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Abstract. Many new ciphers target a concise algebraic description for
efficient evaluation in a proof system or a multi-party computation.
This new target for optimization introduces algebraic vulnerabilities,
particularly involving Gröbner basis analysis. Unfortunately, the literature
on Gröbner bases tends to be either purely mathematical, or focused on
small fields. In this paper, we survey the most important algorithms and
present them in an intuitive way. The discussion of their complexities
enables researchers to assess the security of concrete arithmetization-
oriented ciphers. Aside from streamlining the security analysis, this paper
helps newcomers enter the field.
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1 Introduction

A range of emerging applications build on cryptographic protocols that employ
arithmetization. This process first characterizes a computation as a sequence of
basic finite field operations, and then performs these operations in the context of
a cryptographic protocol that preserves some target security property, such as
privacy, soundness, etc. Some examples of protocols that arithmetize are zero-
knowledge proof systems [16,56], succinct-verifier proof systems [27], and multi-
party protocols [38] – all of which have numerous already-deployed applications
both in a blockchain context and elsewhere.

A recurring computational task in these applications consists of evaluating a
keyed or unkeyed symmetric cryptographic primitive. However, traditional block
ciphers and hash functions are optimized for hardware and software implementa-
tions, not for arithmetic simulation by a cryptographic protocol. The demand for
high performance in these applications has brought about two notable changes
to the symmetric cryptography landscape:

1. New designs for symmetric primitives optimized for arithmetic protocols.
Recent years have seen several new proposals and design strategies with this
selling point: LowMC [6], MiMC [5], GMiMC [4], Jarvis and Friday [10], Vision
and Rescue [7,81], Starkad and Poseidon [58]. These so-called arithmetization-
oriented ciphers (AOCs) target a concise description in terms of operations
over a large finite field.
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2. Renewed interest in the field of algebraic attacks on symmetric primitives.
As a result of their concise description in terms of finite field operations,
AOCs are vulnerable to a collection of attacks that exploit the low degree or
sparsity of polynomial representations of the cipher under attack [3,18,25,66].
Traditional ciphers mitigate this vulnerability by including operations not
native to the working field in their circuit, resulting in a huge description in
terms of polynomials. As a result, most of traditional symmetric cryptanalysis
focuses on statistical attacks such as differential and linear cryptanalysis. For
AOCs, these types of attacks are generally less relevant as a consequence of
their large working field.

One of the most powerful general-purpose algebraic attack methodologies
revolves around the computation of a Gröbner basis from a set of polynomials.
This Gröbner basis computation is one step in a polynomial system solving
problem where the polynomials are provided by the cipher’s description, and
the polynomials’ common solution contains the sought-after secret key or hash
preimage. The complexity of polynomial system solving is therefore a vitally
important question in the context of analyzing the security of an AOC or
determining the correct parameters for a target security level.

Unfortunately, polynomial system solving and Gröbner bases remain poorly
understood subjects, particularly in the context of AOCs. There are several
reasons for this poor understanding. Firstly, until recently, there was no demand
for AOCs and thus no reason for cryptanalysts to study their security. Secondly,
the field is not very developed, in the sense that contributions come from rather
few researchers with diverse backgrounds, hampering collaboration. Thus thirdly,
and most importantly, the literature on the topic is scattered across many sources,
often contradictory, and in many cases out of date.

This paper aims to systematize existing knowledge in the context of Gröbner
basis attacks on AOCs. No scientific novelty is claimed; our contribution is merely
the presentation of existing knowledge in an intuitive and self-consistent way. In
doing so, we hope to make the field more accessible to researchers and eventually
improve the understanding of the concrete security that various AOCs offer.

The structure and scope of this paper is best illustrated in relation to the
general attack pipeline, which consists of several steps.

1. Polynomial modeling. The cipher is described in terms of low-degree mul-
tivariate polynomials, such that any solution common to all polynomials
results in a win for the attacker.

2. Gröbner basis computation in degree-refining term order. A Gröbner basis
algorithm computes a Gröbner basis for the ideal spanned by this list of
polynomials, relative to a term order refining the degree, typically degrevlex.

3. Term order change. The Gröbner basis with respect to degrevlex is trans-
formed into a Gröbner basis for the same polynomial ideal but with respect
to lex, an alternative term order.

4. Solution readout. Using a mixture of the Euclidean algorithm, univariate
polynomial factorization, and back-substitution of roots, an attacker extracts
a common solution to the system of polynomials.
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Step 1, modeling the cipher and attack, is out of scope for this paper. We
assume an attacker already knows which polynomials they want to find a solution
to. Indeed, the concise polynomial formulation of AOCs is their selling point.

In Section 2, we cover the basic definitions of variety, ideal, term order, and
Gröbner basis. We show here how solution readout works for Gröbner bases in lex
order of zero-dimensional ideals, and how a näıve transformation of Buchberger’s
criterion gives rise to a correct (albeit slow) Gröbner basis algorithm.

In Section 3, we cover the F4 and F5 algorithms, which constitute the state of
the art. We also cover the XL family of algorithms, which is popular in the context
of cryptanalysis and small fields. While these algorithms are often described as
Gröbner-like due to their various similarities, the framing is quite different.

In Section 4, we cover FGLM and sketch the Gröbner walk, the two most
important term order change algorithms. It is important to consider the term order
change as a separate step in the attack because the Gröbner basis computation
does not always dominate. Indeed, it is possible to construct AOCs where the
Gröbner basis comes for free, and where the cipher’s security comes from the
difficulty of computing this term order change.

We close in Section 5 with open questions and a discussion, and suggest future
work.

2 Gröbner Bases

After modeling a cryptographic primitive as a system of polynomial equations,
the objective is to find a solution to that system of equations, i.e., some vector a
that simultaneously satisfies all multivariate polynomial equations. The set of all
these values is called the variety.

Definition 1 (Variety1). The variety of F ⊆ F[x] is defined as

V (F) =
{

(a0, . . . , an−1) ∈ Fn
∣∣∣∀f ∈ F : f(a) = 0

}
.

Note that varieties are defined over the algebraic closure F of F. For this
paper, solutions not lying in the base field F are not of interest; only elements of
F are valid inputs (keys, messages, etc.) and outputs (ciphertexts, hashes, etc.).
Therefore, special care must be taken to eliminate parasitical extension field
solutions, for instance by adjoining the field equations.

Identifying each equation with its polynomial allows us to operate on poly-
nomials rather than on polynomial equations. Which operations on lists of
polynomials can bring us closer to finding a solution? Linear algebra techniques
suffice when the polynomials are linear. For higher degree polynomials, Gröbner
basis algorithms provide a standard methodology. We motivate this notion before
providing the definition.

1 We only consider affine varieties in this work. For projective varieties, corresponding
to homogeneous ideals, we refer to the literature on algebraic geometry, like [60].
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A natural requirement for allowable operations is that they neither create nor
destroy solutions. Adding and subtracting the polynomial equations to derive
new ones satisfies this requirement, as does multiplying them with scalar weights.
In fact, the weights need not be scalars but can be drawn from the same ring
of polynomials over which the original polynomials themselves are defined. This
observation motivates the notion of polynomial ideals, a generalization of vector
spaces that allows polynomial coefficients instead of just scalar coefficients.

Definition 2 (Polynomial2 ideal). Let F = {f0, . . . , fs−1} ⊆ F[x] be a set of
polynomials. The ideal I spanned by F is defined as

I = 〈F〉 = 〈f0, . . . , fs−1〉 =

{
s−1∑
i=0

qifi

∣∣∣∣∣ qi ∈ F[x]

}
.

The set of cosets of I in F[x], together with polynomial addition and multipli-
cation, forms a ring. We can therefore consider any polynomial f equivalent to
some polynomial g ≡ f mod I whenever f − g ∈ I. Intuitively, a useful property
of a basis for I is for it to allow the computation of a canonical representative for
each equivalence class, as this would admit an equivalence test. This property is
useful for finding solutions because the equivalence class of all polynomials that
encode information about the solution is 0 mod I. The canonical representatives
therefore distinguish useful polynomials from not so useful ones.

This observation is related to divisibility of univariate polynomials. If f(x) is
a univariate polynomial and 〈f(x)〉 its ideal, then the computation of canonical
representative of a polynomial g(x) modulo 〈f(x)〉 follows straightforwardly from
polynomial long division: the canonical representative of g(x) is its remainder
after division by f(x). Moreover, if a ∈ F is a root of f(x), then (x−a) | f(x) and
one might even write f(x) ∈ 〈x− a〉 or f(x) ≡ 0 mod x− a. If the roots of f(x)
and of g(x) are disjoint sets, then f(x) 6≡ 0 mod g(x) and g(x) 6≡ 0 mod f(x).

Unfortunately, polynomial division does not naturally generalize to multi-
variate polynomials. Univariate polynomial division relies on the natural order
of univariate monomials,3 namely comparing degrees. That is, xa ≺ xb if and
only if a < b. Division of univariate monomial xa by xb results in xa−b, which
is an element of F[x] if a > b. The generalization to multivariate monomials is
straightforward: xα divided by xβ results in xα−β, an element of F[x] if αi > βi
for all i. However, generalizing polynomial division is a little more subtle. In the
univariate case, the monomials with the highest power of the variable determine
the next step in the division process. In the multivariate case, “highest power” is
no inherent property: How do the degrees of x5yz2 and x2y2z4 relate? In order
to proceed, we must therefore fix the monomial order.

2 In this paper, “ideal” always means “polynomial ideal.”
3 The terminology of “term” and “monomial” is not consistent in the literature. We

understand a term as a coefficient times a monomial, like, for example, [26,36,37,39].
The meaning is reversed for others [33,46,47]. Some works use “power product” [20,23].
A comprehensive summary of this paper’s notation can be found in Appendix A.



SoK: Gröbner Basis Algorithms for AOCs 5

2.1 Monomial Orders

For multivariate division to be well defined, a monomial order ≺ must respect
multiplication with monomials, i.e., evaluating operator ≺ must give the same
result when both operands are multiplied by any monomial m ∈ M. In other
words, ∀m ∈ M : xα ≺ xβ ⇔ mxα ≺ mxβ. Furthermore, ≺ must be a well-
order, i.e., (1) the monomial 1 = x(0,...,0) is the smallest element, and (2) any
two monomials are comparable, i.e., ≺ is a total order. There are infinitely many
orders, but common ones have descriptive identifiers.

Lex In lexicographical order, xα≺lex xβ if and only if the first nonzero entry of
α−β is negative. In other words, xα≺lex xβ if and only if there exists 0 6 i < n
such that αi < βi and αj = βj for all 0 6 j < i.

Example 1. In F[x, y, z] and lex order, we have xy2 ≺ xy2z ≺ x2z2 ≺ x2yz ≺ x3.

Deglex For degree lexicographical or graded lexicographical order, the mono-
mial’s total degrees are compared first, with ties broken by lex. In other words,
xα≺deglex xβ if and only if

∑
i αi <

∑
i βi or

∑
i αi =

∑
i βi and xα≺lex xβ.

Example 2 (continued). In deglex order, xy2 ≺ x3 ≺ xy2z ≺ x2z2 ≺ x2yz.

Degrevlex The degree reverse lexicographical or graded reverse lexicographical
order (abbreviated grevlex ) also first considers the monomial’s total degree. Ties
are broken using invlex, which is lex with inversely labeled variables. The outcome
of the comparison is reversed, such that invlex -smaller monomials of the same
degree are considered degrevlex -greater. In other words, xα≺degrevlex xβ if and
only if either

∑
i αi <

∑
i βi or

∑
i αi =

∑
i βi and xα�invlex xβ.

Example 3 (continued). In degrevlex order, xy2 ≺ x3 ≺ x2z2 ≺ xy2z ≺ x2yz.

x x2 x3

y2

y

y3

(a) lex

x x2 x3

y2

y

y3

(b) degrevlex

Fig. 1. Two monomial orders over F[x, y].
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Definition 3 (Degree refining order). A monomial order ≺ is degree refining
if for any xα,xβ with

∑
i αi <

∑
i βi, we have xα ≺ xβ.

For example, both deglex and degrevlex are degree refining orders.

Weight orders The most general way to define a monomial order is using a list
of weight vectors ωi ∈ Rn, which can be arranged into a weight matrix Mω:

Mω =


—ω0 —

—ω1 —

...

—ωm —


Then, xα ≺Mω xβ if the first non-zero entry of vector Mω ·α−Mω ·β is negative.
In other words, first the weight vector ω0 is used to try and establish the relation
of xα and xβ, and in case of a tie, subsequent weight vectors are used for
comparison.

Example 4. The matrices

Mlex =



1 0 0

0

0
0 0 1


, Mdegrevlex =



1 1
0 0 −1

0

0 −1 0 0


correspond to lex and degrevlex order, respectively. Note that a monomial order
defined by Mω where ω0 = c · 1, c ∈ R\{0}, is a degree refining order.

Any monomial order can be expressed using weight vectors, but not all
matrices define a monomial order. A sufficient condition for a matrix Mω to
define a monomial order is Mω ∈ Rn×n with only non-negative entries and
the rank of Mω be full. The example Mdegrevlex above shows that this is not a
necessary condition. Without further discussion thereof, ker(M) ∩ Zn = {0} is
such a necessary condition. An extended treatment of weight orders can be found
in [37, Ch. 2, §4], [36, Ch. 1, §2], and [59, Sec. 1.2].

Leading term, coefficient, and monomial Fixing any monomial order ≺ gives rise
to leading4 terms of polynomials. For f =

∑
α cαxα, the leading term lt(f) is

defined as the ≺-maximal non-zero summand of f , i.e., lt(f) = max≺{cαxα |
cα 6= 0}. The leading coefficient lc and leading monomial lm of f are coefficient
and monomial of lt, respectively, i.e., lt(f) = lc(f) · lm(f). All of f ’s terms smaller
than lt(f), i.e., f − lt(f), comprise the tail of f . Extension of lt, lc, and lm to
sets of polynomials are defined, e.g., lt(G) =

⋃
g∈G lt(g).

4 Alternative terminology is head or initial term, coefficient, or monomial.
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2.2 Definition of Gröbner Bases

A Gröbner basis of a polynomial Ideal I ⊆ F[x] is a finite set of polynomials
G = {g0, . . . , gt−1} such that 〈g0, . . . , gt−1〉 = I and such that G has “nice” com-
putational properties. For example, ideal membership f ∈ I can be decided easily
with a Gröbner basis; determining inclusion or equivalence of ideals is straight-
forward (a direct consequence); and projecting I into a ring with fewer variables
is trivial for certain monomial orders. Perhaps most relevant for cryptanalysis
is computing solutions of the underlying polynomial equations gi = 0. This is
straightforward for Gröbner bases in lex order, as we shall see in Section 2.3.

Leading up to the definitions of Gröbner basis, the concepts of polynomial
reduction and (fully reduced) remainders are useful. In essence, reducing one
polynomial by a (set of) polynomials is a generalization of long division for
univariate polynomials. Results of such reductions are not generally unique.
However, uniqueness of remainders after reduction is guaranteed if the set of
divisors is a Gröbner basis – another “nice” property. In the following, let f be a
polynomial, G = {g0, . . . , gt−1} a finite set of polynomials, and ≺ a monomial
order.

Definition 4 (Polynomial reduction). We say G reduces f to r if there are
polynomials r, q0, . . . , qt−1 ∈ F[x] such that f =

∑
i qigi + r and lm(r) ≺ lm(f).

Polynomial r is called the remainder of the reduction of f by G.

Note 1. Polynomials qi can be efficiently computed using multivariate polynomial
division. Such a division algorithm is reproduced in Appendix B.

Definition 5 (Fully reduced). We say r is fully reduced with respect to G if
no further reduction of r by G is possible. In other words, no leading monomial
of any element in G divides any monomial of r: ∀l ∈ lm(G),∀m ∈M(r) : l6 |m.

We write f −→G r to denote full reduction of f by G resulting in r, i.e., such
that r is fully reduced with respect to G.

Example 5. Fix monomial order lex. Let f = x2y2 + y2z2 − 2y2z and G =
{x2y − 2yz, y2 − z2, xz2}. For q0 = y, q1 = z2, q2 = 0, we have f =

∑
i qigi + z4.

Since no element of lm(G) = {x2y, y2, xz2} divides z4, the remainder z4 is fully
reduced with respect to G. We can write f −→

G
z4.

In general, the remainder r after full reduction of f is not unique. For
example, choosing q0 = 0, q1 = x2 + z2 − 2z, q2 = x above, we have full reduction
f −→

G
z4 − 2z3. However, reducing a polynomial by a Gröbner basis guarantees

uniqueness of the remainder. In fact, this is one way to define Gröbner bases.

Definition 6 (Gröbner basis by remainder). G is a Gröbner basis for I if
and only if 〈G〉 = I and the remainder after full reduction by G of any f ∈ F[x]
is unique.

An equivalent albeit less intuitive definition pertains to the leading monomials
of G and of elements of 〈G〉 = I.
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Definition 7 (Gröbner basis by leading monomials). G is a Gröbner
basis for I if and only if 〈G〉 = I and 〈lm(G)〉 = 〈lm(I)〉.

In other words, the ideal generated by the leading monomials of G is equal to
the ideal generated by the leading monomials of all elements of I.

Theorem 1. Definitions 6 and 7 are equivalent.

Proof. “7⇒ 6”:
Fully reducing f ∈ F[x] by G gives r such that f = g + r, g =

∑t−1
i=0 qigi,

and lm(r) ≺ mini(lm(gi)). Suppose there is another full reduction by G, i.e.,

f = g′ + r′ for g′ =
∑t−1
i=0 q

′
igi, resulting in different remainder r′ 6= r. Then, the

difference of the remainders r − r′ = g′ − g is an element of I. Consequently, the
leading monomial of r − r′ is in 〈lm(I)〉.

Since 〈lm(I)〉 is generated by monomials, lm(r − r′) ∈ 〈lm(I)〉 implies di-
visibility of lm(r − r′) by one of the basis elements of 〈lm(I)〉. Since 〈lm(I)〉 =
〈lm(g0), . . . , lm(gt−1)〉, this basis element is some lm(gi), i.e., lm(gi) | lm(r −
r′) and thus lm(gi) � lm(r − r′) for some gi. This contradicts lm(r − r′) �
max(lm(r), lm(r′)) ≺ mini(lm(gi)), proving r = r′ and thus uniqueness of the
remainder.

“6⇒ 7”:
Since 〈lm(G)〉 and 〈lm(I)〉 are both generated by monomials, showing their

equality in terms of polynomial membership can be reduced to equality in terms
of monomial membership, i.e.,

∀m ∈M : m ∈ 〈lm(G)〉 ⇔ m ∈ 〈lm(I)〉. (1)

To see that this reduction is valid, take polynomial f =
∑
α cαxα ∈ F[x]. Then,

f is in 〈lm(I)〉 if and only if every xα is in 〈lm(I)〉. Likewise, f is in 〈lm(G)〉 if and
only if every xα is in 〈lm(G)〉. Therefore, it suffices to show that full reduction
by G leaving unique remainders implies Equation (1).

Let f be a nonzero monomial, i.e., lm(f) = f , and f −→
G

r. Distinguish 3
cases:

1. f ≺ lm(r).
This case contradicts r being the result of a reduction.

2. f = lm(r).
Then, f = r /∈ 〈G〉 because no reduction took place. Suppose f ∈ 〈lm(G)〉.
Then f =

∑
qilm(gi) for some qi, and since f is a monomial, only one term

in this sum remains, meaning f = qilm(gi) for some i. This contradicts no
reduction haven taken place. Thus f /∈ 〈lm(G)〉. Suppose f ∈ 〈lm(〈G〉)〉
so that f = lm(

∑
qigi) for some qi. By “undropping” trailing terms, f =∑

qigi − r′ with lm(r′) ≺ f . If r′ 6= 0, it is a second remainder. If r′ = 0 then
f ∈ 〈G〉. Both are contradictions, so f /∈ 〈lm(I)〉.

3. f � lm(r).
Then f − r ∈ 〈G〉 and f = lm(f) ∈ 〈lm(I)〉. Also f =

∑
qigi + r so some

lm(gi)|f and f ∈ 〈lm(G)〉.
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Regardless of the case, f ∈ 〈lm(G)〉 ⇔ f ∈ 〈lm(I)〉, completing the proof. ut

Definition 8 (Reduced Gröbner basis). G is a reduced Gröbner basis for I
if and only if

(1) G is a Gröbner basis for I,
(2) all g ∈ G are monic, and
(3) all g ∈ G have no monomial in 〈G \ {g}〉.

Proposition 1. The reduced Gröbner basis for a non-trivial ideal with respect
to a fixed monomial ordering exists and is unique.

Proof. For a full proof, we refer to [37, Ch.2 §7 Thm. 5].

From neither Definition 6 nor 7 it is straightforward to even check whether a
set of polynomials is a Gröbner basis, and they certainly do not readily suggest
how to compute one. From Definition 7 it becomes clear that leading monomials
are of importance. Rephrasing the definition, a set of polynomials G is a Gröbner
basis if for any element f in the ideal, the leading monomial of f is divisible
by the leading monomial of some element of G. This suggests that, at the very
minimum, combining any two gi, gj ∈ G in a way that their respective leading
terms cancel should always result in a polynomial gk whose leading monomial
lm(gk) is already present in G’s set of leading monomials lm(G). This (roughly
sketched) necessary condition turns out to be a sufficient one, as we will see in
Theorem 2. The intuition of canceling leading terms is captured by S-polynomials.

Definition 9 (lcm of monomials). Let xα,xβ ∈M be monomials in n vari-
ables. Set γ = (γ0, . . . , γn−1) with γi = max{αi, βi}. Define lcm(xα,xβ) = xγ .

Definition 10 (S-Polynomial). The S-Polynomial of f, g ∈ F[x] is

S(f, g) =
u

lt(f)
f − u

lt(g)
g , u = lcm(lm(f), lm(g)).

Example 6. Let F[x] = Q[x, y, z], the monomial order be deglex, f = 3x2y+6xyz,
and g = 2yz + 2y Then,

S(f, g) =
x2yz

3x2y
· f − x2yz

2yz
· g

=
z

3
· f − x2

2
· g

= 2xyz2 − x2y.

Canceling the leading terms of two polynomials by way of computing their
S-polynomial does not necessarily result in a smaller leading term: In Example 6,
the leading monomials of S(f, g) is different to the leading monomials of f and
g, i.e., the leading terms of f and g did get canceled. However, the leading
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monomial of the S-polynomial is greater in the specified order, i.e., lm(S(f, g)) =
xyz2�deglex x

2y = max{lm(f), lm(g)}.
By construction, the S-polynomial of fi, fj ∈ F lies in the ideal 〈F〉. Thus,

if F is a Gröbner basis, full reduction of S(fi, fj) for any fi, fj will leave the
unique remainder 0, as per Definition 6. Conversely, if the same full reduction
results in r 6= 0, then F is not a Gröbner basis. In fact, we just articulated what
is known as Buchberger’s criterion for testing if a set of polynomials is a Gröbner
basis. It turns out that Gröbner bases can be defined in terms of this criterion.
The resulting notion is equivalent to Definitions 6 and 7 but requires only a finite
number of checks to determine whether a set of polynomials F is a Gröbner basis
for 〈F〉.

Theorem 2 (Buchberger’s criterion). G is a Gröbner basis for 〈G〉 if and
only if S(gi, gj) −→G 0 for all critical pairs (gi, gj) ∈ G×G.

Proof. For a full proof, we refer to [20,23,37].

Given that S(fi, fj) ∈ 〈F〉, remainder r of S(fi, fj) after full reduction by F
is also an element of 〈F〉. Thus, adding r to F does not change the ideal 〈F〉,
but intuitively makes F be “closer” to a Gröbner basis. This is the basic idea of
Buchberger’s algorithm [20, 23], shown in Algorithm 1.

Intuitively, the algorithm’s correctness follows directly from Buchberger’s
criterion. Showing termination is a little trickier. One essential ingredient is
Hilbert’s basis theorem [62], which implies that a Gröbner basis is always finite [37,
Ch. 2, §5, Corr. 6]. Additionally, one needs to show that including a non-zero
remainder of reducing an S-polynomial by a preliminary Gröbner basis brings us
“closer” to a Gröbner basis. For proofs of correctness and termination, we refer
to [20,23,37].

Algorithm 1: Buchberger’s Algorithm

Input: F = {f0, . . . , fs−1} ⊆ F[x]
Output: a Gröbner basis G for 〈f0, . . . , fs−1〉

1 G = ∅
2 G′ = F
3 while G 6= G′ do
4 G = G′

5 foreach (gi, gj) in G×G do // critical pair

6 r = (any) full reduction of S(gi, gj) by G // S(gi, gj) −→G r
7 if r 6= 0 then
8 G′ = G′ ∪ {r}

9 return G

The complexity of Algorithm 1 is quite difficult to estimate since many
choices – the monomial order, the order of selecting pairs (gi, gj), and others –
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can influence execution dramatically. A lot of work has been put into finding
upper and lower complexity bounds for Gröbner basis computations, independent
of the algorithm. The general measure of this complexity is by the highest total
degree dmax among the polynomials in the Gröbner basis G for some ideal I, i.e.,
dmax = max{deg(g) | g ∈ G}. Bounds exist for different input parameters, like
the number s of input polynomials {f0, . . . , fs−1}, their total degrees di = deg(fi)
with maximum d = max{di}, the degrees’ arithmetic mean D, or the dimension
of the ideal dim(I). For the special case of underdetermined systems, i.e., s 6 n,
dmax is not greater than the Bézout bound, defined as the product of all di, i.e.,
dmax 6

∏
i di [69, Thm. 1]. More generally, dmax is doubly exponential in the

number of variables, i.e., dmax 6 2
(
1
2d

2 + d
)2n−1

[43], and this bound is tight in the

worst-case [72]. A more recent bound is dmax 6 dn
Θ(1)2Θ(dim(I))

[73], depending
also on the dimension of I. For the special case of a zero-dimensional ideal, an
even sharper bounds exists, with dmax polynomial in max{S,Dn}, where S is
the size of the input polynomials in dense representation and D the arithmetic

mean
∑
di
s [61]. A lower bound is dmax > d2

n/2

for sufficiently large n and d [84].
While these results paint a bleak picture for the worst case, Gröbner bases for

many polynomial systems arising from “real-world” scenarios can be computed.
Algorithms for this problem have improved dramatically over the last decades.
Some of the most important ones are surveyed in Section 3.

2.3 Computing V (I) from Glex

Equipped with the tools to compute Gröbner bases, we can come back to what
we originally set out to do: breaking a cryptographic primitive by efficiently
computing solutions to the system of polynomials F that model it, i.e., elements
of the variety V (〈F〉). Gröbner bases in lex order make it especially easy to
achieve this. In this section, we provide intuition and an algorithm for the process
of finding the variety’s elements. While applicable in greater generality, for this
paper we are only interested in the case of F being a finite field. For the theoretical
background, we refer to [37, Ch. 3, §1], which is treating elimination ideals, the
elimination theorem, and the extension theorem, and uses these tools to prove
the algorithm’s correctness.

One more piece of terminology regarding a system’s number of solutions
|V (F)| frequently occurs in the context of Gröbner basis theory.

Definition 11 (Zero-dimensional ideal). An ideal I is zero-dimensional if
and only if its variety V (I) has finitely many elements.

Proposition 2. Let I ⊆ Fq[x] be some ideal and Enq = 〈xqi − xi | 0 6 i < n〉 the
ideal generated by all field equations. Then, I ∪ Enq is zero-dimensional.

Proof. Since V (I ∪ Enq ) = V (I) ∩ Fnq , we have dim(I ∪ Enq ) = 0. ut

A reduced lex ordered Gröbner basis Glex of a zero-dimensional ideal has
exactly one polynomial g that is univariate in the lex -greatest variable xn−1 [36,
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Ch. 2, §3]. A root an−1 of g can be the rightmost coordinate of an element
(a0, . . . , an−1) ∈ V (I), and all such rightmost coordinates are roots of g. That
is, the roots of g are a superset of the partial solutions to the system of equa-
tions defining I. Substituting variable xn−1 in Glex by an−1 corresponds to a
projection of I into F[x0, . . . , xn−2], a polynomial ring with one variable less.
This substitution Glex(xn−1 = an−1) results in a new Gröbner basis, also in
lex order, for I ∩ F[x0, . . . , xn−2]. Thus, above steps can be applied recursively
until all variables have been eliminated. An element of V (I) is then given by the
univariate roots ai used for projection at each level of recursion. Backtracking to
iterate over all roots generates all of V (I). A more formal description is given in
Algorithm 2, and an example execution trace in Example 7 and Figure 2.

Algorithm 2: Variety from Glex

Input: Gröbner basis Glex of zero-dimensional ideal in lex order,
number of variables n

Output: Variety V (〈Glex〉)
1 if n = 0 then // only constants in Glex: recursion ends

2 return {( )} // empty tuple, start of full solution

3 V = ∅
4 gcd poly = gcd of all gi ∈ G univariate in xn−1

5 partial solutions = roots(gcd poly) // intersection of roots of the gi
6 foreach root in partial solutions do
7 Gproj = Glex(xn−1 = root) // project into F[x0, . . . , xn−2]
8 rest of solution = Variety from Glex(Gproj, n− 1)
9 V = V ∪ {(s0, . . . , sn−2, root) | s ∈ rest of solution}

10 return V

In Line 5 of Algorithm 2, univariate root finding is used as a black-box
subroutine. Efficient algorithms for this well-studied problem are, for example,
Berlekamp’s algorithm [17], the Cantor-Zassenhaus algorithm [32], the Kaltofen-
Shoup algorithm [67], and Kedlaya-Umans improvements thereof [68]. The Ked-
laya-Umans algorithm is the fastest currently known algorithm for finding uni-
variate roots. It has complexity of d1.5 + d log q operations in Fq for polynomials
of degree d [54, p. 405]. An excellent introduction to the topic can be found
in [54, Ch. 14].

In Line 4, parasitical solutions not lying in Fq but in algebraic closure Fq can
be discarded by also including field equation xqn−1 − xn−1 in the gcd.

Example 7. Let F[x] = R[x, y, z] and

f0 = x− y, f1 = xyz, f2 = x2 + y2 + z2 − 1,

the zeros of which respectively describe the “diagonal” plane x = y, the union of
the three planes separating the octants, and the unit sphere. Set I = 〈f0, f1, f2〉.
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The reduced Gröbner basis for I in lex order is given by Glex = {g0, g1, g2} with

g0 = x− y, g1 = y2 − 0.5z2 − 0.5, g2 = z3 − z.

We have g0 = f0 describing the same plane as above. The zeroes of g1 describe an
elliptic cylinder along the x-axis, and the zeroes of g2 are three planes coinciding
with or orthogonal to the x-y-plane. Running Algorithm 2 on Glex results in
the execution trace given in Figure 2. Reading out the four solutions, we have
V (I) = {±(0, 0, 1), ±(1/

√
2, 1/
√
2, 0)}.

{
x
}

{
x+ 1√

2

}

{
x− 1√

2

}

{
x
}

{
y2 − 1

2

x− y

}

{
y2

x− y

}

{
y2

x− y

}


z3 − z

y2 + 1
2
z2 − 1

2

x− y


∅

∅

∅

∅

z =
−1

z = 0

z =
1

y = 0

y =
−1√

2

y = 1√
2

y = 0

x = 0

x = −1√
2

x = 1√
2

x = 0

Fig. 2. Example execution trace of Algorithm 2 for Example 7.

Note 2. Given a set of univariate polynomials fi(x), the Euclidean algorithm
computes their polynomial gcd, containing exactly all shared factors. The roots
of this gcd are those roots shared by all the fi. In the multivariate case, the gcd
of some fi(x) is not defined since F[x0, . . . , xn−1] is not generally a Euclidean
domain for n > 2. The variety V of the ideal spanned by the fi(x), efficiently
computable given a Gröbner basis, contains all a for which all fi evaluate to 0,
the property of a shared root. Gröbner basis algorithms are thus a multivariate
generalization of the Euclidean algorithm.

Note 3. The number of elements in a lex Gröbner basis G for ideal I generally
tends to be (much) larger than the number of polynomials fi originally defining
I, even though Example 7 does not show this phenomenon.

Note 4. A Gröbner basis Glex for ideal I in lex order contains a lot more infor-
mation than strictly necessary for, say, multivariate polynomial division having
unique remainders. In particular, Glex allows to easily compute a Gröbner basis
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for the intersection I ∩F[x0, . . . , x`] for ` < n, simply by dropping all elements of
Glex containing variables greater than x`. Computing a Gröbner basis for such
an intersection using a degree refining order, like degrevlex, is not straightforward.
This intuitively – albeit not rigorously – explains why computing a Gröbner basis
in lex order is generally much more difficult than computing a Gröbner basis in,
say, degrevlex order [15].

3 Computing Gröbner Bases

In the previous section, we presented a generic way to compute a Gröbner basis,
namely Buchberger’s algorithm. Directly using this algorithm is usually too
inefficient to be of any practical use. This is because Buchberger’s algorithm
performs a lot of unnecessary reductions, i.e., reductions where the remainder is
zero. Improvements to Buchberger’s algorithm exist, mostly in the form of criteria
predicting when a critical pair reduces to zero. This allows the algorithm to discard
such a pair before the costly reduction step is being performed [21,55,57,79].

The two Gröbner basis algorithms F4 and F5 have structural similarities to
Buchberger’s algorithm, but use a number of additional concepts. Since they
constitute the state of the art, especially for attacking AOCs, we present them in
detail in Sections 3.1 and 3.2. Furthermore, the algorithms eXtended Linearization
(XL) and Mutant XL, both of which directly compute elements of an ideal’s
variety, are explained in Section 3.3. Other approaches, for example Slimgb [19],
MMM [71], or M4GB [65], as well as concepts like dynamic Gröbner basis
algorithms [28,30,80], are not discussed in this document.

3.1 F4

Buchberger’s algorithm considers every combination of two elements from the
working Gröbner basis, computes this critical pair’s S-polynomial, and reduces
that S-polynomial by the working basis to check whether it reduces to zero.
For every reduction, polynomial division by the working basis is started “from
scratch,” potentially performing the same computation more than once. For
example, if we first reduce some f to 0, any polynomial multiple g of f will also
reduce to 0 and we know this if g has been reduced to f . The Gröbner basis
algorithm F4 due to Faugère leverages such prior reductions by batching. More
concretely, the coefficients of multiple S-Polynomials5 are put into a specially
crafted matrix, the echelon row-reduced form of which yields their fully reduced
remainders. This results in an overall faster Gröbner basis algorithm because
(1) multiple S-polynomials are being reduced at the same time, enabling the
re-use of intermediary results, and (2) existing fast linear algebra techniques
and implementations can be used. We motivate the inner workings of F4 by
introducing the Macaulay matrix of a set of polynomials, which is a more general
concept than the matrices used in F4.

5 Actually of the “halves” comprising the S-Polynomials, see below.
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Definition 12 (Macaulay matrix [70, Notation 3]). Given a set of polyno-
mials F ⊆ F[x] and monomial order ≺, the Macaulay matrix Md(F) of degree
d is a matrix with coefficients in F. Let xd denote the ≺-greatest monomial of
total degree d. The

(
n+d
n

)
columns are labeled by all monomials xα with xα � xd

and sorted, from left to right, in ≺-descending order. The rows are labeled by all
monomial multiples xβfi, fi ∈ F , such that lt(xβfi) � xd. Entry mk,l of Md(F)
is the coefficient of monomial xα in polynomial xβfi, where xα is the label of
column l and xβfi is the label of row k.

Example 8. For degrevlex order, the Macaulay matrix of degree 2 of bivariate
polynomials F = {f0, f1} = {x2 + y2, x+ 2y} ⊆ F[x, y] is

M2(F) =


x2 xy y2 x y 1

f0 1 1
f1 1 2
yf1 1 2
xf1 1 2

.
Performing a row operation on a Macaulay matrix such that a non-zero

coefficient gets canceled, corresponds to one step in the polynomial reduction
algorithm. Thus, computing the row-reduced echelon form of a Macaulay matrix
corresponds to full polynomial reduction of all polynomials by all polynomials.
If the Macaulay matrix Md(F) is of high enough degree d, its row-reduced
echelon form gives rise to a Gröbner basis6 for F [69, Sec. III B]. However, the
combination of two problems make this approach intractable in practice: (1) Not
knowing beforehand which degree d is high enough, and (2) the roughly cubic
complexity of echelon row-reducing a matrix.

For these reasons, the F4 algorithm does not reduce the Macaulay matrix.
Instead, a matrix M containing just enough information for full polynomial
reduction of a subset of the critical pairs is constructed at each step. Intuitively,
M is a less verbose version of a Macaulay matrix, where rows and columns
not contributing to the polynomial reduction are not included. This omission
decreases computation time and memory requirements. The relevant rows are
those corresponding to polynomials that might at some point during the poly-
nomial division process cancel some monomial. Also, M does not contain any
zero-columns, like the column with label “1” in Example 8. A formal description
of which polynomials are included is given in subroutine “Symbolic Preprocessing”
in Algorithm 3.

The matrix M and the insight that computing its row-reduced echelon form
corresponds to full polynomial reduction of all its polynomials are the reasons F4

is so much more efficient than Buchberger’s algorithm. The question of which
polynomials to include in M gives rise to the selection strategy. Many selection
strategies exist [46, Sec. 2.5], really making F4 a family of algorithms. The fastest
strategy in practice, thus dubbed the normal strategy, is to pick those pairs {i, j}
6 This neatly illustrates how Gröbner bases generalize solving a system of linear

equations to solving a system of polynomial equations.
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Algorithm 3: Symbolic Preprocessing

Input: S-Polynomial “halves” L ⊆ F[x], working Gröbner basis G
Output: M

1 processed monoms = lm(L)
2 while processed monoms 6=M(L) do

3 xβ = max≺{M(L) \ processed monoms}
4 processed monoms = processed monoms ∪{xβ}
5 if ∃g ∈ G such that lm(g) |xβ then

6 L = L ∪
{

xβ

lm(g)
· g
}

7 M = matrix with columns labeled by M(L) in ≺-decreasing order, rows are
respective coefficients of elements of L

8 return M

with lowest total degree of lcm(lm(fi), lm(fj)). Intuitively, this strategy keeps
the degree of the working polynomials as small as possible at all times.

After M is computed and echelon row-reduced, all those polynomials with
leading monomial not already in the preliminary Gröbner basis G are added
to it. The list of critical pairs is then updated using these new elements. Thus,
Buchberger’s criterion (Theorem 2) works as the termination criterion once again.
The complete algorithm is given in Algorithm 4. For a proof of its correctness
and termination, we refer to [46, Thm. 2.2] or [37, Ch. 10, §3].

Algorithm 4: F4

Input: F = {f0, . . . , fs−1} ⊆ F[x]
Output: a Gröbner basis G for 〈f0, . . . , fs−1〉

1 G = F
2 t = s
3 B = {{i, j} | 0 6 i < j < s} // indices of crit. pairs not considered yet

4 while B 6= ∅ do
5 Select non-empty B′ ⊆ B // e.g., according to normal strategy

6 B = B \B′

7 L =
{

lcm(lm(fi),lm(fj))

lt(fi)
· fi
∣∣∣ {i, j} ∈ B′} // S-polynomial "halves"

8 M = Symbolic Preprocessing(L,G)
9 N = row-reduced echelon form of M

10 N+ = {n ∈ rows(N) | lm(n) /∈ 〈lm(rows(M))〉} // only new lead monoms

11 foreach r in rows(N+) do
12 ft = polynomial form of r
13 G = G ∪ {ft}
14 B = B ∪ {{i, t} | 0 6 i < t}
15 t = t+ 1

16 return G
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F4 as given in Algorithm 4 can be heavily improved upon. For example, results
of subroutine “Symbolic Preprocessing” can be reused between iterations. Fur-
thermore, there are a number of criteria to determine whether the S-polynomial
of a critical pair will reduce to zero, including acclaimed Gebauer-Möller in-
stallation [21,22,29,55,63]. Originally applied to Buchberger’s algorithm, they
can be made use of in F4 as well. Apart from discarding unnecessary critical
pairs, the order in which pairs are selected plays a crucial role for computation
speed. For an in-depth review of such improvements, we refer to [46, Sec. 2.4]
and [37, Ch. 10, §3].

3.2 F5

Both Buchberger’s algorithm and F4 compute, in some form, the S-polynomial of
a critical pair and reduce that S-polynomial by the current preliminary Gröbner
basis. Any nonzero remainder is added to the working Gröbner basis. However,
a reduction to zero does not produce new information, but does waste time. In
practice, roughly 90% of F4’s execution time is spent performing such useless
computations7 [47]. Establishing ahead of time whether a reduction is necessary
thus greatly improves overall performance.

Using a combination of syzygies, which are kernel elements of map φF (ω) =∑
i ωifi for input set F , and signatures, the F5 criterion allows the F5 algorithm

to skip a lot of useless reductions. In fact, if the input system is a regular sequence,
no useless reduction is performed at all.

Definition 13 (Regular sequence of polynomials [14, Def. 2]). A list
of polynomials f0, . . . , fs−1 ∈ F[x] is a regular sequence if, for all 0 6 i < s,
polynomial fhi is not a zero-divisor in quotient ring

F[x]
/
〈fh0 , . . . , fhi−1〉 ,

where fhi is the homogeneous part of fi of highest degree.

Intuitively, a regular sequence is a generalization of linear independence, where
no fi can be expressed through a polynomially weighted sum

∑i−1
j=0 qjfj , i.e., fi

does not lie in the ideal spanned by the fj with j < i.
Some further concepts are necessary before the F5 algorithm can be prop-

erly introduced. For this, we follow [37, Ch. 10, §4] as opposed to the original
publication [47], allowing to present F5 in a way structurally similar to both
Buchberger’s algorithm and F4. If the set of generator polynomials F for ideal I
is clear from context, we set φ = φF .

Any element g of the ideal defined by 〈F〉, including elements of a Gröbner
basis for I, is a polynomially weighted sum of the generator polynomials fi ∈ F .
That is, g =

∑
i ωifi for some ω ∈ F[x]s, defining the function φF (ω) =

∑
i ωifi.

7 The parameters this fraction depends on are not clear, but the sheer magnitude
already motivates looking for improvements.
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This sum is implicitly computed in both Buchberger’s algorithm and F4, since
the main interest lies with the resulting polynomial g. F5 computes and uses
these weights explicitly. These vectors of origin8 succinctly keep track of how
the algorithm arrived at, for example, a Gröbner basis element, and enable the
algorithm to avoid redundant deductions. A vector of origin ω is an element of
the s-dimensional free module on F[x], i.e., ω ∈ F[x]s. Observe that the image of
module F[x]s under φF is exactly the ideal spanned by F , i.e., φF (F[x]s) = 〈F〉.

Monomial order ≺ can be extended to order 4 on vectors of origin. The most
common extension9 is position-over-term ordering 4pot, where the indices of the
vectors’ highest-index non-zero entry are compared first, with ties broken by
comparing the entries leading monomials according to ≺.

Definition 14 (4pot). For order 4, extending ≺ to vectors of polynomials, we
have g 4 h if there exists index i such that for all j > i, we have gj = hj = 0
and either gi = 0 6= hi or10 lm(gi) ≺ lm(hi).

Example 9. Extending ≺lex to 4pot, we have the following ordering.x20
0

 4  x
x+ y4

0

 4  y
x2

0

 ≡
 x5y4 + 1
−3x2 + xy3

0

 4 0
0
1


Definition 15 (Signature). The signature s of vector of polynomials g is
s(g) = lm(gi)ei, where the highest-index non-zero entry gi of g is at position i.

Example 10 (continued). The signatures of the vectors used in Example 9 are as
follows. x20

0

 4 0
x
0

 4  0
x2

0

 ≡
 0
x2

0

 4 0
0
1


Intuitively, the signature is a vector’s minimal amount of information needed

for correct sorting according to 4.
The F5 criterion considers only signatures of vectors of origin, not the full

vectors or their evaluation under φ. A good part of F5’s efficiency can be attributed
to the fact that operations on and comparisons of signatures can be performed
very efficiently. Since signatures are the product of some monomial and a unit
vector, divisibility of monomials can be extended to signatures in a straightforward
manner.

8 We introduce this terminology to reduce confusion with signature vectors.
9 Another common option is term-over-position ordering 4top, where the leading

monomials of the highest-indexed non-zero entries are compared first, using their
indices as tie breaker. We refer to [36, Ch. 5, §2] for a more detailed discussion. For
the rest of this paper, we set 4 to 4pot if not stated differently.

10 Both [36] and the original publication of F5 [47] use gi 6= 0 = hi as the first condition.
In this paper, we use the more intuitive definition of [37, Ch. 10, §4].
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Definition 16 (Signature divisibility). For vectors of origin g and h, we say
s(g) = xαei divides s(h) = xβej, and write s(g) | s(h), if i = j and xα |xβ.

Vectors of origin that are kernel elements of φ are called syzygy vectors and
are of special interest for F5.

Definition 17 (Syzygy vector). A vector of origin s ∈ F[x]s is called a syzygy
vector if it maps to 0 under φ, i.e., φ(s) = 0.

It is easy to see that the set of syzygy vectors is a submodule of F[x]s.
Since the zero polynomial does not contribute any information to the Gröbner
basis computation, it is helpful to identify syzygy vectors early. For ideal I =
〈f0, . . . , fs−1〉, some syzygy vectors are trivial to state.

Definition 18 (Koszul syzygy). For any 0 6 i < j < s, the vector fiej − fjei
is a syzygy vector. It is called a Koszul syzygy, or principal syzygy.

If F is a regular sequence, the set of Koszul syzygies is a basis for the entire
submodule of syzygies [44, Corr. 7.1]

F5 performs an analog to polynomial reduction by a working Gröbner basis,
but on vectors of origin and with an “early abort.” More concretely, when reducing
φ(f) by a set of polynomials φ(G) = {φ(gi) | gi ∈ G}, a step of the polynomial
division algorithm is only performed if the signature s(f) does not change with
regards to 4.

Definition 19 (s-reduction). We say that G ⊆ F[x]s s-reduces f ∈ F[x]s to
h ∈ F[x]s if there exist gi ∈ G, xα ∈ F[x], and c ∈ F, such that

(1) h = f − cxαgi
(2) lt(φ(cxαgi)) is a term in φ(f), and either

(3a) s(f) 4s(xαgi) or
(3b) s(f) = s(xαgi).

If Condition (3a) holds, the s-reduction is regular. Otherwise, if Condition (3b)
holds, the s-reduction is singular. Vector f is fully s-reduced with respect to G
if no s-reduction of f by G is possible.

Observe that Condition (2) corresponds to one step in the multivariate
polynomial division algorithm. The Conditions (3a) and (3b) define the “early
abort.” Full regular s-reduction means that φ(f) is reduced as much as possible
without changing signature s(f). A corresponding algorithm can be found in
Appendix C.

Definition 20 (s-reduction to zero). We say that f s-reduces to zero by G
if there exists some syzygy vector s such that f can be s-reduced to s by G.

Note that f s-reducing to zero by G implies φ(f) −→
φ(G)

0, where φ(G) =
{φ(gi) | gi ∈ G}, but not necessarily that full s-reduction of f by G is 0 ∈ F[x]s

or φ(f) = 0 ∈ F[x].
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Definition 21 (Signature Gröbner basis). A set of vectors of origin G =
{g0, . . . , gt−1} ⊆ F[x]s with monic φ(gi) is called signature Gröbner basis for
ideal I generated by F = {f0, . . . , fs−1} if all vectors of origin f ∈ F[x]s s-reduce
to zero by G.

Similarly, G is a signature Gröbner basis below signature xαei if all vectors
of origin f ∈ F[x]s with signature s(f) 4 xαei s-reduce to zero by G.

Observe that by the definition of φ, we have φ(F[x]s) = 〈F〉 = I, intuiting
the requirement that all vectors of origin f ∈ F[x]s need to reduce to zero by
G. Like the original Definitions 6 and 7 for Gröbner bases, Definition 21 is not
practical to compute a signature Gröbner basis. This is remedied by generalizing
Buchberger’s criterion to vectors of origin. Thus, Buchberger’s criterion is used
again to ensure correctness. The central concept of Buchberger’s criterion are
S-polynomials, and their generalization to vectors of origin leads to S-vectors.

Definition 22 (S-vector). The S-vector of f and g with monic φ(f), φ(g) is

S(f , g) =
u

lm(φ(f))
f − u

lm(φ(g))
g, u = lcm(lm(φ(f), φ(g))) .

If s(f) 6= s(g), the S-vector S(f , g) is called regular. Otherwise, the S-vector is
called singular.

Observe that φ is a homomorphism from the set of S-vectors of F[x]s to the
set of S-polynomials of F[x]:

φ(S(f , g)) = S(φ(f), φ(g)). (2)

Theorem 3 (Vectorized Buchberger’s criterion). Let G = {g0, . . . , gt−1},
gi ∈ F[x]s with monic φ(gi), and I = 〈f0, . . . , fs−1〉 an ideal in F[x]. Then, G is
a signature Gröbner basis for I if and only if

(1) S-vector S(gi, gj) s-reduces to zero by G for any 0 6 i, j< t, and
(2) unit vector ei s-reduces to zero by G for any 0 6 i < s.

Similarly, G is a signature Gröbner basis below xαei for I if and only if above
conditions hold for all S-vectors and unit vectors with signature 4 xαei.

Proof (idea). Using the homomorphic property of φ from Equation (2), Theorem 3
can be reduced to the original Buchberger criterion of Theorem 2.

Note that condition (2) ensures that G is a signature Gröbner basis for I,
not for some ideal J ( I strictly contained in I. Signature Gröbner bases imply
actual Gröbner bases in the following manner.

Proposition 3. Let G = {g0, . . . , gt−1} be a signature Gröbner basis for I =
〈F〉. Then, φ(G) = {φ(gi) | gi ∈ G} is a Gröbner basis for I.

Proof. By the definition of signature Gröbner basis, all elements of F[x]s s-reduce
to zero by G. This includes all S-vectors S(gi, gj) for any gi, gj ∈ G. Since
Equation (2) holds, we have S(φ(gi), φ(gj)) −→φ(G)

0. Thus, Buchberger’s criterion
applies to φ(G). ut
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Above definitions give the tools to state the two propositions comprising the
F5 criterion. The first proposition discards vectors of origin whose corresponding
polynomial are a strict multiple of an already identified Gröbner basis element.

Proposition 4. Let g and h be vectors of origin with s(g) = s(h). Let G be a
signature Gröbner basis below this signature. If g and h are fully regular s-reduced
by G, then φ(g) = φ(h).

Proof. Assume that φ(g) 6= φ(h). Then, without loss of generality, 0 6= s(g −
h) 4 s(g). Thus, g − h s-reduces to zero by G. Let m be the 4-leading term
of g − h. Without loss of generality, m appears in g. This implies that g is not
regular s-reduced by G, contradicting the assumption. ut

The second proposition in the F5 criterion uses syzygy vectors to detect
unnecessary reductions ahead of time. In an earlier attempt to leverage syzygies
for faster Gröbner basis computation, the overhead of computing a basis for the
syzygy submodule outweighed the resulting savings [79]. F5 improves on this
by building the syzygy submodule basis and the signature Gröbner basis at the
same time.

Proposition 5. Let G = {g0, . . . , gt−1} be a signature Gröbner basis below
signature xαei for ideal I. Let h = S(gi, gj) with signature s(h) at most xαei.
If there exists syzygy vector s such that s(s) | s(h), then h s-reduces to zero by G.

Proof. By the definition of signature division, there exists xγ such that s(xγs) =
s(h). Thus, h′ = h − xγs 4 xαei. Consequently, h′ s-reduces to zero by G,
i.e., to some syzygy vector s′. Thus, h s-reduces to s′′ by G, where s′′ is the
s-reduction of s′ + xγs by G. Since the set of syzygies form a module, s′′ is a
syzygy vector. It follows that h s-reduces to zero by G. ut

Definition 23 (F5 criterion). For signature Gröbner basis G for I = 〈F〉
below signature xαei, a set of syzygy vectors S, and vector of origin f fully
regular s-reduced by G, the F5 criterion is true if and only if

(1) there is no gi ∈ G with s(gi) = s(f), and
(2) there is no s ∈ S with s(s) | s(f).

It is possible to combine the criterion’s two checks using rewriting, for which
we refer to [45]. With the F5 criterion at its heart, F5 is given in Algorithm 5.
We present F5 more in line with later improvements and generalizations, like
RB [44, Alg. 3] and GVW [52, 53], highlighting the structural similarities to
Buchberger’s algorithm and F4. F5 is in fact a family of algorithms, since several
selection strategies for Line 5 exist. Selecting the 4-smallest vector, i.e., the
vector with smallest signature, is the most efficient strategy in practice. This way,
F5 first computes a Gröbner basis for ideal 〈f0〉, then for 〈f0, f1〉, then 〈f0, f1, f2〉,
and so on.

The F4 and F5 families of algorithms are not disjoint. Concretely, the selec-
tion strategy in Line 5 can be altered such that multiple vectors of origin are
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Algorithm 5: F5

Input: F = {f0, . . . , fs−1} ⊆ F[x]
Output: a Gröbner basis G for 〈f0, . . . , fs−1〉

1 G = ∅ // preliminary signature Gröbner basis below some signature

2 P = {e0, . . . , es−1} // ensures G is not basis for strict sub-ideal

3 S = {fiej − fjei | 0 6 i < j < s} // Koszul syzygies

4 while P 6= ∅ do
5 g = some element of P // e.g.,

4
-smallest

6 P = P \ {g}
7 if F5-Criterion(g,G,S) then
8 h = regular s-reduction of g by G
9 if φF (h) = 0 then

10 S = S ∪ {h}
11 else
12 h = 1

lc(φF (h))
h // normalize

13 P = P ∪ {S(k,h) | k ∈ G and s(k) 6= s(h)}
14 G = G ∪ {h}

15 return φF (G)

chosen. This allows to incorporate techniques from F4, in particular simultane-
ous reduction of polynomials. These ideas are expanded upon in, for example,
MatrixF5 [11, Sec. 1.5.2] and F4/5 [1].

Intuitively, the correctness of F5 follows from Theorem 3 and Propositions 4
and 5, i.e., the vectorized Buchberger criterion and the fact that the F5 criterion
discards only unnecessary critical pairs. Because the original publication’s proof
of termination for general systems of polynomials was flawed, many algorithms
slightly altering F5 to guarantee termination have appeared. An excellent survey,
putting these variations as well as generalizations and extensions of F5 in relation
using unified notation and terminology, is due to Eder & Faugère [44]. For the
full proof of termination of F5 as presented here, we refer to [44, Sec. 10].

Complexity Even though there is a compact description of F5, it is quite difficult
to estimate its complexity directly. The algorithm terminates when set P is
empty. Since P is growing and shrinking depending on how often the F5 criterion
does or does not apply, the point of termination is inherently difficult to predict.
After all, if some method could easily predict applicability of the F5 criterion, it
would automatically give rise to an even faster Gröbner basis algorithm. However,
since F5 does eventually terminate, we know that at some point, set P will
not grow anymore. In a degree refining monomial order, the total degree of the
highest-degree lcm(φ(k), φ(h)) for which s(k) 6= s(h) appearing in Line 13 at
any point during F5’s execution coincides with the degree of regularity,11 also
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known as the Hilbert regularity, of F [12]. For a formal treatment of this notion,
we refer to [37, Ch. 9, §3].

The degree of regularity gives an upper bound for the total degree of polyno-
mials appearing during F5’s execution. Consequently, it is used to estimate the
complexity of F5. Namely, for a polynomial ring with n variables, running F5 on a
system of polynomials f0, . . . , fs−1 whose degree of regularity is dreg, the complex-
ity of F5 is in O

((
n+dreg
n

)ω)
, where ω is the linear algebra constant [12, Thm. 7].

Intuitively, this complexity comes from the regular s-reductions in Line 8.
These reductions are most costly when the degrees of φ(g) or of the polynomials
in φ(G) are the largest, i.e., are equal to the degree of regularity. For the sake of
estimating the complexity, imagine keeping the underlying working Gröbner basis
φ(G) as a triangulated Macaulay matrix of width m. The regular s-reduction
can then be performed with complexity in O(mω) using linear algebra techniques.
The width m of the Macaulay matrix corresponds to the number of monomials in
n variables up to degree dreg, i.e., m =

(
n+dreg
n

)
. For a more detailed treatment,

we refer to [12,13].
In the same manner, the degree of regularity allows estimating the complexity

of F4. Perhaps surprisingly, the complexities of F4 and F5 are asymptotically the
same, but experiments show that the terms obscured by big-O notation are quite
different between the two [41].

Unfortunately, we don’t know if it is generally possible to compute the degree
of regularity faster than running F5. However, for the class of regular polynomial
systems, a shortcut exists. The degree of regularity dreg of a regular system
adheres to the Macaulay bound [12], i.e.,

dreg(F) = 1 +

s−1∑
i=0

deg(fi)− 1. (3)

If the system is overdetermined, as can be the case for some cryptographic appli-
cations, it is inherently irregular. Here, the notion of semi-regularity generalizes
regularity. Briefly summarized, the degree of regularity of a semi-regular sequence
is the index of the first non-positive coefficient in the projective Hilbert series of
(fh0 , . . . , f

h
s−1). For a more detailed treatment, we refer to [14, Sec. 2.3].

Two approaches exist for estimating the degree of regularity of the polynomial
system arising from an AOC. The first is to assume, argue, or ideally prove that
the primitive’s system of polynomials is (semi-)regular. In this case, the degree
of (semi-)regularity can easily be computed from the Hilbert series of the ideal
defined by the primitive’s polynomial system. The second is using F5 to find
the degree of regularity for several round-reduced variants of the primitive, then
extrapolating to the full-round primitive. It is an open question whether the
actual degree of regularity of the full-round primitive generally corresponds to
the extrapolated value.

11 Two different notions for the degree of regularity exist. The one not explained here is
most commonly used to lower bound the complexity of Gröbner basis computations [40,
42]. It is not clear how the two concepts generally relate [31, Sec. 4]. In fact, the
definitions in [42] and [40] don’t even coincide.
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3.3 eXtended Linearization, with Mutants and Wiedemann

As outlined in Section 1, Gröbner bases are only of incidental interest when
algebraically attacking an AOC. The actual objective is finding an element of
the variety corresponding to the secret key, hash preimage, etc. The eXtended
Linearization (XL) [35] family of algorithms, including its various extensions and
improvements [24,26,39,74–77], strives to find this element directly. This changes
the general attack pipeline given in Section 1: after polynomially modeling the
primitive, the intermediary steps of computing a Gröbner basis, changing the
term order, and reading out the solution are condensed into one step, namely
running XL or one of its extensions to directly arrive at the solution.

In this section, we outline XL and its two most important improvements
Wiedemann XL [76, Ch. 5.3] and Mutant XL [26, 39]. Additionally, we point out
similarities between Gröbner basis algorithm F4 and the MXL algorithms [2].

eXtended Linearization The two core techniques of XL are, to no surprise, ex-
tending and linearization. Extending a system of polynomials F means mul-
tiplying its elements by all monomials m ∈ M up to a certain degree d:
{m · f | m ∈ M,deg(m) 6 d, f ∈ F}. Linearizing a system of polynomials
corresponds to building its Macaulay matrix as described in Definition 12. This
amounts to dropping all algebraic relations between the monomials by interpret-
ing the polynomial’s coefficients as vectors over the underlying field. Techniques
from linear algebra then allow to efficiently solve the (“polynomial”) system. The
cost of this approach is an explosion in the number of solutions for the linear
system which are not solutions for the polynomial system, i.e., the introduction
of parasitical solutions.

The XL algorithm combats the potentially prohibitive memory requirements
of this explosion, as well as the prohibitive time needed to sift through all solutions
to identify non-parasitical ones, by simplifying the polynomial system once a
partial solution is identified. This, in turn, introduces the disadvantage that the
algorithm might fail because a specific partial solution cannot be extended to a
full solution.

The XL algorithm is given in Algorithm 6. Its inputs are the polynomial system
F and additional user-defined integer D, which essentially defines the degree
up to which the Macaulay matrices are built. XL iterates the steps extension,
linearization, solution finding, and system simplification. The partial solution
coming from the univariate polynomial funi is recorded in v to successively build
an element of the variety. If the current partial solution cannot be extended, and
assuming the primitive under attack was correctly modeled, the partial solution
of a previous iteration was an incorrect choice. In this case, XL terminates with
an error. Re-running it with different randomness might lead to a different result.

The monomial order of Line 5 can be lex order, but doesn’t have to be.
In particular, any monomial order such that variable xi only appears in the
right-most columns of the Macaulay matrix is sufficient, although generally, not
all such monomial orders will lead to the same performance of XL. Interestingly
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Algorithm 6: XL

Input: F = {f0, . . . , fs−1} ⊆ F[x], integer D
Output: an element v of the variety V (F)

1 v = ()
2 dmax = max({deg(f) | f ∈ F})
3 for 0 6 i < n do
4 Fext = {m · f | m ∈M, deg(m) 6 D − dmax, f ∈ F} // extend

5 Fmat = matrix form of Fext in xi-eliminating order // linearize

6 Fech = row reduced echelon form of Fmat

7 Fnew = polynomials of Fech

8 if ∃funi ∈ Fnew with funi univariate in xi then
9 ri = a root of funi // solve, e.g., using Berlekamp’s algorithm

10 v = v||ri // record partial solution

11 F = {f(xi = ri) | f ∈ F} // simplify system

12 else
13 return error // partial solution cannot be extended

14 return v

enough, the monomial order does not have to be the same across iterations, in
contrast to the previously discussed (Gröbner basis) algorithms.

The complexity of XL is not trivial to estimate. The bulk of the work is
computing the echelon row reduced form of the Macaulay matrices. XL’s operating
degree corresponds to the highest degree d for which a Macaulay matrix was
constructed during the algorithm’s execution. However, both the operating degree
as well the Macaulay matrices’ sizes are difficult to know before executing XL.

(Parallel) Wiedemann XL Solving the linear system of Line 6 with sparse linear
algebra techniques due to Wiedemann [83] gives rise to WXL [76, Ch. 5.3]. An
explanation of Wiedemann’s algorithm is beyond the scope of this document.
The main improvement of WXL over XL is the lower linear algebra constant for
matrix multiplication of 2 plus an additional term dependent on the sparsity of
the matrices, which is generally not known beforehand. Again, estimating the
sizes of the involved Macaulay matrices is non-trivial, and will be expanded upon
below.

WXL is parallelizable, and the resulting algorithm consequently named
PWXL [76, 77]. The existence of WXL highlights the importance of using the
linear algebra constant implied by sparse techniques, while PWXL necessitates to
take parallelization into account when conservatively estimating the complexity
of a Gröbner basis computation.

Mutant XL A different improvement of XL is the introduction of so-called
mutants, leading to Mutant XL [26,39]. Mutants are polynomials used to keep
the linear systems as small as possible.

Intuitively, for polynomial system F = {f0, . . . , fs−1}, a mutant is a polyno-
mial f ∈ 〈F〉 resulting in a degree drop. More formally, any expression of f ∈ 〈F〉
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as f =
∑
i hifi yields a list of polynomials (h0, . . . , hs−1) denoted representa-

tion12 of f . The level of a representation is the highest total degree of any hifi,
and the level of f is the smallest level of all its representations.

Definition 24 (Mutant). A polynomial f ∈ 〈F〉 that has a level strictly greater
than its total degree deg(f) is a mutant.

An algorithmic description of a simplified MXL is given in Algorithm 7.
It essentially performs the following steps: First, the working polynomials are
multiplied by all monomials up to certain degree. Linearizing the polynomials
results in a linear system. These steps amount to the construction of a Macaulay
matrix of some degree d, as before. The linear system is triangularized and any
mutants, which can be identified using dmut, are added to the set of working
polynomials. When a univariate polynomial is computed, one of its roots is
recorded as part of the solution, and the system of polynomials is simplified
accordingly, as before. Once the partial solution has been fully extended, the
algorithm terminates, yielding the element of the variety.

Relationship between F4 and MXL Interestingly, the MXL algorithms are es-
sentially equivalent to F4 with the normal selection strategy [2, 9], albeit with
a different time-memory trade-off. Consequently, estimating the complexity of
MXL is similarly difficult.

The relation between F5’s degree of regularity and MXL’s operating degree,
especially in the context of AOCs, is unclear. There are certain systems of
polynomials for which the operating degree is dramatically higher [40]. For other
systems, experiments indicate that the operating degree is at most 2 higher
than the degree of regularity. Using yet again different parameters, a more
mathematical approach describes the asymptotic difference to be at most 1 [85].
When estimating the complexity of Gröbner basis computations conservatively,
using the degree of regularity seems like a good choice.

4 Term Order Change Algorithms

Out of all monomial orders, computing a Gröbner basis in degrevlex order is
usually the fastest [15]. However, extracting the variety of an ideal is efficient only
with a lex -ordered Gröbner basis. The runtime difference between computing
bases for the two orders is usually so large that it is faster to first compute a
degrevlex -ordered basis, then perform a term order change13 to get a lex -ordered
basis. The two most important term order change algorithms are FGLM [48]
and the Gröbner Walk [33], introduced in Sections 4.1 and 4.3, respectively.

12 Using the terminology introduced in the previous Section 3.2, a representation
corresponds to a vector of origin.

13 Introducing a slight inconsistency, we refrain from using “monomial order change,”
favoring “term order change,” which is more commonly found in the literature.
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Algorithm 7: Simplified MXL

Input: F = {f0, . . . , fs−1} ⊆ F[x] with 〈F〉 zero-dimensional
Output: an element v of the variety V (F)

1 dmax = max{deg(f) | f ∈ F}
2 dmut = min{deg(f) | f ∈ F} // used for identifying mutants

3 mutants = ∅
4 v = (ε, . . . , ε) // variety element with ε as placeholder. |v| = n
5 while True do
6 Fmat = Macaulay matrix of F in degrevlex order of degree dmax

7 Fech = row reduced echelon form of Fmat // echelonize

8 Fnew = polynomials of Fech

9 if ∃funi ∈ Fnew with funi univariate in some xi then
10 ri = a root of funi // solve, e.g., using Berlekamp’s algorithm

11 vi = ri // record partial solution

12 Fnew = {f(xi = ri) | f ∈ Fnew} // simplify system

13 if @ε ∈ v then
14 return v // solution found

15 else
16 dmax = max{deg(f) | f ∈ Fnew}
17 dmut = min{deg(f) | f ∈ Fnew}

18 else
19 mutants = mutants ∪ {f ∈ Fnew | deg(f) < dmut, lm(f) /∈ lm(F)}
20 if mutants 6= ∅ then
21 dmin = min({deg(f) | f ∈ mutants}) // multiply mutants

22 mutantssel = {f ∈ mutants | deg(f) = dmin}
23 mutants = mutants \ mutantssel
24 mutantsext = {m · f | m ∈M, deg(m) = 1, f ∈ mutantssel}
25 Fnew = Fnew ∪mutantsext
26 dmut = dmin + 1

27 else
28 Fsel = {f ∈ Fnew | deg(f) = dmax} // extend

29 Fext = {m · f | m ∈M,deg(m) = 1, f ∈ Fsel}
30 Fnew = Fnew ∪ Fext

31 dmax = dmax + 1
32 dmut = dmax

33 F = Fnew
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4.1 FGLM

Gröbner bases for the same ideal but with respect to different monomial orders
can differ drastically. For a (not so drastic) example, the following two Gröbner
bases Glex and Ginvlex generate the same ideal I but share no polynomial.

Glex = { g0 = x3 − x2 − y6 + y5, Ginvlex = { g0 = y5 − x2y − x4 + 2x3 − x2,

g1 = x2y + y7 − y6, g1 = xy4 + x2y + x4 − x3,

g2 = xy4 + y6, g2 = x2y2 − x4 + x3,

g3 = y8 } g3 = x3y ,

g4 = x5 − x4}

Consequently, full reduction of, for example, f = x5 +x2y2−y6 by Glex yields
remainder rlex = x2 + 2y7 − y5, which is quite different from rinvlex = −x2y+ x4,
the remainder of f after full reduction by Ginvlex.

The monomials that are not reducible by a Gröbner basis fall into a staircase,
defined by the leading monomials of the basis. An example is given in Figure 3,
visualizing the staircases defined by Glex and Ginvlex. Monomials in the shaded
area are reducible by the respective Gröbner basis. All monomials comprising
the remainder after full reduction lie inside the staircase.

x5

y5y3y2y y4

x3

x2

x

x4

y6 y7 y8

(a) Glex

x5

y5y3y2y y4

x3

x2

x

x4

y6 y7 y8

(b) Ginvlex

Fig. 3. Staircases of Glex and Ginvlex. Monomials of rinvlex are encircled ( ).

While rinvlex is not further reducible by Ginvlex, the monomials of rinvlex can
be reduced by Glex, and vice versa. In Figures 3a and 3b, the monomials of rinvlex
are encircled, showing that they fall outside the staircase defined by Glex. Full
reduction of terms −x2y and x4 from rinvlex by Glex gives polynomials (y7 − y6)
and (x2 + y7 + y6 − y5), respectively. The sum of these two polynomials is equal
to rlex. The example, a summary of which can be found in Figure 4, shows
two things: (1) Reducing a polynomial is the same as reducing its monomials,
then summing, and (2) given a mapping between all staircase monomials of one
Gröbner basis Gold and their reduced forms by another Gröbner basis Gnew, it
is easy to “convert” polynomials reduced by Gold to polynomials reduced by
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−x2y − x4 + 2x3 − x2

2x4 − 2x3

x2

y7 − y6

x2 + y7 + y6 − y5

−x2y + x4x2 + 2y7 − y5

} {∑ ∑

x5 + x2y2 − y6

G lex
Ginvlex

Ginvlex Glex

Fig. 4. Monomials and their full reductions, allowing conversion of remainders.

Gnew, without changing their residue class. This mapping is the central tool in
the FGLM term order change algorithm.

The remaining question is how to find a mapping between staircase monomials
of Gold to their Gnew-reduced forms when Gnew is not known. For this task, FGLM
uses linear algebra in the quotient ring F[x]

/
I taken as an F-vector space. The

monomials in the staircase given by Gold are a basis for this vector space, since any
monomial outside the staircase can be reduced to a polynomial whose monomials
fall inside the staircase. FGLM iterates over all monomials in ≺new-increasing
order and reduces them by Gold, thereby building a mapping like in above
example. The mapping can be taken as a dictionary: The monomials are the
keys, the (polynomial) remainders of the monomials after reduction by Gold are
the values. Crucially, at every step the current remainder is checked for a linear
dependency on the values already in the dictionary. Finding such a linear relation
is straightforward, for example with the Gauß’ian algorithm. If a linear relation
exists, it means that the current remainder is in the ideal I, since full reduction
by Gold results in 0. Applying the found linear relation to the corresponding keys
then gives an element of the new Gröbner basis Gnew. Any monomials divisible by
the leading term of the new basis element need not be considered when iterating
all monomials, since they fall outside the staircase of Gnew and thus cannot be a
basis element of Gnew.

Because FGLM considers all monomials not divisible by some leading mono-
mial of Gnew, the algorithm does not terminate if there are infinitely many
such monomials. Thus, the F-vector space F[x]

/
I has to be of finite dimension,

meaning that ideal I has to be zero-dimensional.

In summary, FGLM iterates over monomials until it hits the border of
the staircase defined by Gnew, which can be efficiently detected through linear
dependencies between the monomials’ reduced forms. The monomials are iterated
over in ≺new-ascending order, determining the order Gnew is a Gröbner basis for.
The full algorithm is given in Algorithm 8.

Example 11. We present here a walk-through of Algorithm 8. The inputs are lex
as the new monomial order ≺new, Gröbner basis Ginvlex (on the facing page) as
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Algorithm 8: FGLM

Input: ≺new, Gold, ≺old

Output: Gnew

1 dict = ∅
2 Gnew = ∅
3 next monoms = {1}
4 while next monoms 6= ∅ do
5 monom = min≺new{next monoms}
6 next monoms = next monoms \ {monom}
7 if @ g ∈ Gnew such that lm≺new(g) |monom then

//still within staircase

8 reduced monom = full reduction of monom by Gold // requires ≺old

9 if reduced monom +
∑
ν∈dict ων · value(ν) = 0 for some ων ∈ F then

10 Gnew = Gnew ∪ {monom +
∑
ν∈dict ων · ν}

11 else
12 dict = dict ∪ {monom : reduced monom}
13 next monoms = next monoms ∪ {xi ·monom | i ∈ {0, . . . , n− 1}}

14 return Gnew

Gold, and invlex as the corresponding monomial order ≺old. The evolution of
variables are listed in Table 1.

In iteration 1 of the main loop (Line 4), we have monom = 1. Since Gnew = ∅,
the outer if-clause (Line 7) evaluates to true. Reducing 1 by Gold results in 1,
and since dict is empty, no ων exist such that the second if-clause (Line 9) could
evaluate to true. Thus, after the first iteration, we have dict = {1 : 1} and
next monoms = {y, x}.

In iteration 2, monom is set to the ≺new-smallest monomial in next monoms,
which is y. Both if-clauses evaluate as before and no reduction of monom takes
place, resulting in dict = {1 : 1, y : y} and next monoms = {y2, x, xy} after
iteration 2. Iterations 3 through 5 are executed similarly.

In iteration 6, monom = y5 is reducible by Gold. The two if-clauses still evaluate
to true and false respectively, resulting in new dictionary entry {y5 : x2y +
x4 − 2x3 + x2}. Variable next monoms now equals {y6, x, xy, xy2, xy3, xy4, xy5}.
Iterations 7 and 8 behave similarly, with dictionary entries {y6 : x2y + x4 − x3}
and {y7 : x4 − x3} being added respectively.

In iteration 9, we have monom = y8. Reduction of monom by Gold results in
reduced monom = 0. This means that monom is an element of the ideal 〈Gold〉.
Clearly, there is a linear dependency between reduced monom and the dict-values,
namely ων = 0 for all ν ∈ dict. The second if-clause thus evaluates to true for
the first time, and after iteration 9, we have Gnew = {y8}. Variable next monoms

now equals {xyi | 0 6 i 6 7}. Iterations 10 through 13 again simply add entries
to the dictionary and expand the set next monoms.

In iteration 14, we have monom = xy4 with reduced monom = −x2y − x4 +
x3. Setting ωy6 = 1, there is a linear dependency between reduced monom
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(a) Visualization of variables.
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y5 x2y + x4 − 2x3 + x2
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x x
...
...

monom reduced monom

x2y x2y

−1

+1

+1

−1

+1

+1

0

(b) Linear relation and ων ’s.

Fig. 5. Visualization of iteration 19 of Example 11. Right-hand Figure 5b highlights the
linear relation between dictionary values and reduced monom, resulting in a new basis
element composed of monom and corresponding dictionary keys. In left-hand Figure 5a,
the staircase of basis Gold is blue, partial staircase of Gnew is red. Their elements’
leading monomials are marked ( and � respectively). Arrows indicate, in order, the
monomials monom of previous iterations. Elements of next monoms are encircled ( ).

and the values of dict, namely reduced monom + ωy6value(y6) = 0. Thus,
the second if-clause evaluates to true and monom +

∑
ν∈dict ων · ν = xy4 +

y6 is added to Gnew as a new basis element. Variable next monoms is now
{xy5, xy6, xy7, x2, x2y, x2y2, x2y3}.

The leading monomial with respect to ≺new of the newly added basis element
lm≺new(xy4 +y6) = xy4 divides the three ≺new-smallest elements of next monoms.
Thus, the outer if-clause evaluates to true in iterations 15 through 17. We already
know these monomials to be in the ideal, and they are removed from next monoms

without further processing. Iteration 18 removes x2 from next monoms, creates
dictionary entry {x2 : x2} , and adds x3 to next monoms. (The monomial x2y,
also computed in Line 13, is already an element of set next monoms.)

Iteration 19 is visualized in Figure 5. Setting ωy6 = −1 and ωy7 = 1 results in a
linear dependency, and the inner if-clause evaluates to true. Element x2y+y5−y6
is added to Gnew. Consequently, in iterations 20 and 21, the two ≺new-smallest
elements of next monoms, i.e., x2y2 and x2y3, are discarded.

In iteration 22, with monom = x3, Gnew is extended by x3−x2 + y5− y6. This
results in empty next monoms at the start of iteration 23. Variable Gnew now
equals Glex on page 28. It is returned, and the algorithm terminates.

Complexity Compared to the complexity of Gröbner basis computations, the
complexity of FGLM is rather well understood. Essentially, in the outermost
loop (Line 4), all monomials not reducible by Gnew, i.e., all monomials in the
staircase of Gnew, are enumerated. These monomials correspond precisely to a
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basis B of the F-vector space F[x]
/
I . Then, D = dimF(F[x]

/
I ) is the volume

of the staircase. Since I = 〈Gold〉 = 〈Gnew〉, volume D is independent of the
Gröbner basis. As a consequence, D can be easily deduced from any Gröbner
basis’ leading monomials, in particular lm(Gold).

Any fully reduced polynomial has a maximum of D terms. During the ex-
ecution of FGLM, only fully reduced polynomials are stored in the dictionary.
Representation of one such polynomial is possible with a vector of dimension
D, by listing all its coefficients. As every monomial in the staircase results in
one entry in the dictionary, the dictionary’s values can be stored as one matrix
of dimension at most D ×D. Keeping this matrix in triangular form allows the
linear dependency check of Line 9 to be performed with complexity in O(D2).
Since not only the monomials in the staircase but also those at the staircase’s
border are enumerated during the execution of FGLM, up to nD many such
linear dependency checks are performed. The total complexity is thus in O(nD3).
For a full proof of this sketch, we refer to [48, Sec. 5].

4.2 Sparse FGLM

Sparse FGLM [49] employs sparse linear algebra techniques to improve on FGLM
in terms of complexity. Sparse FGLM is a randomized algorithm, possibly failing
but detectably so. Furthermore, Sparse FGLM inherently converts a given Gröbner
basis to lex order, i.e., does not take the target order as an input.14 Here, we only
outline the steps of Sparse FGLM for recovering the univariate polynomial of the
Gröbner basis in lex order. After relabeling variables such that this polynomial is
in the variable for the key, the next steps are trivial. A parallel version of Sparse
FGLM using Coppersmith’s Block-Wiedemann algorithm [34] is presented in [64].

Given a Gröbner basis G for ideal I over polynomial ring F[x], let B denote any
canonical basis of F-vector space F[x]

/
I , and D the dimension of the space. The

first step in Sparse FGLM is identifying multiplication matrix T ∈ FD×D such
that for all monomials m ∈ F[x]

/
I , we have Tm = x0m, where m and x0m

are the vectorizations of m and x0m according to B, respectively. In particular,
x0m is the vector representing x0m after reduction by G. In the next step,
Wiedemann’s sparse linear algebra solver finds a kernel vector k of T . A nonzero
kernel element k of T corresponds to the weights of the FGLM linear relation,
according to B. Thus, k gives rise to the univariate polynomial k ∈ I in the
lex -ordered Gröbner basis.

The complexity of Sparse FGLM boils down to that of Wiedemann’s algorithm,
i.e., O(DN0), where N0 is the number of non-zero entries of T [54, Ch. 12.3].
In general, N0 is greater than D, equality holding only for certain degenerated
Gröbner bases, which allow to directly read off the interesting part of the solution.
Sparsity of T can be estimated in the following way. Let t denote the number of
monomials m such that x0m can be reduced by G, but m cannot. Let further |G|
14 Two more algorithms are presented in [49], both generalizing Sparse FGLM in some

manner. All three algorithms can be seen as special cases of FGLM.
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denote the number of non-zero non-leading coefficients of all elements of G. Then,
T consists of t columns with at most |G| non-zero entries, and each remaining
column is some unit vector. In summary, N0 6 t|G|+ (D− t). For an asymptotic
analysis of T ’s sparsity, we refer to [49, Sec. 6.4].

4.3 The Gröbner Walk

The Gröbner Walk [33] is a term order change algorithm conceptually very
different from FGLM. The Walk is of particular interest because it does not
impose any restrictions on the ideal’s dimension but terminates even for positive-
dimensional ideals. However, the ideals for the applications considered in this
paper are always of dimension zero. Additionally, and in contrast to FGLM, the
complexity of the Gröbner Walk is not well understood. Experimental comparisons
indicate that it rarely outperforms FGLM. For these reasons, the Walk is only
sketched. A comprehensive introduction is given in [36, Ch. 8, §§4&5], whose
example we use. Leading up to the Gröbner Walk, we first introduce the concepts
of marked Gröbner bases, Gröbner cones, and Gröbner fans [78].

A useful concept for the remainder of this section is a polynomial’s leading
form, a generalization of the leading term. A leading form is most easily described
using monomial orders given by weight vectors, as introduced in Section 2.1.
Given a monomial order ≺ω by weight matrix ( ω

Mω ) where ω ∈ Rn>0
15 and

Mω ∈ R(n−1)×n, the leading form of polynomial f =
∑
α cαxα is the sum of all

ω-maximal terms in f , i.e., those terms for which ω ·α is maximal among all of f ’s
terms with non-zero coefficients. For example, given f = x2yz − xy2z2 + 3xyz ∈
F[x, y, z] and ω = (2, 1, 1), we have lf(f) = x2yz − xy2z2.

A polynomial f in conjunction with its leading form lf(f) is called a marked
polynomial. For ease of notation, the leading form is commonly underlined:
f = x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2x2yz − xy2z2 + 3xyz. As for leading terms, monomials, and coefficients, the
extension to sets is defined: lf(F) =

⋃
f∈F lf(f).

The (unique) reduced Gröbner basis for some monomial order ≺ω is a marked
Gröbner basis if all its elements are marked with respect to ω. Given a fixed
ideal I, the marked Gröbner bases for different monomial orderings ≺ω and ≺τ
can be the same. For example, the marked Gröbner basis of 〈x+ y〉 with respect
to both lex and degrevlex is {xxxxxxxxxxxxxxxxx+ y}, whereas for invlex, it is {x+ yyyyyyyyyyyyyyyyy}. Note that
the (unmarked) reduced Gröbner basis of 〈x+ y〉 is independent of the monomial
order since none of the polynomial’s terms are distinguished.

Two monomial orderings are considered equivalent for some ideal I if their
marked Gröbner bases coincide:

≺ω∼≺τ ⇔ lfω(I) = lfτ (I) (4)

where lfγ(I) is the set of leading forms with respect to γ of the reduced Gröbner
basis of I with respect to ≺γ . The equivalence class of ≺ω under ∼ is called
Gröbner cone Cω(I). A Gröbner cone is a convex polyhedron [50, Prop. 2.6].

15 For a more general treatment of weight vectors in Rn as opposed to Rn>0, see [50,51].
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The Gröbner cones partition Rn>0. Any ideal has only finitely many Gröbner
cones [78, Lemma 2.6].

Given Gröbner basis Gω = {f0, . . . , fs−1} for I with respect to ≺ω, we can also
describe the cone Cω(I) as follows. Let fi = cαi,maxxαi,max +

∑
j cαi,jx

αi,j where
all coefficients cαi,max

and cαi,j are non-zero and xαi,max �ω xαi,j for all j, i.e.,
xαi,max is the leading monomial of fi. In other words, we have αi,max ·ω > αi,j ·ω
for all j. By setting vi,j = (αi,max − αi,j), we get a set of vectors {vi,j} ⊆ Rn
describing cone Cω(I):

Rn>0 3 τ ∈ Cω(I)⇔ ∀i, j : vi,j · τ > 0. (5)

In particular, each vi,j corresponds to one face of the cone: if vi,j · τ < 0 for
some τ , then xαi,max ≺τ xαi,j , meaning lfτ (fi) 6= lfω(fi), i.e., τ is not in the
same cone as ω.

Definition 25 (Gröbner Fan [50]). The collection of all Gröbner cones
{Cω(I)}ω∈Rn60

of ideal I ⊆ F[x0, . . . , xn−1] is the Gröbner fan of I.16

Example 12 ( [36, Ch. 8, §4]). The Gröbner fan of an ideal I in (up to) 3
variables can be neatly visualized. Let G = {x2 − y, xz − y2 + yz} ⊆ F[x, y, z].
The intersection of all (seven) Gröbner cones in the Gröbner fan for G with the
hyperplane |γ| = 1 are shown in Figure 6. The single ray marked ω corresponds
to weight vector (7, 7, 2), intersecting the plane at (7/16, 7/16, 1/8).

The Gröbner basis associated with ω coincides with the Gröbner basis for
degrevlex, namely {x2 − y, y2 − xz − yz}. However, the marked Gröbner bases
differ: for ω, we have {x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2− y, y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2−xz− yz}, but for degrevlex, the most dominant
weight vector being (1, 1, 1), the marked Gröbner basis is {x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2− y, y2 − xz − yzy2 − xz − yzy2 − xz − yzy2 − xz − yzy2 − xz − yzy2 − xz − yzy2 − xz − yzy2 − xz − yzy2 − xz − yzy2 − xz − yzy2 − xz − yzy2 − xz − yzy2 − xz − yzy2 − xz − yzy2 − xz − yzy2 − xz − yzy2 − xz − yz}.

To increase intuition about the Walk, it is worth highlighting some correspon-
dences between weight orders, leading forms, and a Gröbner cone’s faces – see
also Table 2 for a brief summary. In particular, given ≺ω by weight matrix ( ω

Mω ),
note that if a polynomial f ’s leading form coincides with its leading term, i.e.,
if lfω(f) = ltω(f), then weight vector ω suffices to identify the leading term of
f . However, if f has more than one ω-maximal term, weight vectors of Mω are
needed to “break ties” for correct monomial sorting, and we have lfω(f) 6= ltω(f).
This (lack of) necessity for breaking ties, i.e., whether a single weight vector
suffices to identify the leading monomial, directly corresponds to a Gröbner cone’s
interior and faces. Infinitely many monomial orderings exist for which some ω
is the most significant weight vector. Regardless, if ω is in the interior of its
cone Cω(I) – for example as in Figure 6 – the reduced Gröbner basis Gω is the
same for all these monomial orderings. However, for a vector τ on a cone’s face
– like (1/3, 1/3, 1/3) in Figure 6 – there are M0,M1 such that the Gröbner bases
for monomial orders implied by ( τ

M0
) and ( τ

M1
) differ. The additional weight

vectors in M0 and M1 define how to break ties between τ -maximal monomials.
The Walk uses such “neighboring” monomial orders to convert between arbitrary
monomial orders.
16 For reasons of simplicity, we omit the concepts of Gröbner regions and restricted or

extended Gröbner fans. For details, see [50,78].
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γ0

γ1

γ2

ω

Fig. 6. A slice of the Gröbner fan of G. Vector ω corresponds to weight (7, 7, 2). The
red line corresponds to the path for the Gröbner Walk from normalized ω to (1, 0, 0).
The (single) intersection of that path with a cones’ face is encircled.

Given a starting monomial order ≺ω by weight matrix ( ω
Mω ) as before, a

marked Gröbner basis Gω for ≺ω, and a target monomial order ≺τ induced
by ( τ

Mτ ), the Classic Gröbner Walk [33] converts Gω into a Gröbner basis Gτ
for ≺τ . Since each Gröbner cone and the Gröbner fan are convex, there is a
piecewise linear path from ω to τ through the Gröbner fan – for example the line
segment (1− δ)ω + δτ with 0 6 δ 6 1. The Gröbner Walk “follows” this17 path,
starting from ω, by (1) crossing into the next neighboring cone in direction τ ,
and (2) transforming the working Gröbner basis to match that cone. These two
steps are iterated until the cone containing the target monomial order is reached,
i.e., until the working monomial order is equivalent to the target monomial order.
Below, we first discuss the problem associated with step (1), identifying a face of

Table 2. Correspondences between weight vectors, Gröbner cones, and lf & lt.

lfω(f) = ltω(f) vs lfω(f) 6= ltω(f)
one ω-maximal monomial in f vs multiple ω-maximal monomials in f
no need to break ties vs need to break ties
only need ω to identify ltω(f) vs need ω and Mω to identify ltω(f)
ω in interior of Cω(I) vs ω on face of Cω(I)
marked basis independent of Mω vs marked basis depends on Mω
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the cone intersecting with the line segment, and then step (2), the Gröbner basis
transformation between two neighboring cones.

As explained above, the starting cone’s constraints can be expressed by a
set of vectors {vi,j} corresponding to the cone’s faces. The largest step we can
take along the line segment (1− δ)ω + δτ while staying in the same cone, i.e.,
adhering to vi,j · γ > 0, is

δmax = max({δ ∈ [0, 1] | ∀i, j : vi,j · ((1− δ)ω + δτ ) > 0}). (6)

We can find δmax using Algorithm 9, iterating all faces of the current cone.

Algorithm 9: Gröbner Walk’s Step

Input: ω, τ , {vi,j}
Output: δmax

1 δmax = 1
2 foreach v ∈ {vi,j} do
3 if v · τ < 0 then // implies leading monomial would change

4 δ = v·ω
v·ω−v·τ // biggest step adhering to v

5 δmax = min(δ, δmax) // smallest of all biggest steps

6 return δmax

Example 13 (continued). Let (normalized) ω = (7/16, 7/16, 1/8), Gω = {x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2−y, y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2y2−
xz − yz} ⊆ F[x, y, z], and I = 〈G〉, as before. The cone Cω(I) is defined through
x2 �ω y from the first polynomial, and y2 �ω xz and y2 �ω yz from the second.
Equivalently:

(2, 0, 0) · ω > (0, 1, 0) · ω ⇔ (2,−1, 0) · ω > 0 ⇔: v0,0 · ω > 0

(0, 2, 0) · ω > (1, 0, 1) · ω ⇔ (−1, 2,−1) · ω > 0 ⇔: v1,0 · ω > 0

(0, 2, 0) · ω > (0, 1, 1) · ω ⇔ (0, 1,−1) · ω > 0 ⇔: v1,1 · ω > 0

Let the target monomial order be lex, with corresponding target weight vector
τ = (1, 0, 0), coinciding with the γ0-axis in Figure 6. When executing Algorithm 9,

we get v0,0 ·τ = 2, v1,0 ·τ = −1, and v1,1 ·τ = 0, resulting in δmax =
5/16

5/16+1 = 5/21.

The next step in the Gröbner Walk is to bring a marked Gröbner basis over
to a neighboring cone given a weight vector on the two cones’ shared face – for
example (1 − δmax)ω + δmaxτ =: ν. For reasons of brevity, we omit all proofs,
referring to [33, 36] instead. The transformation requires the Gröbner basis of an
intermediate, smaller problem, described next. To find that Gröbner basis, any
algorithm, like those described in Section 3, can be used.

17 The Gröbner Walk is not limited to the described line segment. It works correctly
for any path from ω to τ not leaving the Gröbner fan. For reasons of simplicity, we
do not consider any other paths.
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The polynomials Ginter defining the intermediate problem are the leading
forms of Gω’s elements with respect to ν. In “nice” cases, namely if ν describes
the intersection of the line segment with the cone Cω(I) on exactly one face,
Ginter consists only of monomials and one binomial. Let H be the Gröbner basis
for 〈Ginter〉. We can write each element of H as hi =

∑
g∈Gω pi,g lfν(g) for some

polynomials pi,g.
18 The same sum where the actual polynomials g replace their

respective leading forms, i.e., {
∑
g∈Gω pi,gg}i, gives a Gröbner basis G′ν with

respect to ≺ν . Reducing G′ν , i.e., computing the remainder of g with respect to
G′ν \ {g} for every g ∈ G′ν , gives the reduced Gröbner basis Gν for 〈Gω〉 with
respect to intermediary monomial order ≺ν .

Example 14 (continued). For δmax of the previous step, we have (1− δmax)ω +
δmaxτ = (4/7, 1/3, 2/21) =: ν. Combined with the target monomial order lex ’s
weight matrix Mlex = ( 1 0 0

0 1 0 ) this gives rise to weight order matrix ( ν
Mlex

),
defining monomial order ≺ν . The leading form of Gω with respect to ≺ν is
lfν(Gω) = {x2, y2 − xz}. The Gröbner basis of lfν(Gω), also with respect to ≺ν ,
is H = {x2, y2 − xz, xy2, y4}. We can write

(1, 0) · lfν(Gω) = x2,

(0, 1) · lfν(Gω) = y2 − xz,
(z, x) · lfν(Gω) = xy2,

(z2, xz + y2) · lfν(Gω) = y4,

where, resolving ambiguity caused by the abuse of notation, set lfν(Gω) is
interpreted as a vector with elements in the same order as written above. By
taking the identified linear combinations of not just the leading form of Gω, but
the respective complete polynomials, we get set G′ν consisting of

(1, 0) ·Gω = x2 − y,
(0, 1) ·Gω = y2 − xz − yz,
(z, x) ·Gω = xy2 − xyz − yz,

(z2, xz + y2) ·Gω = y4 − xyz2 − y3z − yz2.

After reducing each g ∈ G′ν by G′ν \ {g}, we get

Gν = {x2 − y, xz − y2 + yz, xy2 − y3 + y2z − yz, y4 − 2y3z + y2z2 − yz2},

which is the reduced Gröbner basis of 〈Gω〉 with respect to ≺ν . Furthermore, we
have ≺ν∼≺τ , and the Gröbner Walk terminates.

No complexity bound for the Gröbner Walk is known. In part, this is due to one
of the Walk’s sub-tasks involving the computation of Gröbner bases for ideals not
known a-priori, where even given an ideal’s generating polynomials, estimating the
complexity of the Gröbner basis computation is difficult. Additionally, the path

18 In the terminology of Section 3.2, the pi,g make up the vector of origin for hi.
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through the fan dictates the number of transformations as well as the intermediate
problems’ polynomials: an intersection with a face of low co-dimension corresponds
to polynomials with fewer terms, for which finding a Gröbner basis appears to
be easier. Since the shape of the Gröbner fan of an ideal is not known a priori,19

it is impossible to plot an optimal path.

Several follow-up works improve on the Gröbner Walk as sketched here by
identifying better paths. For example, [8] presents methods for heuristically
perturbing weight vectors corresponding to starting, intermediate, and target
monomial orders within their respective equivalence classes to intersect with the
cones’ faces more favorably. Deterministic perturbations are discussed in [82].
Additional strategies to dodge intersections of high co-dimensionality include the
Evasive Walk [8], the Fractal Walk [8], and the Generic Gröbner Walk [51].

5 Open Questions

We raise some selected questions specific to Gröbner basis attacks on AOCs.

◦ The degree of regularity is the primary metric when assessing an AOC’s
resistance against Gröbner basis attacks. For general systems of polynomials,
i.e., systems not known to be semi-regular, the only currently available
method for computing the degree of regularity is to run F4 or F5 on that
system. A method to compute – or more closely estimate – this degree without
computing a full Gröbner basis would thus increase confidence in a cipher’s
parameters.

◦ The polynomial description of some AOCs, e.g., MiMC’s, already forms a
Gröbner basis, albeit not in lex order. The main difficulty in breaking the
cipher lies then in extracting the polynomial univariate in the key. This is
usually done by performing a term order change, potentially with early abort.
The theoretical complexity of changing a term order is poorly understood.
Current security arguments rely on the complexity of existing algorithms.
While FGLM and Sparse FGLM are well understood, it is unknown whether
their complexities are optimal, especially since the Gröbner Walk is reported
to outperform FGLM sometimes.

◦ Generating the polynomial model for the AOC under attack is out of scope
for this paper. Regardless, there are interesting open questions associated
with that step.

For example, given a single pair of plaintext & ciphertext – or a single hash
digest – the resulting polynomial system is determined, which suffices for
the attack strategy described in Section 1. Using multiple pairs of plaintext
& ciphertext results in an overdetermined system. Intuitively, this added
information should decrease an attack’s complexity, implying that finding
solutions for the overdetermined system should be easier. However, it is

19 Knowing the fan implies knowing all reduced Gröbner bases – a term order change
becomes superfluous.
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unclear whether this is generally the case, or how to exploit the additional
information in other ways.
Similarly, intuition suggests that finding a collision for a hash function should
be easier than computing a (second) preimage. How to turn this intuition
into a polynomial model is unclear.

◦ In a Gröbner basis attack on an AOC, we are only interested in the polyno-
mial’s common solutions that are elements of base field F. One way to ensure
the absence of parasitical solutions, i.e., the exclusion of elements from F \ F,
is to add the field equations to the polynomial system. The solutions of field
equation xp − x for variable x, where p = |F|, are exactly the elements of F.
Unfortunately, the field equations are of very high degree, which is detrimental
for a Gröbner basis algorithm’s runtime if the field size is of cryptographic rel-
evance [31, Sec. 2.1]. By introducing additional variables, we can “decompose”
a field equation into multiple equations, each of lower degree. It is unknown
whether such decompositions lead to faster Gröbner basis computations, and
if so, what the optimal trade-off between the new equations’ degrees and the
number of new variables is.

◦ Like any modern symmetric primitive, AOCs are iterated ciphers. Thus, the
derived system of polynomials inherently contains sets of structurally similar
polynomials. Current Gröbner basis attacks against AOCs do not exploit
such similarities because it is not obvious how to do so, if it is possible at all.

◦ The polynomials processed by F4 and F5 generally densify during execution.
Modifications allowing application of sparse linear algebra methods would
result in faster algorithms both asymptotically and for current problem sizes.

◦ Given a basis for a polynomial system’s syzygy submodule, F5 performs no
reduction to zero. Thus, an AOC’s security can be characterized by the “non-
triviality” of its syzygy space. The most efficient currently known method
of finding a syzygy basis is to run F5, where it is computed as a byproduct.
Some faster method to lower-bound the size of – or directly compute – the
syzygy basis and the non-triviality of the involved elements could thus be
used to increase confidence in a cipher’s parameters.

◦ For some ciphers, security against Gröbner basis attacks is argued by ex-
trapolating the degree of regularity from round-reduced variants [7, 81]. It
is unknown whether this extrapolation accurately predicts the degree of
regularity of the full-round primitive.
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62. Hilbert, D.: Über die Theorie der algebraischen Formen. Mathematische Annalen
36(4), 473–534 (1890)

63. Hong, H., Perry, J.: Are Buchberger’s criteria necessary for the chain condition?
Journal of Symbolic Computation 42(7), 717–732 (2007)

64. Hyun, S.G., Neiger, V., Rahkooy, H., Schost, É.: Block-Krylov techniques in the
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82. Tran, Q.N.: A fast algorithm for Gröbner basis conversion and its applications.
Journal of Symbolic Computation 30(4), 451–467 (2000)

83. Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE Transactions
on Information Theory 32(1), 54–62 (1986)

84. Yap, C.K.: A new lower bound construction for commutative Thue systems with
applications. Journal of Symbolic Computation 12(1), 1–27 (1991)

85. Yeh, J.Y.C., Cheng, C.M., Yang, B.Y.: Operating degrees for XL vs. F4/F5 for
generic MQ with number of equations linear in that of variables. In: Number
Theory and Cryptography, pp. 19–33. Springer (2013)
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A Notation

In Table 3, we briefly summarize the notation used in this document.

Table 3: Notation.

symbol expansion explanation

F field, typically of prime order
F algebraic closure of F
F[x] F[x0, . . . , xn−1] multivariate polynomial ring
xi variable
x (x0, . . . , xn−1) vector of variables
α (α0, . . . , αn−1) exponent vector
xα (xα0

0 , . . . , x
αn−1

n−1 ) monomial
deg(xα)

∑
i αi total degree of xα

cαxα term
f

∑
α cαxα polynomial

f −→
G

r full reduction of f by G
M set of all monomials
M(f) {xα | cα 6= 0} monomials occurring in f
M(G)

⋃
g∈GM(g) extension of M(f) to sets

T set of all terms
≺ monomial order on M
4 extension of ≺ to F[x]s

lc(f) leading coefficient of f
lm(f) max≺{xα ∈M(f) | cα 6= 0} leading monomial of f
lt(f) lc(f) · lm(f) leading term of f
lf(f) leading form of f
lc(G)

⋃
g∈G lc(g) extension of lc to sets

lm(G)
⋃
g∈G lm(g) extension of lm to sets

lt(G)
⋃
g∈G lt(g) extension of lt to sets

lf(G)
⋃
g∈G lf(g) extension of lf to sets

I polynomial ideal
〈f0, . . . , fs−1〉 {

∑
i pifi | pi ∈ F[x]} ideal spanned by the fi

f = 0 polynomial equation of f

V (I) {a ∈ Fn | ∀f ∈ I : f(a) = 0} affine variety of ideal I
ei (0, . . . , 0, 1, 0, . . . , 0) i-th unit vector
φF (g)

∑
i gifi for fi ∈ F map from F[x]s to F[x]

s(g) lm4(g) signature vector of g ∈ F[x]s
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B Multivariate Polynomial Division

We restate the multivariate division algorithm of [37, Ch. 2, §3] in Algorithm 10.

Algorithm 10: Multivariate Polynomial Division

Input: polynomials f, g0, . . . , gt−1 ∈ F[x]
Output: polynomials q0, . . . , qt−1, r ∈ F[x] such that f =

∑t−1
i=0 qigi + r

1 q0 = . . . = qt−1 = r = 0
2 p = f
3 while p 6= 0 do
4 i = 0
5 division occured = False
6 while i < t and not division occured do
7 if lt(gi) | lt(p) then

8 qi = qi + lt(p)
lt(gi)

9 p = p−
(

lt(p)
lt(gi)

)
gi

10 division occured = True

11 else
12 i = i+ 1

13 if not division occured then
14 r = r + lt(p)
15 p = p− lt(p)

16 return q0, . . . , qt−1, r
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C Regular Signature Reduction

In Algorithm 11, we describe regular s-reduction of a vector of origin f by a set
of vectors of origin g0, . . . , gt−1, as given in [37, Ch. 10, §4]. The F5 algorithm
of Section 3.2 uses regular s-reduction as a subroutine. Note the structural
similarities to multivariate polynomial division of Algorithm 10.

By changing the second condition in Line 8 to require equality of signatures,
the s-reduction becomes singular as opposed to regular. “Plain” s-reduction, being
neither regular nor singular, can be achieved by modifying the same condition to
only disallow all signatures 4-greater than s(r), i.e., allowing both regular and
singular s-reduction steps.

Algorithm 11: Regular s-Reduction

Input: vectors of origin f , g0, . . . , gt−1 ∈ F[x]s

Output: vector of origin r ∈ F[x]s

1 r = f
2 poly r = 0
3 while φ(r) 6= poly r do
4 m = lt(φ(r)− poly r)
5 i = 0
6 reduction occured = False
7 while i < t and not reduction occured do
8 if lt(φ(gi)) |m and s

(
m

lt(φ(gi))
gi
) 4 s(r) then

9 r = r − m
lt(φ(gi))

gi
10 reduction occured = True

11 else
12 i = i+ 1

13 if not reduction occured then
14 poly r = poly r + m

15 return r
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