
MiniLedger: Compact-sized Anonymous and
Auditable Distributed Payments

Panagiotis Chatzigiannis and Foteini Baldimtsi?

pchatzig@gmu.edu and foteini@gmu.edu
George Mason University

Abstract. While privacy preserving distributed payment schemes man-
age to drastically improve user privacy, they come at the cost of generat-
ing new regulatory concerns: in a private ledger the transactions cannot
be subject to any level of auditing, and thus are not compatible with
tracing illegal behaviors.
In this work we present MiniLedger, a distributed payment system
which not only guarantees the privacy of transactions, but also offers
built-in functionalities for various types of audits by any external au-
thority. MiniLedger is the first private and auditable payment system
with storage costs independent of the number of transactions. To achieve
such a storage improvement, we introduce pruning functionalities for the
transaction history while maintaining integrity and auditing. We provide
formal security definitions and a number of extensions for various audit-
ing levels. Our evaluation results show that MiniLedger is practical in
terms of storage requiring as low as 70KB per participant for 128 bits
of security, and depending on the implementation choices, can prune 1
million transactions in less than a second.

1 Introduction

One of the main issues with distributed ledger-based (or else blockchain) pay-
ment schemes (e.g. Bitcoin) is the lack of privacy. All transaction information
- including transacting parties’ public keys and associated values - are perma-
nently recorded on the public blockchain/ledger, and using side-channel informa-
tion these keys can be clustered and eventually linked to real identities [10,47].
Even if we look at applications of permissioned blockchain types [8,5,29,6] for
electronic payments, with transaction data shared between a controlled set of
financial institutions in order to reduce verification and reconciliation costs, the
privacy problem persists. The financial data of a customer at institution A should
not be shared with institution B as also dictated by recent regulation such as
the European General Data Protection Regulation [3].

A number of solutions have been suggested to solve the privacy issues of dis-
tributed ledgers by hiding both the transaction graph and its associated assets

? The authors have been supported by the National Science Foundation (NSF) under
Grant 1717067, an IBM Faculty Award and Facebook Research Award.

and amounts from public view, thereby offering strong privacy guarantees equiv-
alent to cash [12,21,31,57], however, while privacy is a fundamental right, the
need for auditing mechanisms is required to ensure compliance with laws and
regulation [2,40] as done in traditional payment systems via auditing companies
(i.e. Deloitte, Pricewaterhouse Coopers, Ernst and Young, and KPMG) [4]. Con-
structing payment schemes that satisfy both privacy and auditability at the same
time, is a rather challenging problem since these properties are often conflicting.
The challenge becomes even harder when one takes efficiency and scalability into
account. In particular, one of the most common approaches to solve the scala-
bility issue, that of pruning old/unneeded transactions from the ledger, directly
hurts auditability, as an auditor cannot possibly audit data that no longer exists
in the ledger.

A limited type of accountability already existed in traditional, “Chaumian”
private electronic cash [15] where when a coin was double-spent, the identity of
the owner could be revealed. The first attempt to build accountability in private,
distributed payments was given in [36] which extends Zcash [12] by adding aux-
iliary information to coins, used exclusively by a designated trusted authority
for accountability purposes (i.e., regulatory closure, spending limits and tracing
tainted coins). While this is a nice step towards building accountability, it is
very limited in the types of allowed auditing and gives too much power to the
trusted authority. More recently, a notable auditability approach was given in
the setting of distributed private payments for an authorized set of participants:
zkLedger [51] offered an interesting solution for auditing by consent which can
be executed by any third party and at any point of the protocol for various
audit functions. Unfortunately, this solution is not practical due to very high
storage costs (linear in the number participants and to the total number of per-
formed transactions in the system), while it also suffers from the use of strong
assumptions such as out-of-band communication between participants.

Our contributions. We present MiniLedger: the first space efficient, dis-
tributed private payment system that allows an authorized set of participants to
transact with each other, while also allowing for a wide set of auditing by consent
operations by any third party auditor. We provide formal, game based definitions
and a construction that relies upon a number of cryptographic primitives: a con-
sensus protocol, semi-homomorphic encryption, compact set representation tech-
niques (cryptographic accumulators) and non-interactive zero-knowledge proofs
(NIZKs).

At a high level, MiniLedger consists of n Banks transacting with each other
through a common transaction history, or else a ledger L which is maintained
by a consensus mechanism (orthogonal to our work). The ledger is modeled
as a two-dimensional table with n columns, one for each participating Bank,
and rows representing transactions. Whenever Bank Bj wishes to send funds of
value v to another Bk, it creates a n-sized vector containing (semi)homomorphic
encryptions and NIZK proofs which is appended in L. Bj encrypts the value that
is sent to each participating Bank in the system using each receiving Bank’s
public key, i.e. the encrypted values would be v for Bk, −v for Bj and 0 for

2

any other Bank. These encryptions provide privacy in MiniLedger since they
hide values as well as the sender and recipient of each transaction, while still
allowing all participating Banks to decrypt the value that corresponds to them
and to compute their total assets at any point. This overcomes the need for
any out-of-band communication between Banks which created security issues in
previous works (ref. Section 4.2). Finally, the included ZK proofs guarantee that
transactions are valid without revealing any information.

MiniLedger provides auditability by consent. Any third party auditor with
access to L can ask audit queries to a Bank and verify the responses based on
the public information on L. The simplest audit is to learn the value of a cell
in L, i.e. the exact amount of funds a Bank received/sent at any point. This
basic audit can be used to derive more complex audit types as we discuss in
Section 5.2, such as transaction history, account balance, spending limit etc.,
without disclosing more information to the auditor than needed.

Space Efficiency. The main innovation of MiniLedger lies in the maintenance
and storage of L. In previous auditable schemes (such as zkLedger [51]) the
full L needs to be stored at any time and by all participants. The challenge
in MiniLedger design was compacting the ledger while maintaining security
and a wide set of auditing functionalities. As noted above, completely erasing
transaction information would make auditing impossible (since an auditor cannot
possibly audit something that no longer exists). MiniLedger employs a smart
type of transaction pruning: participating Banks can prune their own transaction
history by computing a provable, compact representation of their previously
posted history and broadcast the resulting digest to the consensus layer. Once
consensus participants agree to a pruning operation (i.e. verify the digest as a
valid representation of the Bank’s history), that history can be erased from L
and thus by all system participants (except the pruning Bank itself which always
need to store its own transaction history locally). Auditing is still possible since
a compact digest of transaction information is always stored in L and the Bank
under audit can prove that the revealed values correctly correspond to the digest.
As a result, the size of L in MiniLedger can be nearly constant (i.e. independent
of the number of transactions that ever happened).

Our compact transaction history representation can lead to multiple addi-
tional benefits (besides obviously reduced storage requirements). First, a com-
pact L makes addition of new system participants (i.e. Banks) much more ef-
ficient (typically, new parties need to download the whole L requiring large
bandwidth and waiting time). Then, although the structure of L does not al-
low for a very large number of participating Banks n (as the computation cost
of a single transaction is linear in n), the compactness of L allows augmenting
MiniLedger with more fine-grained types of auditing and enabling audits in a
client level (instead of a Bank level). We present MiniLedger+, an extension
that serves a much larger user base in Section 5.1.

Finally, we implement a prototype of the transaction layer of MiniLedger
and evaluate its performance in terms of transaction costs, pruning costs and size
of L which we estimate to be as low as 70KB of storage for each Bank. We show

3

that transaction computation cost, for a system with 100 Banks, takes about 4
sec, while transaction auditing is less than 5 ms, independent of the number of
Banks. Transaction computation costs increase linearly to the number of Banks
(as in zkLedger) but by optimizing the underlying ZK proofs we achieve some
small constant improvement. Although the linear transaction computation cost
might still seem high, we note that using our MiniLedger+ extension, a small
number of Banks can serve a very large user base. We perform experiments on
two different types of pruning instantiations, one using Merkle trees [48] and one
using batch RSA accumulators [13]. Both result in pruning measurements that
are independent of the number of participating Banks. Our experiments show
that we can prune 1 million transactions in less than a second using Merkle
trees and in about 2 hours using the RSA accumulator, and can perform audits
in milliseconds in the same transaction set. We also show that we can audit
multiple transactions at a time more efficiently with the RSA accumulator, and
can create audit openings for all transactions in less than a millisecond with a
single exponentiation, assuming pre-computation of the necessary witness. As we
show in Section 6, the above trade-offs between the two instantiations suggest
that the eventual choice is up to the deployment use-case of MiniLedger.

Related Work. We present an non-exhaustive overview of related works.

Anonymous distributed payment systems. Zcash [12], and its fully-developed
digital currency, is a permissionless protocol hiding both transacting parties
and transaction amounts using zero knowledge proofs. Other notable systems
are CryptoNote and the Monero cryptocurrency [57], based on decoy transac-
tion inputs and ring signatures to provide privacy of transactions within small
anonymity sets, and Quisquis [31] which provides similar anonymity level to
Monero but allows for a more compact sized ledger. Zether [16] is a smart con-
tract based payment system which only hides transaction amounts. Mimblewim-
ble [34] uses Confidential Transactions [45] to hide transaction values in homo-
morphic commitments, and prunes intermediate values from the blockchain after
being spent (which might be insecure in other UTXO systems such as Bitcoin),
improving its scalability. In the permissioned setting, Solidus [21] allows for con-
fidential transactions in public ledgers, employing Oblivious RAM techniques to
hide access patterns in publicly verifiable encrypted Bank memory blocks. This
approach enables users to transact in the system anonymously using Banks as
intermediaries.

Adding auditability/accountability. A number of Zcash extensions [36,41,49] pro-
posed the addition of auxiliary information to coins to be used exclusively by a
designated, trusted authority for accountability purposes. While this allows for a
number of accountability functionalities, it suffers from centralization of auditing
power. Additionally, all such works inherit the underlying limitations of Zcash
such as the need for trusted setup and strong computational assumptions. Trace-
able Monero [43] attempts to add accountability features on top of Monero. In a
similar idea to Zerocash, a designated “tracing” authority can link anonymous
transactions with the same spending party and learn the origin or destination of a
transaction. The tracing authority’s role can again be distributed among several

4

Record Anon. Audit Perm Prune

Zcash [12,36] UTXO 4 4T O 5

Monero [57,43] TXO 4S 4K O 5

Quisquis [31] Hybrid 4S 5 O 4

MW [34] UTXO 5 5 O 4

Solidus [21] Accnt 4S 5 C 5

zkLedger [51] Accnt 4 4 C 5

PGC [25] Accnt 5 4 O 5

Zether [16] Accnt option 5 O 5

MiniLedger Accnt 4 4 C 4

Table 1: Confidential payment
schemes comparison. By 4S

we denote set anonymity, 4T

auditing through a TP and 4K

through “view keys” (which re-
veal all private information of an
account). By O: permissionless
and C: permissioned we refer to
the set of parties that participate
in the payment scheme and not
the underlying consensus.

authorities to prevent single point of failure and distribute trust. PRCash [59]
aims to achieve accountability for transaction volume over time. A regulation
authority (can be distributed using threshold encryption) issues anonymous cre-
dentials to the system’s transacting users. If transaction volume in a period
exceeds a spending limit, the user can voluntarily deanonymize himself to the
authority to continue transacting. PRCash however only focuses on this specific
audit type. zkLedger presented a unique architecture for implementing various
interactive audit types in a permissioned setting, but its linear-growing storage
requirements in terms of transactions make it unpractical for real deployment.
Additionally, it assumes transaction values are communicated out-of-band, cre-
ating an attack vector that could prevent participants from answering audits.
Fundamentally, the requirement of communicating values out-of-band defeats the
whole purpose of its construction. We discuss details of these shortcomings in
Appendix C.6. We also note an extension to zkLedger using private swaps [22]
for supporting asynchronous submission of transactions, which however is or-
thogonal to our work.

Finally, some works attempt to provide auditability and accountability in an
organization rather than in an account level. For instance, [28,30] propose ac-
countability mechanisms for cryptocurrency exchanges, enabling them to prove
their solvency based on Merkle Trees and range proofs. A standard has been
recently proposed for such functionalities in [23]. Also [33,39] proposed account-
ability solutions for general public records using public ledgers or blockchains.

In Table 1 we summarize properties of private payment schemes and refer the
reader to [24] for a systematization of knowledge on auditable and accountable
distributed payment systems.

Prunable and stateless blockchains. Given the append-only immutability prop-
erty for most ledgers, the concern for ever-growing storage requirements in
blockchains was stated even in the original Bitcoin whitepaper [50], which con-
sidered pruning old transaction information without affecting the core system’s
properties. Ethereum [58], being an account-based system, supports explicit sup-
port of “old state” pruning as a default option, and defers to “archival” nodes
for any history queries. Coda (Mina) [14] is a prominent example of a state-
less (succinct) blockchain, which only needs to store the most recent state with

5

recursive verifiability using SNARKs. Accumulators and vector commitments
have also been proposed to maintain a stateless blockchain [13,26]. All such ap-
proaches however might negatively impact auditability and are therefore not
directly applicable in our setting.

2 Preliminaries

We first define the notation we will be using throughout this work.By λ we denote
the security parameter and by z ← Z the uniformly at random selection of an
element z from space Z. A probabilistic polynomial-time (PPT) algorithm B
with input a and output b is written as b← B(a). By := we denote deterministic
computation and by a→ b we denote assignment of value a to value b. We denote
a protocol between two parties A and B with inputs x and y respectively as
{A(x)↔ B(y)}. By (pk , sk) we denote a public-private key pair and by [xi]

y
i=1 a

list of elements (x1, x2, ..., xy). By x ‖ y we denote concatenation of bit strings x
and y. We denote a matrix M with m rows and n columns as Mmn and a i−th
row and j-th column cell in the matrix as (i, j).

We now provide a brief description of all the cryptographic building blocks
used in the following sections:

Digital Signatures. We consider an existentially unforgeable under an adaptive
chosen-message attack digital signature scheme [38] (SignGen,Sign,SVrfy).

ElGamal Encryption Variant. MiniLedger uses a variant of ElGamal encryp-
tion (called “twisted ElGamal” (TEG) [25]). Compared to standard ElGamal,
it requires an additional group generator (denoted by h below) in the public pa-
rameters pp, which makes it possible to homomorphically add ciphertexts c2 and
c′2 generated for different public keys pk and pk ′ and intentionally leak informa-
tion on the relation of encrypted messages m and m′ as we discuss below. This
variant only works when message space is small due to the need for a lookup
table on decryption. TEG is secure against chosen plaintext attacks and works
as follows:
� pp ← SetupTEG(1λ): Outputs pp = (G, g, h, p) where g, h are generators of

cyclic group G of prime order p.
� (pk , sk)← GenTEG(pp): Outputs sk ← Zp, pk = hsk .
� (c1, c2) ← EncTEG(pk ,m): Sample r ← Zp, compute c1 = pkr, c2 = gmhr

and output C = (c1, c2)

� m ← DecTEG(sk , (c1, c2): Compute gm = c2/c
(1/sk)
1 and recover m from a

look-up table (assuming that the message space is relatively small).

TEG encryption is additively homomorphic:

EncTEG(pk ,m1)EncTEG(pk ,m2) = EncTEG(pk ,m1 +m2).

Also if (c1, c2) ← EncTEG(pk ,m) and (c′1, c
′
2) ← EncTEG(pk ′,m′), then c2c

′
2

contains an encryption of m + m′. This implies if c2c
′
2 = 1, then any external

observer can deduce that m = −m′ (for properly chosen r, r′).

6

Commitment schemes. A non-interactive commitment takes as input public pa-
rameters pp, messagem and randomness r and outputs value cm← Com(pp,m, r)
such that, on one hand, reveals no information about the message (hiding prop-
erty) but, on the other hand, it is hard to find (m′, r′) such that Com(pp,m, r) =
Com(pp,m′, r′), when m′ 6= m (binding property). We use Pedersen commit-
ments [53] which are additively homomorphic and allow efficient zero-knowledge
proofs . Note that ciphertext c2 from the above twisted ElGamal variant is es-
sentially a Pedersen commitment, which is perfectly hiding and computationally
binding1. A Pedersen commitment is constructed as follows:

� pp ← ComGen(1λ) Outputs pp = (G, g, h, p) where g, h are generators of
cyclic group G of prime order p.

� cm← Com(pp,m, r) On pp, a message m ∈ [1...p] and randomness r ∈ [1...p],
outputs a commitment cm = gmhr.

� b ← Open(pp, cm,m, r) A verifier given a commitment cm and an opening
(m, r) returns a verification bit b.

Zero-knowledge proofs. A zero-knowledge (ZK) proof is a two-party protocol
between a prover P , holding some private data (or else witness) w for a public
instance x, and a verifier V . The goal of P is to convince V that some property
of w is true i.e. R(x,w) = 1, for an NP-relation R, without V learning anything
more. The types of ZK proofs used in MiniLedger are:

1. ZK proof on the opening of a commitment: Using Camenisch-Stadler no-
tation [18] (used throughout the paper): ZKP : {(w, r) : X = gwhr mod
n}(X, g, h, n) where (X, g, h, n) are the public statements given as common
input to both parties, and (w, r) is the secret witness.

2. ZK proof of knowledge of discrete log: ZKP : {(x) : X = gx mod n}(X, g, n).
3. ZK proof of equality of discrete logs: ZKP : {(x, r, r′) : X = gxhr mod
n, Y = gxhr

′
mod n}(X,Y, g, h, n).

4. ZK range proof that a committed value v lies within a specific interval (a, b):
ZKP : {(v, r) : X = gvhr mod n ∧ v ∈ (a, b)}(X, g, h, n). Such proofs can
also be used to show that the value v is positive or does not overflow some
modulo operation. Most well-known construction families for range proofs
include square decomposition, multi-base decomposition (used by zkLedger
[46,54]) and the recent Bulletproofs [17].

ZK proofs can be composed as follows: (1) AND composition π1∧π2 which can
be easily constructed by sequential or parallel proving of underlying assertions,
and (2) OR composition π1∨π2 which can be constructed by proving knowledge
for the one and simulating knowledge for the other, without revealing which of
the two is actually proved and which is simulated. We also note the ZK proofs
used in MiniLedger are public coin and can be converted to non-interactive
using the FS heuristic [32]. We refer to Appendix A for the formal properties of
ZK proofs.

1 We note that zkLedger [51] uses Pedersen commitments but overlooks the connection
with twisted ElGamal. A proper use of twisted ElGamal in zkLedger can lead to
optimizations as discussed in detail in Appendix D.

7

Cryptographic Accumulators. Accumulators allow the succinct and binding rep-
resentation of a set of elements S and support constant-size proofs of (non) mem-
bership on S. We focus on additive accumulators where elements can be added
over time to S and to positive accumulators which allow for efficient proofs of
membership(in MiniLedger extensions we use universal accumulators which
also allow for non-membership proofs). We consider trapdoorless accumulators
in order to prevent the need for a trusted party that holds a trapdoor and could
potentially create fake (non)membership proofs. Finally we require the accumu-
lator to be deterministic, i.e. always produce the same representation given a
specific set. An accumulator typically consists of the following algorithms [11]:

� (pp, D0)← AccSetup(λacc) generates the public parameters and instantiates
the accumulator initial state D0.

� Add(Dt, x) := (Dt+1, upmsg) adds x to accumulator Dt, which outputs Dt+1

and upmsg which enables witness holders to update their witnesses.
� MemWitCreate(Dt, x, St) := wtx Creates a membership proof wtx for x where
St is the set of elements accumulated in Dt. NonMemWitCreate creates the
equivalent non-membership proof utx.

� MemWitUp(Dt, w
t
x, x, upmsg) := wt+1

x Updates membership proof wtx for x
after an element is added to the accumulator. NonMemWitUp is the equivalent
algorithm for non-membership.

� VerMem(Dt, x, w
t
x) := {0, 1} Verifies membership proof wtx of x in Dt.

The basic security property of accumulators is soundness (or else collision-
freeness) which states that for every element not in the accumulator it is infea-
sible to prove membership.

We utilize two types of accumulators: (a) the additive, universal RSA ac-
cumulator [13] and (b) additive, positive Merkle Trees [48]. We note that RSA
accumulator can become trapdoorless if a trusted party (or an MPC protocol) is
used to compute the primes for the modulo n, or a public RSA challenge number
(i.e. from RSA Labs) is adopted. We also note that we will apply batching tech-
niques in element additions and membership proofs [13]. In Section 6 we discuss
the trade-offs between the two options for different implementation scenarios.

Consensus. A consensus protocol (denoted by CN) allows a set, SCN, of dis-
tributed parties to reach agreement in the presence of faults. For MiniLedger
we assume that the agreement is in regards to data posted on a ledger L and
participation in the consensus protocol can be either permissioned (i.e. only au-
thenticated parties have write access in the ledger) or permissionless(i.e. any
party can write in the ledger as in Blockchain systems like Ethereum, Bitcoin
etc). Consensus protocols that maintain such a fault-tolerant ledger and their
details (e.g. participation credentials, incentives, sybil attack prevention etc.) are
out of the scope of this paper and can be done using standard techniques [8,19].
For our construction, we assume a consensus protocol: Conscus(x, L) := L′ which
allows all system participants given some input value x and ledger state L, to
agree on a new ledger L′. We also assume it satisfies the following two funda-
mental properties [35]: (a) Consistency: An honest node’s view of the ledger on
some round j is a prefix of an honest node’s view of the ledger on some round

8

j + `, ` > 0. (b) Liveness: An honest party on input of a value x, after a certain
number of rounds will output a view of the ledger that includes x.

3 MiniLedger Model

B1

C
o
n

se
n

su
sState Usr DB

Ledger

A
u

d
it

o
rs

B2

State Usr DB

1

2

34

5

Fig. 1: MiniLedger overview. “State” is a private database for each Bank and UsrDB
is an optional private databases for Bank’s clients. Banks read from Ledger to create
or prune transactions (1) and forward the transaction creation or pruning output to
consensus (2). Consensus verifies and updates the Ledger (3). Auditor read Ledger (4)
and interact with Banks to audit transactions (5).

We consider the following system participants: a Trusted Party TP, a set of
consensus participants SCN, a static set of n Banks with IDs defined by [Bj]

n
j=1

(known to everyone) and an arbitrary number of Auditors A. Each Bank has
a key pair [(pkj , skj)]

n
j=1 and an initial asset value [vj]

n
j=1. Banks maintain an

internal state [stj]
n
j=1. We denote transactions by txi where i represents the

transaction’s index. We store transactions in a public ledger L maintained by a
consensus layer CN and stored by all banks.

We summarize the role of each participant in MiniLedger and provide the
architecture overview in Figure 1:

� TP is a trusted entity which runs an one-time setup to instantiate the system
public parameters and verifies the initial assets of each Bank. TP could be
replaced by an MPC protocol (i.e [37]) executed by the Banks.

� Banks generate transactions tx that transfer some of their assets to one or
more other Banks, while hiding the value and the transacting parties. Trans-
actions are sent to the consensus layer CN (via an anonymous communica-
tions protocol, i.e Tor) and if valid are appended on L. Banks can prune
their transaction history on L and “replace” it by a digest D. The pruning
Bank needs to send D to CN (incentives for the Bank to perform the pruning
operation are orthogonal to our construction) and is responsible2to keep a
copy of the pruned transactions in its private database “State” . If D is valid,
CN participants update L by deleting the pruned transactions and replacing
them by D.

� Auditors by observing the ledger, can audit the Banks at any point for any
set of transactions through interactive protocols. Auditors should be able to

2 Failure to locally store transaction history can lead to audit failures.

9

audit the value of a single transaction or a subset of transactions, whether
these transactions are still in L or have been pruned.

We now state the assumptions required in MiniLedger and then describe
our security and privacy goals.
Assumptions. We focus on the transaction layer and consider issues with un-
derlying consensus and network layers and their mitigations orthogonal to this
work. Specifically, we assume the fundamental consensus properties, as defined
in Sec. 2, always hold. On network level, we assume a malicious Bank can-
not block another Bank’s view (Eclipse attacks). In addition we assume that
transactions are sent to all Banks using anonymous communication channels to
preserve anonymity of the sending and the receiving Bank(s). We do not require
out-of-band communication between Banks.

The “race conditions” problem in CreateTx(), where different transactions
might be created concurrently, is considered orthogonal to our work. We can
either assume all transactions are submitted to consensus for verification in a
synchronous manner (i.e. no “mempool” functionality), or can adopt an existing
solution that uses an atomic exchange protocol, proposed for zkLedger in [22].
Finally, for the sake of simplicity, we assume the set of participating Banks
is static but is easy to extend our system to dynamically add/remove Banks.
We also assume the Random Oracle model to convert our ZK proofs to non-
interactive.
Security Goals. MiniLedger should satisfy the following properties (formally
defined in a game-based fashion in Appendices B.1, B.2):
Theft prevention and balance: When spending, we require that a) transaction
is authorized by sending Bank, b) after spending, Bank’s balance decreases by
the appropriate amount and c) sending Bank cannot spend more than its total
assets.
Secure pruning: Ledger pruning, which is executed in a user base, outputs a
digest that a) is only created by the respective Bank, b) contains the correct
transactions in the correct order, and c) does not contain bogus transactions.
Ultimately secure pruning prevents tampering with ledger history.
Ledger correctness: The ledger only accepts valid transactions and pruning op-
erations.
Correct and Sound Auditability: An honest Bank following the protocol can
always answer audits correctly and convince an Auditor, while an Auditor always
rejects false claims from a malicious Bank.
Privacy: The ledger hides both the identities of transacting parties and values
of transactions from any external observer (except auditors who learn specific
information during the auditing protocol).

4 MiniLedger Construction

Overview. We consider n Banks that transact with each other in an anonymous
and auditable way by posting data in a common ledger L (a two-dimensional
table with n columns, one for each participating Bank, and a number of rows

10

which represent transactions). The ledger is maintained by consensus partici-
pants, who verify every submitted transaction, and is stored by all Banks. The
Banks could be running consensus themselves, or outsource this operation to
any external set of consensus parties.

For each txi, the sending Bank (i.e. the transaction creator) creates a whole
row in L which includes twisted ElGamal encryptions Cij = (c1, c2) that hide
the transferred value vij that corresponds to each cell (i, j). For instance, if
we assume that there’s only one receiving Bank in a transaction, the sending
Bank would compute an encryption of −v for its own cell, an encryption of v
for the receiver cell, and a number of encryptions of 0 for the rest of the cells.
This makes the transmitted values indistinguishable to any external observer due
to ElGamal IND-CPA security(assuming the sender uses different randomness
values for each encryption). Additionally, the sending Bank accompanies each
encryption with a NIZK proof π to prevent dishonest Bank behavior as discussed
in details below. This specific ledger structure allows an external auditor to audit
for a value sent/received by a Bank at any given point, with the Bank replying
with a value v and a ZK proof πAud for its claim. This basic audit protocol can
be extended to more complex queries (such as total assets held by a Bank or if
a transaction exceeds a set limit) as we explain in Section 5.2.

A straightforward implementation of such a transaction table, as done in
zkLedger, leads to a ledger L that grows linearly to the number of posted trans-
actions. This makes schemes like zkLedger hard to adopt in practice, since every
single participant would have to store a table of size n times the total num-
ber of transactions that have ever occurred. Besides storage costs, the overall
computational performance would also degrade even more over time.

Reducing storage costs. The main idea for MiniLedger, is that each Bank
Bj periodically initiates a pruning operation, which prunes (or “compacts”) all
transactions in its corresponding column on L (this is in contrast to typical con-
sensus pruning, where nodes may be offline and have their transaction history
in the public ledger pruned without their consent). When a Bank performs a
pruning operation, it has to publish a digest D containing the pruned transac-
tions. The consensus layer will first verify that D is indeed a valid digest, i.e.
contains the transactions to be pruned, and then, come to an agreement about
the pruning operation. Note that Bj is still responsible for maintaining a private
copy of all its pruned transactions, however, there are great storage savings for
the public version of the ledger L which everyone in the system has to maintain.
In other words, with each Bank pruning its own transaction history, the whole
ledger is effectively “sharded” to all Banks, where each Bank is responsible for
maintaining a correct copy of its own history, while the public ledger only con-
tains the compact representation Dj of each Bj ’s transaction history (as well as
a few recent transactions that might have not been pruned yet). We note that
the cost of a pruning operation depends on the number of transactions to be
pruned but is independent of the number of participating Banks n and can be
amortized based on the pruning frequency.

11

When Bj is audited for a pruned (i.e. not publicly visible) transaction value
vij , it would have to present the needed data to the auditor by recovering it from
its private copy of its transaction history. In addition, it would have to prove to
the auditor not only that this data is contained in D, but also that it had been
posted on the specific row i (i.e. maintain ordering).

We implement this pruning operation using cryptographic accumulators since
they achieve a short, constant size representation of D. We require schemes which
are (a) additive, i.e. have an update functionality that enables a Bank to prune
additional transactions and update an already published D by adding the newly
pruned ones, (b) positive, i.e. allow for proofs of membership but also capable of
providing a “position”/“ordering” proof, and (c) trapdoorless, i.e. nobody has a
trapdoor to create fake proofs of membership.

4.1 Our Construction

For our construction we assume the following building blocks: the variant of
the ElGamal encryption (SetupTEG,GenTEG,EncTEG, DecTEG), an EU-CMA
signature scheme (SignGen,Sign,SVrfy), an additive, positive cryptographic ac-
cumulator (AccSetup,Add, MemWitCreate, MemWitUp,VerMem)with additional
properties as discussed above, the Pedersen commitment scheme (ComGen, Com,
Open), a consensus protocol Conscus and a NIZK proof system. The phases of
MiniLedger work as follows:

Setup: Setup can be executed with the help of a trusted third party or via an
MPC protocol amongst Banks.

1. SysSetup{TP(1λ) ↔ [Bj(vj)]
n
j=1}. This interactive protocol is executed be-

tween TP and a set of n Banks. TP sets as κ the number of bits that can represent
a value and verifies the initial asset value vj for each Bank . TP generates the
public parameters for the accumulator by running AccSetup(), the key parame-
ters of the ElGamal variant encryption scheme by executing SetupTEG() (which
are also used for the Pedersen commitment scheme), the consensus protocol pa-
rameters by running TPCSetup, and the joined set of parameters denoted as
pp is sent to all Banks. Each Bank generates an ElGamal key pair (pkBj , skBj)
through GenTEG() and sends pkBj to TP. Finally, TP encrypts the initial val-

ues of each Bank by running C0j = (c
(0j)
1 , c

(0j)
2) ← EncTEG(pkBj , vj)

3. Then, it
initializes a “running value total” which starts as Q0j = C0j and will hold the
encryption of the total assets of each Bank at any point. The vector [Q0j , C0j]

n
j=1

consists of the “genesis” state of the ledger L along with the system parameters
pp containing the key parameters and all Bank public keys. At any point, the
ledger L is agreed by the consensus participants and we assume that all Banks
(whether participating in consensus layer or not) store L.pp and L are default
inputs everywhere below.

Transaction creation:

3 To simplify notation, from now on we will drop the superscripts from the two parts
of Elgamal ciphertext, i.e., we will simply write C0j = (c1, c2).

12

2. txi ← CreateTx(skBk
, [vij ,]

n
j=1). This algorithm is run by Bank Bk wish-

ing to transmit some (or all) of its assets to other Banks in L. For each Bj
in L (including itself), Bk executes Cij ← EncTEG(pkBj , vij) and computes
Qij → Q(i−1)j · Cij . In order to prove balance, similarly to [51], Bk should pick
randomness values for the ElGamal variant encryptions such that

∑n
j=1 rij = 0.

Then, the sending Bank Bk generates a NIZK πij ∀j ∈ (1, ..n) which proves the
following (the exact description of πij can be found in Appendix D):
Proof of Assets: Shows that either a) Bj is receiving some value (vij ≥ 0), or

b) Bj is spending no more than its total assets (
∑i
k=1 vkj ≥ 0) and within the

valid range after transaction execution, while proving knowledge of its secret key
skj showing it authorized the transfer. In both cases, an auxiliary commitment

cmij is used which commits to either vij or
∑i
k=1 vkj , so the proof includes a

single range proof for the commitment value to reduce computational costs, as
the range proof is the most computationally expensive part of π.
Proof of Consistency: Ensures consistency for the encryption randomness r in
c1 and c2 in both cases of the previous sub-proof, which guarantees correct
decryption by Bank k.
The transaction txi = [Cik, cmik, πik, Qik]nk=1 is sent to consensus layer CN.

3. VerifyTx(txi) := bi. Verify all ZK proofs [πj]
n
j=1, check that

∏n
j=1 c

(ij)
2 = 1

(proof of balance) and that Qij = Q(i−1)j ·Cij . On successful verification output
1, else output ⊥.

Transaction pruning:

4. (Dβj , st
′
j , σj)← Prune(stj) This algorithm is executed by Bj when it wishes

to prune its transaction history of depth q = β − α and “compact” it to an
accumulator digest Dβj , where α is the latest digest and β is a currently posted
row number (usually a Bank will prune everything between its last pruning
and the latest transaction that appeared in L). It parses Cij from each txij . It
fetches its previous digest Dαj (if α = 1, sets D → Dαj as the initial accumulator
value where A is defined from pp). Then ∀Cij , i ∈ [α, β] it consecutively runs
accumulator addition Add(D(i−1)j , (i ‖ Cij)) (note the inclusion of index i which
preserves ordering of pruned transactions in Dj). Finally it stores all transaction

encryptions [i, Cij]
β
i=α to its local memory, updates stj to st′j , computes σj ←

Sign(Dβj) and sends Dβj , σj to CN. Note that Dβj does not include proofs π,
and pruning breaks proofs of balance in rows for all Banks. Still “breaking” these
old proofs is not an issue, as they have already been verified.
5. PruneVrfy(Dβj , σj) := bj On receipt of Dβj , locally executes Prune() for the
same transaction set to compute D′βj . If D′βj = Dβj (given the accumulator is
deterministic) outputs 1, else outputs ⊥.
We note that after a successful pruning operation (i.e. one that is agreed upon
in consensus layer), all system participants that store L can delete all existing
data in cells (i, j)∀i < β and just store Dβj along with the latest Qβj .

Consensus protocol: This is handled in the consensus layer CN with its details
orthogonal to our scheme. Similar to typical blockchain consensus, participants
will only update L with a new tx or D if this is valid according to the corre-

13

sponding vefirication algorithms (i.e. in Bitcoin, consensus participants validate
transactions before posting them in L).

6. Conscus(tx or D) := L′. Runs the consensus protocol among SCN to update
the ledger with a new tx or pruning digest D after checking their validity. If
consensus participants come to an agreement, L is updated to a new state L′.

Auditing: Our auditing protocols below include a basic audit for a value v (that
has either been pruned or not) and a set’s sum of such values (which might be all
past transactions, thus auditing Bank’s total assets). These audits are interactive
and require the Bank’s consent. MiniLedger can support additional audit types
and/or non-interactive audits as we discuss in Section 5.2.

7. Audit{A(Cij)↔ Bj(skj)} is an interactive protocol between an auditor A and
a Bank Bj . In this basic audit, A audits Bj for the value vij of a specific transac-
tion txij (that has not been pruned from L so far), encrypted as Cij on the ledger
L. Bj first decrypts the encrypted transaction through DecTEG() and sends vij
to A, as well as a NIZK πAud : {(skj) : c2/g

vij = (c1)1/skj }(c1, c2, vij , pkj , g, h).
Then A accepts the audit for vij if πAud successfully verifies.

8. AuditSum{A([Cij]
β
i=α) ↔ Bj(skj)} is an interactive protocol between an au-

ditor A and a Bank Bj . Here A audits Bj for the sum of the values
∑β
k=α vkj

for transactions txαj up to txβj (that have not been pruned from L so far).
This protocol is a generalization of the Audit{} protocol outlined above, (with

Audit{} having as inputs (
∏β
i=α Cij) and

∏
denoting direct product for cipher-

texts c1, c2), because of ElGamal variant additive homomorphism. Note that
although in this protocol the transactions are assumed to be consecutive for
simplicity, its functionality is identical if the transactions are “isolated”. Also if
indices α = 1 and β equals to the most recent transaction index (and no pruning
has happened in the system), the audit is performed on the Bank’s total assets.

9. AudPruned{A([(i, j)]γi=α, [Cij]
β
i=γ) ↔ Bj(skj)} is an interactive protocol be-

tween an auditor A and a Bank Bj , where transactions [txij]
γ
i=α have been pruned

from L (and thus the auditor only knows their indices and nothing else), and

transactions [txij]
β
i=γ which are still public in L (i.e. not pruned) and thus the

auditor still sees their encryptions. This protocol generalizes AuditSum{}. It al-
lows the auditor to audit Bj for: (a) specific transactions (pruned or not) and,
(b) sums of assets (pruned or not). For case (a), besides auditing a transaction
with index in [γ, . . . , β] which is still in L, the auditor can also audit Bj for a
specific transaction that has been pruned from L (i.e. ask: “Which was the value
of the i-th transaction?”). The Bank would respond with the corresponding Cij
and depending on the underlying accumulator used, Bj would also provide a
proof that Cij is a member of its pruned history Dj with index i. For case (b),
an auditor can audit the total (or a range of) assets of Bj no matter what trans-
action information of Bj remains on L. Auditing total assets works as follows:
Bj fetches the stored transaction encryptions [Cij]

γ
i=α from its local memory stj ,

computes [wij]
γ
i=α ← MemWitCreate(Dj , [Cij]

γ
i=α, stj)

4 . Then A reads Dj from

4 When using batch RSA accumulator as we discuss later, we don’t send a set of
witnesses but a single witness for all encryptions.

14

B1 ... Bn
tx1
. . .
tx9

D9,1, Q9,1 ...

tx10
C10,1 = (c1 = pk1

r10,1 , c2 = gv10,1hr10,1)
π10,1, cm10,1, Q10,1

...

tx11
C11,1 = (c1 = pk1

r11,1 , c2 = gv11,1hr11,1)
π11,1, cm11,1, Q11,1

...

(a) Ledger state before pruning, assuming B1

had pruned before at tx10.

B1 ... Bn
tx1
. . .
tx11

D11,1, Q11,1 ...

tx12
C12,1 = (c1 = pk1

r12,1 , c2 = gv12,1hr12,1)
π12,1, cm12,1, Q12,1

...

(b) Ledger state after B1 prunes at tx12.
Digest D11,1 represents C10,1, C11,1 and ci-
phertexts that were represented in D9,1.

Table 2: MiniLedger Architecture and Pruning.

L and executes VerMem(Dj , (i ‖ Cij), wij)∀i ∈ (α, γ), outputting [bij]
γ
i=α. For

every i, if bij == 1 it executes the Audit{} protocol with Cij as input.
10. AudTotal{A(Qij)↔ Bj(skj)} is equivalent to Audit{} for auditing Bj ’s total
assets

∑m
i=1 vij instead of a single vij .

We informally state the following theorem for the security of our scheme and
provide proof sketches in Appendix B.3.

Theorem 1 Assuming the security of the ElGamal variant, Pedersen commit-
ments, NIZK, Accumulators and Consensus properties, MiniLedger construc-
tion satisfies our security definitions as given in Appendix B.2.

4.2 Discussion and Comparisons

Although MiniLedger architecture resembles zkLedger [51], there exist crucial
differences that make MiniLedger superior both in terms of efficiency and
security. We give an overview below, and a thorough analysis in Appendix C.
Storage. As already discussed, MiniLedger by leveraging consensus properties
applies a pruning strategy which achieves O(n) storage requirements for L, com-
pared to O(mn) for zkLedger (where m is the total number of transactions ever
happened, and is a monotonically increasing value).
Security. MiniLedger does not require any out-of-band communication, as all
needed information is communicated through the ledger using encryptions. On
the other hand, zkLedger assumes if a Bank is actually receiving some value
in a transaction, it should be notified by the sending Bank and also learn the
associated value (which was hidden in the commitment) through an out-of-band
channel. zkLedger however, does not require receiving Banks to be directly in-
formed on the randomness (i.e. commitment cmij is never opened), since they can
still answer the audits correctly using the audit tokens, provided that it knows
its total assets precisely. This assumption is very strong and can potentially
lead to attacks, such as the “unknown value” attack where a malicious sending
Bank informs the receiving Bank on a wrong value (or does not inform it at all),
which then prevents the receiving Bank from answering audits or even partic-
ipate in the system. More importantly, with transaction values communicated

15

out-of-bank, the randomness could be included with them as well. This would
make the system trivial and defeat the purpose of most of its architecture, as the
ledger would consist of just Pedersen commitments and proofs of assets. In this
version the above attack would not work assuming all Banks are always online
and verify the openings in real time, which is also a very strong assumption.
Computation. MiniLedger optimizes ZK proof computation over zkLedger by
combining disjunctive proof of assets and proof of consistency into a single
proof, giving an efficiency gain of roughly 10% in space and computation. (We
note that this optimization could also benefit zkLedger as discussed in Ap-
pendix D.)Additionally, while zkLedger’s computation performance degrades
over time (as the monotonically-increasing ledger requires more operations to
construct transactions), MiniLedger through the running totals Q achieves
steady optimal performance.
On setup parameters. We argue that even with the use of a TP, the trust level
is rather low. The parameters of ElGamal are just random generators (similar to
Pedersen commitments in zkLedger) and for certain accumulator instantiations
(such as Merkle trees) there is no trapdoor behind the parameter generation.
Finally, the consensus setup essentially consists of choosing trapdoorless param-
eters (i.e. block specifics etc) and the set of participating parties. Thus, the
only trust placed in TP is to pick a valid set of participants – something that
all participants can check, exactly as in zkLedger. In comparison to zkLedger
(given that ElGamal parameters are the same as Pedersen commitment param-
eters), the only additional setup is that of the accumulator which as discussed,
for certain instantiations can be completely trapdoorless.

5 MiniLedger Security and Extensions

5.1 Adding Clients for Fine-grained Auditing

The compact nature of MiniLedger allows for fine-grained auditing where
Banks represented on the ledger can serve as an intermediary for a set of
clients, allowing them to exchange values using their Banks as intermediaries.
We overview this system which we call MiniLedger+ below and provide its
detailed construction in Appendix E.

Table 3: MiniLedger+ public ledger
L. The extra information to be stored
is denoted in blue color.

B1 ... Bj ...

...

txi
Cij = (c1 = pk1

rij ,c2 = gvijhrij)
πij , cmij, Dij , Qij , Rij , Hij

Protocol overview. Each Bank Bj maintains a private ledger of clients LBj

(denoted as “UsrDB” in Figure 1), independent of the public ledger L. For each
client m, Bj stores its transactions in encrypted format. These clients can be
dynamically added or removed from LBj

. Inspired by [21], each client is uniquely

16

and publicly associated with a single Bank as f(pkjm) = Bj where f is a well-
defined mapping of public keys pk to Banks.

When a client of Bs wishes to transfer value v to another client in the sys-
tem, she creates a transaction that includes a transaction id, encryptions of the
recipient client’s pk , the receiver’s Bank Br and v, as well as appropriate NIZKs
to prove consistency with the protocol. This information is recorded on the pri-
vate ledger LBs . Then, Bs, constructs a transaction on L that transfers v to Br.
In addition to the transaction information required for standard MiniLedger,
each cell will also contain an encryption of the recipient client’s pk under pkBr ,
the transaction id, and NIZKs that prove that the correct value is sent to the
correct Bank. All this information will be concatenated and represented by Rij
in L (as shown in Table 3). Bs also computes a digest H of the constructed
transaction using a collision-resistant hash function H() and includes it in all
cells of the respective row. Note that information across rows in R, H is redun-
dant but necessary to preserve ledger indistinguishability. Finally, the receiving
Br will perform the reverse steps to allocate the value to its client. Bs might
elect to aggregate many transactions of its clients into a single one on L (recall
that a transaction can have multiple receiving Banks, details in Appendix E.4).

In MiniLedger+, monetary values are not owned by the clients themselves,
but are co-managed with the client and his respective Bank (as it happens in
the actual banking system), meaning that an honest Bank having total assets
Σv represented in L, will always have them distributed internally to its clients.
As a result, Σv reflected in a column in L should always match the sum of
value sums for all clients in LBj

. However since LBj
is private, the mechanism

ensuring that this invariant holds will be reactive, in contrast with the main
ledger L where the mechanism is proactive. In other words, an auditor would
have to perform regular audits of the Banks to ensure they allocate the funds to
their clients correctly and follow the protocol. In Appendix E we describe this
audit in detail, as well as the extended threat model of MiniLedger+.

Auditors in MiniLedger+ can also perform audits at a client level as fol-
lows. Auditor first asks Bj to present its private LBj and fully validates its
correctness and consistency with L as before. Then, the auditor performs audits
on clients in a similar fashion as with Banks in standard MiniLedger (i.e. audit
single transactions, sums etc.). Note that although the client is responsible for
answering its audits correctly, Bj would be responsible for any inconsistencies
between LBj

and L. We provide more details in Appendix E.3.

Comparisons. MiniLedger+ has minimal storage overhead in L compared
to MiniLedger. Note that the additional entries R and H in each column can
still be pruned as in MiniLedger, thus maintaining a ledger of constant size.
The additional computation costs associated with this extension are linear in
the number of clients a Bank has, but can be made more efficient by aggregating
techniques. We provide an overview of these costs in Table 7 in Appendix E.

Solidus [21] has a similar Bank-Client architecture but does not hide the iden-
tity of transacting parties and does not offer auditability functionalities while em-
ploying expensive ORAM operations. RSCoin [29] also has a similar paradigm of

17

“mintettes” associated with clients but without any privacy guarantees. Finally,
[9] proposes a privacy-preserving payment UTXO-based system (as opposed to
account-based in our work), which also supports fine-grained auditing in a user
level. In this work, there exists a powerful designated auditor for each user, who
can decrypt all user’s transactions, making system-wide deanonymization pos-
sible in case auditors collude. The auditing costs are much greater compared to
MiniLedger+ and the protocol is overall much more complex while it does not
support different audit types such as total assets or value thresholds.

5.2 Additional Types of Audits

As shown in Section 4.1, MiniLedger basic audit functionality Audit{} is on the
value vij of specific transaction txij . Several more audit types can be constructed
which reduce to that basic audit. We discuss some of those below, and provide
more details for audit extensions in Appendix F.2.
Full transaction audit: For an auditor to learn the full details of a transac-
tion (sender, receiver and values), they would have to audit the entire row (i.e.
perform n audits on vij ∀j).
Statistical audits: Audits such as average or standard deviation are supported
by utilizing “bit flags” to disregard zero-value transactions, proved for correct-
ness in zero knowledge.
Value or transactions exceeding limit: Utilizing appropriate range proofs,
an auditor can learn if a sent or received value exceeds some limit t. Multiple
range proofs can show a Bank has not exceeded the limit over a time period.
Transaction recipient: While a Bank doesn’t know (and therefore cannot
prove) where a received value came from (unless learning it out-of-band as in
zkLedger), for outbound transactions the Bank can keep an additional record of
its transaction recipients in its local memory. As an example, for proving in txi
that the Bank really sent vij to Bj , it could send this claim to the auditor who
in turn would simply then audit Bj to verify this claim.
Client audits: Audits in a client level (e.g. statistical audits or transaction lim-
its) can be performed similar to the respective audits in a Bank level, however
the auditor needs first to learn and verify the Bank’s private ledger LB as dis-
cussed in Section 5.1. A special audit would be learning if a client has ever sent
assets to another client pk . This audit requires transactions to include an ad-
ditive universal accumulator, with each sender adding the end client recipient’s
pk to the accumulator, while also providing its Bank a ZK proof of adding the
correct key. The audit is a proof of (non-) membership for that pk .

6 Evaluation

We implement a prototype of the transaction layer of MiniLedger in Python
using the petlib5 library to support cryptographic operations over the secp256k1

5 https://github.com/gdanezis/petlib

18

https://github.com/gdanezis/petlib

elliptic curve. We use the zksk library [44] for the ZK and implement range
proofs using the Schoenmakers’ Multi-Base Decomposition method [55]6. The
measurements were performed on Ubuntu 18.04 - i5-8500 3.0 GHz CPU - 16GB
RAM using a single thread7. As we focus on the transaction layer, we do not
include measurements of the underlying consensus and network layers as they
are orthogonal to our work. We do however discuss the potential additional costs
in Section 6.

Accumulator Instantiation. A critical implementation choice is how to in-
stantiate the accumulator needed for the pruning operations. For efficiency rea-
sons, we require schemes with constant size public parameters and no upper
bound on the number of accumulated (i.e pruned) elements. We only consider
schemes that have at most sublinear computation and communication complex-
ity (in the number of pruned elements) for opening/proving a single transaction
to the auditor and where the auditor’s verification cost is also at most sublinear.

We first consider Merkle trees [48]. Assuming a Bank prunes q transactions,
the Merkle root providesO(1) representation in terms of storage withO(1) public
parameters. Opening and verification complexity of Merkle proofs for a single
transaction audit involves O(logq) hashing operations. However although hashes
are relatively cheap operations, the over-linear verification complexity might be
a concern when auditing a series of transactions. Finally, it should be noted that
Merkle trees only support membership proofs.

We then consider the batch-RSA accumulator [13]. Given that all RSA ty-
peaccumulators can only accumulate primes p, we use a deterministic prime
mapping hash function (as in [13]) to enable accumulation of arbitrary inputs.
The batch-RSA accumulator has O(1) storage for its digest with O(1) public
parameters as well. Proving membership for a single element p in the stan-
dard RSA accumulator, requires the prover computing a witness w equal to
the primes’ product in the accumulator without p (an O(q) operation as shown
in Figure 4), and the verifier checking that (gw)p = A where A is the current
state of the accumulator. However, in batch-RSA, the prover can reduce com-
putation costs by “batching” these operations for a set of elements (p1, p2, ...)
which are in the accumulator and provide a Proof of Knowledge of Exponent
πPoKE : {(x) : (gw)x = A}(w, g,A) on the product x = p1p2... convincing a
verifier without sending x (which is typically large) and thus reducing commu-
nication costs. In our setting we use batch-RSA in auditing in order to improve
computational efficiency of membership proofs (when being audited for multiple
transactions) and we note that the Bank under audit does not need to include a
PoKE, as the auditor needs to recompute the prime mapping of the ciphertexts
he is given by the Bank anyway (this is a trade-off between PoKE computation
cost for the Bank and higher communication cost between Bank and Auditor).
Through these techniques, batch-RSA achieves same complexity O(q) as when

6 By using twisted ElGamal [25], MiniLedger is fully-compatible with Bulletproofs
[17] which can further reduce its concrete storage requirements.

7 A basic implementation of MiniLedger is available at https://github.com/

PanosChtz/Miniledger

19

https://github.com/PanosChtz/Miniledger
https://github.com/PanosChtz/Miniledger

5 25 50 75 100

Number of Banks

0

2

4

T
im

e
(s

ec
) Tx create

Tx verify

5 25 50 75 100
Number of Banks

0

5

T
im

e
(m

s)

Tx audit Create Verify Storage Params

53ms 49ms 68KB 2KB

Costs per Bank

Fig. 2: Transaction creation, verification and auditing costs.

proving membership of a single element (while Merkle Trees have O(`logq) com-
plexity for ` elements). Consequently, the basic pruning operations Prune() and
PruneVrfy() are about two orders of magnitude more expensive compared to
Merkle trees as we show in Figure 3. However they are efficient when auditing
large amounts of transactions especially if auditing the total sum. Then, batch-
ing allows for negligible computation costs for the proving Bank, and negligible
audit verification cost for a single transaction (which can enable audit extensions
as discussed in Appendix E). Thus, choice between Merkle trees and batch-RSA
accumulators ultimately relies on the use-case requirements.

Finally, an alternative approach is the use of Vector Commitments [13,20,42].
However these constructions although offering additional properties, either have
linear or quadratic public parameter costs [20,42] or are more expensive when
proving and verifying membership compared to Merkle trees or RSA accumula-
tors, as we show on Table 8 of Appendix G.

For our batch-RSA implementation, we use the SHA-256 hash function and
the Miller - Rabin primality test for hashing to prime numbers, and we use an
RSA-3072 modulo to maintain the same level of security [52]. We decouple the
witness computation cost from the proof of membership cost for the Bank, as
the Bank might elect to pre-compute the witnesses before its audit (assuming
however that it does not prune again until the audit, since that would require the
witnesses to be recomputed again). Note the auditor needs to run the hashing
to prime mapping function again for all audited values (i.e. the auditor cannot
rely on the “honesty” of a Bank presenting pre-computed prime numbers for its
pruned transactions). For our Merkle tree implementation, we adopt a relevant
python library8, and we use SHA-256 as the underlying hash function.
Transaction Creation, Verification and Auditing. Every MiniLedger
transaction includes an ElGamal ciphertext C, a commitment cm, a NIZK π
and a running total Q for each Bank. Naturally, this results in linearly-increasing
computation costs in terms of number of Banks as shown in Figure 2 for both
transaction creation and verification. Note that storing the running total Q leads
to constant transaction creation and verification computational costs (for fixed
number of Banks), making total assets auditing much more efficient. In contrast,
zkLedger’s growing ledger size also implies linearly-increasing NIZK proof verifi-
cation costs, as the verifier would need to compute the product of all transaction
elements for each Bank(applying our running total technique to zkLedger could

8 https://github.com/vpaliy/merklelib

20

https://github.com/vpaliy/merklelib

101 102 103 104 105

Pruning depth q

101

104
T

im
e

(m
s)

RSA Accumulator

Merkle Tree

Fig. 3: Pruning
computation cost

101 102 103 104 105

Pruning depth q

102

104

106

T
im

e
(m

s)

Fig. 4: RSA witness
Generation cost

101 102 103 104 105

Pruning depth q

10−2

2× 10−2

T
im

e
(m

s)

RSA Accumulator

Merkle Tree

Fig. 5: Audit open cost
for one tx

101 102 103 104 105

Pruning depth q

10−1

100

T
im

e
(m

s) RSA Accumulator

Merkle Tree

Fig. 6: Audit verify cost

101 102 103 104 105

Batch length (for q = 100k pruned elements)

100

102

104

106

T
im

e
(m

s) RSA Accumulator

Merkle Tree

Fig. 7: Batch audit
open costs

101 102 103 104 105

Batch length (for q = 100k pruned elements)

101

103

105

T
im

e
(m

s)

RSA Accumulator

Merkle Tree

Fig. 8: Batch audit
verify costs

have analogous benefits). The transaction creation and verification costs are
53ms and 49ms respectively (for a single cell in L)and are roughly comparable
with [51]. Note that although we cannot directly compare different implementa-
tions, in Table 6 we show that our more efficient NIZK requires less expensive
operations.

Auditing any single value on the ledger takes about 4 ms as shown in Figure
2. This is the cost for the complete auditing protocol, namely the decryption and
proving cost for the Bank and the verification cost for the Auditor. In contrast to
[51], the auditing cost is constant without being impacted either by the number
of Banks or the number of past transactions.

Transaction Pruning. We evaluate the computation requirements of the prun-
ing operation which involves executing Prune() and PruneVrfy() to create the
digest Dj . Our results in Figure 3 show it is possible to prune and verify about
1 million transactions in less than a second using Merkle trees and in about 2
hours using RSA accumulator. Note prime number multiplication costs domi-
nate the total costs (which also include hashing to primes and an exponentiation)
when the pruning depth becomes large. We also stress that these computation
requirements are independent of the number of Banks n in the system.

For transaction auditing in AudPruned{} interactive protocol, auditing open-
ing and verification costs are shown in Figures 5 and 6 respectively. As previ-
ously discussed, we do not include the RSA accumulator’s witness creation costs
(which can be pre-computed) and are shown in Figure 4.

For auditing sums of values (i.e. “batch” auditing), the associated costs for
opening and verifying a 100K transaction digest are shown in Figures 7 and 8
respectively, with x-axis representing the number of audited transactions. Note
that for auditing 105 transactions (i.e. the whole sum), RSA accumulator opening
is significantly cheaper compared to Merkle trees, as the audited Bank would
only need to retrieve the respective transactions from its local memory (which

21

implies nearly O(1) cost) and send them to the auditor (who would in turn need
to recompute all primes and perform the exponentiation of their product).

Based on our evaluation results and the discussion above, the choice between
Merkle tree and batch RSA accumulator depends on use-case. Merkle trees fit a
system expected to incorporate sparse audits on individual transactions, while
RSA accumulator is preferred on deployments with frequent auditing on many
transactions at a time (e.g. sums of assets or value thresholds over a time period).

Storage Costs. The storage cost for L has a 64n-byte lower bound for the
ElGamal variant encryptions (which represent the running total Q), plus the
needed storage for each digest D and the system’s pp, assuming all n Banks have
pruned their transaction history and the ledger is made of a single row. Although
during the system’s operation where transactions are continuously appended
on the ledger, its actual size will be more than that lower bound, enforcing
frequent pruning operations through appropriate incentives (or penalties) will
keep the size of the ledger close to its minimum. These savings in storage costs
are huge compared to [51] where all Banks would have to store a ledger of size
O(nm) where m is the total number of transactions that have happened since
the system’s genesis.

Concretely, in our implementation each transaction’s communication and
storage cost is 68KB per Bank, which includes the ElGamal variant encryption,
the auxiliary commitment, the NIZK and the running total. Note that we provide
the actual memory footprint of our implementation (which relies on the underly-
ing libraries’ efficiencies) and not the theoretical lower bounds. A MiniLedger
instantiation including the necessary public parameters, one transaction and a
digest requires only 70KB of storage per Bank.

Network and Consensus Costs. As discussed in Section 3, MiniLedger fo-
cuses in the transaction layer, thus consensus layer costs depend on the exact
instantiation choice. Any consensus protocol can be plugged to MiniLedger as
long as it satisfies the basic properties of consistency and liveness. Although we
consider consensus orthogonal to our implementation, we do recognize that its
choice (along with network latency) ultimately affects transaction throughput.
All benchmarks performed so far focus on metrics independent from consensus.
Providing a full implementation of MiniLedger including a consensus layer is
out of scope, we note previous works [31,51,59,25] also take a similar approach on
evaluation and do not include consensus measurements. For instance, zkLedger
[51] evaluation only takes network latency into account which is not useful with-
out considering consensus costs (consensus is needed to guarantee agreement
on L at any time). To showcase an implementation scenario, we discuss below
how MiniLedger could be implemented using existing systems in the consensus
layer and also provide some rough cost estimations.

We chose Hyperledger, one of the most prominent distributed operating sys-
tems for permissioned blockchains, to provide some estimated consensus mea-
surements. Using Hyperledger Fabric with Kafka [1] as a permissioned con-
sensus layer requires at least 0.5 seconds to complete a full consensus opera-
tion with 4 peers and 256-bit ECDSA [8]. We previously discussed that Banks

22

can store the ledger themselves and/or also have a “consensus verifier” role
in our system (recall that while they could run consensus themselves, they
do not have to, as we decouple consensus from Banks allowing any consor-
tium of parties for ledger maintenance). Thus, Banks could act as Hyperledger
“clients”, “peers” and “orderers” simultaneously, which would impact perfor-
mance especially with a PBFT-family consensus algorithm. For simplicity and
efficiency, we consider Banks only acting as “clients”, outsourcing ledger stor-
age and consensus operations to an arbitrary number of “peer” and “orderer”
nodes respectively. These numbers are entirely dependent on the use-case and
does not affect MiniLedger performance or scalability. This separation between

Banks Peers Tx/s Network
10 80 21 LAN
100 4 2 WAN

Table 4: Consensus costs

Banks and consensus participants is quite natural. As
another example, Diem [6], uses similar architecture
with MiniLedger (decoupled permissioned consensus
and provider-intermediated transactions [7]) but has
different goals in terms of privacy and auditability.

Based on the Hyperledger evaluation, we derive conservative estimations of
the expected transaction throughput, shown in Table 4. These estimations are
more than sufficient for intra-Bank transactions in a deployed system (recall
than any number of client-to-client transactions in MiniLedger+ can be ag-
gregated in a single MiniLedger transaction). MiniLedger could also be im-
ported in Diem, however the expected transaction throughput is lower as it uses
a Byzantine-tolerant consensus [60].

Although permissioned consensus generally seems more fitting to MiniLedger,
permissionless consensus could also be utilized. For instance, MiniLedger could
be implemented on top of an Ethereum smart contract, where Banks would
be responsible to pay the respective gas fees. While technically any Proof-of-X
consensus could be used, the underlying game-theoretic aspects should also be
considered.

Fine-grained Audit Extension. For MiniLedger+ we need to store extra
information on L, namely Rij and Hij for each entry. For consistency we use the
same 256-bit hash function as in our RSA accumulator. Rij has a total size of
512 bits, (excluding the size of id), still pruning makes a ledger with same lower
bound possible as before. In Appendix E we derive the computation overhead
for the sending Bank to create Rij roughly equivalent to CreateTx() (in terms
of number of clients and Banks respectively), showing computation costs are
doubled compared to basic MiniLedger. As the Bank only needs to include
additional information in D for each transaction, the effect on pruning costs for
L is negligible.

7 Conclusion

We present MiniLedger, the first private and auditable payment system with
storage independent to the number of transactions. MiniLedger utilizes exist-
ing cryptographic tools and innovates on the meticulous design of optimized ZK
proofs to tackle important scalability issues in auditable, private payments. Ad-

23

ditionally, we provide the first formal security definitions for auditability and
secure pruning in private and auditable payment systems. We achieve huge stor-
age savings compared to previous works that store information for each trans-
action ever happened. Using our pruning techniques, the overall MiniLedger
size can be impressively compacted to 70KB per Bank, no matter how many
transactions have ever occurred. Note that our storage and computation costs
could be further improved, e.g. by using Bulletproofs [17] (instead of Schoenmak-
ers multi-base decomposition [55]), more efficient programming languages (e.g.
Rust) and libraries, or by utilizing CPU parallelization. However, as in related
systems [6,51] our goal is not to support “thousands” of Banks, but an arbitrary
number of clients as discussed in Section 5.1, which does not affect the com-
putation/storage costs in the public ledger. MiniLedger can currently serve a
small consortium of Banks (e.g. the world’s Central Banks) with an arbitrary
number of clients, or build a hierarchy of a large number of Banks and clients in
accordance with MiniLedger+. Evaluating MiniLedger in such a large scale
or achieving its properties in a permissionless setting are interesting directions
for future work.

24

References

1. Apache kafka, https://kafka.apache.org/
2. Privacy coins face existential threat amid regulatory

pinch, https://www.bloomberg.com/news/articles/2019-09-19/

privacy-coins-face-existential-threat-amid-regulatory-crackdown

3. Regulation (eu) 2016/679 of the european parliament and of the council of 27 april
2016 on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing directive 95/46/ec
(general data protection regulation). Official Journal of the European Union L119
pp. 1–88 (2016)

4. Developments in audit 2016/2017 (2017), https://www.frc.

org.uk/getattachment/915c15a4-dbc7-4223-b8ae-cad53dbcca17/

Developments-in-Audit-2016-17-Full-report.pdf

5. Corda: A distributed ledger (2019), https://www.corda.net/wp-content/

uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf

6. The libra blockchain (2020), https://developers.libra.org/docs/assets/

papers/the-libra-blockchain/2020-05-26.pdf

7. Libra roles and permissions (2020), https://lip.libra.org/lip-2/
8. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., Caro, A.D.,

Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan, S., Murthy,
C., Nguyen, B., Sethi, M., Singh, G., Smith, K., Sorniotti, A., Stathakopoulou, C.,
Vukolic, M., Cocco, S.W., Yellick, J.: Hyperledger fabric: a distributed operating
system for permissioned blockchains. In: Oliveira, R., Felber, P., Hu, Y.C. (eds.)
Proceedings of the Thirteenth EuroSys Conference, Porto, Portugal, April 23-26,
2018. pp. 30:1–30:15. ACM (2018)

9. Androulaki, E., Camenisch, J., De Caro, A., Dubovitskaya, M., Elkhiyaoui, K.,
Tackmann, B.: Privacy-preserving auditable token payments in a permissioned
blockchain system. Cryptology ePrint Archive, Report 2019/1058 (2019), https:
//eprint.iacr.org/2019/1058

10. Androulaki, E., Karame, G., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in Bitcoin. In: Sadeghi, A.R. (ed.) FC 2013. LNCS, vol. 7859, pp. 34–
51. Springer, Heidelberg (Apr 2013). https://doi.org/10.1007/978-3-642-39884-1 4

11. Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L.,
Samelin, K., Yakoubov, S.: Accumulators with applications to anonymity-
preserving revocation. In: 2017 IEEE European Symposium on Security and Pri-
vacy, Paris, France, April 26-28, 2017. pp. 301–315. IEEE (2017)

12. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press
(May 2014). https://doi.org/10.1109/SP.2014.36

13. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 561–586. Springer, Heidelberg (Aug
2019). https://doi.org/10.1007/978-3-030-26948-7 20

14. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: Decentralized cryptocurrency
at scale. Cryptology ePrint Archive, Report 2020/352 (2020)

15. Brands, S.: Untraceable off-line cash in wallets with observers (extended abstract).
In: Stinson, D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 302–318. Springer, Hei-
delberg (Aug 1994). https://doi.org/10.1007/3-540-48329-2 26

25

https://kafka.apache.org/
https://www.bloomberg.com/news/articles/2019-09-19/privacy-coins-face-existential-threat-amid-regulatory-crackdown
https://www.bloomberg.com/news/articles/2019-09-19/privacy-coins-face-existential-threat-amid-regulatory-crackdown
https://www.frc.org.uk/getattachment/915c15a4-dbc7-4223-b8ae-cad53dbcca17/Developments-in-Audit-2016-17-Full-report.pdf
https://www.frc.org.uk/getattachment/915c15a4-dbc7-4223-b8ae-cad53dbcca17/Developments-in-Audit-2016-17-Full-report.pdf
https://www.frc.org.uk/getattachment/915c15a4-dbc7-4223-b8ae-cad53dbcca17/Developments-in-Audit-2016-17-Full-report.pdf
https://www.corda.net/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://www.corda.net/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://developers.libra.org/docs/assets/papers/the-libra-blockchain/2020-05-26.pdf
https://developers.libra.org/docs/assets/papers/the-libra-blockchain/2020-05-26.pdf
https://lip.libra.org/lip-2/
https://eprint.iacr.org/2019/1058
https://eprint.iacr.org/2019/1058
https://doi.org/10.1007/978-3-642-39884-1_4
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/3-540-48329-2_26

16. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a smart
contract world. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059,
pp. 423–443. Springer, Heidelberg (Feb 2020)

17. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. pp. 315–334. IEEE Computer Society Press (May 2018)

18. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp.
410–424. Springer, Heidelberg (Aug 1997). https://doi.org/10.1007/BFb0052252

19. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the
Third USENIX Symposium on Operating Systems Design and Implementation
(OSDI), New Orleans, Louisiana, USA, February 22-25, 1999. pp. 173–186 (1999)

20. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(Feb / Mar 2013). https://doi.org/10.1007/978-3-642-36362-7 5

21. Cecchetti, E., Zhang, F., Ji, Y., Kosba, A.E., Juels, A., Shi, E.: Solidus: Confiden-
tial distributed ledger transactions via PVORM. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 701–717. ACM Press (Oct / Nov
2017). https://doi.org/10.1145/3133956.3134010

22. Centelles, A., Dijkstra, G.: Extending zkledger with private swaps https://cdn2.
hubspot.net/hubfs/6034488/privateledger.pdf

23. Chalkias, K., Lewi, K., Mohassel, P., Nikolaenko, V.: Distributed auditing proofs of
liabilities. Cryptology ePrint Archive, Report 2020/468 (2020), https://eprint.
iacr.org/2020/468

24. Chatzigiannis, P., Baldimtsi, F., Chalkias, K.: Sok: Auditability and account-
ability in distributed payment systems. In: Sako, K., Tippenhauer, N.O. (eds.)
Applied Cryptography and Network Security - 19th International Conference,
ACNS 2021, Kamakura, Japan, June 21-24, 2021, Proceedings, Part II. Lec-
ture Notes in Computer Science, vol. 12727, pp. 311–337. Springer (2021).
https://doi.org/10.1007/978-3-030-78375-4 13

25. Chen, Y., Ma, X., Tang, C., Au, M.H.: PGC: Decentralized confidential payment
system with auditability. In: Chen, L., Li, N., Liang, K., Schneider, S.A. (eds.)
ESORICS 2020, Part I. LNCS, vol. 12308, pp. 591–610. Springer, Heidelberg (Sep
2020). https://doi.org/10.1007/978-3-030-58951-6 29

26. Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: A cryptocurrency with state-
less transaction validation. Cryptology ePrint Archive, Report 2018/968 (2018),
https://eprint.iacr.org/2018/968

27. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge
and simplified design of witness hiding protocols. In: Desmedt, Y. (ed.)
CRYPTO’94. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (Aug 1994).
https://doi.org/10.1007/3-540-48658-5 19

28. Dagher, G.G., Bünz, B., Bonneau, J., Clark, J., Boneh, D.: Provisions:
Privacy-preserving proofs of solvency for bitcoin exchanges. In: Ray, I., Li,
N., Kruegel, C. (eds.) ACM CCS 2015. pp. 720–731. ACM Press (Oct 2015).
https://doi.org/10.1145/2810103.2813674

29. Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. In: NDSS 2016.
The Internet Society (Feb 2016)

30. Doerner, J., Shelat, A., Evans, D.: Zeroledge: Proving solvency with privacy (2015)
31. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: A new design

for anonymous cryptocurrencies. In: Galbraith, S.D., Moriai, S. (eds.) ASI-

26

https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1145/3133956.3134010
https://cdn2.hubspot.net/hubfs/6034488/privateledger.pdf
https://cdn2.hubspot.net/hubfs/6034488/privateledger.pdf
https://eprint.iacr.org/2020/468
https://eprint.iacr.org/2020/468
https://doi.org/10.1007/978-3-030-78375-4_13
https://doi.org/10.1007/978-3-030-58951-6_29
https://eprint.iacr.org/2018/968
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1145/2810103.2813674

ACRYPT 2019, Part I. LNCS, vol. 11921, pp. 649–678. Springer, Heidelberg (Dec
2019). https://doi.org/10.1007/978-3-030-34578-5 23

32. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–
194. Springer, Heidelberg (Aug 1987). https://doi.org/10.1007/3-540-47721-7 12

33. Frankle, J., Park, S., Shaar, D., Goldwasser, S., Weitzner, D.J.: AUDIT: Practical
accountability of secret processes. Cryptology ePrint Archive, Report 2018/697
(2018), https://eprint.iacr.org/2018/697

34. Fuchsbauer, G., Orrù, M., Seurin, Y.: Aggregate cash systems: A crypto-
graphic investigation of Mimblewimble. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 657–689. Springer, Heidelberg (May
2019). https://doi.org/10.1007/978-3-030-17653-2 22

35. Garay, J.A., Kiayias, A.: SoK: A consensus taxonomy in the blockchain era. In:
Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 284–318. Springer, Heidel-
berg (Feb 2020). https://doi.org/10.1007/978-3-030-40186-3 13

36. Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous
payments. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 81–
98. Springer, Heidelberg (Feb 2016)

37. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key gener-
ation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT’99.
LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (May 1999)

38. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(Apr 1988)

39. Goldwasser, S., Park, S.: Public accountability vs. secret laws: Can they coexist?
Cryptology ePrint Archive, Report 2018/664 (2018), https://eprint.iacr.org/
2018/664

40. Heasman, W.: Privacy coins in 2019: True financial freedom or a
criminal’s delight? (Jan 2020), https://cointelegraph.com/news/

privacy-coins-in-2019-true-financial-freedom-or-a-criminals-delight
41. Jiang, Y., Li, Y., Zhu, Y.: Auditable zerocoin scheme with user awareness. In:

Proceedings of the 3rd International Conference on Cryptography, Security and
Privacy, Kuala Lumpur, Malaysia, January 19-21, 2019. pp. 28–32 (2019)

42. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to suc-
cinct arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part I. LNCS, vol. 11692, pp. 530–560. Springer, Heidelberg (Aug 2019).
https://doi.org/10.1007/978-3-030-26948-7 19

43. Li, Y., Yang, G., Susilo, W., Yu, Y., Au, M.H., Liu, D.: Traceable monero: Anony-
mous cryptocurrency with enhanced accountability. IEEE Transactions on Depend-
able and Secure Computing (2019). https://doi.org/10.1109/TDSC.2019.2910058

44. Lueks, W., Kulynych, B., Fasquelle, J., Bail-Collet, S.L., Troncoso, C.: zksk: A
library for composable zero-knowledge proofs. In: Proceedings of the 18th ACM
Workshop on Privacy in the Electronic Society. pp. 50–54 (2019)

45. Maxwell, G.: Confidential transactions (2015), https://people.xiph.org/~greg/
confidential_values.txt

46. Maxwell, G., Poelstra, A.: Borromean ring signatures (2015), https:

//github.com/Blockstream/borromean_paper/blob/master/borromean_draft_

0.01_34241bb.pdf
47. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,

G.M., Savage, S.: A fistful of bitcoins: Characterizing payments among men with
no names. Commun. ACM 59(4), 86–93 (Mar 2016)

27

https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2018/697
https://doi.org/10.1007/978-3-030-17653-2_22
https://doi.org/10.1007/978-3-030-40186-3_13
https://eprint.iacr.org/2018/664
https://eprint.iacr.org/2018/664
https://cointelegraph.com/news/privacy-coins-in-2019-true-financial-freedom-or-a-criminals-delight
https://cointelegraph.com/news/privacy-coins-in-2019-true-financial-freedom-or-a-criminals-delight
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1109/TDSC.2019.2910058
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://github.com/Blockstream/borromean_paper/blob/master/borromean_draft_0.01_34241bb.pdf
https://github.com/Blockstream/borromean_paper/blob/master/borromean_draft_0.01_34241bb.pdf
https://github.com/Blockstream/borromean_paper/blob/master/borromean_draft_0.01_34241bb.pdf

48. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
Pomerance, C. (ed.) CRYPTO’87. LNCS, vol. 293, pp. 369–378. Springer, Heidel-
berg (Aug 1988). https://doi.org/10.1007/3-540-48184-2 32

49. Naganuma, K., Yoshino, M., Sato, H., Suzuki, T.: Auditable zerocoin. In: 2017
IEEE European Symposium on Security and Privacy Workshops. pp. 59–63 (2017)

50. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
51. Narula, N., Vasquez, W., Virza, M.: zkledger: Privacy-preserving auditing for dis-

tributed ledgers. In: 15th USENIX Symposium on Networked Systems Design and
Implementation. pp. 65–80. USENIX Association, Renton, WA (Apr 2018)

52. National Institute of Standards and Technology: Recommendation for Key Man-
agement: NIST SP 800-57 Part 1 Rev 4. USA (2016)

53. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (Aug 1992). https://doi.org/10.1007/3-540-46766-1 9

54. Poelstra, A., Back, A., Friedenbach, M., Maxwell, G., Wuille, P.: Confidential as-
sets. In: Zohar, A., Eyal, I., Teague, V., Clark, J., Bracciali, A., Pintore, F., Sala,
M. (eds.) FC 2018 Workshops. LNCS, vol. 10958, pp. 43–63. Springer, Heidelberg
(Mar 2019). https://doi.org/10.1007/978-3-662-58820-8 4

55. Schoenmakers, B.: Interval proofs revisited. In: Workshop on Frontiers in Electronic
Elections (2005)

56. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against cho-
sen ciphertext attack. Journal of Cryptology 15(2), 75–96 (Mar 2002).
https://doi.org/10.1007/s00145-001-0020-9

57. Van Saberhagen, N.: Cryptonote v 2.0 (2013), https://cryptonote.org/

whitepaper.pdf

58. Wood, G.: Ethereum: A secure decentralized generalised transaction ledger (2021),
https://ethereum.github.io/yellowpaper/paper.pdf, accessed: 2021-02-14

59. Wüst, K., Kostiainen, K., Capkun, V., Capkun, S.: PRCash: Fast, private and
regulated transactions for digital currencies. In: Goldberg, I., Moore, T. (eds.) FC
2019. LNCS, vol. 11598, pp. 158–178. Springer, Heidelberg (Feb 2019)

60. Zhang, J., Gao, J., Wu, Z., Yan, W., Wu, Q., Li, Q., Chen, Z.: Performance analysis
of the libra blockchain: An experimental study. CoRR abs/1912.05241 (2019),
http://arxiv.org/abs/1912.05241

28

https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-662-58820-8_4
https://doi.org/10.1007/s00145-001-0020-9
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
http://arxiv.org/abs/1912.05241

A Zero-knowledge Proof properties

The needed properties of a zero-knowledge proof are Completeness, Soundness
and Zero-Knowledge,defined formally as follows.

� Complenetess: If R(x,w) = 1 and both players are honest V always accepts.
� Soundness: For every malicious and computationally unbounded P ∗, there is

a negligible function ε(·) s.t. if x is a false statement (i.e. R(x,w) = 0 for all
w), after P ∗ interacts with V , Pr[V accepts] ≤ ε(|x|).

� Zero Knowledge: For every malicious PPT V ∗, there exists a PPT simulator
S and negligible function ε(·) s.t. for every distinguisher D and (x,w) ∈ R
we have |Pr[D(ViewV ∗(x,w)) = 1]− Pr[D(S) = 1]| ≤ ε(|x|).

B MiniLedger Security

B.1 Scheme Definitions

We define MiniLedger for a static set of n Banks with IDs defined by [Bj]
n
j=1.

Each Bank has a key pair [(pkj , skj)]
n
j=1 and an initial asset value [vj]

n
j=1. Banks

maintain an internal state [stj]
n
j=1. We assume that the set of participating Banks

IDs, [Bj]
n
j=1, is known to all system participants.

MiniLedger is composed of the following protocols:

� SysSetup{TP↔ [Bj]
n
j=1}: executed between TP and a set of Banks [Bj]

n
j=1 (or

by Banks through an MPC protocol). It verifies the initial values of Banks
and outputs the system parameters pp, and an initial ledger L with total
system value vT =

∑n
j=1 vj . (We assume that pp and L are default inputs

everywhere below.)
� CreateTx(Bj , Bk, v): run by a Bank Bj , outputs transaction tx which transfers

assets v to Bank Bk
9.

� VerifyTx(tx): run by any party, verifies the validity of tx and outputs a veri-
fication bit b.

� Prune(stj): run by a Bank Bj , outputs a digest D containing a “compact”
representation of its transaction history and updates the Bank’s state to st′j .

� PruneVrfy(D): run by any party, verifies the validity of digest D and outputs
a verification bit b.

� Conscus(tx or D): is run by all consensus participants in SCN. On input a
transaction tx or a pruning digest D, the consensus participants will verify
the transaction/digest using the corresponding algorithms and update the
ledger to L′.

� Audit{A ↔ Bj}: executed between a Bank Bj and an auditor A, where the
auditor audits a specific transaction (or a set of them) the Bank reveals the
value(s) v of that transaction (or set) to the auditor including a proof πAud

of correct presentation of the value(s) v.

9 Here we assume a single receiving Bank for notation simplicity, but this algorithm
can be easily extended to support multiple receivers.

29

� AudVrfy(v, πAud): executed by an auditor A to verify the validity of the proof
πAud based on the provided value v.

B.2 Security Definitions

To define security we first describe the oracles provided to an adversary A. We
assume a challenger CH maintains a corrupted Bank list Tc and performs some
“bookkeeping” for honest Banks /∈ Tc on oracle queries, where honest Banks have
total assets vCH . This bookkeeping includes the following: a) for CreateTx(), it
appends the output transaction tx to the ledger L, and b) for Prune(), it replaces
the honest Bank’s transaction history with digest D on L and updates the Bank’s
state to st′j . Note that for security definitions below that involve auditability,
we only consider the basic audit on a transaction value - for brevity we omit
security definitions that involve more complex auditing.

� Oc(Bj): A corrupts Bank Bj and takes full control of it. Ocorr records Bj to
Tc. This oracle captures that A can corrupt honest Banks.

� Otx((Bj ,−vj), [Bk, vk]): A queries Otx to create a transaction which transfers
vj from Bank j (where j /∈ Tc) to recipient Bank(s) Bk. If Bank j has at least
assets vj , Otx executes CreateTx() outputting txi and runs bookkeeping, else
it outputs ⊥. This oracle captures that A can direct honest Banks to make
specific (but valid) transactions of its choosing.

� Oprn(Bj): A queries Oprn to prune the transaction history of Bj /∈ Tc. Oprn
generates digest D and runs bookkeeping. This oracle captures that A can
prune the transaction history of an honest Bank.

Definition 1 (Theft prevention and balance) For all security parameters
λ, for all probabilistic polynomial time adversaries A with oracle access to Oc,Otx:

Pr


pp← SysSetup{λ, [Bj]nj=1}, vt =

∑n
j=1 vi;

tx∗ ← AOc,Otx(pp) :{
(Bj /∈ Tc) ∨ (v∗t 6= vt) ∨ (Bj ∈ Tc,Bk /∈ Tc, v∗ > vA)

}
∧

VerifyTx(tx∗) = 1

 ≤ negl(λ)

where tx∗ is a transaction spending v∗ from Bj to Bk, vA the adversary’s total
assets before tx∗ and vt, v

∗
t the system’s total value before and after tx∗ respec-

tively.

This property captures the requirements that: only the owner of the assets can
spend them, a transaction results to a decrease of sender’s assets by the value
represented in the transaction and that the sender cannot spend more than its
total assets.

30

Definition 2 (Secure pruning) For all security parameters λ, for all proba-
bilistic polynomial time adversaries A with oracle access to Oc,Otx,Oprn:

Pr



pp← SysSetup{λ, [Bj]nj=1};
D∗ ← AOc,Otx,Oprn(pp) :

Bj /∈ Tc∨
(∃txBj

∈ L ∧ txBj
/∈ D∗)∨

(∃tx∗Bj
/∈ L ∧ tx∗Bj

∈ D∗)

∧
PruneVrfy(D∗) = 1

 ≤ negl(λ)

where txBj
denotes a transaction where Bj is involved in, and tx ∈ D∗ denotes

representation of a transaction in the digest.

In the above experiment, A wins if he creates a digest D∗ on behalf of an
honest Bank Bj , or if D∗ either does not contain a transaction txBj

that exists
in L 10 or contains a transaction tx∗Bj

that does not exist in L. This property
captures the requirement that digest outputs are only created by the respective
Banks, that pruning operations contain the correct transactions in the correct
order, and do not contain bogus transactions.

Definition 3 (Ledger Correctness) For all security parameters λ, for all prob-
abilistic polynomial time adversaries A with oracle access to Oc,Otx,Oprn:

Pr


pp← SysSetup{λ, [Bj]nj=1};
tx∗\D∗ ← AOc,Otx,Oprn(pp) :{
VerifyTx(tx∗) = 0 ∧ tx∗ ∈ L
PruneVrfy(D∗) = 0 ∧D∗ ∈ L

}
 ≤ negl(λ)

This property captures the requirement that only valid transactions or pruning
operations are accepted on the ledger.

Definition 4 (Correct Auditability) For all security parameters λ, for all
probabilistic polynomial time adversaries A with oracle access to Oc,Otx and
Oprn and for any honest auditor A:

Pr


pp← SysSetup{λ, [Bj]nj=1};
AO(pp) :
∃Bj /∈ Tc ∧ ∃txBj

∧
Audit{A(txBj

)↔ Bj(v)} := πAud∧
AudVrfy(πAud) := 0

 ≤ negl(λ)

where txBj denotes a transaction where Bj is involved in and v is input of
CreateTx() which outputs txBj .

In the above experiment, after A has made polynomial number of queries to
the oracles (which include generating transactions and pruning them), A wins
if any honest Bank is unable to correctly answer some audit. This property
captures the requirement that any Bank following the protocol should always be
able to answer audits correctly.

10 A also wins if the transaction is indeed in D∗ but out of order.

31

Definition 5 (Sound Auditability) For all security parameters λ, for all prob-
abilistic polynomial time adversaries A with oracle access to Oc,Otx and Oprn
and for any honest auditor A:

Pr


pp← SysSetup{λ, [Bj]nj=1};
AO(pp) :
Bj ∈ Tc ∧ ∃tx∧
Audit{A(tx)↔ Bj(v

∗)} := πAud∧
v∗ 6= v∧
Vrfy(πAud) := 1

 ≤ negl(λ)

where v is input of CreateTx() which outputs tx and v∗ is any arbitrary value.

In the above experiment, after A has made polynomial number of queries to
the oracles (which include generating transactions and pruning them), A wins
if it succeeds on cheating an auditor when a corrupted Bank is audited for
a transaction. This property captures the requirement that an auditor cannot
accept false audit claims.

Definition 6 (Privacy) For all security parameters λ, for all probabilistic poly-
nomial time adversaries A with oracle access to Otx and Oprn:

Pr



pp← SysSetup{λ, [Bj]nj=1}
b ∈ {0, 1}, Lb, L1−b ← CH;
StartLoop
tx, tx′ ← A(Otx,Oprn)b,(Otx,Oprn)1−b(pp)
CH(tx, tx′) : VerifyTx(tx),VerifyTx(tx′)
CH : tx → L′b, tx

′ → L′1−b
End Loop :
b′ ← A,
b = b′


≤ 1

2
+ negl(λ)

In the above experiment, the challenger CH instantiates two ledgers L and L′ in
the setup phase and flips a bit. Then A queries two instances of oracles Otx and
Oprn (each uniquely associated with a ledger) a polynomial number of times.
However A is only allowed to query the same oracle type (i.e. it cannot query
Otx and Oprn the same time). For each query set, the challenger updates the
two ledgers as chosen by b in the setup phase. Finally A guesses b. The privacy
property captures the requirement that the ledger hides both transacting parties
and the associated values.

B.3 Security Proofs

We now informally argue about the security of Theorem 1.

Lemma 1 MiniLedger satisfies Theft prevention and balance under the as-
sumptions of ZK soundness, and hardness of the discrete logarithm problem.

32

Proof. We distinguish the following two cases:
Case 1 (theft prevention):

Case 1a: In case A can derive a secret key from a public key (i.e. discrete
logarithm hardness assumption does not hold), this immediately enables theft
of funds.

Case 1b: In the case A can break ZK soundness, when outputting tx∗ can
either a) For π∗ = π∗L ∨ π∗R in tx∗, Ver(π∗R) = 1, R(x, sk) = 0 (i.e. output the π∗R
component of the OR proof π without knowing sk , or b) violate the range proof
component of the proof π, i.e. cm = gv

′
hr
′′ ∧ v′ ∈ [0, 2k, Ver(π∗R) = 1, v < 0

(v > 2k is equivalent to v < 0), thus permitting committing to a negative value
under an honest Bank (which effectively spends from that Bank).
Case 2 (balance):

Case 2a: Winning the game by changing the systems’s total value (i.e. having
instantiated a system with total value vt, construct a verifiable tx∗ which then

results into system’s total value v∗t 6= vt): A verifiable tx∗ implies
∏n
j=1 c

(ij)
2 =

1 =⇒ gv1+v2+..+vn+ehr1+r2+..+rn = 1, where e 6= 0, which implies A can find
r∗ = r1 + r2 + ..+ rn 6= 0 such that hr

∗
= 1/gv

∗
t , which contradicts the hardness

of discrete logarithm problem.
Case 2b: Winning the game by spending more than the total assets: In the

case A can break ZK soundness, when outputting tx∗ he can violate the range
proof component πr of the proof π∗, i.e. for πr : cm = gv

′
hr
′′ ∧ v′ ∈ [0, 2k,

Ver(π∗R) = 1, v < 0 (v > 2k is equivalent to v < 0). This enables committing to
a negative sum of assets under a corrupted Bank, which implies spending more
than its total assets.

Lemma 2 MiniLedger satisfies secure pruning assuming Accumulator sound-
ness, EU-CMA signatures and consistency of the consensus layer.

Proof. Case 1: A can win the game in Definition 2 by pruning on behalf of an
honest Bank. This can only succeed if A manages to sign on behalf of that Bank,
which directly contradicts signature unforgeability.

Case 2: A wins the game by adding an arbitrary transaction into a digest
D on behalf of a corrupted Bank. This implies either breaking accumulator
soundness, as the adversary would be able to successfully prove membership for
a non-accumulated element, or consensus consistency (recall that the digest is
created by the consensus participants as well).

Case 3: A wins the game by omitting a transaction in the digest D, which
would also contradict accumulator soundness as in the previous case.

Lemma 3 MiniLedger satisfies Ledger Correctness assuming consistency of
the consensus layer.

Proof. This follows directly from the assumed consensus properties.

Lemma 4 MiniLedger satisfies Correct Auditability assuming ZK soundness.

Proof. For Correct Auditability we define the following game:

33

1. Setup: CH runs pp← SysSetup{λ, [Bj]nj=1} and sends pp to A, which include
[pkBj , C0j , Q0j]

n
j=1.

2. Query: A queries Oc,Otx,Oprn,OAud and CH answers the queries as in Ap-
pendix B.2, maintaining the ledger L.

3. Output: For an honest Bank j, A outputs a transaction txBj
where the Bank

fails to convince an honest Auditor A that the value of txBj
is v.

Assume A wins the above game with non negligible probability. Then B would
break ZK soundness as follows: On input of π∗ : {c2 = gvhr ∧ c1 = pkr}, B
runs SysSetup, however it replaces pk1 with pk and sets as g, h the output of
SetupTEG. Then forwards (pp, L) to A, with B providing oracle access to A for
Oc,Otx,OAud and Oprn. For Otx, B outputs txi to A that includes [π]nk=1 which
also ensures consistency for randomness r between each pair of ciphertexts c1 and
c2. However in eachOtx query, B adds c2,1 = gvhr, c1,1 = pkr to each update of L.
When A queries Oc for B1, B aborts. When A outputs a txBj

, if j 6= 1, B aborts.
Else if j = 1, with Audit{A(txB1

)↔ B1(v)} := πAud∧AudVrfy(πAud) := 0, implies

that B1 fails to decrypt correctly to answer the audit, thus c2 = gvhr ∧ c1 = pkr
′

breaking ZK soundness.

Lemma 5 MiniLedger satisfies Sound Auditability assuming ZK soundness,
Accumulator soundness and consistency of the consensus layer.

Proof. Case 1: tx is still in L. An A breaking ZK soundness can convince CH
for some false v∗.

Case 2: tx is pruned and represented in the digest D in L. An A breaking
Accumulator soundness can prove membership to CH for an arbitrary tx∗ and
then proceed with auditing on that tx∗.

Lemma 6 MiniLedger satisfies Privacy assuming IND-CPA security of ElGa-
mal encryption variant, Pedersen commitment hiding and Zero-knowledgeness of
NIZKs.

Proof. We describe a sequence of hybrid experiments as follows:
Hybrid 0:

1. Setup: CH runs pp ← SysSetup{λ, [Bj]nj=1}, flips a bit b ∈ {0, 1} and makes
two identical initialized ledgers Lb, L1−b. CH sends pp to A, which include
[pkBj , C0j , Q0j]

n
j=1 and the two ledgers Lb, L1−b.

2. Query: A for ledgers Lb, L1−b makes queries Otx,Oprn where each oracle has
two separate instantiations uniquely associated with a ledger. CH answers
the queries as in Appendix B.2, verifying transactions or prune operations
and maintaining the ledgers Lb, L1−b accordingly. A is restricted to make
simultaneous oracle queries of the same type on the ledgers.

3. Output: A outputs a bit b′ and wins if b = b′.

Hybrid 1: Same as Hybrid 0 but now CH when answering queries to Otx,
simulates the ZK proofs πik in each txi = [Cik, cmik, πik, Qik]nk=1.

34

Hybrid 2: Same as Hybrid 1 but now CH when answering queries to Otx
replaces ciphertexts Cik and running totals Qik with random strings.

Hybrid 3: Same as Hybrid 2 but now CH when answering queries to Otx
replaces commitments cmik with random strings.

Corollary 1 Hybrids 0 and 1 are indistinguishable.

Proof. Immediately follows from the zero-knowledge property of π.

Corollary 2 Hybrids 1 and 2 are indistinguishable.

Proof. Immediately follows from the IND-CPA property of ElGamal encryption
variant.

Corollary 3 Hybrids 2 and 3 are indistinguishable.

Proof. Immediately follows from the hiding property of Pedersen commitments.

C zkLedger Analysis

C.1 zkLedger Description

Here we describe the zkLedger protocol [51], which MiniLedger is inspired
from. It consists of n Banks that are transacting with each other, as shown in
Table 5. Transactions txi, are appended as rows to ledger L. In each txi, the
sending Bank creates a whole row in L which includes Pedersen commitments
cmij that hide the transferred value vij that correspond to each cell (i, j). For
instance, if we assume that there’s only one receiving Bank in a transaction, the
sending Bank would compute a commitment to−v for its own cell, a commitment
to v for the receiver cell, and a number of commitments to 0 for the rest of
the cells. This makes the transmitted values indistinguishable to any external
observer due to Pedersen commitment’s hiding property (assuming the sender
uses different randomness values for each commitment). Although transaction
values are hidden, an external auditor can audit for the sum of the values held
by a Bank at any given point (which can be extended to more complex queries
such as statistical data on transaction values). zkLedger prevents dishonest Bank
behavior through the following ZK proofs:

Proof of Assets πA In each transaction cell (i, j), πAij is an OR proof which
ensures that either a) vij ≥ 0 and within some valid range (via a range proof)
or b) if Bj is transferring value vij , π

A
ij ensures that the overall asset balance of

Bj , i.e,
∑i
k=1 vkj , remains ≥ 0 and within some valid range (via a range proof),

and also Bj authorizes the transfer (by proving knowledge of its private key skj).
Given that range proofs are the most expensive parts of πA, zkLedger includes
an auxiliary commitment cm′ij

11 in each cell which is either a re-commitment to

vij or a commitment to
∑i
k=1 vkj . This makes it possible to only require a single

range proof to the committed value in cm′ij and only use the OR proof to prove
knowledge of skj if Bj is the sending Bank.

11 zkLedger also mentions an additional auxiliary Token′, which is redundant.

35

B1 ... Bj ... Bn
...

txi

cmij = gvijhrij

Tokenij = pkj
rij

πAij , π
C
ij , cm

′
ij,Token

′
ij

...

Table 5: zkLedger construction overview.

Proof of Balance πB This proof ensures that no values are created or destroyed
in a transaction, i.e. the sum of values in a row i must satisfy

∑n
k=1 vik = 0. To

prove this, the sending Bank needs to pick the randomness values r used in the
commitments such that

∑n
k=1 rik = 0 holds. Consequently, the product of all

commitments in a row will satisfy
∏n
k=1 cmik = 1 which makes up the proof πB

12.

Audit Functionality and Proof of Consistency πC As previously discussed, the
basic query of an Auditor is the sum of assets vj for a Bank Bj at any given point.
To allow such an audit, each ledger entry (i, j) includes an audit token Tokenij =
pkj

rij = (hrij)ski . When Bj is under audit for its total assets vj , after ith rows
were appended in L, it first reveals the claimed vj to the auditor (who already

has access to L). Then, Bj proves in ZK that
∏i
k=1 cmkj/g

vkj = (
∏i
k=1 Tokenkj)

skj

. The ZK proof hides the secret key of Bj while it proves that if the claimed value
for total assets vj is correct, the above ZK statement holds. We note that the
role of Tokenij is essential to “cancel out” the randomness rij of commitments for
auditing, since Bj never learns rij ’s. Thus, the proof of consistency πCij shows in
ZK that the randomness in each commitment cmij is the same with corresponding
audit token Tokenij. (If Bj knew openings of all commitments, then Tokenij would
not be necessary as it would just prove in ZK that it knows a set of vij ’s and

r′ijs such that
∏i
k=1 cmkj = gvjhrj where rj =

∑i
k=1 rkj.)

We provide a detailed analysis of the above proofs πA and πC below.

C.2 Disjunctive Proof of Equality of Committed Values (πA)

As discussed above, the sending Bank when constructing a zkLedger transaction
txi must provide a proof of assets πAij (We omit indices i, j in the rest of this

section for simplicity). πA would prove in zero-knowledge that the Bank is either
receiving some value (including a value of zero) or the value it spends does not
result in a negative balance while also proving knowledge of its secret key. This
OR composition of ZK proofs is implemented as in [27]. By denoting ĉm =

12 In zkLedger it is implied that a separate proof of balance is needed for each cell in
L. However, it is sufficient for a verifier to check that the commitment’s product in
the row equals to 1 so the proof πB does not have to be explicitly included in the
ledger.

36

∏m
i=1 cmij = gΣvihΣri = gv̂hr̂ and ˆToken =

∏m
i=1 Tokenij = pkj

Σri = pk r̂,

πA is expressed as ZKP{(v, r, v′, r′, v̂, sk) : {[(cm′ = gvhr
′ ∧ cm = gvhr) ∨

(cm′ = gv̂hr
′ ∧ ĉm = gv̂ ˆToken

1/sk
∧ Token = (hr)sk)] ∧ [cm′ = gv

′
hr
′ ∧ v′ ∈

[0, 2k]]}0(cm, cm′, ĉm, ˆToken,Token, g, h, pk).
We can break πA into two separate proofs as πA1 ∧ πA2 as follows. In πA1,

the prover shows that the value in cm′ is the same as in cm (Bank is receiving)
or the value in cm′ is the same as the sum of commitments in the column ĉm
and it knows sk (Bank is spending). In πA2, the prover shows that the value v′

in the auxiliary commitment cm′ is positive and within valid range, which also
prevents overspending. In [51], the range proof is implemented as described in
Confidential Assets [54] using Borromean ring signatures [46], where each bit in
the value is represented as a ring signature between zero or one. The details of
proof πA1 are shown in Figure 9.

Computational costs The prover’s total cost for πA1 as above is 1 prime-order
exps and 4 prime-order multi-exps. For πA2 (range proof) is κ prime-order exps
and κ prime-order multi-exps. The verifier’s total cost for πA1 is 6 prime-order
exps and 4 prime-order multi-exps. For πA2 (range proof) is 2κ prime-order
multi-exps.

Storage costs A non-interactive version of πA would require to store 1 exps and
4 multi-exps, as well as 8 exponent values.

C.3 Proof of Equality of Discrete Logs (πC)

πC is made of two identical proofs of consistency πC1 and πC2 for both cm and
cm′i respectively. Each proof would be as follows:
ZKP : {(v, r) : cm = gvhr ∧ Token = pkr}(cm,Token, g, h, pk)

� P chooses random values q1, q2
� P computes R1 = gq1hq2 and R2 = pkq2 and sends R1, R2 to V
� V picks e at random and sends to P
� P computes z1 = q1 + ev and z2 = q2 + er, sends z1 and z2 to V
� V checks if R1cm

e = gz1hz2 and R2Token
e = pkz2

Completeness: Straightforward to verify.
Special Soundness: The extractor completes the protocol with transcript

(R1, R2, e, z1, z2). Then rewinds to step 2 and gets transcript (R1, R2, e
′, z′1, z

′
2).

Now the extractor can compute
z1−z′1
e−e′ = q1+ev−q1−e′v

e−e′ = v and
z2−z′2
e−e′ = q2+er−q2−e′r

e−e′ =
r. This guarantees the equality of the values in R1 and R2 because q1 which con-
tains x is used by the extractor in both X and Y , and because both relations
are hard (based on the hardness of the Discrete Logarithm assumption).

HVZK: The simulator S on input of statement (cm,Token, g, h, pk) ran-
domly chooses (z1, z2, e) and outputs the transcript (gz11 h

z2/gve1 h
re, gq12 /g

ve
2 , e, z1, z2)

which is perfectly indistinguishable from a honestly-executed protocol transcript
(R1, R2, e, z1, z2).

37

ZKP{(v, r, v′, r′, v̂, sk) : {(cm′ = gvhr
′
∧ cm = gvhr) ∨ (cm′ = gv̂hr

′
∧ ĉm = gv̂ ˆToken

1/sk ∧ Token =
(hr)sk)}(cm, cm′, ĉm, ˆToken,Token, g, h, pk)

Left part of OR proof is True: (running simulator S for
the right part) - witnesses: v, r, r′

� P chooses χ, ψ1, ψ2, q, s1, s2, t, e2 at random
� P computes:

R1 = gqhs1 R′1 = gqhs2

R2 =
gχhψ1

ge2v̂he2r′
R′2 =

gχ ˆToken
ψ2

ge2v̂ ˆToken
e2/sk

R′′2 =
ht

he2rsk

and sends R1, R
′
1, R2, R

′
2, R

′′
2 to V.

� V picks e at random and sends to P.
� P computes

e1 = e− e2 z1 = q + ve1 z2 = s1 + r′e1

z3 = s2 + re1 z4 = χ z5 = ψ1

z6 = ψ2 z7 = t

and sends (z1, z2, z3, z4, z5, z6, z7, e2) to V.
� V computes e1 = e− e2 and checks if:

gz1hz2 = R1(cm′)e1 gz1hz3 = R′1(cm)e1

gz4hz5 = R2(cm′)e2 gz4 ˆToken
z6

= R′2(ĉm)e2

hz7 = R′′2 (Token)e2

Completeness: Straightforward to verify.
Special Soundness: The extractor com-
pletes the protocol with transcript
((R1, R

′
1, R2, R

′
2, R

′′
2), e, (z1, z2, z3, z4, z5, z6, z7, e2))

then rewinds to step 2 and gets transcript
((R1, R

′
1, R2, R

′
2, R

′′
2), e∗, (z∗1 , z

∗
2 , z
∗
3 , z
∗
4 , z
∗
5 , z
∗
6 , z
∗
7 , e
∗
2)). Now

the extractor can compute v =
z1−z∗1
e1−e∗1

, r′ =
z2−z∗2
e1−e∗1

and

r =
z3−z∗3
e1−e∗2

. This guarantees the equality of the v values

in cm and cm′ because q which contains v is used by the
extractor in both R1 and R′1, and because both relations
are hard (based on the hardness of the Discrete Logarithm
assumption).

Right part of OR proof is True: (running simulator S
for the left part) - witnesses: v̂, r, r′, sk

� P chooses χ, ψ1, ψ2, q, s1, s2, t, e1 at random
� P computes:

R1 =
gχhψ1

ge1vhe1r′
R′1 =

gχhψ2

ge1vhe1r

R2 = gqhs1 R′2 = gq ˆToken
1/t

R′′2 = hs2t

and sends R1, R
′
1, R2, R

′
2, R

′′
2 to V.

� V picks e at random and sends to P.
� P computes

e2 = e− e1 z1 = χ z2 = ψ1

z3 = ψ2 z4 = q + v̂e2 z5 = s1 + r′e2

z6 = 1/t+ e2/sk z7 = s2t+ rske2

and sends (z1, z2, z3, z4, z5, z6, z7, e2) to V.
� V computes e1 = e− e2 and checks if:

gz1hz2 = R1(cm′)e1 gz1hz3 = R′1(cm)e1

gz4hz5 = R2(cm′)e2 gz4 ˆToken
z6

= R′2(ĉm)e2

hz7 = R′′2 (Token)e2

Completeness: Straightforward to verify.
Special Soundness: The extractor com-
pletes the protocol with transcript
((R1, R

′
1, R2, R

′
2, R

′′
2), e, (z1, z2, z3, z4, z5, z6, z7, e2))

then rewinds to step 2 and gets transcript
((R1, R

′
1, R2, R

′
2, R

′′
2), e∗, (z∗1 , z

∗
2 , z
∗
3 , z
∗
4 , z
∗
5 , z
∗
6 , z
∗
7 , e
∗
2)).

Now the extractor can compute v̂ =
z4−z∗4
e2−e∗2

,

r′ =
z5−z∗5
e2−e∗2

, sk =
e2−e∗2
z6−z∗6

and r =
z7−z∗7

sk (e2−e∗2)
. This guar-

antees the equalities of v̂ in cm′, ĉm and of sk in ĉm, Token
because q which contains v̂ is used by the extractor in
both R2 and R′2 and t which contains sk is used by the
extractor in both R′2 and R′′2 , and because these relations
are hard (based on the hardness of the Discrete Logarithm
assumption).

HVZK: The simulator S on input of statement (cm, cm′, ĉm, ˆToken,Token, g, h, pk) randomly chooses χ, ψ1, ψ2, q, s1, s2, t, e1, e

and outputs the transcript ((R1

(cm′)e−e2
,

R′1
(cm)e−e2

, R2
(cm′)e2 ,

R′2
(ĉm)e2

,
R′′2

(Token)e2
), e, (z1, z2, z3, z4, z5, z6, z7, e2)) which is perfectly in-

distinguishable from a honestly-executed protocol transcript ((R1, R
′
1, R2, R

′
2, R

′′
2), e, (z1, z2, z3, z4, z5, z6, z7, e2)).

Fig. 9: zkLedger’s disjunctive proof of equality of committed values.

38

Computational costs The prover’s total cost for each of πC1 and πC2 as above
is 1 prime-order exps and 1 prime-order multi-exps. The verifier’s total cost is 3
prime-order exps and 1 prime-order multi-exps.

Storage costs A non-interactive version of this proof would require to store 1
exps and 1 multi-exps, as well as 2 exponent values.

C.4 Proof of Audit πAud

During a Bank’s audit, the Bank provides a value v to the auditor, along with
the a ZKP πAud, equivalent to the basic MiniLedger audit described in Section
4.1.

The prover’s computational cost during an audit is 2 prime-order exps, while
the verifier’s computational cost is 4 prime-order exps.

C.5 ZK Proofs Cost Analysis

We now provide an outline for the computation and storage costs of zkLedger’s
ZK proofs, assuming n participating Banks in L. Also since we provide this
analysis for comparison purposes with MiniLedger in the next section, we omit
the computation and storage costs of the range proof in our overall comparison
as these are specific to the range proof construction (range proof costs would be
equivalent to MiniLedger as well).

Transaction (prover’s) computation cost A Bank when generating a transaction
needs to compute the following for each Bank i in the ledger:

� Create πA1: n prime-order exps and 4n prime-order multi-exps
� Create πC1: n prime-order exps and n prime-order multi-exps
� Create πC2: n prime-order exps and n prime-order multi-exps

Total costs are 3n prime-order exps and 6n prime-order multi-exps.

Verifier’s computation cost

� πA1: 6n prime-order exps and 4n prime-order multi-exps
� πC1: 3n prime-order exps and n prime-order multi-exps
� πC2: 3n prime-order exps and n prime-order multi-exps

This totals to 12n prime-order exps and 6n prime-order multi-exps.

Auditing computation costs In πAud, the prover’s cost providing a ZKP to the
auditor is 2 prime-order exps, while the auditor’s cost is 4 prime-order exps.

Storage costs Each zkLedger transaction is associated with the following com-
munication/storage costs for the needed ZK proofs: n proofs of assets πA1 (n
exps and 4n multi-exps elements plus 8n exponent values) and 2n consistency
proofs πC (2n exps and 2n multi-exps elements plus 4n exponent values). The
totals are 3n exps, 6n multi-exps and 12n exponent values.

39

C.6 Vulnerabilities and Shortcomings

Out-of-band Communication and Unknown Value Attacks zkLedger assumes
that a Bank wishing to send some value v to another Bank would inform the
receiving Bank accordingly through an out-of-band channel. The problem with
this assumption is two-fold. First, a malicious Bank B∗ could prevent another
Bank BR in the system from answering audits successfully, by sending some value
v∗ and either claiming that it sent some other value v 6= v∗, or not informing BR
at all. Although there is a mechanism in place to protect BR against unknown
randomness values r (through the audit tokens), no such mechanism exists for
the values v themselves. In such a case, BR, not knowing v∗, would not be able
to convince A since it would claim that the hidden value in a commitment cm is
v.

Secondly, given the requirement for communicating values v out-of-band,
which implies that all Banks need to be online at all times, there is no reason
not to communicate the whole commitment opening instead. In this case the
above attack would not work since each Bank would verify its respective opening
in real time. In case BR detected any type of malicious behavior from B∗ in a
transaction, it would alert other Banks or system participants. However this now
trivializes zkLedger, as there is no reason for using the audit tokens and proof
of consistency πC . The ledger would consist of just commitments and proof of
assets πA. During audits, the Bank would just prove in Zero Knowledge that the
hidden value is indeed v, or simply open the commitment to the auditor.

Degrading performance Besides zkLedger’s evident drawback of O(mn) storage
costs, a monotonically-growing ledger size also impacts the computation costs for
NIZKs. More specifically, πA shown in detail above requires the verifier to make
m multiplications to compute ĉm =

∏m
i=1 cmij = gΣvihΣri for each Bank (recall

the verifier does not know which Bank is spending). Although multiplication
is considered a relatively cheap operation, these costs will eventually add up.
An performance degrade will also occur when auditing total assets for the same
reason. MiniLedger’s “running total” technique would mitigate these issues.

D MiniLedger Zero Knowledge Proof

In MiniLedger we improve on zkLedger’s proofs πA and πC by combining
them as a single disjunctive [27] proof π with proving consistency for ElGamal
encryptions in both cases as follows (note this optimization is also applicable to
zkLedger).

ZKP{(v, v′, r, r′, r′′, v̂, r̂, sk) : [(cm = gvhr
′ ∧ c2 = gvhr ∧ c1 = pkr) ∨ (cm =

gv̂hr
′ ∧ ĉ2 = gv̂ ĉ1

1/sk ∧ c2 = gvhr ∧ c1 = pkr ∧ pk = hsk)] ∧ [cm = gv
′
hr
′′ ∧ v′ ∈

[0, 2k]]}(cm, c1, c2, ĉ1, ĉ2, g, h, pk)
The details for the above proof are shown in Figure 10 where we omit the

range proof part for notation simplicity as before. Our optimization results in
the following total computational and storage costs:

40

ZKP{(v, r, r′, v̂, r̂, sk) : (cm = gvhr
′
∧ c2 = gvhr ∧ c1 = pkr) ∨ (cm = gv̂hr

′
∧ ĉ2 = gv̂ ĉ1

1/sk ∧ c2 = gvhr ∧ c1 = pkr ∧ pk =
hsk)}(cm, c1, c2, ĉ1, ĉ2, g, h, pk)

Left part of OR proof is True: (running simulator S for the
right part) - Witnesses: v, r, r′

� P chooses χ2, χ3, ψ1, ψ3, ψ4, q, s1, s2, t, e2 at random
� P computes:

R1 = gqhs1 R′1 = gqhs2 R′′1 = pks2

R2 =
gχ2hψ1

ge2v̂he2r′
R′2 =

gχ2 ĉ1
ψ3

ge2v̂ ĉ1
e2/sk

R′′2 =
gχ3hψ4

ge2vhe2r
R′′′2 =

pkψ4

pke2r
R

(4)
2 =

ht

he2sk

and sends R1, R
′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R

′′′
2 , R

(4)
2 to V.

� V picks e at random and sends to P.
� P computes

e1 = e− e2 z1 = q + ve1

z2 = s1 + r′e1 z3 = s2 + re1

z4 = χ2 z5 = ψ1 z6 = ψ3

z7 = χ3 z8 = ψ4 z9 = t

and sends (z1, z2, z3, z4, z5, z6, z7, z8, z9, e2) to V.
� V computes e1 = e− e2 and checks if:

gz1hz2 = R1cm
e1 gz1hz3 = R′1c

e1
2 pkz3 = R′′1 c

e1
1

gz4hz5 = R2cm
e2 gz4 ĉ1

z6 = R′2ĉ2
e2 gz7hz8 = R′′2 c

e2
2

pkz8 = R′′′2 c
e2
1 hz9 = R

(4)
2 pke2

Completeness: Straightforward to verify.
Special Soundness: The extractor completes the pro-
tocol with transcript ((R1, R

′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R

′′′
2 , R

(4)
2), e,

(z1, z2, z3, z4, z5, z6, z7, z8, z9, e2)) then rewinds to step 2

and gets transcript ((R1, R
′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R

′′′
2 , R

(4)
2), e∗,

(z∗1 , z
∗
2 , z
∗
3 , z
∗
4 , z
∗
5 , z
∗
6 , z
∗
7 , z
∗
8 , z
∗
9 , e
∗
2)). Now the extractor can com-

pute v =
z1−z∗1
e1−e∗1

, r′ =
z2−z∗2
e1−e∗1

and r =
z3−z∗3
e1−e∗1

. This guarantees the

equality of values v and r in cm, c2 and c1 because q, s2 which
contain v and r respectively are used by the extractor in all
R1, R

′
1 and R′′1 , and because both relations are hard (based on

the hardness of the Discrete Logarithm assumption).

Right part of OR proof is True: (running simulator S for the
left part) - Witnesses: v̂, v, r′, sk , r

� P chooses χ1, ψ1, ψ2, q1, q2, s1, s2, t, e1 at random
� P computes:

R1 =
gχ1hψ1

ge1vhe1r′
R′1 =

gχ1hψ2

ge1vhe1r
R′′1 =

pkψ2

pke1r

R2 = gq1hs1 R′2 = gq1 ĉ1
1/t R′′2 = gq2hs2

R′′′2 = pks2 R
(4)
2 = ht

and sends R1, R
′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R

′′′
2 , R

(4)
2 to V.

� V picks e at random and sends to P.
� P computes

e2 = e− e1 z1 = χ1 z2 = ψ1

z3 = ψ2 z4 = q1 + v̂e2 z5 = s1 + r′e2

z6 = 1/t+ e2/sk z7 = q2 + ve2

z8 = s2 + re2 z9 = t+ ske2

and sends (z1, z2, z3, z4, z5, z6, z7, z8, z9, e2) to V.
� V computes e1 = e− e2 and checks if:

gz1hz2 = R1cm
e1 gz1hz3 = R′1c

e1
2 pkz3 = R′′1 c

e1
1

gz4hz5 = R2cm
e2 gz4 ĉ1

z6 = R′2ĉ2
e2 gz7hz8 = R′′2 c

e2
2

pkz8 = R′′′2 c
e2
1 hz9 = R

(4)
2 pke2

Completeness: Straightforward to verify.
Special Soundness: The extractor completes the pro-
tocol with transcript ((R1, R

′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R

′′′
2 , R

(4)
2), e,

(z1, z2, z3, z4, z5, z6, z7, z8, z9, e2)) then rewinds to step 2

and gets transcript ((R1, R
′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R

′′′
2 , R

(4)
2), e∗,

(z∗1 , z
∗
2 , z
∗
3 , z
∗
4 , z
∗
5 , z
∗
6 , z
∗
7 , z
∗
8 , z
∗
9 , e
∗
2)). Now the extractor can

compute v̂ =
z4−z∗4
e2−e∗2

, v =
z7−z∗7
e2−e∗2

, r′ =
z5−z∗5
e2−e∗2

, sk =
e2−e∗2
z6−z∗6

and

r =
z8−z∗8
e2−e∗2

. This guarantees the equality of values v̂, r in cm, ĉ2

and c2, c1 respectively because q1 and s3 which contain v̂ and r
resepctively are used by the extractor in all R2, R

′
2 and R′′2 , R

′′′
2 ,

and because both relations are hard (based on the hardness of
the Discrete Logarithm assumption).

HVZK: The simulator S on input of statement (v, r, r′, v̂, r̂, sk) randomly chooses χ1, χ2, χ3, ψ1, ψ2, ψ3, ψ4, t, e2, e and outputs the

transcript ((R1

cme−e2
,

R′1
c
e−e2
2

,
R′′1
c
e−e2
1

, R2
cme2 ,

R′2
ĉ2

e2 ,
R′′2
c
e2
2

,
R′′′2
c
e2
1

,
R

(4)
2

pke2), e, (z1, z2, z3, z4, z5, z6, z7, z8, z9, e2)) which is perfectly indistinguishable

from a honestly-executed protocol transcript ((R1, R
′
1, R

′′
1 , R2, R

′
2, R

′′
2 , R

′′′
2 , R

(4)
2), e, (z1, z2, z3, z4, z5, z6, z7, z8, z9, e2)).

Fig. 10: MiniLedger ZK proof π (without range proof)

41

Transaction (prover’s) computation cost The proving costs for π would be 3n
prime-order exps and 5n prime-order multi-exps.

Verifier’s computation cost 11n prime-order exps and 5n prime-order multi-exps

Auditing costs for πAud Same as in zkLedger.

Storage costs Each MiniLedger transaction is associated with the following
communication/storage costs for the needed ZK proofs: 3n exps and 5n multi-
exps elements as well as 10n exponent values.

In Table 6 we provide a comparison between the computational and storage
costs between zkLedger and MiniLedger for their respective ZK proofs.

zkLedger MiniLedger
Prime-order exps Prime-order multi-exps Exponents Prime-order exps Prime-order multi-exps Exponents

Transaction cost 3n 6n - 3n 5n -

Verification cost 12n 6n - 11n 5n -

Storage cost 3n 6n 12n 3n 5n 10n

Auditee cost 2 - - 2 - -

Auditor’s cost 4 - - 4 - -

Table 6: zkLedger and MiniLedger ZK proof costs per transaction

E MiniLedger+ construction and Fine-grained Audit
Algorithms

As discussed, we can take advantage of the compactness of MiniLedger to
allow for fine-grained auditing in a client level, where Banks are now acting as
intermediaries for their client transactions. In this section we provide the detailed
construction for MiniLedger+.

Let client pk11 associated with Bank B1 wishes to transfer some of his funds
v to a client pk21 associated with Bank B2. The client would then construct a
transaction tx as follows:

C1. Construct id = s ‖ τ where s is a nonce and τ is a timestamp
C2. C1 ← EncTEG(pk11, v)
C3. C2 ← EncTEG(pkB1, v)
C4. C3 ← EncTEG(pkB1,B2)
C5. C4 ← EncTEG(pkB2, pk21)
C6. Compute ZKP π1 for C4 ∧ f(pk21) = B2 that proves consistency in c4 for

B2, pk21
C7. Compute ZKP π2 for C3 ∧ C4 proving consistency for B2, pkB2
C8. Compute ZKP π3 for C1 ∧ C2 proving consistency for v

42

C9. Sign all the previous outputs as σ
C10. Construct txc : (id, C1, C2, C3, C4, π1, π2, π3, σ) and send it to B1.

B1 after receiving tx will perform the following actions:

S1. Vrfy(σ)
S2. Vrfy(π1 ∧ π2 ∧ π3)
S3. DecTEG(skB1, C2) := v
S4. DecTEG(skB1, C3) := B2

S5. Verify that v ≥ Σv for client pk11 (has the assets to transfer)
S6. Append tx in its private table under pk11
S7. Construct a transaction txi in L, where Ci2 (under B2’s column) transfers v

to B2

S8. Compute ZKP π4, π5 for Ci2, C2, C3, proving consistency for v and B2 (i.e.
proving it sent the correct value to the correct Bank)

S9. Assign id ‖ C4 ‖ π4 ‖ π5 to all entries Rij of row i in L
S10. Assign id ‖ H(txc) to all entries Hij of row i in L

At this point, the sending client pk11 by observing the new entries Hij can
verify that its transaction has been correctly processed by its Bank B1. Finally
the receiving Bank B2 would perform the following which completes the trans-
action:

R1. DecTEG(skB2 , Ci2) := v
R2. Parse Ri2 and perform DecTEG(skB2 , C4) := pk21
R3. C ′1 ← EncTEG(pk21 , v)
R4. C ′2 ← EncTEG(pkB2 , v)
R5. Compute ZKP π′1 for C4, C

′
1 proving consistency for pk21

R6. Compute ZKP π′2 for Ci2, C
′
1, C

′
2 proving consistency for v

R7. Construct txc′ : (id′, C ′1, C
′
2, ε, π

′
1, π
′
2, ε, σ

′) where ε are empty strings and σ′

is a signature on txc′ by B2

R8. Construct an empty transaction in L, where all entries are empty strings ε
except H := id′ ‖ H(txc′).

Note that only the receiving Bank B2 will be able to decrypt C4 and learn
the final recipient pk21, as other Bank’s decryptions will fail. This ensures that
noone except the original sending client learns both the sender and the end
recipient of a transaction. Also an external observer still cannot learn the sending
or receiving Bank, as the indistinguishability properties of MiniLedger are
maintained (which is not true in a similar system, Solidus [21]).

E.1 Assumptions and Threat model

For the above extension we assume the assumptions and threat model described
in Section 3 regarding the public ledger L. We now assume however that the
auditors behave honestly and do not collude with anyone, as they are the entities
safeguarding the scheme’s security. Similarly as before, we assume an anonymous
broadcast functionality between clients and Banks to preserve anonymity.

43

Without aggregation With aggregation (aggregation factor θ)
Prime-order exps Prime-order multi-exps Prime-order exps Prime-order multi-exps

Client cost 6 6 + q 6 6 + q

Sending Bank cost 9 + q + 4n 5 + q + 7n 10 + q + 4n/θ 6 + q + (2 + 7n)/θ

Receiving Bank cost 6 5 6 + 1/θ 4 + 3/θ

Table 7: Fine-grained audit extension computation costs overview (normalized aggre-
gation costs).

Otherwise Banks may try to manipulate their private tables and present
altered tables to auditors, steal money from their users, make transactions with-
out their permission or make them fail audits. Clients can also assumed to be
malicious - they might try to make steal money either from another client or
from another Bank in the system, hide their assets, provide false information to
audits or try to make a system participant (Bank or client) fail future audits.
Banks and/or clients can also freely collude (without however breaking consensus
properties).

Finally, while from the Client-Bank relation it is natural for the Bank to
know all its clients and their values, the Bank can only learn transactions where
their client is a sender or receiver but does not learn the end receiver or the
initial sender client respectively.

E.2 Auditing Banks

Although honest behavior of the Banks can only be verified reactively, it can
still be held accountable if any of its clients “complain” about loss of funds.
Therefore the auditor, either at random or triggered by such a complain, will
perform the following protocol with the Bank:

AB1. Auditor sends an audit query to Bank
AB2. The Bank presents the encrypted LBj

to the auditor, as well as a ZKP πΣ
that the sum of sums of all its clients is equal to the Bank’s sum in L

AB3. The auditor verifies πΣ and also verifies that each txc in LBj is signed by its
respective client and can be matched with an existing digest H(txc) in L.

E.3 Auditing Clients

An auditor A can also request audits from individual clients, providing that the
corresponding Bank presents its encrypted LBj

to A. As in the basic MiniLedger,
A can request an audit either for specific client transactions or for the sum of a
client’s assets in LBj . The prover can be either the Bank or the client, proving
its answers in ZK. The auditing protocol for a client would work as follows:

AC1. For auditing client pkjm, A makes the request from Bj .
AC2. Bj presents LBj

to A.

44

AC3. Auditor A fully validates LBj
, similarly as in AB3. above.

AC4. On successful verification (i.e. verify πΣ and that each txc signed and
matched with a digest H(txc)) , A requests value v from the client (or
Bank) (the audit could be on a specific tx, or the total assets Σv of the
client represented by the product of the respective ciphertexts)

AC5. Client (or Bank) sends v to A, along with a ZKP that the respective ci-
phertext encrypts v (or the ciphertexts’ product if audited for total assets)

An interesting extension family in the client auditing protocol is a client proving
that it was not involved in txc with value v, or has not transacted with another
client pkr . At a high level, the first can be achieved with a Bank accumulating
id ‖ v in LBj along with the needed zero-knowledge proofs, and provide the
auditor a non-membership proof of id ‖ v. The second audit requires the client
accumulating the above ciphertexts C4 (and similarly with a ZK proof for honest
accumulation). To prevent tampering with data, hashes of accumulators and
proofs should be regularly posted on the Bank’s private ledger (and in turn,
hashes to the main ledger). These extensions require a universal accumulator
(as the RSA accumulator), since Merkle trees do not provide such functionality.

E.4 Aggregating Transactions

The above protocol requires a transaction to be posted in L for each client
transaction, which negatively impacts the overall scalability. However the Bank
can defer creating the transaction in L by waiting for more transactions of its
clients to be posted on its local “mempool”. Then the sending Bank can fulfill
multiple transaction requests of its clients with a single transaction in L, since
that transaction can accomodate multiple recipient Banks.

While aggregating transactions for recipients belonging to different Banks
is simple by including multiple entries in R and H, the protocol needs to be
modified to accommodate multiple transactions when two or more recipients
belong to the same Bank. Similar to the previous example, let two clients pk11
and pk12 associated with Bank B1 wishing to transfer some of their funds v1 and
v2 to clients pk21 and pk22 respectively, associated with Bank B2. First, both
clients would construct their transactions tx(1), tx(2) as before. B1 would then
work through steps S1 to S6 as above for each client separately. The rest of its
steps would be as follows:

S7. Construct a transaction in L, where Ci2 under B2’s column transfers v =
v1 + v2 to B2

S8. Compute ZKP π4, π5 for Ci2, (C
(1)
2 + C

(2)
2), (C

(1)
3 ∧ C(2)

3), proving consis-

tency for v and B2 (i.e. proves from homomorphic addition of C
(1)
2 +C

(2)
2

it sent the correct value, and separately proves with each C
(1)
3 , C

(2)
3 that

it sent to the correct Bank)

S9. Compute C
(1′)
2 = EncTEG(pkB2 , v1) and C

(2′)
2 = EncTEG(pkB2 , v2)

S10. Compute ZKP π6 that proves consistency between (C
(1)
2 ∧C

(1′)
2) and (C

(2)
2 ∧

C
(2′)
2) for v1, v2 respectively

45

S11. Assign id(1) ‖ c(1)4 ‖ π4 ‖ π5 ‖ π6 and id(2) ‖ c(2)4 ‖ π4 ‖ π5 ‖ π6 to R. 13

Note that B1 cannot “mix and match” since it would fail the audit because
of tx in its table.

S12. Assign id(1) ‖ H(tx(1)) ‖ id(2) ‖ H(tx(2)) to H.

Then Bank B2 would perform the following steps:

R1. Decrypt v from ciphertext Ci2 in L

R2. DecTEG(skB2 , C
(1)
4) := pk21, DecTEG(skB2 , C

(2)
4) := pk22, DecTEG(skB2 , C

(1′)
2) :=

v1, DecTEG(skB2 , C
(2′)
2) := v2

R3. Compute C
(1′)
1 ← EncTEG(pk21 , v1) and C

(2′)
1 ← EncTEG(pk22 , v2)

R4. Compute C
(1′)
2 ← EncTEG(pkB2 , v1) and C

(2′)
2 ← EncTEG(pkB2 , v2)

R5. Compute π
(1′)
1 for C

(1)
4 , C

(1′)
1 proving consistency for pk21 & π

(2′)
1 for C

(2)
4 , C

(2′)
1

proving consistency for pk22
R6. Compute π

(1′)
2 for C

(1′)
1 , C

(1′)
2 proving consistency for v1, π

(2′)
2 for C

(2′)
1 , C

(2′)
2

proving consistency for v2 and c
(k2)
2 , (C

(1′)
1 · C(1′)

2), (C
(2′)
1 · C(2′)

2) proving
consistency for v

R7. Construct tx(1
′) : (id(1

′), C
(1′)
1 , C

(1′)
2 , ε, ε, π

(1′)
1 , π

(1′)
2 , ε, σ(1′)) where ε are

empty strings and σ(1′) is a signature on tx(1
′) by B2 (similarly for tx(2

′)

)
R8. Construct an empty tx in L, setting all entries as ε except H := id(1

′) ‖
H(tx(1

′)) ‖ id(2′) ‖ H(tx(2
′)).

Note that transaction aggregations do not intefere with audits either in the
Bank or in the client level, since all transactions are still “recorded” in the
hashtable.

Another interesting case is when a client requests some monetary value to be
transferred to another client belonging to the same Bank, which would constitute
an “internal” transaction for that Bank. The Bank’s assets in L would not change
and a separate transaction in L would not be needed, however the Bank would
still post the respective digests in L to ensure correct auditing. Such transactions
can of course be aggregated with external transactions in L as discussed above.

E.5 Security Analysis

As in basic MiniLedger, malicious Banks cannot steal, hide or manipulate
assets in L. In MiniLedger+ however, a malicious Bank could trivially ma-
nipulate its private table (e.g. change its clients’ values) since that table is not
directly observable by an external verifier. However malicious behavior would
eventually be detected in an audit as the private table won’t be consistent with
the added column data in L. In the case the Bank attempts to move funds

13 To prevent leaktzage of information that some Bank receives values for two of its
clients, the protocol could enforce posting dummy values equal to the maximum
number of clients some Bank has in the system .

46

internally without client authorization (debiting one of its clients and crediting
another), even though the balance sum in LBj

would match the balance reflected
in L, this unauthorized transaction still wouldn’t be matched to an entry in L
and would fail the audit, thus exposing the Bank of malicious behavior against
its own clients. For the same reason, a Bank cannot “omit” a client transaction
in LBj

, as this would also result in a total asset mismatch.
In a client audit, the client or the respective Bank might attempt to provide

false answers to the auditor, even by trying to collude. Here the auditor would
have verified the validity of LBj first, so any subsequent audits would be executed
on transactions that have been verified to be valid by having matched them with
the public ledger L.

E.6 Cost Analysis for MiniLedger+ without Aggregation

Assuming an instantiation with the ElGamal variant encryption scheme, its com-
putation costs are as follows (here we denote c1 → X and c2 → Y):

Client costs A client needs to construct tx which includes the following com-
putation costs: Compute ciphertexts C1, C2, C3, C4: 4 prime-order exps and 4
prime-order multi-exps. Compute π1: Assuming mapping function f() for a client
public key pkC and Bank’s j id Bj is derived from verifying a client’s signature
σskC (pkC ,Bj) and assuming Bj has q clients in total, π1 would be an OR zero-
knowledge proof of knowledge of randomness r of ciphertext Y for all q client
public keys in the ElGamal variant encryption, which would be q prime-order
multi-exps. Compute π2: Since receiving Bank is known to the sending Bank,
π2 would just consist of a PoK of randomness for ciphertext Y of C3 and for
ciphertext X of C4, which are 2 prime-order exps. Compute π3: 2 prime-order
multi-exps.

Sending Bank costs A Bank on receiving tx from its client has the following
computation costs: Verify π1: q prime-order exps and q prime-order multi-exps.
Verify π2: 4 prime-order exps. Verify π3: 2 prime-order exps & 2 prime-order
multi-exps. Decrypt for C2, C3: 2 prime-order exps. MiniLedger CreateTx()
costs. Compute π4: 2 prime-order multi-exps.Comp. π5: 1 prime-order exp & 1
prime-order multi-exp.

Receiving Bank costs A Bank receiving value from a transaction in L has the
following computation costs: Decrypt from transaction in L: 1 prime-order exp.
Decrypt c4: 1 prime-order exp. Encrypt C ′1, C

′
2: 2 prime-order exps and 2 prime-

order multi-exps. Compute π′1: Proof would be constructed in a similar way to π2,
2 prime-order exps. Compute π′2: Is a proof of consistency of v for Y ciphertexts
of C ′1, C

′
2 and Ci2 which costs 3 prime-order multi-exps.

E.7 Cost Analysis for MiniLedger+ with Aggregation

Let us now consider the case a sending Bank aggregates θ transactions where
all recipients belong to the same receiving Bank Bj (aggregations for recipients

47

among different Banks have additive costs as in section E.6). For comparison,
we outline the normalized computation costs per client transaction as follows:

Client costs Same costs as without aggregation.

Sending Bank costs Verify π1: q prime-order exps and q prime-order multi-
exps. Verify π2: 4 prime-order exps. Verify π3: 2 prime-order exps and 2 prime-
order multi-exps. Decrypt C2, C3: 2 prime-order exps. MiniLedger CreateTx
cost divided by θ. Compute π4: 2/θ prime-order multi-exps (due to homomorphic
additive property). Comp. π5: 1 prime-order exp & 1 prime-order multi-exp.

Comp. C
(i′)
2 : 1 prime-order exp & 1 prime-order multi-exp. Compute π6: 2 prime-

order multi-exps

Receiving Bank costs Decryption costs from zkLedger transaction divided by θ.

Decrypt C
(i)
4 and C

(i)
2 : 2 prime-order exps. Encrypt C

(i′)
1 , C

(i′)
2 : 2 prime-order

exps and 2 prime-order multi-exps. Compute π
(i′)
1 : 2 prime-order exps. Com-

pute π
(i′)
2 : Is a proof of consistency of v for Y ciphertexts of C

(i′)
1 , C

(i′)
2 and

c
(i2)
2 ,

∏
C

(i′)
1 ,

∏
C

(i′)
2 which costs 2 + 3/θ prime-order multi-exps.

F Additional Audit Types and Modifications

F.1 Audit Without Consent

All audit functionalities described in Section 4 are interactive and require the
Bank’s consent. We could enable non-interactive audits by including an encryp-
tion of πAud and its statement for each transaction cell under a pre-determined
trusted auditor’s public key (which preserves privacy). However since AudPruned{}
is always interactive (and cannot be converted to a non-interactive protocol be-
cause it needs the Bank’s input from its memory state), audit without con-
sent can only take place on non-pruned data. Because of this inherent limita-
tion, the only possible type of audit without consent for pruned transactions is
AudTotal{}. Then the statement of NIZK πAud would be (Qj ,

∑
vj , pkj , g, h).

With MiniLedger taking this approach, an alternative direction for ledger
“compacting” could be pruning each transaction right away (without consent
from Banks) in a similar fashion to CODA [14]. Since MiniLedger is account-
based, keeping running totals Q after each transaction execution would be suffi-
cient. The ledger would only consist of a single row of running totals representing
each Bank’s total assets. After a transaction is broadcasted by a Bank, it would
first be checked for validity as before and all running totals would be updated as
Q ·C → Q′, ensuring optimal O(n) ledger size (of course without Banks needing
to keep local memory state).

Finally, to remove the above trusted auditor requirement we can utilize
threshold encryption [56], where a coalition of t out of n Auditors could au-
dit any Bank in the ledger, even without its consent. The protocol would now
require from a Bank to encrypt the value vij under the designated threshold

48

encryption public keys. Then t Auditors will be able to audit any Bank’s total
assets.

F.2 Additional Audit Types

From our “basic” audit on a value v in L, we can derive several more audit types
that reduce to a basic audit. We outine some below, however note this list is not
exhaustive. We also note again that these audits can still be executed even for
pruned data.

Statistical Audits This audit type category is similar to zkLedger’s. This requires
a sending Bank committing to a bit flag b in each cell in L, which indicates if that
Bank praticipates in that transaction (i.e. b = 1 if v 6= 0, and b = 0 otherwise),
accompanied with a NIZK to enforce correctness. “Statistical” audits involve
queries that require only non-zero value transaction consideration, as zero-value
encryptions would skew the result. For instance, to query the average transacted
value for a Bank over a period, the auditor would need to query all the Bank
column cells that correspond to that period. The Bank would then reply for all
those cells as in the basic audit, with the addition of a reply to the bit flag. Then
the auditor after verifying the audit replies, would compute the average value
from cells with a bit flag of 1. This category is also applicable to MiniLedger+
in an identical manner.

Value compared to some limit. To query if a Bank sent or received a value less
or over an amount t, the audited Bank simply needs to provide a range proof
πr : {v : (v ≥ t)}. To preserve correctness, the value v needs to be associated
with the hidden value in cm in π (included in Figure 10). As with the basic audit,
this proof can be provided either proactively (i.e. posted on L) or reactively (i.e.
provided to the auditor during audit).

Limit over time The auditor might want to learn if a Bank’s transactions have
exceeded a value over a time period (e.g. if Bank has received over $1M over
a week). We can create a conjunction of the two audits previously discussed to
create such an audit (i.e. audit on average value over time combined with range
proof on that average value). To prevent skewing the result in case the Bank has
both sent and received values in that period, additional range proofs are needed
to prove if a value is positive or negative and included in the overall limit audit.
Also note that the notion of “time” in MiniLedger is equivalent to transaction
rows, which can include auxiliary timestamp information.

Transaction recipient. The goal of this audit type is for a sending Bank to prove
the recipients for one of its transactions. If that transaction has not pruned
parts, the Bank can simply reply with the list of receivers and then the auditor
would need to audit each Bank in the transaction row to verify this. However it
is likely that at least one Bank has pruned its respective cell in that transaction.
In this case, the Bank should keep a record of its transaction recipients in its

49

local memory for each of its outbound transactions, and reply to the auditor
accordingly. Bit flags used in the Statistical Audits discussed before can also be
utilized to make this audit type more efficient.

Client audits in MiniLedger+ To execute audits in a client level, the auditor
first needs to fetch the client transactions from the Bank’s private ledger, and
verify their validity as outlined in Appendix E.3. From that point, the auditor
can perform all audits in a client level in a similar fashion to the respective
audits in a Bank level. For instance, to learn if some MiniLedger+ client
exceeded a value transaction threshold within a time period or over a number
of transactions, this audit can be executed by selecting the client’s transactions
from the Bank’s private table that happened within this period by their id’s.
The audit would then be on the sum of the values represented by the product of
the respective ciphertexts, and the client would produce a range proof for that
ciphertext product as above. and select those with the appropriate timestamp.

A special useful audit would be to learn if a MiniLedger+ client has sent
assets to some specific client pk or not. The transactions would need to be
augmented with an additive universal accumulator, with each sender adding the
end client recipient’s pk to the accumulator, while also providing its Bank a ZK
proof of adding the correct public key. During an audit, the client would have
to prove membership (or non membership) to the auditor. An important note is
that the receiving client does not directly learn the original sender of a specific
transaction in-band, which implies the above approach cannot work for a client
to prove if he has received (or not) assets from another client.

G Choosing a Construction for Digest D

In Section 6 we discussed our options for instantiating the accumulator used in
pruning. Here we provide a summary of comparisons between possible options
in Table 8.

50

D |D| |pp| time
(PruneVrfy)

Up-
dat-
able

Dyn.
size

time(Prune)
time(Open)
time(BOpen)

|π|
|π̂|

time(Verify)
time(BVerify)

Merkle Tree O(1) O(1) O(q)H 4 4 O(q)H O(logq)H
O(`logq)H

O(logq)
O(`logq)

O(logq)H
O(`logq)H

Catalano-Fiore
CDH [20]

O(1) O(q) O(q)G 4 5 O(q)G O(q)G
O(`q)G

O(1)
O(`)

O(λ)G
O(`λ)G

Lai-Malavolta
[42]

O(1) O(q2) O(q)G 5 5 O(q)G O(q)G
O(`q)G

O(1)
O(1)

O(λ)G
O(`λ)G

Boneh-Bunz-
Fisch VC [13]

O(1) O(1)
O(λ)G +

O(kq logq)F 4 O(kq logq)G O(kq logq)G
O(kq logq)G

O(1)
O(λ)

O(λ)G +O(k log`)F
O(λ)G +O(k` log`)F

Batch-RSA ac-
cumulator [13]

O(1) O(1)
O(λ)G +

O(q)F +O(q)H 4 4
O(λ)G +

O(q)F +O(q)H
O(q)F
O(q)F

O(1)
O(1)

O(q)F
O(q)F

Table 8: Data structure D comparison. q: number of pruned transactions, k: # bits, λ:
security parameter, F: group multiplications, H: hash operations, G: group exponenti-
ations. Costs for Open(), π and Verify() are for a single transaction audit, while costs
for BOpen(), π̂ and BVerify() are for an `-batched transaction audit.

51

	MiniLedger: Compact-sized Anonymous and Auditable Distributed Payments

