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Abstract

Consider the identification (ID) via channels problem, where a receiver decides whether the trans-

mitted identifier is its identifier, rather than decoding it. This model allows to transmit identifiers whose

size scales doubly-exponentially in the blocklength, unlike common transmission codes with exponential

scaling. Binary constant-weight codes (CWCs) suffice to achieve the ID capacity. Relating parameters
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of a binary CWC to the minimum distance of a code and using higher-order correlation moments, two

upper bounds on binary CWC sizes are proposed. These bounds are also upper bounds on identifier

sizes for ID codes constructed by using binary CWCs. We propose two constructions based on optical

orthogonal codes (OOCs), which are used in optical multiple access schemes, have constant-weight

codewords, and satisfy cyclic cross-correlation and auto-correlation constraints. These constructions are

modified and concatenated with outer Reed-Solomon codes to propose new binary CWCs being optimal

for ID. Improvements to the finite-parameter performance of both our and existing code constructions

are shown by using outer codes with larger minimum distance vs. blocklength ratios. We illustrate ID

regimes for which our ID code constructions perform significantly better than existing constructions.

An extensive list of other modified OOCs that can be used as binary CWCs is provided.

Index Terms

Identification via channels, optical orthogonal codes, binary constant weight codes, hypothesis

testing, constant composition codes.

I. INTRODUCTION

Shannon’s paper on communication systems [2] establishes a fundamental asymptotic upper

bound on the size of the message set, or message size, such that reliable transmission from a

transmitter to a receiver through a memoryless noisy channel is possible by using an encoder-

decoder pair. This point-to-point (P2P) channel model is one of the simplest communication

models that are extended to numerous other channels; see, e.g., [3]. The common approach to

provide reliable transmission is that the transmitter encodes a given message into a codeword

with redundant information about the message such that the receiver can decode an observed

noisy codeword reliably. Transmission codes with low decoding complexity and block error

probability (BLER) are proposed for various communication and storage applications, includ-

ing Reed-Solomon (RS) codes used for information storage and polar codes [4] for wireless

communications with short blocklengths.
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We consider a communication problem closely related to reliable communications via a P2P

channel. Similar to the P2P channel model, a transmitter encodes an identifier, not known before

encoding, into a codeword that is sent through a noisy channel such that a receiver observes a

noisy codeword. Unlike the P2P channel model, the receiver is interested in the reliable result

of the binary hypothesis test whether the transmitted identifier is the identifier of interest for

him. Since the transmitted information of interest for each receiver is fixed, it is considered as

an identifier for the corresponding receiver; therefore, this hypothesis testing problem is called

the identification via channels problem [5].

The problem of authenticated communications through an adversarial multiple access channel

is also closely related to the ID problem, since authentication of a message transmitted via

unauthenticated communications through a nominal (i.e., no-attack state) channel is possible

by using an ID code if authentication is possible, which does not affect the authenticated

communication rate [6, Remark 4], [7]. This close relation is illustrated also in [8, Theorem 1]

by showing the relation between the sizes of authentication and ID codes, which are equivalent

in special cases. Thus, one can use various authentication problem results to obtain bounds on

the parameters of the ID problem and vice versa.

One practical scenario for the identification (ID) problem is when there is a network of

internet-of-things (IoT) devices, such as sensors, that are controlled by a mobile phone. Suppose

we want to save energy to increase the battery life of these sensors. One way to achieve this is

to insert a physical unclonable function (PUF) [9]–[11], which can be any digital circuit with

unique outputs, into each sensor such that a uniformly distributed secret key is assigned to each

device. Each secret key is an identifier for the corresponding sensor, which can be shared with the

mobile phone when secure transmission is possible or by using public key cryptography. When

the mobile phone intends to communicate with a particular sensor, this sensor’s identifier and

the content of the command to this sensor are encoded and broadcast through a noisy wireless

channel. All sensors first apply a binary hypothesis test to decide whether they are the targeted
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sensor. If this is not the case, they do not decode the command. Hence, all sensors with which

the mobile phone does not communicate save energy by avoiding decoding. Similarly, see [12]

for an application of the ID problem to digital watermarking.

The ID problem replaces the decoding operation in a P2P channel model with a binary

hypothesis test; see, e.g., [13]–[15] for various discussions about this binary hypothesis test and

its extensions. For a discrete memoryless channel (DMC) this problem is shown in [5] to allow

the number of identifiers, or identifier size, to be doubly-exponential in the blocklength. This is

actually achievable for any channel with a non-zero Shannon transmission capacity. This is also in

contrast to the P2P channel problem for which the message size is exponential in the blocklength.

Thus, asymptotically the number of identifiers that can be used in an ID problem is exponential

in the message size of a P2P channel problem with the same blocklength. Furthermore, reliable

ID is possible for a DMC with a maximum ID rate, defined below, being equal to its Shannon

capacity [5], which is the maximum transmission rate at which reliable decoding is possible.

The main difference between the encoders for the ID and the transmission problem, in the

functional sense, is that randomization increases the performance of ID codes, whereas it suffices

to use deterministic encoders for transmission. Randomized encoders allow to fully benefit from

overlaps between sets of codewords assigned to different identifiers, which is the reason for the

increase in the identifier size as compared to deterministic encoders [16]. Randomized encoders

are required for several information-theoretic communication models, especially the ones with

secrecy constraints, such as the wiretap channel (WTC) problem [17]. A local randomness source

for a WTC transmitter is proposed in [18, Chapter 2] to be a digital PUF embodied in the WTC

transmitter; see [11], [19] for other applications for which PUFs can be used as a randomness

source. Such a uniformly-distributed PUF output can be used also for randomization by the ID

transmitter. We assume that a codeword of a transmission code is selected by the ID transmitter

for a given identifier uniformly at random over the pre-determined set of codewords assigned

to the identifier. There exist uniformly-distributed randomized encoding algorithms with equally



5

sized codeword sets assigned to each identifier that achieve the ID capacity [5]. Therefore, we

analyze binary constant-weight codes (CWCs), which are used to represent the equally sized

codeword sets assigned to an identifier with symbol “1” and conversely codewords that cannot

be chosen for a given identifier with symbol “0”, respectively, as in [16], [20], [21].

An important family of binary CWCs is given by optical orthogonal codes (OOC), proposed

in [22] as codes that have high synchronous auto-correlation, low synchronous and asynchronous

cross-correlations, and low asynchronous auto-correlations. We remark that synchronous corre-

lations consider sequences only with aligned symbols, whereas asynchronous correlations allow

cyclic shifts in the sequences. OOCs are different from orthogonal (spreading) codes used in

cellular asynchronous code division multiple access systems because OOCs consist of symbols

“0” and “1”, unlike orthogonal codes with symbols “1” and “−1”. This property makes OOCs

suitable for unipolar environments such as optical systems used for direction detection [22],

where a symbol “1” represents a detected signal and symbol “0” no signal, respectively.

We modify OOCs to prove that modified OOCs are not only suitable but also optimal for

the ID problem. First, binary CWCs that are shown in [20] to be optimal for the ID problem,

have a parameter called pairwise overlap that corresponds to the maximum ratio of pairwise

overlaps of “1” symbols between codewords. This parameter suggests that cross-correlation

properties of such ID codes should not be affected in case symbols of different codewords

do not overlap. This means that the cross-correlation value should increase when “1” symbols

overlap, but it should not change when a “1” and the alternate symbol overlap. Therefore, OOCs

are well suited for this purpose as they have binary (unmodulated) symbols of “0” and “1”.

Second, the set of binary CWCs is shown to contain OOCs and OOCs must satisfy extra cross-

correlation constraints in addition to further auto-correlation constraints. Therefore, we modify

OOC constructions to improve their ID performance and then illustrate the range of parameters

for which optimal ID codes can be obtained by using modified OOCs. Unlike OOCs, our ID code

constructions do not require correlation calculations at the receiver, which generally have a high
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computational complexity. Furthermore, we propose a method to improve the finite-parameter

performance of both our and existing ID code constructions by concatenating inner binary CWCs

with suitable outer codes. We illustrate that our ID code constructions significantly outperform

existing constructions at low ID rates, whereas at high ID rates existing constructions perform

slightly better.

We provide two finite-parameter bounds on the ID code size. For binary CWCs, we show that

the pairwise overlap and constant weight parameters uniquely define the minimum distance of the

code. This fact allows to provide two different bounds on the ID code size. Furthermore, we use

the fundamental result from [5, Section II-A], which states that to asymptotically achieve the ID

capacity it suffices to design a binary CWC optimally for a noiseless channel and to concatenate

it with a (Shannon) capacity-achieving transmission code, where the concatenation operation

is different than the code concatenation operation common in the coding theory literature.

Therefore, one can combine our two bounds for the proposed binary CWCs with finite length

bounds for error correction codes to obtain bounds for ID code parameters for noisy channels.

A. Summary of Novel Contributions

A summary of the novel contributions in this work is stated below, where both the contribution

in Point 6 as well as the proof of the contribution in Point 2 extend beyond the material presented

in the submitted conference version of this work [1].

1) The code minimum distance of a binary CWC is uniquely determined by its codeword

weight and the maximum number of overlaps of non-zero codeword symbols. This result

allows to apply the Unrestricted Johnson Bound (UJB) [23], [24, Theorem 2.3.6], which

depends on the code minimum distance, to binary CWCs. We then provide an upper bound

on the size of a binary CWC with given blocklength, codeword weight, and maximum

number of overlaps of non-zero codeword symbols.

2) A new alternative upper bound on the size of a binary CWC is provided by defining a
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metric called `-th correlation moment and then finding an upper and a lower bound on the

metric. Similar to the UJB, a recursion formula is applied to improve the obtained upper

bound on the size of a binary CWC.

3) We show that the given upper bounds on the size of a binary CWC are upper bounds

also for the size of an ID code that consists of a concatenation of a binary CWC and a

transmission code.

4) We propose two novel ID code constructions by modifying existing OOC constructions

and by doubly concatenating them with two outer RS codes. Furthermore, we prove that

these constructions are optimal for ID if a set of asymptotic conditions are satisfied. We

also show that the performance of the proposed ID code constructions for finite parameters

is improved by replacing outer RS codes with doubly-extended RS codes.

5) The proposed ID constructions are compared with the best existing ID constructions along

with a tight asymptotic bound on the weighted sum of the ID rate and an ID error exponent.

For low ID rates, the proposed constructions perform significantly better than the existing

constructions, whereas for high ID rates the existing constructions perform slightly better.

Furthermore, the gaps between the (ID rate, type-II error exponent) tuples achieved by the

considered constructions and the tight asymptotic bound illustrate the performance loss

due to finite code parameters.

6) We provide an extensive list of other OOC constructions that can be modified to construct

ID codes by applying entirely similar steps as the ones used to construct the proposed ID

codes. These other OOC constructions are expected to perform in general worse than the

proposed ID codes mainly due to their larger error exponents. However, we emphasize

that these other constructions might be useful, e.g., to decrease the hardware complexity.
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B. Organization

This paper is organized as follows. In Section II, we describe the ID via channels problem,

binary CWCs, and OOCs. In Section III, we provide two upper bounds on the binary CWC sizes

that are used for ID. In Section IV, two OOC constructions are modified and concatenated with

outer error correction codes to propose new binary CWCs that are optimal for ID and whose

finite-parameter performance can be improved by using different outer codes. In Section V,

the proposed ID code constructions are compared with existing constructions and with a tight

asymptotic bound. Section VI concludes the paper.

C. Notation

Upper case letters represent random variables and lower case letters their realizations. A

superscript denotes a string of variables, e.g., Xn =X1, X2, . . . , Xj, . . . , Xn, and a subscript j

denotes the position of a variable in a string. A random variable X has a probability distribution

PX . Calligraphic letters such as X denote sets and set sizes are written as |X |. [1 : M ] denotes

the set {1, 2, . . . ,M} for an integer M ≥ 1. Z∗ denotes the set {0, 1, 2 . . .} of non-negative

integers and Z+ denotes the set {1, 2, . . .} of positive integers. GF(p) denotes the Galois field of

order p. x → a indicates that the parameter x tends to the value a. 1{·} denotes the indicator

function. A vector with elements (α0, α1, . . .) is denoted as ~α and its support supp(~α) is another

vector ~β = (β0, β1, . . .) such that βs = 1{αs > 0} for all s ≥ 0.

II. PROBLEM FORMULATION

Consider NID ≥ 1 identifiers i ∈ [1 : NID]. This set of identifiers represents NID different

receivers that want to test whether they are the receiver with which the transmitter intends to

communicate. To communicate with the i-th receiver, the transmitter sends a sequence XnID

whose noisy version Y nID , associated with a DMC PY |X , is observed by each receiver. The

task of the i∗-th receiver is to apply a hypothesis test for its received noisy sequence to decide
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Qi(X
nID)

PY |X

i ∈ [1 :NID]

Binary Hypothesis

Test for i∗

xnID ynID

i

i∗ 6= i

H0

i∗= i

H1

Fig. 1. Identification via channels problem. The i∗-th receiver applies the hypothesis test for its received sequence to determine

whether it is the target of the intended communication.

whether the transmitted identifier is equal to the identifier i∗∈ [1 :NID] assigned to this receiver

before transmission. The null hypothesis H0 for each receiver is that the transmitted identifier

is not the identifier assigned to it, and the alternative hypothesis H1 is that the receiver is the

one with which the transmitter aims to communicate. Fig. 1 illustrates the identifier encoding

procedure at the transmitter that sends XnID through a channel PY |X , and the receiver observes

Y nID for which the hypothesis test is applied.

There are two types of errors associated with the model shown in Fig. 1. Type-I errors occur

when the receiver mistakenly decides that it is not the desired receiver. Type-II errors occur if

the receiver mistakenly decides that it is the receiver for which the communication is intended.

Consider a randomized encoding step that takes an identifier i as input and outputs a codeword

xnID ∈ X nID according to a probability distribution Qi(X
nID) : i → X nID for all i ∈ [1 : NID].

It is shown in [5] that in general a random encoder is necessary to achieve the ID capacity.

Furthermore, type-I and type-II errors can be characterized by defining NID demapping regions

Di ⊂ YnID for i ∈ [1 : NID]. The randomized encoding step allows to benefit from overlapping

demapping regions, which is the main reason why the number of identifiers scales doubly-

exponentially in the blocklength. This gain can be obtained as long as the two error probabilities

can be made negligibly small [16]. Thus, we define the identification via channels problem as

follows.
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Definition 1. An (nID, NID, λ1, λ2) ID code consists of NID encoding probability distributions

Qi(X
nID) and demapping regions Di ⊂ YnID such that, given a DMC PY |X , for all i, i′ ∈ [1 : NID]

and i 6= i′ type-I and type-II error probabilities are upper bounded, respectively, as

1−
∑

ynID∈Di

∑
xnID∈XnID

Qi(x
nID)P nID

Y |X(ynID |xnID) ≤ λ1, (1)

∑
ynID∈Di

∑
xnID∈XnID

Qi′(x
nID)P nID

Y |X(ynID |xnID) ≤ λ2. (2)

♦

Due to the doubly-exponential scaling of NID in the blocklength nID, the ID rate and ID

capacity are defined as follows.

Definition 2. An ID rate RID is achievable if, given any λ1, λ2, ε > 0, there exist some nID≥1,

encoding probability distributions, and demapping regions satisfying Definition 1 and

1

nID
log(log(NID)) > RID − ε. (3)

The ID capacity CID is the supremum over all achievable ID rates RID. ♦

We next state the result that the ID capacity CID of a DMC PY |X is equal to its Shannon

capacity CSh.

Theorem 1 ([5]). The ID capacity of a DMC PY |X is

CID = max
PX

I(X;Y ) = CSh. (4)

We remark that if there is available common randomness shared between the transmitter and

receiver, the ID capacity CID of a DMC increases by the entropy rate of the common randomness

[12]. This provides an exponential increase in the number NID of identifiers with only a few bits

of common randomness. Therefore, the performance of any ID code construction, including our

constructions below, can be significantly improved if there is a source of common randomness

available such as PUFs [25].
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Achievability of the ID capacity CID is shown in [5, Section II-A] to be possible by using

encoding probability distributions Qi(·) that are uniformly distributed over equally sized support

sets, which can be represented by binary CWCs [20]. Therefore, we next define the parameters

of binary CWCs along with the conditions for them to be optimal ID codes.

Definition 3. An (Scw, Ncw,Wcw, Kcw) binary CWC {xScw
1 , xScw

2 , . . . , xScw
Ncw
} consists of Ncw code-

words of blocklength Scw and Hamming weight Wcw with symbols xj,s ∈ {0, 1} for j =

1, 2, . . . , Ncw and s = 0, 1, . . . , Scw − 1 such that the maximum number of overlaps of symbols

xj,s = 1 over all codeword pairs is Kcw, i.e., we have the cross-correlation

γj,j′,
Scw−1∑
s=0

xj,sxj′,s≤Kcw, ∀j, j′∈ [1 :Ncw] s.t. j 6=j′. (5)

A set of binary CWCs is optimal for ID if we have [20]

log(Wcw)

log(Scw)
→ 1 (weight factor), (6)

log(log(Ncw))

log(Scw)
→ 1 (second-order rate), (7)

Kcw

Wcw
→ 0 (overlap fraction). (8)

♦

A closely related code family to binary ID CWCs is given by OOCs. We next define OOCs

since the derivation of the bounds given below on the code size of binary ID CWCs follows

similar steps as for OOCs. Note that our new ID code constructions also modify OOCs to

improve their ID performance.

Definition 4. An (Sooc, Nooc,Wooc, λooc,a, λooc,c) OOC {xSooc
1 , xSooc

2 , . . . , xSooc
Nooc
} consists of Nooc

codewords of blocklength Sooc and Hamming weight Wooc with symbols xj,s ∈ {0, 1} for j =

1, 2, . . . , Nooc and s = 0, 1, . . . , Sooc − 1, such that for all τa∈ [1 : (Sooc−1)], τc∈ [0 : (Sooc−1)],
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j, j′∈ [1 :Nooc], and j 6= j′, we have

Sooc−1∑
s=0

xj,sxj,(s+τa) ≤ λooc,a (auto-correlation), (9)

Sooc−1∑
s=0

xj,sxj′,(s+τc) ≤ λooc,c (cross-correlation) (10)

where (s+ τa) and (s+ τc) additions are taken modulo Sooc. ♦

We next give bounds on the size of ID codes that can be constructed by using binary CWCs

with given parameters.

III. UPPER BOUNDS ON BINARY CWC SIZES

We first consider the minimum distance of a binary CWC.

Lemma 1. An (Scw, Ncw,Wcw, Kcw) binary CWC has a minimum distance dcw = 2(Wcw−Kcw).

Proof: Since the (Scw, Ncw,Wcw, Kcw) CWC is binary and since there are at most Kcw

symbols of “1” overlapping between all codeword pairs, there are at least (Wcw−Kcw) symbols

xj,s = 1 of each codeword that are overlapping with xj,s = 0 symbols of another codeword.

Therefore, the number of symbols that are not the same is at least 2(Wcw − Kcw) for each

codeword pair of a (Scw, Ncw,Wcw, Kcw) binary CWC. Furthermore, since there exist two binary

CW codewords that have exactly Kcw overlapping symbols xj,s = 1, the lemma follows.

Theorem 2. Given a binary CWC with parameters Scw, Wcw, and Kcw, we have

Ncw ≤

⌊
Scw

Wcw

⌊
(Scw−1)

(Wcw−1)

⌊
. . .

⌊
(Scw−Kcw)

(Wcw−Kcw)

⌋
. . .

⌋⌋⌋
. (11)

Proof: We first apply the Unrestricted Johnson Bound [23], [24, Theorem 2.3.6] to a CWC

with parameters Scw, Wcw, and dcw, which can be proved by recursively puncturing codewords.

Then, by using Lemma 1, the theorem follows.
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The upper bound in Theorem 2 can in general be improved by treating codewords of a binary

CWC as a set of sequences to bound their higher-order correlation moments. Such bounds are

applied in [26] to OOCs, which compared to binary CWCs satisfy extra cyclic auto-correlation

and cross-correlation constraints. Therefore, results in [26] cannot be directly used for binary

CWCs. We next present in Theorem 3 another upper bound on the number Ncw of binary

CW codewords given Scw, Wcw, and Kcw by finding appropriate bounds on their higher-order

correlation moments. See Appendix A for the complete proof of Theorem 3 and below for a

proof sketch with discussions about why various results for OOCs cannot be applied to binary

CWCs.

We first define functions and parameters that are used in Theorem 3. For a d′ ∈ [1 : Kcw],

define S ′cw = (Scw − d′), W ′
cw = (Wcw − d′), and K ′cw = (Kcw − d′). For ` ∈ Z+ and u ∈ [1 : `],

define

C`,u =
u∑
k=0

(−1)k
(
u

k

)
(u− k)`. (12)

Theorem 3. Given a binary CWC with parameters Scw, Wcw, and Kcw, we have the following

upper bound on Ncw for any ` ∈ Z+ and d′ ∈ [1 : Kcw] such that the innermost denominator is

positive.

Ncw ≤ Scw

Wcw

 (Scw−1)

(Wcw−1)

. . .
 (S ′cw + 1)

(W ′
cw + 1)

 (W ′
cw)` − (K ′cw)`(∑`

u=1 C`,u(
W ′cw
u )

2

(S
′
cw
u )

)
− (K ′cw)`


. . .



 . (13)

Proof Sketch: Define the ` ≥ 1-th order correlation moment as

m` =
1

Ncw(Ncw−1)

(
Ncw∑
j=1

Ncw∑
j′=1

γ`j,j′ −NcwW
`
cw

)
(14)

where γj,j′ is as defined in (5) such that γj,j′=Wcw if j=j′. We provide a lower and an upper

bound on the term (Ncw−1)m` by using the properties of binary CWCs so that a combination of
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these bounds provides the bound in (13). We follow similar steps to the ones in [26, Appendix A]

to obtain the lower bound for binary CWCs with two main differences. First, as compared to

the correlation moment defined in [26, (A2)], our m` definition in (14) replaces NcwScw terms

in the factors of the denominator given in [26, (A2)] by Ncw since binary CWCs do not impose

any cyclic correlation constraints. Second, we remove the steps [26, (A16)] and [26, (A17)] that

assume that the cyclic auto-correlation constraints in (9) are imposed, and we apply the Cauchy-

Schwarz inequality for all cases as in [26, (A18)] to obtain the lower bound on (Ncw−1)m`. The

upper bound on (Ncw−1)m` used here is (Ncw−1)K`
cw. Note that one cannot use similar steps as

in [26, Appendix B] where upper bounds for OOCs are provided by using their cyclic correlation

properties. Thus, by combining the obtained lower and upper bounds on (Ncw−1)m` and by

applying a recursion formula for any d′ ∈ [1 : Kcw], which is applied also in the Unrestricted

Johnson Bound and in [26, Theorem 4], the theorem follows.

Combining Lemma 1 and Theorem 3, the bound on Ncw in (13) can be written as a function

of dcw. This alternative formulation provides a lower bound on the minimum distance dcw of

binary CWCs with given parameters Scw, Ncw, and Wcw, which can be useful to design ID binary

CWCs.

We next prove that the upper bounds given in Theorems 2 and 3 are upper bounds also for

the code size of ID binary CWCs.

Lemma 2. If binary CWCs are used for ID, the upper bounds in (11) and (13) on Ncw are also

upper bounds on the number NID of identifiers that can be reliably identified.

Proof: (Scw, Ncw,Wcw, Kcw) binary CWCs concatenated with a capacity CSh achieving

transmission code are shown in [5, Section II-A] to be asymptotically optimal ID codes. To

obtain an optimal (nID, NID, λ1, λ2) ID code using this concatenation, the transmission code used

for error correction should have a blocklength of nID and dimension of log(Scw); see [16, Section

4.1]. This scheme achieves NID =Ncw. This is because a given identifier i∈ [1 :NID] corresponds
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to a CW codeword xScw
i such that the transmission codewords in the uniform encoding probability

distributions Qi(x
nID) are represented by symbols xj,s=1 of the CW codeword xScw

i , i.e., every

xScw
i can choose WCW transmission codewords.

Remark 1. The best upper bound obtained from Theorem 3, when applicable, provides generally

a tighter result than the result of the bound given in Theorem 2, where only the first-order

correlation properties are used. However, for various sets of parameters the denominator in (13)

is not positive, so Theorem 3 cannot be applied, unlike Theorem 2.

IV. MODIFIED OOC CONSTRUCTIONS FOR ID

There are only a few constructive methods proposed for the ID via channels problem. In [16],

[20], [21], [27] algebraic codes such as inner pulse position modulation (PPM) codes, which are

binary CWCs with Wcw =1 and Kcw =0, concatenated with two outer codes are constructed to

obtain binary CWCs optimal for ID. Similarly, in [28] ε-almost strongly universal hash functions

are concatenated with an outer code. These constructions concatenate a set of inner binary CWCs

with one or more outer codes such that the constraints in (6)-(8) are satisfied for the set of binary

CWCs. The following lemma characterizes the parameters of binary CWCs obtained by such a

concatenation.

Lemma 3 ([16]). Consider the concatenation of an inner (Sicw, Nicw,Wicw, Kicw) binary CWC

with an outer error correction code with blocklength no, code dimension ko, minimum distance do,

i.e., an (no, ko, do) code. The resulting concatenated code is an (Sicwno, N
ko
icw, Wicwno, Wicw(no−

do) +Kicwno) binary CWC.

Lemma 3 suggests that to achieve a small overlap fraction (8) the outer error correction code

should have a large minimum distance vs. blocklength ratio
do

no
, whose maximum

(no − ko + 1)

no

is obtained by maximum distance separable (MDS) codes. In [16], [qo−1, ko] RS codes over

GF(qo), which are (qo−1, ko, qo−ko) error correction codes with ko<qo−1 and a prime power
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qo, are used as outer codes. In [20], [21], [28], [qo, ko] extended RS codes with parameters

(qo, ko, qo − ko + 1) are used as outer codes, which provide a larger minimum distance vs.

blocklength ratio than RS codes because we have that

qo − ko + 1

qo
>
qo − ko

qo − 1
. (15)

This extension decreases the overlap fraction value of the concatenated CWC. To further improve

the overlap fraction for the same field size qo, we propose to use [qo+1, ko] doubly-extended RS

codes that are also MDS with parameters (qo+1, ko, qo−ko+2) as outer codes.

We next propose modified OOC constructions adapted to the ID via channels problem as new

inner binary CWCs such that their concatenations with outer (doubly-extended) RS codes are

optimal. A requirement to use Lemma 3 for outer (doubly-extended) RS codes is to set qo =Nicw

such that each symbol of the outer code can be represented as a different codeword of the inner

code [20]. Therefore, we propose modified OOC constructions with code sizes Nicw that are

prime powers.

Construction 1: Prime sequences are proposed in [29], [30] as a (p2, p, p, p−1, 2) OOC, where

p is a prime. A prime sequence is generated by multiplying in modulo-p all field elements of

GF(p) with one of the field elements, where we map each field element to an integer in the range

[0 : p − 1]. For instance, prime sequences for p = 5 are {(00000), (01234), (02413), (03142),

(04321)}. Each symbol is then mapped to an index in a binary sequence of length p such that at

the corresponding index there is the symbol “1” and the other indices contain symbol “0”. This

symbol-to-binary-sequence mapping is called one-hot encoding. For instance, the prime sequence

(01234) is mapped to the binary sequence (10000 01000 00100 00010 00001). The number of

pairwise overlaps of symbols xj,s = 1 over the binary representations of prime sequences is

Kicw = 1 due to the first symbol being symbol “0”, common in all prime sequences. We remove

this “0” (i.e., for p = 5, we have sequences {(0000), (1234), (2413), (3142), (4321)}) to obtain

binary representations of modified prime sequences that constitute a (p2−p, p, p−1, 0) binary
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CWC, where p is prime.

If modified prime sequences are doubly concatenated with an outer [p−1, ko] RS code over

GF(p) and again with another outer [pko−1, koo] RS code over GF(pko) (the latter is also called

the second outer RS code), we obtain a binary CWC with parameters

Scw = p(p− 1)2(pko − 1), (16)

Ncw = pkokoo , (17)

Wcw = (p− 1)2(pko − 1), (18)

Kcw = (p− 1)2(k00 − 1) + (p− 1)(ko − 1)(pko − 1) (19)

which follows from Lemma 3. It is straightforward to show that the binary CWCs constructed

from modified prime sequences are optimal for ID if we have the following four conditions

log(koo)→∞, (20)

log(koo)

ko
→ 1, (21)

ko

p
→ 0, (22)

koo

pko
→ 0. (23)

The last two conditions, i.e., (22) and (23), require the (first-order) code rates of outer codes to

be asymptotically zero although the construction is optimal for ID, i.e., the second-order rate is

optimal. Furthermore, the second outer RS code we use is more general than the second outer

RS code used in [16], [20], [21], [28], where the code dimension is enforced to be koo =pt for

some t∈ [1 :ko−1]. Thus, our optimality conditions for ID given in (20)-(23) are more general

than the conditions in [20, Proposition 3].

If the outer RS codes are replaced with corresponding doubly-extended RS codes, then we

obtain a binary CWC with parameters in (16)-(19) after replacing the (p−1)2 terms with (p2−1)

and (pko−1) terms with (pko +1), respectively. The asymptotic optimality conditions for ID are



18

the same for constructions with two outer RS codes and doubly-extended RS codes, i.e., (20)-

(23). However, using doubly-extended RS codes decreases the overlap fraction as compared to

RS codes. Therefore, the type-II error probability λ2 of the ID code, which can be obtained by

concatenating the binary CWC with a capacity-achieving transmission code, also decreases by

using outer doubly-extended RS codes. This is because λ2 is shown in [27, Proposition 1] to

be equal to the sum of overlap fraction of the binary CWC and the block error probability of

the capacity-achieving transmission code. This result suggests that binary CWC constructions

that have outer codes with large minimum distance vs. blocklength ratio
do

no
should be used to

decrease λ2 of the ID code. Furthermore, doubly-extended RS codes can be obtained by adding

two parity check symbols to RS codes, which has only small extra encoding complexity.

Construction 2: The following sequences are proposed in [26] as (p2m−1, pm−2, pm+1, 2, 2)

OOCs, where p is a prime and m ∈ Z+. Let α be a primitive element of GF(p2m) and consider

pm−2 sets with elements x satisfying

(x− 1)p
m+1 = αi(p

m+1) (24)

for i ∈ [1 : pm−2], where we then map each nonzero x to an integer equal to the exponent

with respect to α, i.e., we calculate the integer logα(x), in modulo-(p2m−1). We obtain pm−2

sets each containing pm+1 integers in the range [1 : p2m−1] that correspond to the indices at

which a binary CW codeword of blocklength p2m−1 has the symbol “1”. An example for p = 2

and m = 3 is given in [26, Table IV]. Since the field elements satisfying (24) are different for

different i, this construction provides sequences that are (p2m−1, pm−2, pm+1, 0) binary CWCs,

where p is prime and m ∈ Z+.

We now can concatenate these binary CWCs with outer codes such as RS codes to obtain

optimal parameters for ID. However, unlike in Construction 1, Nicw =qo =pm−2 is not a prime

power for all (p,m) pairs. For instance, (p,m) = (2,∀m≥3), (3, 7), (3, 8), (5, 3), (11, 2), (23, 3)

do not result in prime power values Nicw, whereas various pairs such as (p,m)=(2, 2), (3,m∈
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[2 : 6]), (3, 9), (7, 2), (13, 2), (19, 2) do. Therefore, if (doubly-extended) RS codes are used as

outer codes, it is necessary to check the prime power condition since there may not exist a

general condition to obtain prime powers of the form pm−2 from a prime p and m∈Z+. One

can alternatively decrease the size Nicw of this binary CWC to the maximum prime power p′

such that p′ ≤ pm−2.

If binary sequences obtained from the solution of (24) are doubly concatenated with an outer

[pm−3, ko] RS code over GF(pm−2) and again with another outer [(pm−2)ko−1, koo] RS code over

GF((pm−2)ko), we obtain binary CWCs that are optimal for ID if the same four conditions given

above for the optimality of Construction 1, i.e., (20)-(23), are satisfied here as well. Furthermore,

the type-II error probability λ2 of the ID codes constructed from these binary CWCs can be

decreased by using outer codes with larger minimum distance vs. blocklength ratios
do

no
than

RS codes, as discussed for Construction 1. These constructions can be further modified to allow

feedback [31], [32] and provide secrecy [33], [34].

V. ID CODE COMPARISONS

ID codes that consist of (Scw, Ncw,Wcw, Kcw) binary CWCs and a capacity CSh achieving trans-

mission code are asymptotically optimal ID codes [5, Section II-A] with NID = Ncw, as discussed

in the proof of Lemma 2. Thus, we consider noiseless channels PY |X(y|x) = 1{x = y}.

For these channels, the capacity-achieving transmission code has a code rate of CSh = 1

symbol/channel-use, so we have nID = log(Scw). Furthermore, the type-I error probability is

zero, i.e., λ1 = 0, and the type-II error probability is upper bounded by the overlap fraction of

the binary CWC, i.e., λ2 ≤
Kcw

Wcw
. Define the type-I and type-II error exponents as E1 = − log(λ1)

nID

and E2 = − log(λ2)

nID
, respectively.

Theorem 4 ([5], [20]). If there exists an (nID, NID, λ1, λ2) ID code that achieves the triple

(RID,E1,E2) with E1 > 0 for a DMC PY |X with channel capacity CSh , then RID + 2E2 ≤ CSh.

This bound is tight for noiseless channels.



20

We compare Constructions 1 and 2 with the best existing ID constructions to illustrate the

achieved (RID,E2) tuples for a noiseless channel. As benchmark schemes we consider the CWC

construction in [20], where a PPM code is concatenated with two outer extended RS codes,

and in [28], where ε-almost strongly universal hash functions are concatenated with an outer

extended RS code, respectively. The choice of the finite field used for Constructions 1 and 2

affects the encoding complexity. We therefore choose the parameters

pConstr.1 = pmConstr.2 − 2 (25)

to have the same finite fields for both constructions, where pConstr.1 is the parameter p for

Construction 1 and pConstr.2 is the parameter p for Construction 2, respectively. We assign

pConstr.2 = 5 and m = 2 for Construction 2, and pConstr.1 = 23 as the parameter p for both

Construction 1 and the constructions in [20], [28]. Fig. 2 depicts the (RID,E2) tuples achieved

by these four constructions in addition to the tight upper bound given in Theorem 4; see [35] for

its extensions to ID of multiple identifiers. We remark that all four constructions are optimal for

ID for noiseless channels, i.e., they achieve the upper bound given in Theorem 4 asymptotically.

Fig. 2 illustrates that Constructions 1 and 2 achieve rate tuples that are close, and Construction

1 achieves slightly larger RID and E2 values than Construction 2. Tuples achieved by Construc-

tions 1 and 2 follow a similar pattern, whereas code constructions in [20] and [28] follow a

pattern that is different from the patterns of Constructions 1 and 2. Furthermore, at low ID rates

RID Constructions 1 and 2 achieve significantly larger type-II error exponents E2 than being

achieved by existing constructions, but at high ID rates the constructions in [20] and [28] can

achieve slightly larger type-II error exponents. Thus, the choice of the ID code construction

should depend on the required ID rate and the allowed encoding complexity.

A. ID Codes Constructed from Other OOCs

In addition to Constructions 1 and 2 given above, there are numerous other OOC constructions

in the literature proposed for unipolar environments. One can modify these OOC constructions
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Fig. 2. Achieved (ID rate, type-II error exponent) tuples and the tight upper bound for a noiseless channel with pConstr.1 =

pmConstr.2−2 = 23.

to obtain further binary CWCs that can be used as an inner code in an ID code construction, as

outlined in Section IV. In Table I, we provide a list of parameters of binary CWCs obtained from

other modified OOCs. We also remark that the inner binary CWC size Nicw should be chosen as

a prime power if it is concatenated with outer (doubly-extended) RS codes to obtain an ID code;

see the discussions in Section IV for further details. Furthermore, Constructions 1 and 2 provide

in general a smaller overlap fraction (8) than the other OOCs listed in Table I. This is due to the

fact that the parameter Kicw of the inner binary CWC, which is concatenated with outer codes

to obtain an ID code, is non-zero for these constructions compared to Constructions 1 and 2.

However, different combinatorial constraints on the code parameters for each construction and

the difference in the hardware complexity should also be considered to choose the modified

OOC to be used for an ID via channels application.
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TABLE I

A LIST OF OOCS AND THEIR PARAMETERS AS MODIFIED BINARY CWCS.

OOC Source Scw Ncw Wcw Kcw Constraints

Projective Geometry

[22, Section IV-D]

pd+1 − 1

p− 1

⌊
Scw − 1

(p+ 1)p

⌋
p+ 1 1 p prime, d ∈ Z+

Combinatorial [22,

Section IV-E]
m

⌊
m− 1

6

⌋
3 1 m 6= 2 (mod 6)

Quadratic Congruence

(QC) [36]
p2 p− 1 p 2 p prime

Extended QC [37] p(2p− 1) p− 1 p 2 p prime

Balanced Incomplete

Block Designs

(BIBDs) [38]

Wcw(Wcw − 1)r + 1 r
2m or

2m+ 1
1

m, r ∈ Z+,

Scw prime

Unequal Error

Protection (UEP) 1

[39, Section V-A]

W 2
cwr/2 + 1 or

(W 2
cw − 1)r/2 + 1

r
2m or

2m+ 1
1

m, r ∈ Z+,

Scw prime

UEP 2 [39,

Section V-B]

W 2
cwr/2 + 1 or

(W 2
cw − 1)r/2 + 1

r
4m or

4m+ 1
1

m, r ∈ Z+,

Scw prime

VI. CONCLUSION

We proposed two upper bounds on the size of a binary CWC by obtaining the minimum

distance of the code and by finding bounds on its higher-order correlation moments. These

bounds were shown to be upper bounds also on the corresponding ID code size. Two new

asymptotically optimal ID code constructions were proposed by modifying OOCs, whose relation

to the ID problem was discussed for the first time in the literature. Two RS codes were doubly

concatenated with an inner binary CWC to obtain optimal ID codes, and we illustrated that

the finite-parameter of all ID code constructions using such outer codes can be improved by
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increasing the minimum distance vs. blocklength ratios of the outer codes. Furthermore, modified

OOC constructions designed for ID were illustrated to perform significantly better than existing

methods at low ID rates. We also provided an extensive list of other modified OOC constructions

that can be used as binary CWCs. In future work, we will combine our two bounds for binary

CWCs with finite length bounds on transmission codes used for error correction to provide

bounds on the overall performance of ID codes.
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APPENDIX A

PROOF OF THEOREM 3

Consider the ` ≥ 1-th order correlation moment defined in (14) as

m` =
1

Ncw(Ncw−1)

(
Ncw∑
j=1

Ncw∑
j′=1

( Scw−1∑
s=0

xj,sxj′,s

)`
−NcwW

`
cw

)
(26)

where we use the definition of γj,j′ given in (5). We equivalently have

m`(Ncw − 1)

=
1

Ncw

(
Ncw∑
j=1

Ncw∑
j′=1

[( Scw−1∑
s1=0

xj,s1xj′,s1

)( Scw−1∑
s2=0

xj,s2xj′,s2

)
. . .

( Scw−1∑
s`=0

xj,s`xj′,s`

)]
−NcwW

`
cw

)

=
1

Ncw

(
Scw−1∑
s1=0

Scw−1∑
s2=0

. . .
Scw−1∑
s`=0

[( Ncw∑
j=1

(
xj,s1xj,s2 . . . xj,s`

))2 ]
−NcwW

`
cw

)

=
1

Ncw

(
Scw−1∑
s1=0

Scw−1∑
s2=0

. . .
Scw−1∑
s`=0

[( Ncw∑
j=1

( ∏
s′=s1,s2,...,s`

xj,s′
))2 ]

−NcwW
`
cw

)
. (27)

Define vectors ~α = (α0, α1, . . . , αScw−1) such that

αs ∈ Z∗, ∀s ∈ [0 : Scw − 1] and
Scw−1∑
s=0

αs = ` (28)
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and multinomial coefficients as

(
`

α0, α1, . . . , αScw−1

)
=

`!

α0!α1! . . . αScw−1 !
. (29)

Using these definitions in (27), we obtain

m`(Ncw − 1) =
1

Ncw

(∑
~α

[(
`

α0, α1, . . . , αScw−1

)( Ncw∑
j=1

( Scw−1∏
s=0

xαsj,s

))2 ]
−NcwW

`
cw

)
(30)

where the outermost summation is over all vectors ~α that satisfy the properties given in (28) and

where we define 00 = 1. Denote next the support of a vector ~α as ~β = supp(~α) and accordingly

define index sets

Ωu =

{
~β ∈ {0, 1}Scw

∣∣∣ Scw−1∑
s=0

βs = u

}
, (31)

Γ~β =

{
~α ∈ Z∗Scw

∣∣∣ Scw−1∑
s=0

αs = `, ~β = supp(~α)

}
, (32)

Γu =

{
~α ∈ Γ~β

∣∣∣ ~β ∈ {0, 1}Scw fixed,
Scw−1∑
s=0

βs = u

}
. (33)

Thus, we can represent (30) equivalently as

m`(Ncw − 1)

=
1

Ncw

(∑̀
u=1

∑
~β∈Ωu

∑
~α∈Γ~β

[(
`

α0, α1, . . . , αScw−1

)( Ncw∑
j=1

( Scw−1∏
s=0

xαsj,s

))2 ]
−NcwW

`
cw

)

(a)
=

1

Ncw

(∑̀
u=1

∑
~β∈Ωu

∑
~α∈Γ~β

[(
`

α0, α1, . . . , αScw−1

)( Ncw∑
j=1

( Scw−1∏
s=0

xβsj,s

))2 ]
−NcwW

`
cw

)

=
1

Ncw

(∑̀
u=1

∑
~β∈Ωu

[( ∑
~α∈Γ~β

(
`

α0, α1, . . . , αScw−1

))( Ncw∑
j=1

( Scw−1∏
s=0

xβsj,s

))2 ]
−NcwW

`
cw

)

(b)
=

1

Ncw

(∑̀
u=1

[( ∑
~α∈Γu

(
`

α0, α1, . . . , αScw−1

))( ∑
~β∈Ωu

( Ncw∑
j=1

( Scw−1∏
s=0

xβsj,s

))2)]
−NcwW

`
cw

)
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(c)
=

1

Ncw

(∑̀
u=1

[
C`,u

( ∑
~β∈Ωu

( Ncw∑
j=1

( Scw−1∏
s=0

xβsj,s

))2)]
−NcwW

`
cw

)

(d)

≥ 1

Ncw

(∑̀
u=1

C`,u
( ∑

~β∈Ωu

( Ncw∑
j=1

( Scw−1∏
s=0

xβsj,s

)))2

∑
~β∈Ωu

12

−NcwW
`
cw

)

=
1

Ncw

(∑̀
u=1

C`,u
N2

cw

(
Wcw

u

)2

(
Scw

u

)
−NcwW

`
cw

)

= Ncw

∑̀
u=1

C`,u
(
Wcw

u

)2

(
Scw

u

)
−W `

cw (34)

where (a) follows because xj,s ∈ {0, 1} for all j = 1, 2, . . . , Ncw and s = 0, 1, . . . , Scw − 1, (b)

follows due to the symmetry in the function that defines multinomial coefficients, (c) follows

from the definition of C`,u given in (12) and the following result from [40, pp. 29] [26, (A15)]

∑
~α∈Γu

(
`

α0, α1, . . . , αScw−1

)
= S`u u! = C`,u (35)

where S`u denotes a Stirling number of the second kind, i.e., the number of different ways to

divide a set of size ` into u non-empty non-overlapping subsets such that their union is the whole

set with size `, and (d) follows from the Cauchy-Schwarz inequality. Thus, (34) is a lower bound

on the `-th order correlation moment m`. Furthermore, we can obtain a simple upper bound on

m` as follows.

m`(Ncw − 1) =
1

Ncw

(
Ncw∑
j=1

Ncw∑
j′=1

γ`j,j′ −NcwW
`
cw

)

=
1

Ncw

(
Ncw∑
j=1

Ncw∑
j′=1
j′ 6=j

γ`j,j′ +
Ncw∑
j=1

γ`j,j −NcwW
`
cw

)
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(a)

≤ 1

Ncw

(
Ncw∑
j=1

Ncw∑
j′=1
j′ 6=j

K`
cw +NcwW

`
cw −NcwW

`
cw

)
= K`

cw(Ncw − 1) (36)

where (a) follows by (5). Thus, combining (34) and (36) it is straightforward to obtain the

following upper bound

Ncw ≤
Wcw

` −Kcw
`(∑`

u=1 C`,u(
Wcw
u )

2

(Scw
u )

)
−Kcw

`

. (37)

Applying a recursion formula to (37), which is entirely similar to the recursion formulas applied

in [26, Theorem 4] and in the Unrestricted Johnson Bound that is used in Theorem 2 above, we

obtain (13).
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