sk2(x, τ) = (π1, π2) =

(λ� (τ0 � (γ1(x)⊕ (τ1 � γ2(x)))),λ� (τ0 � (γ3(x)⊕ (τ1 � γ4(x))))).

One can verify the correctness of I1 and I2 easily. For any x /∈ L, any τ ∈ T1 and pk1 =
Γ(x)�(α1,α2,α3,α4), vector Θaux(x) is not in the linear span of Γ(x), then (Θaux(x)�(τ0�(α1⊕
(τ1�α2))),Θaux(x)�(τ0�(α3⊕(τ1�α4)))) is independent of pk1, from which the 1-smoothness
property holds for both I1 and I2. As for the correctness of rerandomization, we consider
π = Ĥsk1(x, τ) and π′ = H̃sk2(x′, τ) as I1 is rerandomizable with respect to I2. For rx, rτ ∈ Zp,
one can verify that rerandomized hash value π∗ = I1.RandH(π, π′, rx, rτ ) = I1.Priv(sk1, x

∗, τ∗)
where x∗ = I1.RandX(x, x′, rx) and τ∗ = I1.RandT(τ, rτ ). This also holds for π = H̃sk2(x, τ) and
π′ = H̃sk2(x′, τ).

Theorem B.3. Let T1(s) = G× {s} ⊆ T1 with s ∈ Zp. If Θaux is an identity function, then I1

is perfectly pairwise-rerandomizable on T1(s) with respect to I2 for any s ∈ Zp.

Proof. Given fixed sk1 and s ∈ Zp, the distribution of V1 = (x′′, τ ′′, Ĥsk1(x′′, τ ′′)) is deter-
mined by x′′ and τ ′′ which are uniformly distributed on X and T1(s) respectively. For V2 =
(I1.RandX(x, x′, rx), I1.RandT(τ, rτ ), I1.RandH(π, π′, rx, rτ )) with fixed x, x′ ∈ X and τ = (τ0, τ1) ∈
T1(s), its distribution is determined by Θaux(x)⊕ (rx �Θaux(x

′)) and (rτ � τ0, τ1). Since rx, rτ
are sampled from Zp uniformly and Θaux is an identity function, x⊕ (rx � x′) and (rτ � τ0, τ1)
are uniformly distributed on X and T1(s), from which the theorem follows. �

Similarly, I2 is perfectly self-rerandomizable on T1(s) for all s ∈ Zp.

Theorem B.4. I1 is PT-Smooth1 with respect to I2 if Γ is a constant function, Θaux is an
identity function and ` ≥ 3.

Proof. Since I0, I1 and I2 share same set X , according to the analysis in Theorem B.2, the
probability that vector Θaux(x) is in the linear span of Γ(x) and Θaux(x

∗) is negligible. By the
1-smoothness of I1 and I2, the theorem holds. �

Theorem B.5. I1 is CPR-Smooth with respect to I2 if Γ is a constant function.
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Proof. According to I1.RandX and I1.RandT, we have CRX(x, x′) = {Θaux(x)⊕(rx�Θaux(x
′))|rx ∈

Zp} for any x, x′ ∈ X and CRT(τ) = {(rτ � τ0, τ1)|rτ ∈ Zp} for any τ = (τ0, τ1) ∈ T1. Let A
be a PPT adversary whose goal is to compute the hash value π∗ of (x∗, τ∗) ∈ X\L × T1

with x∗ /∈ CRX(x, x′) or τ∗ /∈ CRT(τ), conditioned on pk1 = pk2 = Γ(x) � (α1,α2,α3,α4),
π = Ĥsk1(x, τ) and π′ = H̃sk2(x′, τ) where sk1 = sk2. We rewrite pk1, π = (π1, π2), π′ = (π′1, π

′
2)

and π∗ = (π∗1, π
∗
2) in the form of matrix as follows.

Γ(x) 0 0 0
0 Γ(x) 0 0
0 0 Γ(x) 0
0 0 0 Γ(x)

τ0 �Θ†aux(x) T �Θ†aux(x) 0 0
0 0 τ0 �Θ‡aux(x) T �Θ‡aux(x)

τ0 �Θaux(x
′) T �Θaux(x

′) 0 0
0 0 τ0 �Θaux(x

′) T �Θaux(x
′)

τ∗0 �Θ†aux(x
∗) T ∗ �Θ†aux(x

∗) 0 0
0 0 τ∗0 �Θ‡aux(x

∗) T ∗ �Θ‡aux(x
∗)


�

α1

α2

α3

α4



where T = τ0 � τ1 and T ∗ = τ∗0 � τ∗1 .
Since x, x′, x∗ /∈ L and Γ is a constant function, Θaux(x),Θaux(x

′) and Θaux(x
∗) are not in

the linear span of Γ(x). We assume that π∗ is a linear combination of pk1, π and π′. Otherwise,
π∗ is uniformly distributed over Π1 by the 1-smoothness. If τ∗ /∈ CRT(τ), then there are two
following cases.

• τ∗1 6= τ1. In this case, the matrix above is non-singular and the value of π∗ is independent
from pk1, π and π′.

• τ∗1 = τ1 and τ∗0 6= t � τ0 for any t ∈ Zp. If τ∗0 � Θ†aux(x
∗) is a linear combination of

Γ(x), τ0�Θ†aux(x) and τ0�Θaux(x
′), then there exists t ∈ Zp such that τ∗0 = t� τ0, which

is contradict to current case. Thus, π∗ is independent from pk1, π and π′.

Suppose that τ∗ ∈ CRT(τ) and (τ∗0 , τ
∗
1 ) = (t � τ0, τ1), then x∗ /∈ CRX(x, x′) which implies

that x∗ = (r1 �Θaux(x))⊕ (r2 �Θaux(x
′))⊕ (λr � Γ(x)) with r1 6= 1 or λr 6= 0. We have

τ∗0 �Θ†aux(x
∗) = τ∗0 � ((r1 �Θaux(x))⊕ (r2 �Θaux(x

′))⊕ ((λr ⊕ λ1)� Γ(x)))

= (t� r1)� (τ0 �Θ†aux(x))⊕ (r2 � τ−1
0 )� (τ0 �Θaux(x

′))⊕
(t� τ0)� (λr ⊕ ((1	 r1)� λ1))� Γ(x);

τ∗0 �Θ‡aux(x
∗) = τ∗0 � ((r1 �Θaux(x))⊕ (r2 �Θaux(x

′))⊕ ((λr ⊕ λ2)� Γ(x)))

= (t� r1)� (τ0 �Θ†aux(x))⊕ (r2 � τ−1
0 )� (τ0 �Θaux(x

′))⊕
(t� τ0)� (λr ⊕ ((1	 r1)� λ2))� Γ(x).

Note that τ0 is uniformly distributed over Π0 on A’s view. Then, coefficients (λr⊕((1	r1)�λ1))
and (λr ⊕ ((1	 r1)� λ2)) should equal to 0 at the same time, which is contradict to r1 6= 1 or
λr 6= 0. Thus, π∗ is independent from pk1, π and π′. �

Theorem B.6. I2 is CSR-Smooth if Γ is a constant function.

Proof. According to I2.RandX and I2.RandT, we have CRX(x) = {rx � Θaux(x
′)|rx ∈ Zp} for

any x ∈ X and CRT(τ) = {(rτ � τ0, τ1)|rτ ∈ Zp} for any τ = (τ0, τ1) ∈ T2. Let A be a PPT
adversary whose goal is to compute the hash value π∗ of (x∗, τ∗) ∈ X\L×T2 with x∗ /∈ CRX(x)
or τ∗ /∈ CRT(τ), conditioned on pk2 = Γ(x) � (α1,α2,α3,α4) and π = H̃sk2(x, τ). We rewrite
pk2, π and π∗ in the form of matrix as follows.
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Γ(x) 0 0 0
0 Γ(x) 0 0
0 0 Γ(x) 0
0 0 0 Γ(x)

τ0 �Θaux(x) T �Θaux(x) 0 0
0 0 τ0 �Θaux(x) T �Θaux(x)

τ∗0 �Θaux(x
∗) T ∗ �Θaux(x

∗) 0 0
0 0 τ∗0 �Θaux(x

∗) T ∗ �Θaux(x
∗)


�


α1

α2

α3

α4

 =



γ1(x)
γ2(x)
γ3(x)
γ4(x)
π1

π2

π∗1
π∗2


where T = τ0 � τ1 and T ∗ = τ∗0 � τ∗1 .

Since x, x∗ /∈ L and Γ is a constant function, Θaux(x) and Θaux(x
∗) are not in the linear span

of Γ(x). We assume that π∗ is a linear combination of pk2 and π. Otherwise, π∗ is uniformly
distributed over G2 by the 1-smoothness. If τ∗ /∈ CRT(τ), then there are two following cases.

• τ∗1 6= τ1. In this case, the matrix above is non-singular and the value of π∗ is independent
from pk2 and π.

• τ∗1 = τ1 and τ∗0 6= t� τ0 for all t ∈ Zp. If τ∗0 �Θaux(x
∗) is a linear combination of Γ(x) and

τ0�Θaux(x), then there exists t ∈ Zp such that τ∗0 = t� τ0, which is contradict to current
case. Thus, π∗ is independent from pk2 and π.

Suppose that τ∗ ∈ CRT(τ) and (τ∗0 , τ
∗
1 ) = (t� τ0, τ1), then x∗ /∈ CRX(x) which implies that

x∗ = (r �Θaux(x))⊕ (λr � Γ(x)) with λr 6= 0. We have

τ∗0 �Θaux(x
∗) = τ∗0 � ((r �Θaux(x))⊕ (λr � Γ(x)))

= (t� r)� (τ0 �Θaux(x))⊕ ((t� τ0)� λr)� Γ(x).

Note that τ0 is uniformly distributed over Π0 on A’s view, so is coefficient ((t � τ0) � λr) as
λr 6= 0 and t 6= 0. Thus, π∗ is independent from pk2 and π on A’s view. �

(3) Construction of I3 and I4. We first describe the framework of I3 as below.

• I3.Setup(1n). Let K3 = (Z`q)2, Π3 = G2
and T3 = G. Pick λ1,λ2 ∈ Z1×m

q with λ1 6= λ2,

ax = (λ1,λ2) and Ĥ(·) : X × T3 → G2
is indexed by sk3 ∈ K3 and ax.

• I3.φ(sk3). For sk3 = (α1,α2) ∈ (Z`q)2, outputs

pk3 = Γ(x)� (α1,α2).

• I3.Priv(sk3, x, τ). For sk3 = (α1,α2) ∈ (Z`q)2, x ∈ X and τ ∈ G, outputs hash value
π = (π1, π2) =

(Θ†aux(x)� (τ �α1),Θ‡aux(x)� (τ �α2))

where Θ†aux(x) = Θaux(x)⊕ (λ1 � Γ(x)), Θ‡aux(x) = Θaux(x)⊕ (λ2 � Γ(x)).

• I3.Pub(pk3, x, w, τ). For pk3 = (γ1(x), γ2(x)), x ∈ L with witness w and τ ∈ G, outputs
π = (π1, π2) =

((λ⊕ λ1)� (τ � γ1(x)), (λ⊕ λ2)� (τ � γ2(x))).

• I3.RandX(x, x′, rx). For x, x′ ∈ X and rx ∈ Zq, outputs

x∗ = Θaux(x)⊕ (rx �Θaux(x
′)).

• I3.RandT(τ, rτ ). For τ ∈ G and rτ ∈ Zq, outputs τ∗ = rτ � τ .

37



• I3.RandH(π, π′, rx, rτ ). For π = (π1, π2), π′ = (π′1, π
′
2), rx ∈ Zq and rτ ∈ Zq, outputs

π∗ = (rτ � (π1 ⊕ (rx � π′1)), rτ � (π2 ⊕ (rx � π′2))).

As for I4, its algorithms I4.φ, I4.RandX, I4.RandT and I4.RandH are the same as I3.φ, I3.RandX,
I3.RandT and I3.RandH. Besides, I4.Setup is the same as I3.Setup except that ax is null and the

hash function family is H̃(·) : X × T4 → G2
where T4 = T3. I4.Priv and I4.Pub are equivalent to

I3.Priv and I3.Pub with λ1 = λ2 = 0.

• I4.Priv(sk4, x, τ). For sk4 = (α1,α2) ∈ (Z`q)2, x ∈ X and τ ∈ G, outputs hash value
π = (π1, π2) =

(Θaux(x)� (τ �α1),Θaux(x)� (τ �α2)).

• I4.Pub(pk4, x, w, τ). For pk4 = (γ1(x), γ2(x)), x ∈ L with witness w and τ ∈ G, outputs
hash value π = (π1, π2) =

(λ� (τ � γ1(x)),λ� (τ � γ2(x))).

Theorem B.7. I3 is perfectly pairwise-rerandomizable with respect to I4 if Θaux is an identity
function.

Proof. Given fixed sk3, the distribution of V1 = (x∗, τ∗, Ĥsk3(x∗, τ∗)) is determined by x∗ and
τ∗ which are uniformly distributed on X and G respectively. For V2 = (I3.RandX(x, x′, rx),
I3.RandT(τ, rτ ), I3.RandH(π, π′, rx, rτ )) with fixed x, x′ ∈ X and τ ∈ G, its distribution is de-
termined by Θaux(x)⊕ (rx �Θaux(x

′)) and rτ � τ . Since rx, rτ are sampled from Zq uniformly
and Θaux is an identity function, x ⊕ (rx � x′) and rτ � τ are uniformly distributed on X and
G, from which the theorem follows. �

Theorem B.8. I4 is perfectly self-rerandomizable if Θaux is an identity function.

Proof. Given fixed sk4, the distribution of V1 = (x∗, τ∗, H̃sk4(x∗, τ∗)) is determined by x∗ and
τ∗ which are uniformly distributed on X and G respectively. For V2 = (I4.RandX(x, x, rx),
I4.RandT(τ, rτ ), I4.RandH(π, π, rx, rτ )) with fixed x ∈ X and τ ∈ G, its distribution is deter-
mined by (rx⊕ 1)�Θaux(x) and rτ � τ . Since rx, rτ are sampled from Zq uniformly and Θaux is
an identity function, (rx⊕ 1)� x and rτ � τ are uniformly distributed on X and G, from which
the theorem follows. �

Theorem B.9. I3 is PT-Smooth1 with respect to I4 if Γ is a constant function, Θaux is an
identity function and ` ≥ 3.

Proof. I0 is ST-Smooth1 if Γ is a constant function, Θaux is an identity function and ` ≥ 3. Since
I0, I3 and I4 share same element space, the probability that vector Θaux(x) is in the linear span
of Γ(x) and Θaux(x

∗) is negligible. By the 1-smoothness of I3 and I4, the theorem holds. �

Theorem B.10. I3 is CPR-Smooth with respect to I4 if Γ is a constant function.

Proof. According to I3.RandX and I3.RandT, we have CRX(x, x′) = {Θaux(x)⊕(rx�Θaux(x
′))|rx ∈

Zq} for any x, x′ ∈ X and CRT(τ) = {rτ � τ |rτ ∈ Zq} for any τ ∈ G. Let A be a PPT adversary
whose goal is to compute the hash value π∗ of (x∗, τ∗) ∈ X\L × G with x∗ /∈ CRX(x, x′) or
τ∗ /∈ CRT(τ), conditioned on pk3 = pk4 = Γ(x)� (α1,α2), π = Ĥsk3(x, τ) and π′ = H̃sk4(x′, τ)
where sk3 = sk4. We rewrite pk3, π, π

′ and π∗ in the form of matrix as follows.
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Γ(x) 0
0 Γ(x)

τ �Θaux(x
†) 0

0 τ �Θaux(x
‡)

τ �Θaux(x
′) 0

0 τ �Θaux(x
′)

τ∗ �Θaux((x
∗)†) 0

0 τ∗ �Θaux((x
∗)‡)


�
[
α1

α2

]
=



γ1(x)
γ2(x)
π1

π2

π′1
π′2
π∗1
π∗2


Since x, x′, x∗ /∈ L and Γ is a constant function, Θaux(x),Θaux(x

′) and Θaux(x
∗) are not in

the linear span of Γ(x). We assume that π∗ is a linear combination of pk3, π and π′. Otherwise,
π∗ is uniformly distributed over Π3 by the 1-smoothness property.

If τ∗ /∈ CRT(τ), then τ∗ 6= t� τ for any t ∈ Zq. If τ∗ �Θaux((x
∗)†) is a linear combination

of Γ(x), τ � Θaux(x
†) and τ � Θaux(x

′), then there exists t ∈ Zq such that τ∗ = t � τ , which is
contradict to current case. Thus, π∗ is independent from pk3, π and π′.

Suppose that τ∗ ∈ CRT(τ) and τ∗ = t � τ , then x∗ /∈ CRX(x, x′) which implies that
x∗ = (r1 �Θaux(x))⊕ (r2 �Θaux(x

′))⊕ (λr � Γ(x)) with r1 6= 1 or λr 6= 0. We have

τ∗ �Θaux((x
∗)†) = τ∗ � ((r1 �Θaux(x))⊕ (r2 �Θaux(x

′))⊕ ((λr ⊕ λ1)� Γ(x)))
= (t� r1)� (τ �Θaux(x

†))⊕ (r2 � τ−1)� (τ �Θaux(x
′))⊕

(t� τ)� (λr ⊕ ((1	 r1)� λ1))� Γ(x);
τ∗ �Θaux((x

∗)‡) = τ∗ � ((r1 �Θaux(x))⊕ (r2 �Θaux(x
′))⊕ ((λr ⊕ λ2)� Γ(x)))

= (t� r1)� (τ �Θaux(x
†))⊕ (r2 � τ−1)� (τ �Θaux(x

′))⊕
(t� τ)� (λr ⊕ ((1	 r1)� λ2))� Γ(x).

Note that τ is uniformly distributed over Π0 on A’s view. Then, coefficients (λr⊕((1	r1)�λ1))
and (λr ⊕ ((1	 r1)� λ2)) should equal to 0 at the same time, which is contradict to r1 6= 1 or
λr 6= 0. Thus, π∗ is independent from pk3, π and π′. �

Theorem B.11. I4 is CSR-Smooth if Γ is a constant function.

Proof. According to I4.RandX and I4.RandT, we have CRX(x) = {rx � Θaux(x
′)|rx ∈ Zq} for

any x ∈ X and CRT(τ) = {rτ � τ |rτ ∈ Zq} for any τ ∈ G. Let A be a PPT adversary whose
goal is to compute the hash value π∗ of (x∗, τ∗) ∈ X\L×G with x∗ /∈ CRX(x) or τ∗ /∈ CRT(τ),
conditioned on pk4 = Γ(x)� (α1,α2) and π = H̃sk4(x, τ). We rewrite pk4, π and π∗ in the form
of matrix as follows. 

Γ(x) 0
0 Γ(x)

τ �Θaux(x) 0
0 τ �Θaux(x)

τ∗ �Θaux(x
∗) 0

0 τ∗ �Θaux(x
∗)

�
[
α1

α2

]
=


γ1(x)
γ2(x)
π1

π2

π∗1
π∗2


Since x, x∗ /∈ L and Γ is a constant function, Θaux(x) and Θaux(x

∗) are not in the linear span
of Γ(x). We assume that π∗ is a linear combination of pk4 and π. Otherwise, π∗ is uniformly
distributed over Π4 by the 1-smoothness property. If τ∗ /∈ CRT(τ), then τ∗ 6= t�τ for all t ∈ Zq.
If τ∗ �Θaux(x

∗) is a linear combination of Γ(x) and τ �Θaux(x), then there exists t ∈ Zq such
that τ∗ = t� τ , which is contradict to current case. Thus, π∗ is independent from pk4 and π.

Suppose that τ∗ ∈ CRT(τ) and τ∗ = t � τ , then x∗ /∈ CRX(x) which implies that x∗ =
(r �Θaux(x))⊕ (λr � Γ(x)) with λr 6= 0. We have

τ∗ �Θaux(x
∗) = τ∗ � ((r �Θaux(x))⊕ (λr � Γ(x)))

= (t� r)� (τ �Θaux(x))⊕ ((t� τ)� λr)� Γ(x).
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Note that τ is uniformly distributed over Π0 on A’s view, so is coefficient ((t � τ) � λr) as
λr 6= 0 and t 6= 0. Thus, π∗ is independent from pk4 and π on A’s view. �

It is worth noting that G should be a subgroup of Z∗p where p is the prime order of G,
otherwise all the operations � on τ0 in I1, I2 and τ in I3, I4 would be invalid.

References

[BBC+13] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien
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