
- 1

Chosen-Ciphertext Clustering Attack on
CRYSTALS-KYBER using the Side-Channel

Leakage of Barrett Reduction
Bo-Yeon Sim, Aesun Park, Member, IEEE, and Dong-Guk Han

Abstract—This study proposes a chosen-ciphertext side-
channel attack against a lattice-based key encapsulation mecha-
nism (KEM), the third-round candidate of the national institute
of standards and technology (NIST) standardization project.
Unlike existing attacks that target operations such as inverse
NTT and message encoding/decoding, we target Barrett reduction
in the decapsulation phase of CRYSTALS-KYBER to obtain a
secret key. We show that a sensitive variable-dependent leakage
of Barrett reduction exposes an entire secret key. The results of
experiments conducted on the ARM Cortex-M4 microcontroller
accomplish a success rate of 100%. We only need six chosen
ciphertexts for KYBER512 and KYBER768 and eight chosen
ciphertexts for KYBER1024. We also show that the m4 scheme
of the pqm4 library, an implementation with the ARM Cortex-
M4 specific optimization (typically in assembly), is vulnerable
to the proposed attack. In this scheme, six, nine, and twelve
chosen ciphertexts are required for KYBER512, KYBER768, and
KYBER1024, respectively.

Index Terms—Lattice-based cryptography, key decapsulation
mechanism, Barrett reduction, side-channel attack, chosen-
ciphertext attack.

I. INTRODUCTION

BY 2025, it is expected that there will be more than 30
billion Internet of things (IoT) connections, almost 4 IoT

devices per person on average [1]. In addition, the demand for
IoT security is increasing, and the global IoT security market
size is expected to increase to more than 20.8 billion by 2025
[2]. Accordingly, establishing a trustworthy IoT infrastructure
that ensures information protection is essential. Five areas,
including cloud-based IoT security, have been reported that are
particularly important for companies looking to secure their
IoT devices and assets.

A key encapsulation mechanism (KEM), a public-key cryp-
tosystem for generating a shared secret key between two
parties, is needed to establish cloud-based peer-to-peer secure
transactions. Diffie-Hellman (DH), Rivest-Shamir-Adleman

Manuscript received April 19, 20XX; revised August 26, 20XX.
This work was supported by Institute of Information & communications

Technology Planning & Evaluation (IITP) grant funded by the Korea gov-
ernment(MSIT) (No. 2021-0-00724, RISC-V based Secure CPU Architecture
Design for Embedded System Malware Detection and Response)

Bo-Yeon Sim is with the Department of Intelligent Convergence Research
Laboratory, Electronics and Telecommunications Research Institute, Daejeon,
34129, Republic of Korea (email: sboyeon37@etri.re.kr).

Aesun Park is with the Defense Security Support Command, Gwacheon,
13820, Republic of Korea (email: aesons@dssc.mil.kr).

Dong-Guk Han is with the Department of Information Security, Cryptology,
and Mathematics, Kookmin University, Seoul, 02707, Republic of Korea
(email: christa@kookmin.ac.kr).

Corresponding author: Dong-Guk Han.

(RSA), and elliptic curve cryptography (ECC) have been
mainly used; however, they are insecure under quantum com-
puter attacks [3]. Hence, if a large-scale quantum computation
is realized, KEMs become vulnerable. Experts estimate that
RSA, with a public-key size of 2000-bit, will not guarantee
safety until 2030 [4]–[6].

To address this issue, the national institute of standards
and technology (NIST) is working on the post-quantum cryp-
tography (PQC) standardization project [7]. The third-round
candidates (seven finalists and eight alternatives) of the NIST
PQC project were notified on July 22, 2020 [8]. Accordingly,
fifteen (seven, excluding alternatives) candidates were selected
in the third-round of the NIST PQC project, and nine (four,
excluding alternatives) of them are public-key encryption
(PKE)/KEMs [8]. Lattice-based KEMs have got increasingly
concerned due to their balanced performance in size and speed.
Among the third-round KEM candidates, five (three, excluding
alternatives) schemes are lattice-based KEMs [9]–[13]. They
are classified into two types: the schemes based on the learning
with error (LWE)/learning with rounding (LWR) problem [9]–
[11], and the schemes based on the NTRU problem [12], [13].
CRYSTALS-KYBER, SABER, and FrodoKEM belong to the
first class, whereas NTRU and NTRU Prime belong to the
second.

Even if a cryptographic scheme is secure against mathe-
matical analysis owing to the hardness of the mathematical
problem, it is subject to side-channel attacks (SCAs). It was
first discovered by Paul Kocher in 1996 [14], and many
cryptographic schemes have been easily broken by SCAs.
SCAs allow recovering secret information (e.g., a crypto-
graphic key) using physically measured side-channel infor-
mation. Side-channel information includes consumed power,
radiated electromagnetic wave, emitted sound, and executed
time while the cryptographic device operates. Therefore, SCAs
are considered major threats to the implementations of cryp-
tographic schemes, especially for applications in embedded
devices. Recently, the investigation of SCAs for PQC has
attracted increasing attention in connection with the NIST
PQC project. Given that most of the candidates are imple-
mented to execute constant time, simple timing attacks that
measure only execution time can be prevented. Even if the
algorithms have a constant time implementation, they can
be vulnerable to the other SCAs, such as power analysis
and electromagnetic analysis. Not only are many researchers
finding SCA vulnerabilities for PQC implements, but NIST
also noted that implementations addressing SCAs are more

- 2

meaningful than those that do not [15]. Therefore, various
SCAs related to PQC are being studied to verify the side-
channel resistance of PQC [16]–[38].

Most IoT devices come with limited resources, i.e., power
constraints, strict memory, and chip area. Currently, NIST
officially requires performance evaluations of PQC’s soft-
ware implementations on ARM Cortex-M4 microcontrollers
available in a wide range of IoT devices. Accordingly, the
open-source library pqm4, the testing and benchmarking
framework for PQC schemes operating on the ARM Cortex-
M4 microcontroller, was initiated by the PQCRYPTO project
(ICT-645622) funded by European Commission in the H2020
program [39]. The pqm4 library is specifically optimized for
the ARM Cortex-M4 microcontroller. Therefore, to use IoT
devices secure against SCAs must involve verifying the side-
channel vulnerability against the pqm4 library.

A. Related works

Lattice-based KEMs have been studied for different types
of SCAs vulnerability. Especially, several studies about side-
channel assisted chosen-ciphertext attacks (CCAs), which re-
cover the secret key, have been conducted [30]–[38]. CCAs
on various operations, such as error-correcting codes, inverse
NTT, message encoding/decoding, and Fujisaki-Okamoto (FO)
transform, have been studied.

D’Anvers et al. [31] reported that the Ring-LWE scheme
LAC’s secret key leaked by exploiting variable runtime of
error-correcting codes in decryption. They used less than 216

decryption queries to recover the secret key. The following
year, Ravi et al. [32] proposed generic side-channel-assisted
CCAs on six lattice-based KEMs. They used binary informa-
tion about the message through EM leakage in error-correcting
procedures and FO transforms to perform key recovery. Their
attacks could also be applied to implementations operate in a
constant time.

More recently, Xu et al. [34] showed that an attacker with
complete knowledge of the decrypted message for chosen
ciphertexts could perform the full key recovery using small de-
capsulation queries for KYBER512. They targeted the inverse
NTT for the clean scheme and the message encoding function
for the m4 scheme. Four and eight decapsulation queries were
used to recover the secret key for the clean and m4 schemes,
respectively. Ravi et al. [35] demonstrated side-channel as-
sisted message recovery attacks which target storage of the
decrypted message in memory. In more detail, they exploited
the fact that the decrypted message is stored one bit at a time.
That is, it is possible to restore a message by comparing the
Hamming weight of the message stored immediately before.
As a result, the full message recovery of KYBER512 was
possible with a single trace (actually, the success rate ramps
to 98.24% with 5 averaged traces), but this method required
128k traces to profiling. Another method they proposed was
to recover the message by using the targeted flip of message
bits and the cyclic message rotation technique. In the presence
of a side-channel Hamming weight classifier, this technique
required (F +1) traces to recover the full message where F is
the storage width. They mentioned that implementations with

shuffling and masking countermeasures could also be attacked.
Unfortunately, attacking protected implementations requires a
strong attack assumption that an attacker can turn off or deac-
tivate the countermeasure. They also proposed the recovered
message-based key recovery attack. Six chosen ciphertexts are
needed to recover the secret key of KYBER512. However, the
specification of CRYSTALS-KYBER was updated and the
noise parameter of KYBER512 was increased [40]; thus, it
is obvious that more chosen ciphertexts are needed than the
number stated in [34], [35].

Ngo et al. [36] proposed the first side-channel attack on a
first-order masked SABER. They used the incremental storage
leakage presented in [35] and applied deep learning-based
power analysis. Extracting the random mask at each execution
was unnecessary because the input trace contains both where
the shares < ⊕ A and A were computed. Thus, they could
improve success probability by combining score vectors of the
multiple-trace attack. The [8, 4, 4]2 extended Hamming codes
were applied to improve key-recovery attack, and sixteen
chosen ciphertexts were used for LightSaber.

Although CCAs on various operations have been studied, no
study has been conducted on reductions. The input value of
the reduction in decryption is also affected by the secret key;
thus, it can lead to attacks that use CCA to derive the secret
key. Xu et al. [34] mentioned that operations after the inverse
NTT could be vulnerable; however, they did not perform a
detailed analysis. Additionally, the output of the inverse NTT
can have various values; thus, there are many restrictions on
finding a valid chosen ciphertext. Xu et al. presented that
fifteen possible binary classifiers and forty possible ternary
classifiers exist. The incremental storage leakage used in [35]
relies only on the 1-bit value of the decoded message, requiring
average preprocessing to increase the signal-to-noise ratio
(SNR). Moreover, template generation is necessary for attacks.
These works motivated us to investigate a new attack position
that constructing chosen ciphertexts is more efficient and can
maximize the side-channel leakage.

B. Main Contributions

In this study, we focus on a lattice-based KEM corre-
sponding to the third-round candidate of the NIST PQC
standardization project. Specifically, we present a compre-
hensive analysis and the corresponding experiment results on
CRYSTALS-KYBER by focusing on Barrett reduction in
the decapsulation phase, which was not considered a target
operation against SCA-based chosen-ciphertext attacks. The
main contributions of this study can be summarized as follows.

We introduce a chosen-ciphertext clustering attack using the
side-channel leakage of Barrett reduction in the decapsula-
tion phase. The obtained experimental results show that we
can recover the full secret key using six chosen ciphertexts
for KYBER512. In the ref, clean, and opt schemes, six
and eight chosen ciphertexts are needed for KYBER768
and KYBER1024, respectively. In the m4 scheme, nine and
twelve chosen ciphertexts are needed, respectively. Our target
intermediate value can have only three values, and more than

- 3

3154 valid chosen ciphertexts exist. Moreover, the maximum
difference in leakage would be noise resistant because it is pro-
portional to 13, which is the Hamming distance between the
two intermediate values. Therefore, averaging is not required
to increase SNR, and template building is also unnecessary.

C. Organization

The rest of the paper is organized as follows. In Section II,
we briefly explain the specification of CRYSTALS-KYBER.
We explain the proposed chosen-ciphertext clustering attack
methodology in Section III, and we show experimental results
in Section IV. In Section V, we recommend countermeasures.
Finally, we summarize the conclusions in Section VI.

II. PRELIMINARIES

A. Notation

• Let = and @ be positive integers.
• Let R be a base ring defined as Z[G]/〈G= + 1〉. R can be

represented as{
=−1∑
8=0

08G
8 : 08 ∈ Z, 0 ≤ 8 ≤ = − 1

}
.

• Let R@ := R/@R. The quotient ring R@ can be repre-
sented as {

=−1∑
8=0

08G
8 : 08 ∈ Z@ , 0 ≤ 8 ≤ = − 1

}
.

• Bold lower-case letters s represent column vectors with
coefficients B8 in R@ , 0 ≤ 8 ≤ : − 1, i.e., s ∈ R:@

• sᵀ is transpose of a vector s.

B. CRYSTALS-KYBER

CRYSTALS-KYBER [40] is a lattice-based KEM using a
PKE scheme similar to the LPR encryption scheme suggested
by Lyubashevsky, Peikert, and Regev [41]. It is based on a
polynomial ring R@ = Z@ [G]/〈G= + 1〉 of the dimension = =

256 and modulus @ = 3329. The parameters :, ?, and C are
different according to the security level. Three parameter sets,
namely, KYBER512, KYBER768, and KYBER1024, aim to
support NIST security levels 1, 3, and 5, respectively.

For NIST security level 1, the first component of a ciphertext
is of rank 2 over R@ , i.e., : = 2 in Algorithm 1. For NIST
security levels 3 and 5, : = 3 and : = 4, respectively. The
secret key is sampled from centered binomial distribution �[1 .
The parameter [1 is 3, 2, and 2, according to the supported
security level. Here, for NIST security levels 1 and 3, ? and
C for Compress and Decompress are set to be 210 and 23,
respectively. They are set to be 211 and 25, respectively, for
NIST security level 5. The bit length ℓ of message ` and
shared key is 256.

Hash1 and Hash2 are SHA3-256 and SHA3-512, re-
spectively. KDF is implemented using SHAKE-256. Com-
press@,log ? (G) and Compress@,log C (G) take an element G ∈
Z@ and output log ?- and log C-bit integers, respectively. De-
compress@,log ? (G) and Decompress@,log C (G) take log ?- and
log C-bit integers, respectively, and output H ∈ Z@ .

Algorithm 1 Message Decapsulation of CRYSTALS-KYBER

(refer to [40])
Require: Ciphertext 2 = (21 ‖ 22) ∈ R:? × RC
Require: Secret key B: ∈ R:@
Require: Public key ?: = (0 ∈ R:×:@ , 1 ∈ R:@)
Require: Random value I ∈ {0, 1}ℓ

Ensure: Shared key ∈ {0, 1}ℓ

1: /*Decryption*/

2: s = B:
3: u = Decompress@,log ? (21)
4: E = Decompress@,log C (22)
5: `′ = decode(E − sᵀu mod @)
6: /*=== FO transform ===*/

7: (̄ ′, B443 ′) = Hash2(`′ ‖ Hash1(?:))
8: /*Encryption*/

9: Sampling A ′, 4′1 ∈ R
:×1
@ , and 4′2 ∈ R@ using B443 ′

10: 2′1 = Compress@,log ? (0A ′ + 4′1 mod @)
11: 2′2 = Compress@,log C (1ᵀA ′ + 4′2 + encode(`′) mod @)
12: 2′ = (2′1 ‖ 2

′
2)

13: /*Shared key derivation*/

14: if 2 = 2′ then
15: = KDF(̄ ′ ‖ Hash1(2))
16: else
17: = KDF(I ‖ Hash1(2))
18: end if
19: Return

encode is message encoding that converts ℓ-bit message to
a polynomial. decode is message decoding that is the inverse
of encode. Algorithm 1 illustrates message decapsulation
of CRYSTALS-KYBER. To construct the IND-CCA2-secure
KEM, a slightly tweaked FO transform is applied on a CPA-
secure PKE.

III. PROPOSED CHOSEN-CIPHERTEXT CLUSTERING
ATTACK ON CRYSTALS-KYBER

In this section, we propose a chosen-ciphertext clustering
attack on CRYSTALS-KYBER using a sensitive variable-
dependent leakage of Barrett reduction.

A. Sensitive Variable-dependent Leakage of Barrett Reduction

We target step 5 of Algorithm 1. We focus on the E −
sᵀu mod @ operation, which calculates the input of decode.

Listing 1, Listing 2, and Listing 3 illustrated decryption,
reduction, and Barrett reduction in CRYSTALS-KYBER,
respectively. In Listing 1, skpv, bp, and v are s, u, and E

described in Algorithm 1, respectively. At steps 12-14 of List-
ing 1, sᵀu is calculated in the NTT domain, and Montgomery

- 4

1 / / Decrypt ion f u n c t i o n o f the CPA−secure

2 void indcpa_dec (u i n t 8 _ t m[KYBER_INDCPA_MSGBYTES] ,

3 const u i n t 8 _ t c [KYBER_INDCPA_BYTES] ,

4 const u i n t 8 _ t sk [

KYBER_INDCPA_SECRETKEYBYTES])

5 {

6 polyvec bp , skpv ;

7 poly v , mp;

8

9 unpack_c ipher tex t (&bp , &v , c) ;

10 unpack_sk (&skpv , sk) ;

11

12 po lyvec_n t t (&bp) ;

13 polyvec_pointwise_acc_montgomery (&mp, &skpv , &bp) ;

14 po ly_ invn t t_ tomont (&mp) ;

15

16 poly_sub (&mp, &v , &mp) ;

17 poly_reduce(&mp) ;

18

19 poly_tomsg (m, &mp) ;

20 }

Listing 1. Decryption of CRYSTALS-KYBER (in C code)

1 / / App l ies B a r r e t t reduc t ion

2 / / to a l l c o e f f i c i e n t s o f a polynomia l

3 void poly_reduce (po ly * r)

4 {

5 unsigned i n t i ;

6 for (i =0; i <KYBER_N; i ++)

7 r −>coeffs [i] = barrett_reduce (r −>coeffs [i]) ;

8 }

Listing 2. Reduction of CRYSTALS-KYBER (in C code)

1 / / g iven a 16− b i t i n t e g e r a , computes 16− b i t i n t e g e r

2 / / congruent to a mod q i n { 0 , . . . , q }

3 i n t 1 6 _ t bar re t t_ reduce (i n t 1 6 _ t a)

4 {

5 i n t 1 6 _ t t ;

6 const i n t 1 6 _ t v = ((1U << 26) + KYBER_Q/ 2) /KYBER_Q;

7

8 t = (i n t 3 2 _ t) v *a >> 26;

9 t *= KYBER_Q;

10 return a − t ;

11 }

Listing 3. Barrett reduction of CRYSTALS-KYBER (in C code)

Fig. 1. t value

reduction is applied to the output. Hence, for the output
polynomial mp of poly_invntt_tomont(), all coefficients <?8
satisfy

−3328 ≤ <?8 ≤ 3328.

For a polynomial v, all coefficients E8 satisfy

0 ≤ E8 ≤ 3328.

Accordingly, for the output polynomial mp of poly_sub() at
step 16 of Listing 1, all coefficients <?8 satisfy

−3328 ≤ <?8 ≤ 6656.

Here, mp is E − sᵀu, and it is the input of poly_reduce().
As shown in steps 6-7 of Listing 2, Barrett reduction

applies to all coefficients of the input polynomial mp. The
intermediate value t at steps 9-10 of Listing 3 is described as
follows.

t =


3329 , 8 5 3329 ≤ <?8 ≤ 6656;
0 , 8 5 0 ≤ <?8 < 3329;

-3329 , 8 5 −3328 ≤ <?8 < 0.

We simulated CRYSTALS-KYBER KEM 100 times to verify
the intermediate value t. The simulated results are shown in
Figure 1. Given the dimension = = 256, the number of tests is
25,600. The intermediate value t is determined by one of three
values depending on the coefficient of E − sᵀu, as shown in
Figure 1. Given that s is a secret key, i.e., sensitive variable,
the intermediate value t can leak sensitive variable-dependent
information.

B. Constructing Chosen Ciphertexts

We construct chosen ciphertexts to magnify the difference
in the sensitive variable-dependent leakage of t depending on
the coefficient value of s. We establish criteria for constructing
chosen ciphertexts as follow.

- 5

Fig. 2. t value according to D0 value

1) Because the Hamming weight difference between 0 and
-3329 is 13, which is the largest, we configure ciphertexts
so that t is 0 or -3329.

2) C is configured so that only one coefficient value of the
secret key is affected.

Let s = (B0, · · · , B:−1) ∈ R:@ , u = (D0, · · · , D:−1) ∈ R:@ .
Here, B8 and D8 are polynomials in the ring R@ . We denote
B8, 9 and D8, 9 as the 9-th coefficient of polynomial B8 and D8 ,
respectively. To make the intermediate value t affected by only
one coefficient value of B0, we set all coefficients of u, except
D0,0, to zero. Thus, D0 is a constant, and D8 for 1 ≤ 8 ≤ : − 1
is zero. We also set E as zero to remove its effects (We can
set the values of all coefficients E8 to the same value. In this
case, the value of the chosen-ciphertext is slightly changed.).
Accordingly, all coefficients of the input polynomial <? of
poly_reduce are determined as <? 9 = −B0, 9D0,0 for 0 ≤ 9 ≤
= − 1.

For KYBER512, s = (B0, B1) and u = (D0, D1). Thus,
we set (D0, D1) = (G, 0) and E = 0, where G ∈ Z@ . To
cluster t values according to the sensitive variable B0, 9 ∈
{−3,−2,−1, 0, 1, 2, 3}, we calculate t values according to all D0
values, as shown in Figure 2. When B0, 9 = 0 for 0 ≤ 9 ≤ =−1,
the intermediate value t is always zero.

We choose three D0 values, as shown in Table I, and make
sequences based on the value of t. The chosen ciphertexts
selected in this study are examples and can be selected
variously based on Table I. In this setting, there are 3154
valid chosen ciphertexts we can use (There are 970 values
except duplicate values due to Compress.). Set to 0 when
t is zero; otherwise, 1 to create sequences. As shown in
Table I, the sequence according to the sensitive variable B0, 9 is
different. Therefore, if the sequence is obtained using the side-
channel leakage, then the sensitive variable B0, 9 is discovered.
Accordingly, we can recover B0, half of the secret key, by
performing coefficient-wise analysis. Similarly, we can recover

B1 by using chosen ciphertexts u = (0, 208), u = (0, 1109), and
u = (0, 2217) (E is always zero). As a result, we can acquire
the secret key s using six chosen ciphertexts.

For KYBER768 and KYBER1024, B8, 9 ∈ {−2,−1, 0, 1, 2}
because the parameter [1 is 2 at both levels. Therefore, similar
chosen ciphertexts can be used as before. Since : = 3 and
: = 4 for each level, 3×3 = 9 and 4×3 = 12 chosen ciphertexts
are needed, respectively. However, if we additionally use the
leakage that occurs at steps 8 and 10 of Listing 3, we can
reduce the number of chosen ciphertexts. If B8, 9 = 0, then
the input coefficient of Barrett reduction is always zero;
otherwise, it is nonzero. Thus, a leakage difference depending
on the operand value at steps 8 and 10 of Listing 3 can
be used to distinguish zero from the others. Accordingly,
we can distinguish B0, 9 values using u = (208, 0, 0) and
u = (1109, 0, 0) for KYBER768. As a result, it only needs
3 × 2 = 6 and 4 × 2 = 8 chosen ciphertexts for each level.

C. Attack Methodology

We target reference codes submitted to the NIST website
by developers. All reference codes were implemented based
on the C language; thus, we applied the Hamming weight
power consumption model, commonly supposed in software
implementations. Based on the previous analysis results, we
can figure out the power consumption properties of 9-10 steps
of Listing 3 as follows.

Property 1. The power consumed in a software implementa-
tion is proportional to the Hamming weight of an intermediate
value. Therefore, when the intermediate value t is 0x0000,
consuming power in proportion to 0 is occurred. Whereas,
when the t value is equal to -3329 = 0xf2ff, consuming
power in proportion to 13 is occurred. Here, 13 is the
Hamming weight of the t value when t is a 16-bit integer.

Algorithm 2 shows an attack algorithm based on the leakage
that occurs at steps 9-10 of Listing 3. A significant difference
in the performance of analysis exists, depending on the posi-
tion of the attack. Therefore, specific points of interest (PoIs)
must be found. Based on profiling, we can select the PoIs
where significant variances are observed depending on secret
coefficient values when using specifically chosen ciphertexts.
We can identify the PoIs by calculating the sum of squared
pairwise C-differences (SOST) [42] of the traces and then
identifying the location of the information-leaking point. The
SOST of two groups, G1 and G2, is calculated as follows.

($() =

6∑
8, 9=1

©­­«
� (G8) − � (G 9)√√√
f(G8)2

#G8
+
f(G 9)2

#G 9

ª®®¬
2

for 8 ≥ 9 ,

� (·), f(·), #, and 6 denote the mean, standard deviation,
number of elements, and number of groups, respectively. Here,
6 is 2.

For each B8, 9 , we take the points where the t value is
computed, stored, and loaded. We take these points ?2, 9 , which
consume power proportional to the Hamming weight of the
t value, as the PoIs and sort them into two groups using a
clustering algorithm. Here, we can apply various clustering

- 6

TABLE I
THE INTERMEDIATE VALUE T

B0, 9 -3 -2 -1 0 1 2 3

u = (208, 0) E = 0 0 0 0 0 -3329 -3329 -3329

u = (1109, 0) E = 0 -3329 -3329 0 0 -3329 0 0

u = (2217, 0) E = 0 -3329 0 -3329 0 0 -3329 0

Sequence 011 010 001 000 110 101 100

algorithms, such as :-means, fuzzy :-means, and expectation-
maximization (EM) [43]–[46].

By using one of these clustering algorithms, ?2, 9 can
be sorted into two groups: G1 and G2. Here, G1 and G2
represented each clustered group. Because power consumption
depends on the Hamming weight of intermediate values, the
mean values of G1 and G2 are different. Therefore, supposing
that the larger the hamming weight, the less power consumed,
we can identify the corresponding t value for each group
according to the mean value of the two groups. This suppo-
sition depends on the structure of the measuring equipment;
in this study, the supposition is established according to the
structure of the ChipWhisperer-Lite main board used to obtain
the power consumption of the target board [27].

Thus, for instance, when � (G1) is larger than � (G2), the
value of t belonging to G1 has a value of 0 and that belonging
to G2 has a value of -3329. � (G1) and � (G2) are the mean
values of G1 and G2, respectively. In Algorithm 2, BB2, 9 is the
value for creating sequences. Therefore, it is set to 0 when t
is zero; otherwise, it is set to 1. After repeating as many as
the number of chosen ciphertexts, we can acquire a sequence
(BB0, 9 · · · BB22−1, 9) of each coefficient B8, 9 . Hence, B8 , the part
of the secret key, can be found. As a result, by repeating as
many as rank, we can acquire the secret key s.

Remark. The pqm4 library includes four schemes, namely
ref, clean, opt, and m4 [39]. The schemes ref, clean,
and opt are implemented in plain C; Listing 1, Listing 2,
and Listing 3 are all identical in ref, clean, and opt. An
implementation optimized for Cortex-M4 is the m4 scheme;
it is typically implemented in assembly language as described
in Appendix A.

IV. EXPERIMENT RESULTS

In this section, we present experimental results that the
secret key s could be recovered using six chosen ciphertexts
for KYBER512. Side-channel vulnerability depends on how
algorithms are implemented. Therefore, we utilized reference
codes submitted to the NIST website by developers. All
reference codes were implemented based on the C language;
thus, we used the Hamming weight power consumption model,
commonly supposed in software implementations. The ex-
periments were conducted by focusing on ARM Cortex-M4
at NIST’s request. We used gcc-arm-none-eabi compiler and
options -O3 and -Os, which optimize speed (High) and size,
respectively.

Fig. 3. Experiment environment

Fig. 4. Power consumption trace of Listing 1 (Optimization Level 3)

We acquired power consumption traces for the different
secret key s when Listing 1 was running on the ChipWhisperer
UFO STM32F3 target board [47]. The ChipWhisperer-Lite
mainboard and the ChipWhisperer-Pro Kit can only collect up
to 24,573 and 98,119 samples, respectively; therefore, we used
a Teledyne Lecroy HDO6104A oscilloscope when acquiring
whole traces of the decryption function, as shown in Figure 3
and Figure 4. Power consumption traces of Listing 1 were
measured at a sampling rate of 2.5 GS/s. Each part of Figure 4
is as follows.

1 unpack_ciphertext
2 unpack_sk
3 polyvec_ntt
4 polyvec_pointwise_acc_montgomery
5 poly_invntt_tomont
6 poly_sub
7 poly_reduce
8 poly_tomsg

7 is our target function Listing 2, and we used traces of

- 7

Algorithm 2 Chosen-Ciphertext Clustering Attack on Barrett

Reduction in CRYSTALS-KYBER
Require: Trace sets) = ()0, · · · ,):−1)
Require: Secret sequence (4@ = (B4@0, · · · , B4@2[1)
Require: Secret coefficient value 2E = (2E0, · · · , 2E2[1)
Ensure: Secret key s = (B0, · · · , B:−1)

1: /*as many as rank*/

2: for 8 = 0 up to : − 1 do
3: /*as many as the number of chosen ciphertexts*/

4: for 2 = 0 up to 22 − 1 do
5: /*as many as the size of the dimension*/

6: for 9 = 0 up to = − 1 do
7: /*position identified in profiling phase*/

8: Select the PoIs ?2, 9 associated with B8, 9
9: end for

10: Classify ?2, 9 into two groups, G1 and G2, using a

clustering algorithm

11: Compute the mean values � (G1) and � (G2), respec-

tively, of G1 and G2

12: for 9 = 0 up to = − 1 do
13: /*assume that � (G1) > � (G2)*/

14: if ?2, 9 ∈ G1 then
15: /*BB2, 9 = 0 when it follows the Property 1*/

16: BB2, 9 ← 0
17: else
18: /*BB2, 9 = 1 when it follows the Property 1*/

19: BB2, 9 ← 1
20: end if
21: end for
22: end for
23: for 9 = 0 up to = − 1 do
24: 4 = 0
25: while (BB0, 9 · · · BB22−1, 9) ≠ B4@4 do
26: 4 + +
27: end while
28: B8, 9 = 2E4

29: end for
30: end for
31: Return (B0, · · · , B:−1)

this position as the input traces of Algorithm 2. A low-noise
amplifier is equipped on the ChipWhisperer-Lite mainboard
[48]; thus, input power consumption traces of Algorithm 2
were measured by the ChipWhisperer-Lite mainboard at a

Fig. 5. Power consumption trace when we set ciphertext as u = (208, 0) and
E = 0 (Optimization Level 3)

Fig. 6. Power consumption trace when we set ciphertext as u = (208, 0) and
E = 0 (Optimization Level s)

sampling rate of 29.54 MS/s.
Figure 5 and Figure 6 show that the parts of power con-

sumption traces when B0, 9 is sequentially set -3 to -2, -1,
0, 1, 2, and 3. Given that the chosen-ciphertext consists of
u = (208, 0) and E = 0, t values are 0, 0, 0, 0, -3329, -3329,
and -3329 for each coefficient, as described in Table I. If we
set to 0 when t is zero and otherwise set 1, we can acquire a
sequence (0, 0, 0, 0, 1, 1, 1).

We drew lines th1, th2 in Figure 5 and Figure 6, and we
marked them as 0 if the value of the y-axis in the highlighted
area is bigger than th2; otherwise, we marked them as 1.
Sequences denoted in Figure 5 and Figure 6 are the same as
the sequence (0, 0, 0, 0, 1, 1, 1) obtained in accordance with
the t value. Therefore, we can see that the information of the
t value is leaking, and the differences in power consumption
are big enough to be exploited.

To identify the PoIs, we computed the SOST values of
measured power consumption traces, as shown in Figure 7 and
Figure 10. Figure 8 (b) and Figure 11 (b) show the distributions
at a 195 and 387 points, respectively. The differences between
� (G1) and � (G2) are large enough to be visually distinct, and
no error rate is observed.

Figure 9 and Figure 12 show that power consumption traces
measured using three chosen ciphertexts. The magnification

- 8

Fig. 7. The SOST values when we set ciphertext as u = (208, 0) and E = 0
(Optimization Level 3)

Fig. 8. Distributions of the PoIs when we set ciphertext as u = (208, 0) and
E = 0; (a) 191 point and (b) 195 point (Optimization Level 3)

Fig. 9. Measurement traces of Listing 3 using three chosen ciphertexts
(Optimization Level 3)

of the positions for each coefficient is shown in Figure 13
and Figure 14. We marked sequences according to the value

Fig. 10. The SOST values when we set ciphertext as u = (208, 0) and E = 0
(Optimization Level s)

Fig. 11. Distributions of the PoIs when we set ciphertext as u = (208, 0) and
E = 0; (a) 383 point and (b) 387 point (Optimization Level s)

Fig. 12. Measurement traces of Listing 3 using three chosen ciphertexts
(Optimization Level s)

of the y-axis; thus, they are the same as the sequence in
Table I. We split power consumption traces in Figure 9 and

- 9

Fig. 13. Measurement traces using three chosen ciphertexts when (a) B0, 9 = 1, (b) B0, 9 = 2, (c) B0, 9 = 3, (d) B0, 9 = −1, (e) B0, 9 = −2, (f) B0, 9 = −3, and (g)
B0, 9 = 0 (Optimization Level 3).

- 10

Fig. 14. Measurement traces using three chosen ciphertexts when (a) B0, 9 = 1, (b) B0, 9 = 2, (c) B0, 9 = 3, (d) B0, 9 = −1, (e) B0, 9 = −2, (f) B0, 9 = −3, and (g)
B0, 9 = 0 (Optimization Level s)

- 11

Figure 12 into sub-traces for each coefficient and applied min-
max normalization. As a result, the secret key can be extracted
with a 100% success rate using Algorithm 2 based on the EM
algorithm.

As shown in Figure 5 and Figure 6, whether t = 0 or not can
be distinguished by identifying whether power consumption
trace is higher than th1 or not. Moreover, Figure 8 and
Figure 11 show that clustering into three groups is possible;
thus, distinguishing whether t = 0 or not is also possible. This
reduces the number of chosen ciphertexts from three to two
to recover B8 of KYBER768 and KYBER1024. Accordingly,
the number of chosen ciphertexts required to recover s of
KYBER768 and KYBER1024 are six and eight, respectively.
We split three power consumption traces into sub-traces for
each coefficient and applied min-max normalization. We then
slightly modified steps 10-21 of Algorithm 2 to cluster into
three groups. As a result, the secret key can be extracted with
a 100% success rate using the EM algorithm.

Experimental results on the m4 scheme. We also show
that the m4 implementation with Cortex-M4 specific optimiza-
tions (typically in assembly) is vulnerable to the proposed
attack. Since Barrett reduction is implemented in assembly
language as shown in Listing 7 and Listing 8, we only report
the experiment results for compiler option -O3.

In contrast to the ref scheme, the m4 scheme performs
Barrett reduction on two coefficients simultaneously. The
intermediate value tmp and tmp2 in Listing 8 are for two
coefficients B0, 9 and B0, 9+1, respectively. Figure 15 shows
power consumption traces when Listing 8 is in operation.
Power consumption is affected by a sequence of t values for
two coefficients. For example, if B0, 9 = −1 and B0, 9+1 = 3 when
u = (208, 0) and E = 0, then a sequence of t values is 01.
Accordingly, it can be classified into four groups according
to the power consumption pattern of four clock cycles in
which steps 7-10 of Listing 8 are performed. In particular,
Figure 16 (b) shows that clustering into four groups is possible
with no error rate. In Figure 16 (a), distributions of 01 and
10 are overlapped; thus, they would be classified into same
groups. Accordingly, if we use the point 31, clustering into
three groups is possible.

Figure 17 and Figure 18 show that power consumption
traces measured using three chosen ciphertexts. We marked
sequences according to the patterns of the four clock cycles
in which steps 7-10 of Listing 8. When rearranged into a
sequence by each coefficient, they are the same as the sequence
in Table I. In the m4 scheme, distinguishing when B0, 9 = 0 or
B0, 9+1 = 0 from other cases is difficult because two coefficients
are computed simultaneously. Therefore, for KYBER768 and
KYBER1024, 3 × 3 = 9 and 4 × 3 = 12 chosen ciphertexts
are needed, respectively. We split three power consumption
traces into sub-traces for two coefficients and applied z-score
normalization. As a result, the secret key can be extracted with
with a 100% success rate using the EM algorithm.

Remark. Because [34], [35] did not experiment on the
updated specification, accurate comparisons are not possible.
However, since the noise parameter was increased [40], it

Fig. 15. Power consumption traces when we set ciphertext as u = (208, 0)
and E = 0 (m4 scheme, Optimization Level 3)

Fig. 16. Distributions of the PoIs when we set ciphertext as u = (208, 0) and
E = 0; (a) 31 point and (b) 35 point (m4 scheme, Optimization Level 3)

Fig. 17. Measurement traces of Listing 7 using three chosen ciphertexts (m4
scheme, Optimization Level 3)

is obvious that more chosen ciphertexts are needed than the
number stated in [34], [35]. Accordingly, our proposed method
much more efficient for the m4 scheme.

- 12

Fig. 18. Measurement traces using three chosen ciphertexts when (a) B0, 9 = −3, B0, 9+1 = −2, (b) B0, 9 = −1, B0, 9+1 = 0, (c) B0, 9 = 1, B0, 9+1 = 2, (d)
B0, 9 = 3, B0, 9+1 = −1, (e) B0, 9 = −1, B0, 9+1 = 0, (f) B0, 9 = −1, B0, 9+1 = 1, (g) B0, 9 = 1, B0, 9+1 = 0, and (h) B0, 9 = −1, B0, 9+1 = −3 (m4 scheme, Optimization
Level 3)

- 13

V. COUNTERMEASURES

Since the proposed attack constructs an intermediate value t,
which is affected by only one coefficient of B8 , and exploits it,
masking [22], [49] can be secure against the proposed attack.
However, substantial time and memory resources are needed
because masking would not be appropriate for use in resource-
constrained IoT devices due to its high-performance overhead.
Thus, using shuffling and hardware noise-addition to increase
attack complexity might be a good idea. Similar to [29],
shuffling can be applied by generating a shuffling index array,
as shown in Listing 4. To attack the shuffling, :×3×256 chosen
ciphertexts are required because the target coefficient E 9 must
be changed. That is, it is possible to recover one coefficient
at a time. Thus, if the key reuse period is properly adjusted,
it can be fully responded to. Using another reduction method,
such as Montgomery reduction, can also be a countermeasure.

1 / / App l ies B a r r e t t reduc t ion

2 / / to a l l c o e f f i c i e n t s o f a polynomia l

3 void poly_reduce (po ly * r , i n t * shu f f l ed_ index)

4 {

5 unsigned i n t i ;

6 for (i =0; i <KYBER_N; i ++)

7 r −>coeffs [shuffled_index [i]]

8 = barrett_reduce (r −>coeffs [shuffled_index [i]]) ;

9 }

Listing 4. Reduction of CRYSTALS-KYBER (in C code)

VI. CONCLUSION

In this study, we proposed a chosen-ciphertext cluster-
ing attack on CRYSTALS-KYBER using sensitive variable-
dependent leakage of Barrett reduction. We took advantage
of the fact that the intermediate value of an operation is
determined to be the value of one of the three values, and the
difference in the Hamming weight of the intermediate value
is larger than 4. To magnify the difference in the sensitive
variable-dependent leakage, we used chosen ciphertexts. As
a result, we could acquire the full secret key using only six
chosen ciphertexts for KYBER512. Depending on an imple-
mentation scheme, recovering the secret key of KYBER768
requires six or nine chosen ciphertexts. For KYBER1024,
eight or twelve chosen ciphertexts are required depending on
an implementation scheme.

Vulnerability occurred due to implementation methods
that prevent timing leakage. Barrett reduction, used in
CRYSTALS-KYBER, is secure against timing attack; how-
ever, it does not guarantee security against power analysis. Es-
pecially, the method applied to secure implementation against
timing attacks led to a greater amount of side-channel leakage.
Therefore, research should be conducted on how to avoid such
leakage.

REFERENCES

[1] K. L. Lueth, “State of the IoT 2020: 12 billion IoT connections, surpass-
ing non-IoT for the first time,” https://iot-analytics.com/state-of-the-iot-
2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/,
2020.

[2] M. Rykov, “5 IoT Security best practices to consider after the Covid-19
lockdown,” https://iot-analytics.com/5-iot-security-best-practices-after-
the-covid-19-lockdown/, 2020.

[3] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in 35th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society, 1994, pp. 124–134.

[4] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner,
and D. Smith-Tone, “Report on Post-Quantum Cryptography,” https:
//nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf, 2016.

[5] M. Mariantoni, “Building a superconducting quantum computer,” 2014.
[Online]. Available: https://www.youtube.com/watch?v=wWHAs--
HA1c

[6] M. Mosca, “Cybersecurity in an era with quantum computers: Will we
be ready?” IEEE Secur. Priv., vol. 16, no. 5, pp. 38–41, 2018.

[7] NIST, “Post-Quantum Cryptography, Workshops and Timeline, NIST
Computer Security Resource Center,” https://csrc.nist.gov/Projects/post-
quantum-cryptography/workshops-and-timeline, 2017.

[8] ——, “Post-Quantum Cryptography, Round 3 Submissions, NIST Com-
puter Security Resource Center,” https://csrc.nist.gov/News/2020/pqc-
third-round-candidate-announcement, 2020.

[9] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS - kyber: A
cca-secure module-lattice-based KEM,” in IEEE European Symposium
on Security and Privacy. IEEE, 2018, pp. 353–367.

[10] J. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “Saber:
Module-lwr based key exchange, cpa-secure encryption and cca-secure
KEM,” in International Conference on Cryptology in Africa. Springer,
2018, pp. 282–305.

[11] J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko,
A. Raghunathan, and D. Stebila, “Frodo: Take off the ring! practical,
quantum-secure key exchange from LWE,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 1006–1018.

[12] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based
public key cryptosystem,” in International Algorithmic Number Theory
Symposium. Springer, 1998, pp. 267–288.

[13] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal,
“NTRU prime: Reducing attack surface at low cost,” in International
Conference on Selected Areas in Cryptography. Springer, 2017, pp.
235–260.

[14] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Annual International Cryptology Conference.
Springer, 1996, pp. 104–113.

[15] NIST, “Submission Requirements and Evaluation Criteria for
the Post-Quantum Cryptography Standardization Process,”
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/
documents/call-for-proposals-final-dec-2016.pdf, 2016.

[16] J. H. Silverman and W. Whyte, “Timing attacks on ntruencrypt via
variation in the number of hash calls,” in The Cryptographers’ Track
at the RSA Conference. Springer, 2007, pp. 208–224.

[17] A. Park and D. Han, “Chosen ciphertext simple power analysis on
software 8-bit implementation of ring-lwe encryption,” in 2016 IEEE
Asian Hardware-Oriented Security and Trust, AsianHOST 2016, Yilan,
Taiwan, December 19-20, 2016. IEEE Computer Society, 2016, pp. 1–6.
[Online]. Available: https://doi.org/10.1109/AsianHOST.2016.7835555

[18] A. Atici, L. Batina, B. Gierlichs, and I. Verbauwhede, “Power analysis
on ntru implementations for rfids: First results,” RFIDSec 2008, pp.
128–139, 2008.

[19] M. Lee, J. E. Song, D. Choi, and D. Han, “Countermeasures against
power analysis attacks for the NTRU public key cryptosystem,” IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., vol. 93-A, no. 1, pp.
153–163, 2010.

[20] A. Aysu, Y. Tobah, M. Tiwari, A. Gerstlauer, and M. Orshansky,
“Horizontal side-channel vulnerabilities of post-quantum key exchange
protocols,” in IEEE International Symposium on Hardware Oriented
Security and Trust. IEEE Computer Society, 2018, pp. 81–88.

[21] J. W. Bos, S. Friedberger, M. Martinoli, E. Oswald, and M. Stam,
“Assessing the feasibility of single trace power analysis of frodo,” in
International Conference on Selected Areas in Cryptography. Springer,
2018, pp. 216–234.

https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/5-iot-security-best-practices-after-the-covid-19-lockdown/
https://iot-analytics.com/5-iot-security-best-practices-after-the-covid-19-lockdown/
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf
https://www.youtube.com/watch?v=wWHAs--HA1c
https://www.youtube.com/watch?v=wWHAs--HA1c
https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline
https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1109/AsianHOST.2016.7835555

- 14

[22] T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu, “Practical cca2-
secure and masked ring-lwe implementation,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2018, no. 1, pp. 142–174, 2018.

[23] O. Reparaz, R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede,
“Additively homomorphic ring-lwe masking,” in International Confer-
ence on Post-Quantum Cryptography. Springer, 2016, pp. 233–244.

[24] O. Reparaz, S. S. Roy, R. de Clercq, F. Vercauteren, and I. Verbauwhede,
“Masking ring-lwe,” J. Cryptographic Engineering, vol. 6, no. 2, pp.
139–153, 2016.

[25] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel attacks
on masked lattice-based encryption,” in International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 2017, pp.
513–533.

[26] P. Pessl and R. Primas, “More practical single-trace attacks on the
number theoretic transform,” in International Conference on Cryptology
and Information Security in Latin America. Springer, 2019, pp. 130–
149.

[27] W. Huang, J. Chen, and B. Yang, “Power analysis on NTRU prime,”
IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 1, pp. 123–
151, 2020.

[28] D. Amiet, A. Curiger, L. Leuenberger, and P. Zbinden, “Defeating
newhope with a single trace,” in International Conference on Post-
Quantum Cryptography. Springer, 2020, pp. 189–205.

[29] B. Sim, J. Kwon, J. Lee, I. Kim, T. Lee, J. Han, H. J. Yoon, J. Cho,
and D. Han, “Single-trace attacks on message encoding in lattice-based
kems,” IEEE Access, vol. 8, pp. 183 175–183 191, 2020. [Online].
Available: https://doi.org/10.1109/ACCESS.2020.3029521

[30] A. Bauer, H. Gilbert, G. Renault, and M. Rossi, “Assessment of the
key-reuse resilience of newhope,” in The Cryptographers’ Track at the
RSA Conference. Springer, 2019, pp. 272–292.

[31] J. D’Anvers, M. Tiepelt, F. Vercauteren, and I. Verbauwhede, “Timing
attacks on error correcting codes in post-quantum schemes,” in Proceed-
ings of ACM Workshop on Theory of Implementation Security Workshop.
ACM, 2019, pp. 2–9.

[32] P. Ravi, S. S. Roy, A. Chattopadhyay, and S. Bhasin, “Generic side-
channel attacks on cca-secure lattice-based PKE and kems,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 3, pp. 307–335, 2020.
[Online]. Available: https://doi.org/10.13154/tches.v2020.i3.307-335

[33] P. Ravi, S. Bhasin, S. S. Roy, and A. Chattopadhyay, “Drop
by drop you break the rock - exploiting generic vulnerabilities
in lattice-based pke/kems using em-based physical attacks,” IACR
Cryptol. ePrint Arch., vol. 2020, p. 549, 2020. [Online]. Available:
https://eprint.iacr.org/2020/549

[34] Z. Xu, O. Pemberton, S. S. Roy, and D. Oswald, “Magnifying side-
channel leakage of lattice-based cryptosystems with chosen ciphertexts:
The case study of kyber,” IACR Cryptol. ePrint Arch., vol. 2020, p.
912, 2020. [Online]. Available: https://eprint.iacr.org/2020/912

[35] P. Ravi, S. Bhasin, S. S. Roy, and A. Chattopadhyay, “On
exploiting message leakage in (few) NIST PQC candidates for
practical message recovery and key recovery attacks,” IACR Cryptol.
ePrint Arch., vol. 2020, p. 1559, 2020. [Online]. Available:
https://eprint.iacr.org/2020/1559

[36] K. Ngo, E. Dubrova, Q. Guo, and T. Johansson, “A side-
channel attack on a masked IND-CCA secure saber KEM,” IACR
Cryptol. ePrint Arch., vol. 2021, p. 79, 2021. [Online]. Available:
https://eprint.iacr.org/2021/079

[37] Q. Guo, T. Johansson, and A. Nilsson, “A key-recovery timing attack
on post-quantum primitives using the fujisaki-okamoto transformation
and its application on frodokem,” in Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings,
Part II, ser. Lecture Notes in Computer Science, D. Micciancio and
T. Ristenpart, Eds., vol. 12171. Springer, 2020, pp. 359–386. [Online].
Available: https://doi.org/10.1007/978-3-030-56880-1_13

[38] S. Bhasin, J. D’Anvers, D. Heinz, T. Pöppelmann, and M. V.
Beirendonck, “Attacking and defending masked polynomial comparison
for lattice-based cryptography,” IACR Cryptol. ePrint Arch., vol. 2021,
p. 104, 2021. [Online]. Available: https://eprint.iacr.org/2021/104

[39] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “pqm4:
Testing and benchmarking NIST PQC on ARM cortex-m4,” IACR
Cryptol. ePrint Arch., vol. 2019, p. 844, 2019. [Online]. Available:
https://eprint.iacr.org/2019/844

[40] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS
- KYBER: Algorithm specifications and supporting documentation
(version 3.01),” https://pq-crystals.org/kyber/data/kyber-specification-
round3-20210131.pdf, 2021.

[41] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
2010, pp. 1–23.

[42] B. Gierlichs, K. Lemke-Rust, and C. Paar, “Templates vs. stochastic
methods,” in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2006, pp. 15–29.

[43] Y. Anzai, Pattern Recognition & Machine Learning. Elsevier, 1992.
[Online]. Available: https://doi.org/10.1016/c2009-0-22409-3

[44] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining. AAAI Press, 1996, pp. 226–231.

[45] K. Fukunaga and L. D. Hostetler, “The estimation of the gradient of a
density function, with applications in pattern recognition,” IEEE Trans.
Inf. Theory, vol. 21, no. 1, pp. 32–40, 1975.

[46] L. Rokach and O. Maimon, “Clustering methods,” in The Data Mining
and Knowledge Discovery Handbook. Springer, 2005, pp. 321–352.

[47] N. T. Inc, “ChipWhisperer UFO,” https://wiki.newae.com/CW308T-
STM32F.

[48] ——, “ChipWhisperer-Lite,” https://wiki.newae.com/CW1173_
ChipWhisperer-Lite.

[49] J. W. Bos, M. Gourjon, J. Renes, T. Schneider, and C. van Vredendaal,
“Masking kyber: First- and higher-order implementations,” IACR
Cryptol. ePrint Arch., vol. 2021, p. 483, 2021. [Online]. Available:
https://eprint.iacr.org/2021/483

https://doi.org/10.1109/ACCESS.2020.3029521
https://doi.org/10.13154/tches.v2020.i3.307-335
https://eprint.iacr.org/2020/549
https://eprint.iacr.org/2020/912
https://eprint.iacr.org/2020/1559
https://eprint.iacr.org/2021/079
https://doi.org/10.1007/978-3-030-56880-1_13
https://eprint.iacr.org/2021/104
https://eprint.iacr.org/2019/844
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://doi.org/10.1016/c2009-0-22409-3
https://wiki.newae.com/CW308T-STM32F
https://wiki.newae.com/CW308T-STM32F
https://wiki.newae.com/CW1173_ChipWhisperer-Lite
https://wiki.newae.com/CW1173_ChipWhisperer-Lite
https://eprint.iacr.org/2021/483

- 15

APPENDIX A
pqm4: TESTING AND BENCHMARKING NIST PQC ON

ARM CORTEX-M4 [41]

Listing 5, Listing 6, Listing 7, and Listing 8 are codes of m4
schemes. Barrett reduction is implemented in assembly lan-
guage and performs on two coefficients simultaneously. This
is due to Cortex-M4 implements the ARMv7E-M architecture,
offers single instruction multiple data (SIMD) instructions.

1 / / Decrypt ion f u n c t i o n o f the CPA−secure

2 void _ _ a t t r i b u t e _ _ ((n o i n l i n e)) indcpa_dec

3 (unsigned char *m,

4 const unsigned char * c ,

5 const unsigned char * sk)

6 {

7 poly mp, bp ;

8 poly * v = &bp ;

9

10 poly_unpackdecompress (&mp, c , 0) ;

11 p o l y _ n t t (&mp) ;

12 poly_frombytes_mul (&mp, sk) ;

13 for (i n t i = 1 ; i < KYBER_K; i ++) {

14 poly_unpackdecompress (&bp , c , i) ;

15 p o l y _ n t t (&bp) ;

16 poly_frombytes_mul (&bp , sk + i *KYBER_POLYBYTES) ;

17 poly_add (&mp, &mp, &bp) ;

18 }

19

20 p o l y _ i n v n t t (&mp) ;

21 poly_decompress (v , c+KYBER_POLYVECCOMPRESSEDBYTES) ;

22 poly_sub (&mp, v , &mp) ;

23 poly_reduce(&mp) ;

24

25 poly_tomsg (m, &mp) ;

26 }

Listing 5. Decryption of CRYSTALS-KYBER (m4 scheme)

1 / / App l ies B a r r e t t reduc t ion

2 / / to a l l c o e f f i c i e n t s o f a polynomia l

3 void poly_reduce (po ly * r)

4 {

5 asm_barrett_reduce (r −>coeffs) ;

6 }

Listing 6. Reduction of CRYSTALS-KYBER (m4 scheme)

1 / / reduce .S

2 . syntax u n i f i e d

3 . cpu cor tex −m4

4 . thumb

5

6 . g l oba l asm_barrett_reduce

7 . type asm_barrett_reduce ,% f u n c t i o n

8 . a l i g n 2

9 asm_barrett_reduce :

10 push { r4 −r11 , r14 }

11

12 poly . req r0

13 poly0 . req r1

14 poly1 . req r2

15 poly2 . req r3

16 poly3 . req r4

17 poly4 . req r5

18 poly5 . req r6

19 poly6 . req r7

20 poly7 . req r8

21 loop . req r9

22 b a r r e t t c o n s t . req r10

23 q . req r11

24 tmp . req r12

25 tmp2 . req r14

26

27 movw bar re t t cons t , #20159

28 movw q , #3329

29

30 movw loop , #16

31 1:

32 ldm poly , { poly0 −poly7 }

33

34 doub leba r re t t poly0 , tmp , tmp2 , q , b a r r e t t c o n s t

35 doub leba r re t t poly1 , tmp , tmp2 , q , b a r r e t t c o n s t

36 doub leba r re t t poly2 , tmp , tmp2 , q , b a r r e t t c o n s t

37 doub leba r re t t poly3 , tmp , tmp2 , q , b a r r e t t c o n s t

38 doub leba r re t t poly4 , tmp , tmp2 , q , b a r r e t t c o n s t

39 doub leba r re t t poly5 , tmp , tmp2 , q , b a r r e t t c o n s t

40 doub leba r re t t poly6 , tmp , tmp2 , q , b a r r e t t c o n s t

41 doub leba r re t t poly7 , tmp , tmp2 , q , b a r r e t t c o n s t

42

43 stm poly ! , { poly0 −poly7 }

44

45 subs .w loop , #1

46 bne .w 1b

47

48 pop { r4 −r11 , pc }

Listing 7. Barrett reduction of CRYSTALS-KYBER (m4 scheme)

- 16

1 / / g iven a 16− b i t i n t e g e r a , computes 16− b i t i n t e g e r

2 / / congruent to a mod q i n { 0 , . . . , q }

3 / / macros . i

4 . macro doub leba r re t t a , tmp , tmp2 , q , b a r r e t t c o n s t

5 smulbb \ tmp , \ a , \ b a r r e t t c o n s t

6 smultb \ tmp2 , \ a , \ b a r r e t t c o n s t

7 asr \ tmp , \ tmp , #26

8 asr \ tmp2 , \ tmp2 , #26

9 smulbb \ tmp , \ tmp , \ q

10 smulbb \ tmp2 , \ tmp2 , \ q

11 pkhbt \ tmp , \ tmp , \ tmp2 , l s l #16

12 usub16 \ a , \ a , \ tmp

13 . endm

Listing 8. Barrett reduction of CRYSTALS-KYBER (m4 scheme)

	Introduction
	Related works
	Main Contributions
	Organization

	Preliminaries
	Notation
	CRYSTALS-KYBER

	Proposed Chosen-Ciphertext Clustering Attack on Crystals-Kyber
	Sensitive Variable-dependent Leakage of Barrett Reduction
	Constructing Chosen Ciphertexts
	Attack Methodology

	Experiment Results
	Countermeasures
	Conclusion
	References
	Appendix A: pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4 LPR10

