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Abstract

The Signal protocol is used in many messaging applications today.
While it is an active research topic to design a post-quantum variant of
the protocol, no such variant is currently realized in the real world. In the
following document we describe a hybrid version of the Signal protocol,
that will be implemented to achieve post-quantum security for Tutanota’s
end-to-end encrypted e-mails.

1 Introduction

The Signal protocol, developed by Open Whisper Systems, is a cryptographic
protocol for end-to-end encrypted communication. It is used in many messaging
applications today. The protocol works asynchronously, which makes it also well
suited for e-mails where we cannot expect both communication participants to
be online at the same time. In this document we describe a hybrid version of the
Signal protocol. The protocol design is the result of a joint research project be-
tween the secure email service Tutanota and the the Leibniz University Hanover.
It will be implemented to achieve post-quantum security for Tutanota and to
add forward and future secrecy to our end-to-end encrypted e-mails. A major
design requirement therefore was to rely only on post-quantum key encapsu-
lation mechanisms (KEM) and digital signature schemes which are currently
undergoing standardization by NIST. Currently we have already implemented
a prototype proving it’s real world applicability.
In Section 2 we briefly describe the original Signal protocol. Afterwards we
introduce our modifications in Section 3. In Section 4 we summarize how our
protocol differs from the original Signal protocol.
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2 Preliminaries: The Signal Protocol

While the Signal is in fact an amalgamation of the Extended Triple Diffie-
Hellman (X3DH) key exchange protocol [14] and the Double Ratchet algorithm
[13] we will treat it as one protocol in the following and only distinguish sub-
protocols if needed.

2.1 Key features of the protocol

The protocol offers the following key features (see e.g. [16]):

1. Asynchrony: In the X3DH key exchange protocol prekeys are used so
that there is no need for both parties to be online at the same time.

2. Confidentiality: All messages are encrypted and therefore not made
available or disclosed to unauthorized parties.

3. Integrity: The consistency, accuracy, and trustworthiness of the data in
transit is ensured by the use of authenticated encryption with associated
data (AEAD), where messages are authenticated with MAC tags.

4. Authentication: The communicating parties authenticate each other by
the means of long-term identity keys. Trust in these keys is established
via fingerprint comparison (manually or using qr-codes). Any other mech-
anism for trust-establishment can, however, be plugged-in easily.

5. Perfect Forward Secrecy: As each message key is freshly derived from
the previous one via a key derivation function (KDF), a key compromise
does not enable the adversary to decrypt past messages.

6. Future Secrecy: Frequently contributing fresh shared secrets to the KDF
facilitates the recovery of the key chain and ensures that an adversary in
possession of one encryption key cannot keep listening to the conversation
for long.

7. Message Unlinkability Different messages exchanged in one conversa-
tion cannot be linked as they are encrypted and authenticated with one-
time keys. Therefore, if one message could for some reason be linked to a
specific party, there would still be no proof that same party authored any
other message.

8. Offline Deniability: The protocol does not provide any means to prove
that a message was authored by a specific party after it has been sent.
However, if one of the communicating parties collaborates with a third
party during a protocol run, such proof can be provided.
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2.2 Building blocks

The protocol contains the following building blocks:

1. Publishing keys: The X3DH protocol uses prekeys to achieve asyn-
chrony. Therefore each party X must generate the following key pairs:

� n one-time prekey pairs {(ospkiX , oppkiX)}i, where i is a unique id.

� A semi ephemeral key pair {(sspkjX , sppkjX)}j, where j is a unique
id

� A long-term identity key pair (iskX , ipkX)

From these keys, so called key bundles are generated and uploaded on a
key server. A key bundle contains:

� The user’s registration id (idX)

� A public one-time key preceded by a unique id (i, oppkiX)

� The semi-ephemeral public key signed with the long-term identity
key and also identified by a unique id (j, sppkjX , sigjX), where sigjX ←
sign(iskX , sppkjX)

� the public long-term identity key (ipkX)

When Alice wants to send a message to Bob, with whom she did not
communicate before, she first needs to fetch his key bundle from a server.

2. Authenticated Key Exchange (AKE): The AKE is carried out by the
X3DH protocol. Once Alice received Bob’s key bundle from the server,
she verifies the signature on the signed prekey:

verify(ipkB , sppk
j
B , sig

j
B) (2.1)

She then generates a base key pair

(bskA, bpkA)← gen() (2.2)

and performs four Diffie-Hellman (DH) calculations using different com-
binations of her base key’s and identity key’s secret key and Bob’s public
keys from the server. This yields the following keys:

k1 ← DH(iskA, sppk
j
B),

k2 ← DH(bskA, ipkB),

k3 ← DH(bskA, sppk
j
B),

k4 ← DH(bskA, oppk
i
B).

(2.3)

Note that the calculation of k4 is optional, as all one-time prekeys sent to
the server may have been fetched already. All results are concatenated to
derive a master secret
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sk ← KDF (k1||k2||k3(||k4)). (2.4)

This master secret can be used to start a session with Bob. However, in the
combined signal protocol a ratchet step (as described below) is performed
beforehand to derive the actual message key (mk).

Note that Bob can calculate the same master secret as Alice using Alice’s
base key and identity public key (which he will receive with Alice’s initial
message) and the secret keys corresponding to the public keys from his
key bundle:

k1 ← DH(sspkjB , ispkA),

k2 ← DH(iskB , bpkA),

k3 ← DH(sspkjB , bpkA),

k4 ← DH(ospkiB , bpkA).

(2.5)

3. Ratchet steps : Before Alice can start sending messages to Bob she de-
rives the message key mk using the Double Ratchet algorithm.
This algorithm allows Alice and Bob to continuously agree on new en-
cryption keys to achieve forward and future secrecy. For this purpose
three KDF chains are implemented: a root chain, a sending chain and a
receiving chain. These chains are advanced in two different ratchets.

For the asymmetric (or Diffie-Hellman)-Ratchet (see Figure 1) Alice and
Bob continuously generate new Diffie-Hellman key pairs and send the re-
spective public keys to the receiving party. This way both parties can
calculate a new DH output (kn). For the initial ratcheting Alice uses
the private key of a newly generated ephemeral keypair and Bob’s signed
prekey:

(eskA, epkA)← gen()

kn ← DH(eskA, sppkB).
(2.6)

After having received Alice’s message containing epkA, Bob calculates the
same secret:

kn ← DH(sspkB , epkA). (2.7)
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Figure 1: Continuous Diffie-Hellman key exchange in the Double Ratchet Algo-
rithm [13].

The DH output becomes the input to a KDF on the root chain (see Figure
2) together with the root key.

(rk, ck)← KDF (rk, kn). (2.8)

The master secret derived by the X3DH protocol serves as initial root
key. The output of this KDF is a new root key and a chain key. This step
is performed by Alice and Bob analogously with the only difference that
Alice uses the new chain key to start a sending chain while Bob uses it to
start a receiving chain.
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Figure 2: Key derivation in the asymmetric Ratchet of the Double Ratchet
Algorithm [13].

Alice’s sending and Bob’s receiving chain are advanced analogously in the
symmetric ratchet (see Figure 3) where a key derivation is performed using
the newly generated chain key as input

(ck,mk)← KDF (ck). (2.9)

The output is a new chain key and the message key. Note that those keys
will be identical for Alice and Bob.
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Figure 3: Key derivation in the symmetric ratchet of the Double Ratchet Algo-
rithm [13].

The Ratchet steps are repeated in the same way whenever Alice or Bob
receive a new public key from the other party. Whenever they want to send
a message without having received before they only advance the sending
chain in the symmetric ratchet without advancing the root chain before.

4. Send steps: Once Alice generated the message key, she can finally com-
pose the initial message and send it to Bob. The initial message contains:

� only for the initial (X3DH) message:

– Alice’s registration id (idA)

– Alice’s identity public key (ipkA)

– Alice’s public base key (bpkA)

– Identifiers stating which of Bob’s one-time keys and signed prekeys
she used (i, j)

� The header (h), containing:

– The new asymmetric ratchet public key (epkA)

– The message number (n)

– The previous chain length (pn)

� the ciphertext (c)

� and the respective tag(t)
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The message m is encrypted using a symmetric AEAD algorithm which
in addition to the ciphertext outputs a tag that guarantees the integrity
of the message and associated data. The associated data (ad) consists of
the message header h and the public identity keys of both parties:

h← header(epkA, n, pn)

ad← h||encode(ipkA)||encode(ipkB)

(t, c)← enc(mk,m, ad);

(2.10)

5. Receive steps: Bob, who generated the same message key mk, can de-
crypt the message and verify the MAC tag.

ad← h||encode(ipkA)||encode(ipkB) (2.11)

m← dec(mk, c, t, ad) (2.12)

If the message decrypts and verifies successfully the communication be-
tween Alice and Bob has been established, otherwise the protocol is aborted.

3 A hybrid Signal protocol

In this section we describe a hybrid version of the Signal protocol, combining
the original protocol with a post quantum variant. This post-quantum vari-
ant differs from the original protocol in some aspects that will be described
in more detail in this section. These differences are due to the fact that the
Diffie-Hellman (DH) key exchange has to be replaced by a key encapsulation
mechanism (KEM) as there is currently no suitable post-quantum replacement
for DH. We discussed using SIDH and CSIDH. However, the former is not se-
cure to be used with non-ephemeral keys [5, 9] while the latter has still little
maturity as well as some performance issues.

A KEM variant of the Double Ratchet protocol was first described by Duits
[8]. Brendel et al. [5] discuss the construction of X3DH using a KEM. However,
they point out that standard KEMs are inadequate to achieve asynchrony for
an authenticated key exchange (AKE) as the encapsulating party cannot con-
tribute non-ephemeral input (and thus cannot authenticate by contributing her
identity key). They discuss so called split KEMs where both parties contribute
keys to the KEM as a possible solution but are not able to provide a strongly-
secure instance of such a KEM. They point out that while many passively-secure
lattice-based KEMs are split KEMs, they become insecure when keys are used
more than once (which is essential to X3DH). To make key reuse secure they
have to be transformed via the the Fujisaki-Okamoto (or a similar) transform
with the consequence of losing their compliance with the split KEM design.

In our proposal for a post-quantum variant we therefore modified the X3DH
protocol to use a signature to replace the Diffie-Hellman calculation involving
the initial senders identity key. In Section 4 we discuss how this impacts the
protocol’s security features. The most obvious impact is the loss of deniability
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for the X3DH message. In their most recent paper [6] Brendel et al. show how
to design a similar post-quantum secure variant of the X3DH protocol using
designated verifier signature schemes instead. Their design looks promising but
seems to require further analysis before it can be used in real-world applications.

3.1 Building blocks

In the following we describe the building blocks of the hybrid protocol. As the
pre-quantum variant does not differ from the one already described in Section
2 we only describe the post-quantum secure variant and the way both variants
are combined in the hybrid approach. Note that in the following all keys and
signatures used or generated in the pre-quantum protocol are marked as pre

while the same values for the post-quantum variant are marked as post, an
asterisk (∗) indicates that both values are included separately and two asterisks
(∗∗) mark their concatenation.

1. Publishing keys: For the hybrid protocol the users have to generate
the following post-quantum pre-keys in addition to the keys used in the
original protocol:

� n one-time prekey pairs {(postospkiX , postoppkiX)}i, where i is a
unique id.

� A semi ephemeral key pair {(postsspkjX , postsppkjX)}j, where j is a
unique id

� A long-term identity key pair (postiskX , postipkX)

They then publish key bundles of the following form on the server.

� The user’s registration id ( idX), which will be the e-mail address

� Pre- and post-quantum public one-time keys preceded by a unique
id (i, ∗oppkiX)

� Pre- and post-quantum semi-ephemeral public keys signed with the
long-term identity keys, identified by a unique id (j, ∗sppkjX , ∗sigjX),

where ∗sigjX consists of presigjX ← sign(preiskX , presppkjX) and
postsigjX ← sign(postiskX , postsppkjX).

� Pre- and post-quantum public long-term identity keys (∗ipkX). Note
that the post-quantum identity key consists of 2 keys: a signing key
and a key encapsulation key. For simplicity’s sake we, however, treat
it as one key in the following.

Note that all pre- and post quantum keys are included as separate data
structures. We consider it sufficient to have a pre-quantum only signature
on the pre-quantum and a post-quantum signature on the post quantum
key, so that each key is securely authenticated as long as the respective
signature scheme remains secure.
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2. Authenticated Key Exchange (X3DH): For the post-quantum vari-
ant some modifications have to be made to the X3DH AKE as there is no
suitable Diffie-Hellman alternative and the respective calculations have to
be replaced with key encapsulations.

Definition 1 A key encapsulation (c, k) ← encaps(pkX) takes a public
key as input and outputs a symmetric key and a corresponding ciphertext.
The decapsulating party obtains the symmetric key by calculating k ←
decaps(skX , c).

After fetching Bob’s key bundle from the server Alice has to verify an
additional post-quantum signature on Bob’s post-quantum signed pre-key:

verify(postipkB ,
postsppkjB ,

postsigjB) (3.13)

Alice does not generate a post-quantum equivalent to the base key pair as
KEMs do not provide the possibility to contribute particular secret keys
but instead (differing) randomness is used inside the key encapsulation
function. For the same reason she cannot contribute her non-ephemeral
identity key.

Using key encapsulations instead of DH calculations yields the following
steps:

(c2,
postk2)← encaps( postipkB),

(c3,
postk3)← encaps( postsppkjB),

(c4,
postk4)← encaps( postoppkiB).

(3.14)

Note that Alice cannot calculate an equivalent to k1 and therefore, does
not achieve authentication during the key exchange.

The preki and postki resulting from the pre- and post-quantum key agree-
ment are concatenated to derive the master key:

sk = KDF (prek1|| ∗∗k2|| ∗∗k3|| ∗∗k4) (3.15)

To achieve the authentication of the encapsulating party, the encapsulated
keys are signed:

data← c2||c3||c4||H(postipkB)||H(postsppkjB)||(H( postoppkiB))
postsigA ← sign(postiskA, data),

(3.16)

where H is a cryptographically secure hash function. Note that we include
the hash of the used encryption keys in the signature to prevent any at-
tack where an adversary can find a different combination of plaintext and
encryption key that yields the same ciphertext and claim that the new
plaintext is the one originally signed by the victim (see [2]).
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Bob can calculate the same master secret as Alice using the secret keys
corresponding to the public keys from his key bundle. Note that before
performing this steps Bob verifies the signature on the encapsulated secrets
using Alice’s identity key, which he receives with the initial message:

data← c2||c3||c4||H(postipkB)||H(postsppkjB)||(H(postoppkiB))

verify(postipkA, data,
post sigA)

(3.17)

Bob then decapsulates all keys:

postk2 ← decaps(postiskB , c2)

postk3 ← decaps(postsspkjB , c3)
postk4 ← decaps(postospkiB , c4)

(3.18)

3. Ratchet steps: For this step we use the Double Ratchet algorithm as
described in Section 2. For post-quantum security we use a variant of the
Double Ratchet protocol where Diffie-Hellman calculations are replaced
with key encapsulations in the asymmetric Ratchet (see Figure 4).

For the initial ratcheting Alice uses Bob’s signed prekey. She generates
a new key pair as well but cannot contribute her private key to the key
encapsulation. Her new key pair will only be used for the next message
that Bob sends to her.

(posteskA,
postepkA)← gen()

(cn,
postkn)← encaps(postsppkjB)

(3.19)

The output of the key encapsulation is a tuple, containing a newly gen-
erated secret and a matching ciphertext. After having received Alice’s
message containing the ciphertext cn, Bob calculates the same secret:

postkn ← decaps(postsspkjB , cn). (3.20)
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Figure 4: The key exchange in the Double Ratchet Algorithm using key encap-
sulation instead of DH calculations.

The root chain and the sending/receiving chain are advanced the same way
as in the original Double-Ratchet-Algorithm. The only difference relates
to the input to the key derivation on the root chain which consists in the
concatenation of the DH shared secret and the shared secret from the key
encapsulation:

(rk, ck)← KDF (sk, ∗∗kn)). (3.21)

4. Send steps: In this step the header and associated data (ad) are gener-
ated and the message is encrypted and sent. The message now has the
following form (e.g. for Alice):

� only for the initial (X3DH) message:

– Alice’s registration id (idA)

– Alice’s identity public key (∗ipkA)

– Alice’s public base-key (pbkA)

– The encapsulated keys from the AKE step (c2, c3, c4)

– The respective signature (postsigA)
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– Identifiers stating which of Bob’s prekeys and signed prekeys she
used (i, j)

� The header (h), containing:

– The encapsulated asymmetric chain key (cn)

– The new asymmetric ratchet public keys (∗epkA)

– The message number (n)

– The previous chain length (pn)

– The chain number for the sender chain(nc)1

� the ciphertext (c)

� and the respective tag(t)

The associated data (ad) now consists of both parties’ public identity
keys, the message header h and the signed encapsulated ciphertexts from
the AKE step (c2, c3, c4,

postsigA). The authenticated encryption of the
message m is performed as in the original Signal protocol:

h← header(∗epkA, cn, n, pn, nc)

ad← h||H(∗∗ipkA)||H(∗∗ipkB)||c2||c3||c4||postsigA
(t, c)← enc(mk,m, ad)

(3.22)

Note that the encapsulated keys (ci) and the respective signature (postsigX)
are additionally used as associated data for the AEAD to prevent an ad-
versary from replacing the original signature with their own (see [2]) and
to prevent mix-and-match attacks on KEM combiners as described by
Bindel et al. [3].

5. Receive steps: In this step the described message is decrypted and ver-
ified:

ad← h||H(∗∗ipkA)||H(∗∗ipkB)||c2||c3||c4||postsigA (3.23)

m← dec(mk, c, t, ad) (3.24)

1This is an addition to the original protocol we introduced due to [1]. It facilitates calcu-
lating the sending chain key only in the send step, thereby reducing the lifetime of the new
key and increasing security.
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3.2 Protocol Flow

Figure 5: Protocol flow for the hybrid protocol.

Figure 5 depicts the flow of the hybrid protocol.When registering their Tutanota
accounts, Alice and Bob generate their identity key pairs as well as n one-time
key pairs and a signed ephemeral key. They then upload the key bundles to the
server. When Alice wants to send an e-mail to Bob, with whom she did not
communicate earlier, she first fetches his key bundle from the server. She then
performs the authenticated key exchange by calling the function

x3dhAlice(BundleB ,
∗ iskA).

This function expects Bob’s key bundle and Alice’s secret identity key and
performs the steps from Equations 2.1,2.2, 2.3 as well as 3.13, 3.14 and 3.15.

After having derived the master secret Alice performs the ratchet steps. We
assume that Alice (and Bob) maintains a state containing, among others2:

� Their own most recent pre- and post-quantum asymmetric ratchet key
pairs (∗eskown,

∗ epkown)

� The other parties most recent pre- and post-quantum asymmetric ratchet
public keys (∗epkremote)

� The most recent encapsulated secret that was sent to the other party cn

2We reduce this overview to the most important values needed for the core protocol and
leave out values required e.g. to deal with out of order messages or to resend X3DH messages.
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� The most recent root key (rk)

� The most recent chain keys for the sending and receiving chain (cks, ckr)

This state is initialized with the sk from the X3DH protocol as rk and Bob’s
public signed prekey as (∗epkremote). The function

stepRatchetSend(state)

performs all ratchet steps as in Equations 2.6 as well as 3.19 and 3.21, for the
asymmetric and 2.9 for the symmetric ratchet (sending chain). In addition to an
updated state, the ratchet step outputs the message key for Alice’s first message
to Bob.

Alice now performs the send steps as in Equations 3.22 by calling

send(mk,m, ad)

and sends the resulting message and tag to Bob.
When Bob receives Alice’s e-mail he extracts all (encapsulated) keys from

the message and calls

x3dhBob(
∗sspkB ,

∗ospkB ,
∗ iskB , keyExchange)

using this keyExchange and his private keys corresponding to the public keys
from the key bundle as parameters. This executes all steps from Equations 2.5
as well as 3.18 and 3.15.

He initializes the state with the sk from the X3DH protocol as rk, his signed
prekey pair as (∗eskown,

∗epkown) and Alice’s ephemeral key from the message
as (∗epkremote). He calls

stepRatchetReceive(state),

which performs all steps from Equations 2.7 as well as 3.20 and 3.21, for the
asymmetric and 2.9 for the symmetric ratchet (receiving chain). The function
outputs the updated state and the message key.

Bob finally performs the receive steps as in Equations 3.23 by calling

receive(mk, c, t, ad).

If the message decrypts and verifies successfully the communication between
Alice and Bob has been established, otherwise the protocol is aborted.

To exchange further messages Alice and Bob do not have to perform the
authenticated key exchange again. When Bob replies to Alice he only executes

stepRatchetSend(state)

and
send(mk,m, ad)
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as defined above. Alice calls

stepRatchetReceive(state)

and
receive(mk, c, t, ad).

In our example Bob sends another message without having received a reply from
Alice. In this case the asymmetric ratchet cannot be stepped. Bob now calls

stepSymRatchetSend(state)

performing only Equation 2.9 and subsequently

send(mk,m, ad)

using the new message key. Alice calls

stepSymRatchetReceive(state)

again performing Equation 2.9 and

receive(mk, c, t, ad).

3.3 Instantiation

Table 1 gives an overview of the cryptographic algorithms we use in the hybrid
Signal protocol for the pre- and post-quantum variant respectively.

Algorithm Pre-quantum instantiation Post-quantum instantiation
Asymmetric algorithms

Diffie-Hellman / KEM Curve25519 ECDH [12] Kyber 786 [4]
Signatures XEdDSA [15] Dilithium 1280x1024

(deterministic) [7]
Symmetric algorithms

AEAD AES 256 CBC and HMAC [10] AES 256 CBC and HMAC
KDF (sending/receiving chain) HMAC HMAC
KDF (root chain) HKDF [11] HKDF
Hash algorithm Sha256 Sha256

Table 1: Cryptographic algorithms used in the hybrid protocol.

4 Deviation from the original signal protocol

Our hybrid protocol achieves the same security properties as the original Signal
protocol for pre-quantum and almost the same security properties for post-
quantum security. The necessary deviations described in the previous section
lead to some restrictions. In this section we summarize these deviations and
point out their consequences.
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Replacing DH calculations by key encapsulations

� Randomness contribution Replacing DH calculations by key encapsu-
lations usually implies that only one party provides randomness. However,
it depends on the used algorithm. We are using Kyber KEM [4], where
both parties contribute randomness to the generation of the shared secrets.

Replacing the initiator’s DH calculation using the identity key with a
signature As pointed out by the X3DH specification [14] if DH-based mutual
authentication is replaced by signatures “this reduces deniability, increases the
size of initial messages, and increases the damage done if ephemeral or prekey
private keys are compromised, or if the signature scheme is broken.” This
holds for our proposal as well, though only partly as we only replace one DH
calculation. We discuss this in the following:

� Deniability Because the message is signed, we provide cryptographic
proof that the initiator did send the encapsulated keys included in the
first message. They can therefore not deny the authorship of this message.
For all following messages we, however, yield the same offline deniability
as the original protocol. 3

� Security depends on signatures scheme instead of DH calcula-
tions If the signature scheme is broken, the initiator can be impersonated.
In the original version the security of the authentication relies on the DH
calculation using the secret identity key.4

� Damage on key compromise The X3DH specification [14] mentions
increased damage “if ephemeral or prekey private keys are compromised”
as a consequence of replacing DH calculations with signatures. This is
founded in the fact that if the DH calculations with the identity keys
are left out, the compromise of ephemeral and signed private keys only
would yield the combined shared secret. In our case, however, we still
encapsulate with the other parties identity key. Therefore, there is no
security reduction in our case.

� Increased initial message size The initial message becomes larger as
it includes an additional signature. This adds up to the message growth
caused by the additional symmetric keys and encapsulated secrets that
have to be included in the hybrid variant. However, for e-mail keeping
message sizes small is of less importance, as compared to instant messag-
ing.

3Note that online deniability is explicitly not given in neither variant (see [14]).
4The receiver, who authenticates via the knowledge of the KEMs private identity key,

cannot be impersonated in the post-quantum variant even if the signature scheme is broken.
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5 Notations

(preiskX , preipkX) Pre-quantum Identity key pair of party X : DH key pair.
(postiskX , postipkX) Post-quantum Identity key pair of party X : Dilithium and Kyber key pair.

(presspkjX , presppkjX) Pre-quantum signed prekey key pair of party X : DH key pair signed
with the DH identity key.

(postsspkjX , postsppkjX) Post-quantum signed prekey key pair of party X : Kyber key pair
signed with the Dilithium identity key.

(preospkiX , preoppkiX) Pre-quantum one-time prekey pairs of party X : DH key pair.

(postospkiX , postoppkiX) Post-quantum one-time prekey pairs of party X : Kyber key pair.
(preeskX , preepkX) Pre-quantum ephemeral key pair of party X :DH key pair.
(posteskX , postepkX) Post-quantum ephemeral key pair of party X : Kyber key pair.
(prebskX , prebpkX) One-time DH base key pair of party X needed only for the initial message
sign(preiskX , data) XEdDSA signature on provided data using the private identity key.
sign(postiskX , data) Dilithium signature on provided data using the private identity.
verify(preipkX , data, signature) Verify XEdDSA signature on provided data using the public identity key.
verify(postipkX , data, signature) Verify Dilithium signature on provided data using the public identity key.
gen() Key generation of Kyber or DH keys.
(c, k)← encaps(postpkX) Kyber key encapsulation using some public key of party X.

The result is a new key and a respective ciphertext.
k ← decaps(postskX , c) Kyber key decapsulation using ciphertext and some private key.
DH(preskX , prepkY ) Diffie-Hellman calculation involving the private key of partyX

and the public key of party Y.
(ck,mk)← KDF (ck) HMAC using ck as key.

The result is a new chain key (ck) and a message key (mk).
(rk, ck)← KDF (rk, kn) HKDF using rk as salt and the output of the asymmetric ratchet as

input key. The result is new a root key (rk) and a chain key (ck).
(c, t)← enc(mk,m, ad) Authenticated encryption with associated data.

The result is a ciphertext and a tag.
m← dec(mk, c, t, ad) Authenticated decryption using message key, ciphertext, tag

and the associated data.
header(data) Generates a message header containing the given data.
encode(preipkX) Encodes a public key into a byte sequence.

Encoded public identity keys are used as associated data (ad).

Table 2: Notations used in the protocol description. While secret and public
keys are abbreviated with sk and pk respectively, we use spk and ppk for secret
and public prekeys. Pre-quantum keys are marked with pre and post-quantum
keys with post respectively, an asterisk (∗) indicates that both values are included
separately and two asterisks (∗∗) mark their concatenation.
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