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—— Abstract

Secure multi-party computation allows mutually distrusting parties to compute securely over
their private data. However, guaranteeing output delivery to honest parties when the adversarial
parties may abort the protocol has been a challenging objective. As a representative task, this
work considers two-party coin-tossing protocols with guaranteed output delivery, a.k.a., fair coin-
tossing.

In the information-theoretic plain model, as in two-party zero-sum games, one of the parties
can force an output with certainty. In the commitment-hybrid, any r-message coin-tossing proto-
col is 1/4/r-unfair, i.e., the adversary can change the honest party’s output distribution by 1//r
in the statistical distance. Moran, Naor, and Segev (TCC-2009) constructed the first 1/r-unfair
protocol in the oblivious transfer-hybrid. No further security improvement is possible because
Cleve (STOC-1986) proved that 1/r-unfairness is unavoidable. Therefore, Moran, Naor, and
Segev’s coin-tossing protocol is optimal. However, is oblivious transfer necessary for optimal fair
coin-tossing?

Maji and Wang (CRYPTO-2020) proved that any coin-tossing protocol using one-way func-
tions in a black-box manner is at least 1/+/r-unfair. That is, optimal fair coin-tossing is impossible
in Minicrypt. Our work focuses on tightly characterizing the hardness of computation assump-
tion necessary and sufficient for optimal fair coin-tossing within Cryptomania, outside Minicrypt.
Haitner, Makriyannia, Nissim, Omri, Shaltiel, and Silbak (FOCS-2018 and TCC-2018) proved
that better than 1/y/r-unfairness, for any constant r, implies the existence of a key-agreement
protocol.

We prove that any coin-tossing protocol using public-key encryption (or, multi-round key
agreement protocols) in a black-box manner must be 1/y/r-unfair. Next, our work entirely
characterizes the additional power of secure function evaluation functionalities for optimal fair
coin-tossing. We augment the model with an idealized secure function evaluation of f, a.k.a., the
f-hybrid. If f is complete, that is, oblivious transfer is possible in the f-hybrid, then optimal
fair coin-tossing is also possible in the f-hybrid. On the other hand, if f is not complete, then
a coin-tossing protocol using public-key encryption in a black-box manner in the f-hybrid is at
least 1/4/r-unfair.

Keywords and phrases Fair computation, Optimal fair coin-tossing, Cryptomania, Black-box
separation, Hardness of computation results, Secure function evaluation functionalities
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1 Introduction

Secure multi-party computation [Yao82, GMW8T7] allows mutually distrusting parties to
compute securely over their private data. However, guaranteeing output delivery to honest
parties when the adversarial parties may abort during the protocol execution has been a
challenging objective. A long line of highly influential works has undertaken the task of
defining security with guaranteed output delivery (i.e., fair computation) and fairly computing
functionalities [GHKL08, BOO10, GK10, BLOO11, AP13, ALR13, HT14, Ash14, Mak14,
ABMO15, AO16, BHLT17]. This work considers the case when honest parties are not in the
majority. In particular, as is standard in this research, the sequel relies on the representative
task of two-party secure coin-tossing, an elegant functionality providing uncluttered access
to the primary bottlenecks of achieving security in any specific adversarial model.

In the information-theoretic plain model, one of the parties can fix the coin-tossing proto-
col’s output (using attacks in two-player zero-sum games, or games against nature [Pap83]). If
the parties additionally have access to the commitment functionality (a.k.a., the information-
theoretic commitment-hybrid), an adversary is forced to follow the protocol honestly (oth-
erwise, the adversary risks being identified), or abort the protocol execution prematurely.
Against such adversaries, referred to as fail-stop adversaries [C193], there are coin-tossing
protocols [Blu82, BD84, ABC*85, Cle86] where a fail-stop adversary can change the honest
party’s output distribution by at most O(1/4/r), where r is the round-complexity of the
protocol. That is, these protocols are O(1//7)-insecure. In a ground-breaking result, Moran,
Naor, and Segev [MNS09] constructed the first secure coin-tossing protocol in the oblivious
transfer-hybrid [Rab81, Rab05, EGL82] that is O(1/r)-insecure. No further security improve-
ments are possible because Cleve [Cle86] proved that O(1/r)-insecurity is unavoidable; hence,
the protocol by Moran, Naor, and Segev is optimal.

Incidentally, all fair computation protocols (not just coin-tossing, see, for example,
[GHKL08, BOO10, GK10, BLOO11, AP13, ALR13, HT14, Ash14, Mak14, ABMO15, AO16,
BHLT17]) rely on the oblivious transfer functionality to achieve O(1/r)-insecurity. A funda-
mental principle in theoretical cryptography is to securely realize cryptographic primitives
based on the minimal computational hardness assumptions. Consequently, the following
question is natural.

Is oblivious transfer necessary for optimal fair computation?

Towards answering this fundamental research inquiry, recently, Maji and Wang [MW20]
proved that any coin-tossing protocol that uses one-way functions in a black-bor man-
ner [IR89, RTV04, BBF13] must incur (1/+/r)-insecurity. This result proves the qualitative
optimality of the coin tossing protocols of [Blug2, BD84, ABC*85, Cle86] in Minicrypt [Imp95]
because the commitment functionality is securely realizable by the black-box use of one-way
functions [Nao91, NOVY98, HR07]. Consequently, the minimal hardness of computation
assumption enabling optimal fair coin-tossing must be outside Minicrypt.

Summary of our results. This work studies the insecurity of fair coin-tossing protocols
outside Minicrypt, within (various levels of) Cryptomania [Imp95]. Our contributions are
two-fold.

1. First, we generalize the (fully) black-box separation of Maji and Wang [MW20] to prove
that any coin-tossing protocol using public-key encryption in a fully black-box manner
must be Q(1//r)-insecure.

2. Finally, we prove a dichotomy for two-party secure (possibly, randomized output) function
evaluation functionalities. For any secure function evaluation functionality f, either
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Figure 1 The first column summarizes of the most secure fair coin-tossing protocols in Impagli-
azzo’s worlds [Imp95]. Corresponding to each of these worlds, the second column has the best
attacks on these fair coin-tossing protocols. All the adversarial attacks are fail-stop attackers except
for the general attack in pessiland.

(A) optimal fair coin-tossing exists in the information-theoretic f-hybrid, or (B) any
coin-tossing protocol in the f-hybrid, even using public-key encryption algorithms in a
black-box manner, is ©(1/+/r)-insecure.

» Remark. In the information-theoretic f-hybrid model, parties have access to a trusted
party faithfully realizing the functionality f. However, this functionality is realized unfairly.
That is, the trusted party delivers the output to the adversary first. If the adversary wants,
it can abort the protocol and block the output delivery to the honest parties. Otherwise,
it can also permit the delivery of the output to the honest parties and continue with the
protocol execution. We highlight that the fair f-hybrid (where the adversary cannot block
output delivery to the honest parties), for any f where both parties influence the output,
straightforwardly yields perfectly or statistically secure fair coin-tossing protocol.’

Our hardness of computation results hold even for a game-theoretic definition of fairness
as well (which extends to the stronger simulation-based security definition). Section 1.1
summarizes our contributions. As shown in Figure 1, our results further reinforce the
widely-held perception that oblivious transfer is necessary for optimal fair coin-tossing. Our
work nearly squeezes out the entire remaining space left open in the state-of-the-art after
the recent breakthrough of [MW20], which was the first advancement on the quality of the
attacks on fair coin-tossing protocols since [CI93] after almost three decades. However, there
are fascinating problems left open by our work; Section 6 discusses one.

L Suppose f = XOR. In a fair f-hybrid, the adversary cannot block the output delivery to the honest
parties. So, parties input random bits to the f-functionality and agree on the output. This protocol
has O-insecurity. A similar protocol (using a deterministic extractor for independent small-bias sources)
can extract the fair output from any f where both parties have influence on the output distribution.
Consider the following “collaborative randomness generation” followed by “extraction” protocol. (a)
Invoke (in parallel) a bidirectional influence functionality multiple times with random inputs. The
output of each invocation in not entirely determined by one of the parties. Consequently, these samples
have average min-entropy. (b) Non-interactively, parties use these fair output samples to extract this
entropy to obtain the (common) fair coin toss (using convolution/XOR, or traversal of an appropriate
expander graph).
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Figure 2 The Kushilevitz Function [KN97], where Alice holds input z € {0, 1,2} and Bob holds
input y € {0, 1,2}. For example, the output is zo if x = 0 and y € {0,1}.

Positioning the technical contributions. Information-theoretic lower-bounding tech-
niques that work in the plain model and also extend to the f-hybrid are rare. Maji and
Wang [MW20] proved that optimal coin-tossing is impossible in the information-theoretic
model even if parties can access a random oracle. This work extends the potential-based
approach of [MW20] to f-hybrid information-theoretic models, such that oblivious transfer
is impossible in the f-hybrid and parties additionally have access to a public-key encryption
oracle.

For the discussion below, consider f to be the Kushilevitz function [KN97] (see Figure 2).
One cannot realize this function securely in the information-theoretic plain model even against
honest-but-curious adversaries [Kus89, Bea89, MPR09, KMR09]. Furthermore, oblivious
transfer is impossible in the f-hybrid [Kil91, Kil00]. The characterization of the exact power
of making ideal f-invocations is not entirely well-understood.

Invocations of the ideal f-functionality are non-trivially useful. For example, one can
realize the commitment functionality in the f-hybrid model [MPR10] (even with Universally
Composable (UC) security [Can00, Can01] against malicious adversaries). The f-functionality
is also known to securely implement other secure function evaluation functionalities as
well [RS18]. All these functionalities would otherwise be impossible to securely realize in
the plain model [CKLO03, Lin04, PRO8]. Consequently, it is plausible that one can even
implement optimal fair coin-tossing without implementing oblivious transfer in the f-hybrid
model.

Our technical contribution is an information-theoretic lower-bounding technique that
precisely characterizes the power of any f-hybrid vis-a-vis its ability to implement optimal
fair coin-tossing. The authors believe that these techniques shall be of independent interest
to characterize the power of performing ideal f-invocations in general.

1.1 Our Contribution

This section provides an informal summary of our results and positions our contributions rel-
ative to the state-of-the-art. To facilitate this discussion, we need to introduce a minimalistic
definition of coin-tossing protocols. An (r, X)-coin-tossing protocol is a two-party r-message
interactive protocol where parties agree on the final output € {0, 1}, and the expected output
of an honest execution of the protocol is X. A coin-tossing protocol is e-unfair if one of the
parties can change the honest party’s output distribution by e (in the statistical distance).
Maji and Wang [MW20] proved that the existence of optimal coin-tossing protocols is
outside Minicrypt [Imp95], where one-way functions and other private-key cryptographic
primitives exist (for example, pseudorandom generator [ILL89, Has90, HILL99], pseudoran-
dom function [GGM84, GGMS86], pseudorandom permutation [LR88], statistically binding
commitment [Nao91], statistically hiding commitment [NOVY98, HRO07], zero-knowledge
proof [GMWO1], and digital signature [NY89, Rom90]). Public-key cryptographic primitives
like public-key encryption, (multi-message) key-agreement protocols, and secure oblivious
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transfer protocol are in Cryptomania [IR89] (outside Minicrypt). Although the existence
of a secure oblivious transfer protocol suffices for optimal fair coin-tossing, it was unknown
whether weaker hardness of computation assumptions (like public-key encryption and (multi-
message) key-agreement protocols [GKM™00]) suffice for optimal fair coin-tossing or not.
Previously, Haitner, Makriyannis, Nissim, Omri, Shaltiel, and Silbak [HNO'18, HMO18], for
any constant r, prove that r-message coin-tossing protocols imply key-agreement protocols,
if they are less than 1/4/r-insecure.

Result I. Towards this objective, we prove the following result.

» Corollary 1 (Separation from Public-key Encryption). Any (r, X)-coin-tossing protocol that
uses a public-key encryption scheme in a fully black-box manner is Q(X (1 — X)/+/7)-unfair.

We emphasize that X may depend on the message complexity r of the protocol, which,
in turn, depends on the security parameter. For example, consider an ensemble of fair
coin-tossing protocols with round complexity r and expected output X = 1/r. This result
shows a fail-stop adversary that changes the honest party’s output distribution by 1/ r3/2 in
the statistical distance.

This hardness of computation result extends to the fair computation of any multi-party
functionality (possibly with inputs) such that the output has some entropy, and honest
parties are not in the majority (using a standard partition argument). At a high level, this
result implies that relying on stronger hardness of computation assumptions like the existence
of public-key cryptography provides no “fairness-gains” for coin-tossing protocols than only
using one-way functions.

This result’s heart is the following relativized separation in the information-theoretic
setting (refer to Theorem 5). There exists an oracle PKE,, [MMP14] that enables the
secure public-key encryption of n-bit messages. However, we prove that any (r, X)-coin-
tossing protocol where parties have oracle access to the PKE,, oracle (with polynomial query
complexity) is Q(X (1 — X)/y/r)-unfair. This relativized separation translates into a fully
black-box separation using by-now-standard techniques in this field [RTV04]. Conceptually,
this black-box separation indicates that optimal fair coin-tossing requires a hardness of
computation assumption that is stronger than the existence of a secure public-key encryption
scheme.

Gertner, Kannan, Malkin, Reingold, and Vishwanathan [GKM™*00] showed that the
existence of a public-key encryption scheme with additional (seemingly innocuous) properties
(like the ability to efficiently sample a public-key without knowing the private-key) enables
oblivious transfer. Consequently, our oracles realizing public-key encryption must avoid any
property enabling oblivious transfer (even unforeseen ones). This observation highlights
the subtlety underlying our technical contributions. For example, our set of oracles permit
testing whether a public-key or cipher-text is valid or not. Without this test, oblivious
transfer and, in turn, optimal fair coin-tossing is possible. Surprisingly, these test oracles are
also sufficient to rule out the possibility of oblivious transfer.

Since public-key encryption schemes imply key agreement protocols, our results prove
that optimal fair coin-tossing is black-box separated from key agreement protocols as well.

Result II. Let f: X x Y — RZ be a two-party secure symmetric function evaluation
functionality, possibly with randomized output. The function takes private inputs =z and
y from the parties and samples an output z € Z according to the probability distribution
ps(z|z,y). The information-theoretic f-hybrid is an information-theoretic model where
parties have additional access to the (unfair) f-functionality.
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Observe that if f is the (symmetrized) oblivious transfer functionality,? then the Moran,
Naor, and Segev protocol [MNS09] is an optimal fair coin-tossing protocol in the (unfair) f-
hybrid. More generally, if f is a functionality such that there is an oblivious transfer protocol
in the f-hybrid, one can emulate the Moran, Naor, and Segev optimal coin-tossing protocol;
consequently, optimal coin-tossing exists in the f-hybrid. Kilian [Kil00] characterized all
functions f such that there exists a secure oblivious transfer protocol in the f-hybrid, referred
to as complete functions.

Our work explores whether a function f that is not complete may enhance the security of
fair coin-tossing protocols.

» Corollary 2 (Dichotomy of Functions). Let f be an arbitrary 2-party symmetric function
evaluation functionality, possibly with randomized output. Then, exactly one of the following
two statements holds.

1. For allr € N and X € [0,1], there exists an optimal (r, X )-coin-tossing protocol in the
f-hybrid (a.k.a., O(1/r)-unfair protocol).

2. Any (r, X)-coin-tossing protocol that uses public-key encryption protocols in a black-box
manner in the f-hybrid is Q(X (1 — X)//r)-unfair.

For example, Corollary 1 is implied by the stronger version of our result by using a constant-
valued f, a trivial function evaluation. For more details, refer to Theorem 6. In our model,
we emphasize that parties can perform an arbitrary number of f-invocations in parallel in
every round.

Let us further elaborate on our results. Consider a function f that has a secure protocol
in the information-theoretic plain model, referred to as trivial functions. For deterministic
output, trivial functions’ full characterization is known [Kus89, Bea89, MPR09, KMR09].
For randomized output, the characterization of trivial functions is a long-standing open
problem.? Observe that trivial functions are definitely not complete; otherwise, a secure
oblivious transfer protocol shall exist in the information-theoretic plain model, which is
impossible. For every ¢t € N, there are functions f; such that any secure protocol for f;
requires ¢ rounds of interactive communication in the information-theoretic plain model. For
the randomized output case, the authors know of functions such that |X| = |Y| = 2 and
|Z| = (t + 1) that need t-round protocols for secure computation, which is part of ongoing
independent research. Compiling out the f;-hybrid using such a t-round secure computation
protocol allows only for an © (X (1 — X)/v/rt)-insecurity, which yields a useless bound for
t = Q(r). Consequently, compiling out the trivial functions is inadequate.

It is also well-known that functions of intermediate complexity exist [Kus89, Bea89,
MPR09, KMRO09], which are neither complete nor trivial (for example, the Kushilevitz
function, refer to Figure 2). In fact, there are randomized functions (refer to Figure 3) of
intermediate complexity such that |X| = |Y| =2 and |Z| = 3 [DP18].

Our result claims that even an intermediate function f is useless for optimal fair coin-
tossing; it is as useless as one-way functions or public-key encryption. Therefore, our results’
technical approach must treat each f-hybrid invocation as one step in the protocol. We

In the symmetrized oblivious transfer functionality, the sender has input (zo,z1) € {0, 1}27 and the
receiver has input (b, ) € {0,1}%. The symmetric oblivious transfer functionality returns 2, & to both
the parties. If the receiver picks r & {0,1}, then this functionality hides the receiver’s choice bit b from
the sender.

Even for perfect security, the characterization of randomized trivial functions is open.
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Figure 3 A randomized functionality of intermediate complexity with X =Y = {0,1} and
Z = {0,1,2}. For instance, when z = 0 and y = 0, the distribution of the output over Z is
(18/54,18/54,18/54), i.e., a uniform distribution over Z.

highlight that the intermediate functions are useful in securely realizing other non-trivial
functionalities as well [MPR10, RS18]. However, for fair coin-tossing, they are useless.
Before we move ahead, the authors feel that it is instructive to elaborate on what our
paper does not prove. Let f be an intermediate function, and “sh-f” represents the hardness
of computation assumption that there exists a semi-honest secure protocol for function f.
We do not rule out the possibility that sh-f implies optimal coin-tossing protocols. Our
result only proves that the f-hybrid cannot help construct optimal coin-tossing protocols.
The existence of a protocol for an intermediate f may have significantly additional implicit
consequences, which may, in turn, imply optimal coin-tossing protocol construction. In
particular, such a result would imply the separation of sh-f and sh-OT, which is one of the
most fundamental open problems in this field.* Refer to Section 6 for further elaboration.

1.2 Prior Works

Deterministic secure function evaluation. In this paper, we focus on two-party secure
function evaluation functionalities that provide the same output to the parties. Consider a
deterministic function f: X xY — Z. The unfair ideal functionality implementing f takes
as input = and y from two parties and delivers the output f(z,y) to the adversary. The
adversary may choose to block the output delivery to the honest party, or permit the delivery
of the output to the honest party.

In this document, we consider security against a semi-honest information-theoretic
adversary, i.e., the adversary follows the protocol description honestly but is curious to find
additional information about the other party’s private input. There are several natural
characterization problems in this scenario. The functions that have perfectly secure protocols
in the information-theoretic plain model, a.k.a., the trivial functions, are identical to the
set of decomposable functions [Kus89, Bea89]. For every t € N, there are infinitely many
functions that require ¢t-rounds for their secure evaluation. Interestingly, relaxing the security
from perfect to statistical security, does not change this characterization [MPR09, KMRO09).

Next, Kilian [Kil91] characterized all deterministic functions f that enable oblivious
transfer in the f-hybrid, the complete functions. Any functions that has an “embedded
OR-minor” (refer to Definition 4) is complete. Such functions, intuitively, are the most
powerful functions that enable general secure computation of arbitrary functionalities.

The sets of trivial and complete functions are not exhaustive (for |Z| > 3 [CK89, Krell]).

4 For an insight into some of the bottlenecks encountered for this problem, consider an oracle that allows
the computation of f using t interactive rounds. If f is a function where both parties influence the
output, then there exists a round where one party can predict the final output with 1/¢ additional
advantage than the other party. The primary origin of the non-triviality is the fact that the oblivious
transfer protocol can prescribe the parties to partially run the oracle-protocol evaluating f up to this
round. This additional advantage in output prediction of one party, for example, may be amplified into
an oblivious transfer protocol using the techniques of [DKS99]. Consequently, this problem is extremely
subtle and one of the most challenging open problems in this field.
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There are functions of intermediate complexity, which are neither trivial nor complete (see,
for example, Figure 2). The power of the f-hybrid, for an intermediate f, was explored by
[RS18] using restricted forms of protocols.

Randomized secure function evaluation. A two-party randomized function f(x,y): X X
Y — RZ is a function that, upon receipt of the inputs x and y, samples an output according
to the distribution ps(z|z,y) over the samples space Z. Kilian [Kil00] characterized all
complete randomized functions. Any function that has an “embedded generalized OR-minor’
(refer to Definition 4) is complete. Recently, [DP18] characterized functions with 2-round
protocols. Beyond these characterization, not much is known in the literature and most

)

fundamental characterization problems in this field are essentially open. However, there is
sufficient evidence that the landscape of randomized secure function evaluation is extremely
rich and fascinating. For example, even when |X| = |Y| = 2 the authors know of functions
(with |Z] = (¢t + 1)) that require ¢ rounds of communication, for any ¢ € N. Furthermore,
even for |X| = |Y| = 2 and |Z] = 3, there are random function evaluations that are of
intermediate complexity [DP18].

In the field of black-box separation, the seminal work of Impagliazzo and Rudich [TR89]
first proposed the notion of black-box separation between cryptographic primitives. Since
then, there has been many influential works [Rud92, Sim98, GKM*00, GT00, GMROL1,
GGKO03, RTV04] in this line of research. Below, we elaborate on a few works that are most
relevant to us.

Firstly, for the fair coin-tossing in the random oracle model, the work of Dachman-Soled,
Lindell, Mahmoody, and Malkin [DLMM11] showed that when the message complexity is
small, random oracle can be compiled away and hence is useless for fair coin-tossing. In
another work, Dachman-Soled, Mahmoody, and Malkin [DMM14] studied a restricted type
of protocols that they called “function-oblivious” and showed that for this particular type
of protocols, random oracles cannot yield optimal fair coin-tossing. Recently, Maji and
Wang [MW20] resolved this problem in the full generality. They showed that any r-message
coin-tossing protocol in the random oracle model must be Q(1/4/r)-unfair.

In a recent work of Haitner, Nissim, Omri, Shaltiel, and Silbak [HNO™ 18] and Haitner,
Makriyannis, and Omri [HMO18], they proved that, for any constant r, the existence of an
r-message fair coin-tossing protocol that is more secure than 1/4/r implies the existence of
(infinitely often) key agreement protocols.

1.3 Technical Overview

In this section, we present a high-level overview of our proofs. We start by recalling the
proofs of Maji and Wang [MW20].

Before we begin, we need to introduce the notion of Alice and Bob’s defense coins. At
any instance of the protocol evolution, Alice has a private defense coin € {0, 1}, referred to
as the Alice defense coin, which she outputs if Bob aborts the protocol. Similarly, Bob has
a Bob defense coin. When Alice prepares a next message of the protocol, she updates her
defense coin. However, when Bob prepares a next message of the protocol, Alice’s defense
coin remains unchanged. Analogously, Bob updates his defense coin when preparing his next
messages in the protocol.

1.3.0.1 Abstraction of Maji and Wang [MW20] Technique.

Consider an arbitrary fair coin-tossing protocol 7€ where Alice and Bob have black-box
access to some oracle O. In their setting, O is a random oracle. Let r and X be the message
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Figure 4 An intuitive illustration of the approach of Maji and Wang [MW20].

complexity and the expected output of this protocol. They used an inductive approach to
prove this protocol is (¢ - X (1 — X)/+/r)-insecure as follows (c is a universal constant).

For every possible first message of this protocol, they consider two attacks (refer to
Figure 4). Firstly, parties can attack by immediately abort upon this first message. Secondly,
parties can defer their attack to the remaining sub-protocol, which has only » — 1 messages.
Suppose when the first message is m;, the remaining sub-protocol has expected output z;.
Additionally, the expectation of Alice and Bob defense is a; and b;. The effectiveness of the
first attack is precisely

|zi — aq| + |z — by,
where |z; — a;| is the change of Alice’s output if Bob aborts, and analogously, |z; — b;] is the
change of Bob’s output if Alice aborts. On the other hand, by the inductive hypothesis, we
know the effectiveness of the second attack is at least

c-xi(1—a;)/V/r — 1.

Now, they employed a key inequality by [KMW20] (refer to Imported Lemma 1) and show
that the maximum of these two quantities is lower bounded by

Define potential function ®(x,a,b) := z(1 — z) + (z — a)? + (z — b)?. Maji and Wang
noted that if Jensen’s inequality holds, i.e.,
Bl8(er,a000] > @ (Bled Do B D) &

i i % i

then the proof is complete. This is because the overall effectiveness of the attack is lower
bounded by

E

?

max <|xZ —a;| + |z —bi|, ¢z (1 —a;)/Vr — 1)]

(Expectation of the most effective attack)

>E {\cf - O(z4, a4, bl)} (The key inequality of [KMW20])
i VT

Z% - <]? [2i] a];':l[ai] ,Ell[bz]> (Jensen’s inequality)
c

> . X(1-X). CBle = X

275 X=X (2 Blz] = X)

To prove Equation 1, they noted that ®(x,a,b) could be rewritten as

®(x,a,b) =+ (x — a — b)* — 2ab.
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Observe that z and (z — a — b)? are convex functions, and hence Jensen’s inequality holds.
The only problematic term is ab. To resolve this, they noted that suppose we have the
following guarantee.

Conditioned on the partial transcript,
Alice private view and Bob private view are (close to) independent.’

Then we shall have E [a;b;] = E [a;] E [b;] (refer to Claim 1).° Consequently, Equation 1
7 K]

shall hold and the prooflis done.

Note that the argument thus far is oblivious to the fact that the oracle in use is a random
oracle. For any oracle O, if we have the guarantee above, this proof will follow.

In particular, when the oracle in use is the random oracle, Maji and Wang observed that,
standard techniques (namely, the heavy querier [BM09]) do ensure that Alice private view
and Bob private view are (close to) independent. This completes their proof.

1.3.0.2 Extending to f-hybrid.

When f is a complete function, one can build oblivious transfer protocol in the f-hybrid
model and, consequently, by the MNS protocol [MNS09], optimal fair coin-tossing does exist
in the f-hybrid model.

On the other hand, if f is not complete, Kilian [Kil00] showed that f must satisfy the cross
product rule (refer to Definition 4). This implies that conditioned on the partial transcript,
which includes ideal calls to f, Alice and Bob private view are (perfectly) independent (refer
to Lemma 3). Therefore, the proof strategy of Maji and Wang [MW20] is applicable.

1.3.0.3 Extending to Public-key Encryption.

Our proof for the public-key encryption follows from the ideas of Mahmoody, Maji, and
Prabhakaran [MMP14]. First, we define a collection of oracles PKE,, (refer to Section 5.1),
with respect to which public-key encryption exists. To prove that optimal fair coin-tossing
protocol does not exist, it suffices to ensure that Alice and Bob private view are (close to)
independent. However, since with the help of PKE,, oracle, Alice and Bob can agree on a
secret key such that a third party, Eve, who sees the transcript and may ask polynomially
many queries to the oracle, cannot learn any information about the key. It is impossible to
ensure the independence of the private views by only invoking a public algorithm.

To resolve this, [MMP14] showed that one could compile any protocol « in the PKE,,
oracle to be a new protocol 7’ in the PKE,, oracle where parties never query the decryption
oracle (refer to Imported Theorem 1). This compiler satisfies that given a local view of Alice
(resp., Bob) in protocol 7, one could simulate the local view of Alice (resp., Bob) in protocol
7' and vice versa. Therefore, instead of considering a fair coin-tossing protocol in the PKE,,
oracle model, one could consider a fair coin-tossing protocol in the PKE,, oracle model where
parties never query the decryption oracle. And [MMP14] showed that, when the parties
do not call the decryption oracle, there does exist a public algorithm, namely the common
information learner, who can find all the correlation between Alice and Bob (refer to Imported
Theorem 2). And conditioned on the partial transcript with the additional information from

5 For a joint distribution (X,Y), one may measure the closeness of X and Y being independent by the
statistical distance between (X,Y) and X x Y.
5 In particular, if Alice private view and Bob private view are perfectly independent, we shall have
E[aibi] = E [a:] E [bi].
7 1

k3
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the common information learner, Alice and Bob private view are (close to) independent.
Therefore, we can continue with the proof-strategy of Maji and Wang [MW20].

2 Preliminaries

For a randomized function f: X — Y, we shall use f(x;s) for f evaluated with input z and
randomness s.

We use uppercase letters for random variables, (corresponding) lowercase letters for
their values, and calligraphic letters for sets. For a joint distribution (A4, B), A and B
represent the marginal distributions, and A x B represents the product distribution where
one samples from the marginal distributions A and B independently. For two random
variables A and B distributed over a (discrete) sample space €, their statistical distance is
defined as SD (A, B) =1 - > cq|Pr[A = w] — Pr[B = w]|.

For a sequence (X7, Xo,...), we use X<; to denote the joint distribution (X7, Xo, ..., X;).

Similarly, for any (z1,z2,...) € Q1 xQaXx- -+, we define x<; := (21, %2,...,2;) € D xQaX---X
Q;. Let (My, Ms, ..., M,) be a joint distribution over sample space 3 X Qs X - - -xQ,., such that
for any ¢ € {1,2,...,n}, M; is a random variable over §2;. A (real-valued) random variable

X is said to be M<; measurable if there exists a deterministic function f: €y x---xQ; = R
such that X; = f(My,..., M;). A random variable 7: Q1 x -+ x Q. — {1,2,...,r} is called
a stopping time, if the random variable 1,<; is M<; measurable, where 1 is the indicator
function. For a more formal treatment of probability spaces, o-algebras, filtrations, and
martingales, refer to, for example, [Sch17].

The following inequality shall be helpful for our proof.

» Theorem 1 (Jensen's inequality). If f is a multivariate convex function, then E{f (X)} >

f (E [XD, for all probability distributions X over the domain of f.

In particular, f(z,y,z) = (x —y — 2)? is a tri-variate convex function where Jensen’s
inequality applys.

3 Fair Coin-tossing Protocol in the f-hybrid Model

Let f: X x Y — Z be an arbitrary (possibly randomized) function. As standard in the
literature, we shall restrict to f such that the input domain & and ) and the range Z are of
constant size. A two-party protocol in the f-hybrid model is defined as follows.

» Definition 1 (f-hybrid Model [Can00, Lin17]). A protocol between Alice and Bob in the
f-hybrid model is identical to a protocol in the plain model except that both parties have
access to a trusted party realizing f. At any point during the execution, the protocol specifies
which party is supposed to speak.

Alice/Bob message. If Alice is supposed to speak, she shall prepare her next message
as a deterministic function of her private randomness and the partial transcript. If Bob
is supposed to speak, his message is prepared in a similar manner.

Trusted party message. At some point during the execution, the protocol might
specify that the trusted party shall speak next. In this case, the protocol shall also
specify a natural number ¢, which indicates how many instances of f should the trusted
party compute. Alice (resp., Bob) will prepare her inputs & = (z1,...,2,) (resp.,
¥ = (y1,.-.,y¢)) and send it privately to the trusted party. The trusted party shall
compute (f(x1,y1),-.-,f(ze,ye)) and send it as the next message.

11
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In this paper, we shall restrict to fail-stop adversarial behavior.

» Definition 2 (Fail-stop Attacker in the f-hybrid Model). A fail-stop attacker follows the
protocol honestly and might prematurely abort. She might decide to abort when it is her
turn to speak. Furthermore, during the trusted party message, she shall always receive the
trusted party message first and, based on this message, decide whether to abort or not. If
she decides to abort, this action prevents the other party from receiving the trusted party
message.

In particular, we shall focus on fair coin-tossing protocols in the f-hybrid model.

» Definition 3 (Fair Coin-tossing in the f-hybrid Model). An (X, r)-fair coin-tossing in the
f-hybrid model is a two-party protocol between Alice and Bob in the f-hybrid model such
that it satisfies the following.

Xo-Expected Output. At the end of the protocol, parties always agree on the output
€ {0,1} of the protocol. The expectation of the output of an honest execution is
Xp € (0, 1)

r-Message Complexity. The total number of messages of the protocol is (at most) r.
This includes both the Alice/Bob message and the trusted party message.

Defense Preparation. Anytime a party speaks, she shall also prepare a defense coin
based on her private randomness and the partial transcript. Her latest defense coin shall
be her output when the other party decides to abort. To ensure that parties always have
a defense to output, they shall prepare a defense before the protocol begins.
Insecurity. The insecurity is defined as the maximum change a fail-stop adversary can
cause to the expectation of the other party’s output.

For any (randomized) functionality f, Kilian [Kil00] proved that if f does not satisfy the
following cross product rule, f is complete for information-theoretic semi-honest adversaries.
That is, for any functionality g, there is a protocol in the f-hybrid model that realizes g,
which is secure against information-theoretic semi-honest adversaries. In particular, this
implies that there is a protocol in the f-hybrid model that realizes oblivious transfer.

» Definition 4 (Cross Product Rule). A (randomized) functionality f: X x Y — Z is said to
satisfy the cross product rule if for all xg,x1 € X, yo,y1 € Y, and z € Z such that

Pr(f(wo,y0) = 2] >0 and Pr[f(z1,90) = 2] > 0,

we have

Pr(f(z0,v0) = 2] - Pr[f(z1,41) = 2] = Pr[f(21,90) = 2] - Pr[f (o, 91) = 2].

We recall the MNS protocol by Moran, Naor, and Segev [MNS09]. The MNS protocol
makes black-box uses of the oblivious transfer as a subroutine to construct optimal-fair
coin-tossing protocols. In particular, their protocol enjoys the property that any fail-stop
attack during the oblivious transfer subroutine is an entirely ineffective attack. Therefore, the
MNS protocol, combined with the results of Kilian [Kil00], gives us the following theorem.

» Theorem 2 ([Kil00, MNS09]). Let f be a (randomized) functionality that is complete. For
any Xo € (0,1) and r € N*, there is an (Xo,r)-fair coin-tossing protocol in the f-hybrid
model that is (at most) O(1/r)-insecure against fail-stop attackers.
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» Remark (On the necessity of the unfairness of f). We emphasize that it is necessary that
in the f-hybrid model, f is realized unfairly. That is, the adversary receives the output of
f before the honest party does. If f is realized fairly, i.e., both parties receive the output
simultaneously, it is possible to construct perfectly-secure fair coin-tossing. For instance, let

f be the XOR function. Consider the protocol where Alice samples x & {0,1}, Bob samples

Yy & {0,1}, and the trusted party broadcast f(x,y), which is the final output of the protocol.

Trivially, one can verify that this protocol is perfectly-secure.

Intuitively, the results of Kilian [Kil00] and Moran, Naor, and Segev [MNS09] showed
that when f is a functionality that does not satisfy the cross product rule, a secure protocol
realizing f can be used to construct optimal-fair coin-tossing.

In this work, we complement the above results by showing that when f is a functionality
that does satisfy the cross product rule, a fair coin-tossing protocol in the f-hybrid model is

(qualitatively) as insecure as a fair coin-tossing protocol in the information-theoretic model.

In other words, f is completely useless for fair coin-tossing. Our results are summarized as
the following theorem.

» Theorem 3 (Main Theorem for f-hybrid). Let f be a randomized functionality that is
not complete. Any (Xo,r)-fair coin-tossing protocol in the f-hybrid model is (at least)

Q0 (W) -insecure.

4 Proof of Theorem 3

4.1 Properties of Functionalities

Let f be a functionality that satisfies the cross product rule. We start by observing some
properties of f. Firstly, let us recall the following definition.

» Definition 5 (Function Isomorphism [MPRQ9]). Let f: X x Y — Z and g: X x Y — Z’ be
any two (randomized) functionalities. We say f < g if there exist deterministic mappings
Mp: X x 2" — Z and Mg: Y x 2’ — Z such that, for all z € X, y € ), and randomness s,

M (2, 9(x,y;5)) = Mg (y,9(,y; 8))

and
SD (f(z,y), Ma(z,9(z,y))) = 0.

We say f and g are isomorphic (i.e., f & g) if f < gand g < f.

Intuitively, f and g are isomorphic if securely computing f can be realized by one ideal call
to g without any further communication and vise versa. As an example, the (deterministic)
XOR functionality [(1) é} is isomorphic to [g é]

Given two isomorphic functionalities f and g, it is easy to see that there is a natural
bijection between protocols in the f-hybrid model and g-hybrid model.

» Lemma 1. Let f and g be two functionalities such that f = g. For every fair coin-tossing
protocol 7 in the f-hybrid model, there is a fair coin-tossing protocol 7' in the g-hybrid model
such that

7w and 7' have the same message complexity r and expected output Xy.
For every fail-stop attack strategy for w, there exists a fail-stop attack strategy for @' such
that the insecurities they cause are identical and vice versa.

13
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Sketch. Given any protocol 7 in the f-hybrid model between A and B, consider the protocol
7' in the g-hybrid model between A’ and B’. In #/, A’ simply simulates A and does what
A does. Except when the trusted party sends the output of g, A’ uses the mapping Ma to
recover the output of f and feeds it to A. B’ behaves similarly. Easily, one can verify that
these two protocols have the same message complexity and expected output. Additionally,
for every fail-stop adversary A* for , there is a fail-stop adversary (A*)" for 7/ that simulates
A* in the same manner, which deviates the output of Bob by the same amount. |

We are now ready to state our next lemma.

» Lemma 2 (Maximally Renaming the Outputs of f). Let f: X x Y — Z be a (randomized)
functionality that is not complete. There exists a functionality f': X x Y — Z' such that
= f and [’ satisfies the following strict cross product rule. That is, for all g,z € X,
Yo,y1 €Y, and 2’ € Z', we have

Pr(f'(z0,y0) = 2] - Pr[f'(x1,51) = 2] = Pr[f'(x1,90) = 2] - Pr[f' (0, 91) = #'].

1
d
rule, i.e., XOR is not complete, but it does not satisfy the strict cross product rule since

Following the example above, the XOR functionality [(1) satisfies the cross product

Pr[XOR(0,0) = 1] - Pr[XOR(1,1) = 1] # Pr[XOR(1,0) = 1] - Pr[XOR(0,1) = 1].
On the other hand, functionality [g :ﬂ is isomorphic to XOR and does satisfy the strict
cross product rule.

Proof of Lemma 2 . We shall rename the output of f as follows. For all z € Z, define
S.i={(z,y):x € X, y €Y, Pr[f(z,y) = 2] > 0}.

By the cross product rule, we know that there does not exist zg,x1 € X and yp,y1 € ) such
that

(0, v0), (0, 91), (x1,90) €S> but  (x1,y1) ¢ S..

Therefore, we can always partition S, as a collection of combinatorical rectangles. That is,
there exists subsets Xy,..., Ay C X and Vy,...,Yr C Y such that

Sz = Xz X yz‘a

-

i=1

and
Vi<i<j<{ XinX;=0 and Y,NY; =0.

Now define randomized functionality f': X x ) — Z’ as follows. Given input z and y with

randomness s, let z = f(x,y;s). Let i be the index such that (x,y) € &; x ;. Define
f'(w,y;8) =20

Here, 2() is an (arbitrarily picked) distinct output.

It is trivial to verify that, given f’(z,y), Alice and Bob can recover the same sample,
which is identically distributed as f(x,y). On the other hand, given private input z (resp.,
y) and a sample of f(x,y), Alice (resp., Bob) can recover a sample of f'(x,y). Additionally,
they shall always recover the same sample, which is identically distributed as f’(z,y). This
proves that f and f’ are isomorphic.
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Next, we verify that f’ satisfies the strict cross product rule. Given any zg,z; € X,
Yo,y1 €Y, and 2 € 2’ if either zo ¢ X; or z1 ¢ Aj, it is trivially true. Similarly, if either
yo & Vi or y1 ¢ V;, it is also trivial. Otherwise, when both zg, 21 € X; and yo,y1 € Vi, strict
cross product rule follows from cross product rule.

This completes the proof. |

By Lemma 1, the insecurity of a fair coin-tossing protocol in the f-hybrid model is
identical to a fair coin-tossing protocol in the f’-hybrid model when f = f’. Therefore, in
the rest of this section, without loss of generality, we shall always assume f is maximally
renamed according to Lemma 2 such that it satisfies the strict cross product rule.

4.2 Notations and the Technical Theorem

Let 7 be an (X, 7)-fair coin-tossing protocol in the f-hybrid model. We shall use R* and RB
to denote the private randomness of Alice and Bob. We use random variable M; to denote
the i'" message of the protocol, which could be either an Alice/Bob message or a trusted
party message. Let X; be the expected output of the protocol conditioned on the first 4
messages of the protocol. In particular, this definition is consistent with the definition of Xj.

For an arbitrary i, we consider both Alice aborts and Bob aborts the it” message. Suppose
the i" message is Alice’s message. Alice abort means that she aborts without sending this
message to Bob. Conversely, Bob abort means he aborts in his next message immediately
after receiving this message. On the other hand, if this is a trusted party message, then
both a fail-stop Alice and a fail-stop Bob can abort this message. This prevents the other
party from receiving the message. We refer to the defense output of Alice when Bob aborts
the it" message as Alice’s i*" defense. Similarly, we define the i*" defense of Bob. Let DA
(resp., DB) be the expectation of Alice’s (resp., Bob’s) i*" defense conditioned on the first i
messages.

Now, we are ready to define our score function.

» Definition 6. Let 7 be a fair coin-tossing protocol in the f-hybrid model with message
complexity r. Let 7 be a stopping time. Let P € {A,B, T} be the party who sends the last
message.” We define the score function as follows.

Score (m,7) 1= E[L(rzrvipza) - | Xr = DP| + Lirzryvipze) - | Xr — DZ|].

The following remarks, similar to [KMW20, MW20], provide additional perspectives.

» Remark.

1. In the information-theoretic plain model, for every message of the protocol, one usually
only consider the attack by the sender of this message. The attack by the receiver, who
may abort immediately after receiving this message, usually is ineffective. This is because
the sender is not lagging behind in terms of the progress of the protocol. However, in
the f-hybrid model, we have trusted party messages, which reveal information regarding
both parties’ private randomness. Therefore, both parties’ defenses may lag behind, and
both parties’ attacks could be effective. Hence, in our definition of the score function, for
every message we pick in the stopping time, we consider the effectiveness of both parties’
attacks.

7 We use A, B, and T to stand for Alice, Bob, and the trusted party, respectively.

15
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2. The last message of the protocol is a boundary case of the above argument. Suppose
Alice sends the last message of the protocol, Bob does not have the opportunity to abort
after receiving this message. Similarly, if this is a Bob message, Alice cannot attack this
message. On the other hand, if the last message is a trusted party message, then both
parties could potentially attack this message. This explains the indicator function in our
definition.

3. Finally, given a stopping time 7% that witnesses a high score. We can always find
a fail-stop attack strategy that deviates the expected output of the other party by
i - Score (m,7*) in the following way. For Alice, we shall partition the stopping time 7*
by considering whether X, > DB or not. Similarly, we partition 7* for Bob. These four
attacks correspond to either Alice or Bob favoring either 0 or 1. The quality of these four
attacks sums up to be Score (7, 7*). Hence, one of these four fail-stop attacks might be
at least % - Score (m, 7*) effective.

The score function measures the effectiveness of a fail-stop attack corresponds to a
stopping time 7. We are interested in the effectiveness of the most devastating fail-stop
attacks. This motivates the following definition.

» Definition 7. Let 7w be a fair coin-tossing protocol in the f-hybrid model. Define
Opt () := max Score (7, 7).

Now, we are ready to state our main theorem, which shows that the most devastating
fail-stop attack is guaranteed to achieve a high score. In light of the remarks above, Theorem 4
directly implies Theorem 3.

» Theorem 4. For any (Xo,r)-fair coin-tossing protocol m in the f-hybrid model, we have
Opt(m) > I' - Xo (1 — Xo),

v2-1

where I'). 1= -

4.3 Inductive Proof of Theorem 4

In this section, we shall prove Theorem 4 by using mathematical induction on the message
complexity r. Let us first state some useful lemmas.

Firstly, we note that in the f-hybrid model, where f is a (randomized) functionality
that satisfies the strict cross product rule, Alice view and Bob view are always independent
conditioned on the partial transcript.

» Lemma 3 (Independence of Alice and Bob view). For any i and partial transcript m<;, con-
ditioned on this partial transcript, the joint distribution of Alice and Bob private randomness
is identical to the product of the marginal distribution. That is,

SD( (RA RP)|M<; =m<; , (R*MM<; =m<;) x (R®|M<; = mg,»)> =0.

Proof. Let X = (X1,...,X¢) and Y = (Y1,...,Y;) be the random variables of the private
inputs that Alice and Bob send to the trusted party until partial transcript m<;. Clearly, X
is a deterministic function of M<; and RA. Similarly, Y is a deterministic function of M<;
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and RB. Fix any r and 7B, let # and 7 be the unique inputs that is consistent with A and
rB. Then, we have

dJ
—
—
=y
e
=y
o)
~—
|
—
=
e
<
o]
~
|
A

where in the second identity, we use the fact that f satisfies the strict cross product rule.

Hence the input of f, given the output, can be sampled independently. |

In particular, this lemma implies the following claim.

» Claim 1. Let m be an arbitrary fair coin-tossing protocol in the f-hybrid model. Suppose
there are ¢ possible first messages, namely, mgl), m?), . ,mg), each happens with probability
pM p3 . p). Suppose conditioned on the first message being M, = mgl), the expected

defense of Alice and Bob are di\’(i) and d?’(i) respectively. Then we have

4
ST p@ - PaP = D D
=1

Proof. Consider the probability that both Alice’s first defense and Bob’s first defense are 1.

On the one hand, since Alice view and Bob view are independent, this equals to the product
of the probability that Alice’s first defense is 1 and the probability that Bob’s first defense is
1, i.e., D} - DE. On the other hand, conditioned on the first message being M; = mgi), Alice
view and Bob view are still independent. Hence, by the same reasoning, the probability that
both Alice’s first defense and Bob’s first defense are 1 is d?’(i)d?’(i). Therefore,

/4

Zp(i) DB = pA . pB.

i=1

Finally, the following lemma from [KMW20] shall be helpful as well.

» Imported Lemma 1 ([KMW20]). For all P € [0,1] and Q € [0,1/2], if P and Q satisfy

that
P
< _
Q=1 pe

then for all x,, B € [0, 1], we have
max (P-z(1 —x), |x—o¢|+|x—ﬁ|)ZQ-(m(l—x)+(m—a)2+(x—ﬁ)2).

In particular, for any integer r > 1, the constraints are satisfied, if we set P = T, and
Q="T,11, where ', 1= 4/ @

17
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4.3.1 Base case: 7 = 1.

We are now ready to prove Theorem 4. Let us start with the base case. In the base case,
the protocol consists of only one message. Recall that the last message of the protocol is a
boundary case of our score function. It might not be the case that both parties can attack
this message. Hence, we prove it in different cases.

Case 1: Alice message. Suppose this message is an Alice message. In this case, we shall only
consider the attack by Alice. By definition, with probability Xy, Alice will send a message,
conditioned on which the output shall be 1. And with probability 1 — X, Alice will send a
message, conditioned on which the output shall be 0. On the other hand, the expectation of
Bob’s defense will remain the same as DE. Therefore, the maximum of the score shall be

Xo-[1 = Dg| + (1~ Xo)- |0~ D§

)

which is
> Xo (1 - Xo).

In particular, this is
> T Xo (11— Xo).

Case 2: Bob message. This case is entirely analogous to case 1.

Case 3: Trusted party message. In this case, we shall consider the effectiveness of the attacks

by both parties. Suppose there are ¢ possible first message by the trusted party, namely,
m(ll), m?’, e ,mgz), each happens with probability p™,p®), ..., p®. Conditioned on first
message being M, = mgi), the output of the protocol is zgi). We must have osgi) € {0,1}
since the protocol has ended and parties shall agree on the output. Furthermore, let the
expected defense of Alice and Bob be d?’(i) and dlB’(i). Therefore, the maximum of the score

will be ,
]

-

‘We have
¢
S - e

¢
> Zp(i) . (xgi) (1 — xgl)> + (xgi) — d/f7(i)>2 + (acgi) — d?7(i)>2> (Since a:gi) € {0,1})
i=1

+ ’xgi) — d?’(i)

L . . , N2 4 ,
= Zp(l) : <x§z) + (xgz) — df’(l) — d?’(z)) — Qd?’(l)dlB’(l)> (Identity Transformation)
i=1

4
>Xo+ (Xo — DA = DB)* = 3" p@ 24}V

i=1

(Jensen’s inequality on convex function F(z,y,z) := (z —y — 2)?)
—Xo + (Xo — D" — DB)* — 2D} - DB (Claim 1)
=Xo (1 — Xo) + (XO — D(/)\)2 + (Xo — DE)2 (Identity Transformation)

>Xo (1 — Xo)
>I' - Xo (1 — Xo)

This completes the proof of the base case.
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4.3.2 Inductive Step.

Suppose the statement is true for message complexity r. Let m be an arbitrary proto-
col with message complexity r + 1. Suppose there are ¢ possible first messages, namely,

51)’ mgz), . ,mge), each happens with probability p(*),p®) ... p®. Conditioned on first

(@) (@

message being M; = m;’, the output of the protocol is xli and the expected defense of

Alice and Bob are d?’(i) and d?’(i) respectively. Note that conditioned on the first message
being M7 = mgz), the remaining protocol () becomes a protocol with expected output xgz)
and message complexity r. By our inductive hypothesis, we have

Opt (W(i)) >T, ~x§i) (1 - :175”) .

On the other hand, we could also pick the first message mgi) as our stopping time, which
yields a score of

’ 2 — @

i ‘xgo p L0

Therefore, the stopping time that witnesses the largest score yields (at least) a score of

max (I‘r . acgi) (1 — x&”) , )

>Tgq - <x§l) (1 - mgl)) + (xﬁ” — dllk’(i))2 + (xﬁ“ - dlB"(i))2) (Imported Lemma 1)

Therefore, Opt () is lower bounded by

Y4

. . . . AN 2 . AN 2
S P Ty <x§” (1) + (o) = ) + (o) - 2) )
i=1
L , , . N\ 2 , ,
Ty S p0 <x<11> b (o) = O - B0)7 a0 dls,m)
=1
(Identity Transformation)

>y (XO + (X0 — D* - DB)2 - XK:P@) 'Qd?’(i)d?(i))

(Jensen’s inequaliti;lon convex function F(x,y,z2) := (v —y — 2)?)
=Ty - (XO +(Xo— DA = DB)? — 2D} - DE) (Claim 1)
=Ty - (XO (1—Xo) + (X0 — D(’)A)2 + (Xo — D§)2> (Identity Transformation)

>T'q1 - Xo (1 — Xo)

This completes the proof of the inductive step.

5 Black-box uses of Public-key Encryption is Useless for Optimal Fair
Coin-tossing

In this section, we prove that public-key encryption used in a black-boxed manner shall not
enable optimal fair coin-tossing. Our objective is to prove the existence of an oracle, with
respect to which public-key encryption exists, but optimal fair coin-tossing does not.

19



20

Computational Hardness of Optimal Fair Computation: Beyond Minicrypt

5.1 Public-key Encrytion Oracles

Let n be the security parameter. We follow the work of [MMP14] and define the following
set of functions.

Gen: {0,1}" — {0,1}*". This function is a random injective function.

Enc: {0,1}*" x {0,1}" — {0,1}*". This function is uniformly randomly sampled among
all functions that are injective with respect to the second input. That is, when the first
input is fixed, this function is injective.

Dec: {0,1}" x {0,1}*" — {0,1}" U{L}. This function is the uniquely determined by
functions Gen and Enc as follows. Dec takes as inputs a secret-key sk € {0,1}" and a
ciphertext ¢ € {0,1}*". If there exists a message m € {0,1}" such that Enc(Gen(sk), m) =
¢, define Dec(sk, ¢) := m. Otherwise, define Dec(sk, c) := L. Note that such message m,
if exists, must be unique, because Enc is injective with respect to the second input.
Testy : {0,1}*" — {0,1}. This function is uniquely determined by function Gen. It takes
as an input a public-key pk € {0, 1}3". If there exists a secret-key sk € {0,1}" such that
Gen(sk) = pk, define Test; (pk) := 1. Otherwise, define Test; (pk) := 0.

Testy: {0,1}*" x {0,1}*" — {0,1}. This function is uniquely determined by function
Enc. Tt takes as inputs a public-key pk € {0, 1}3" and a ciphertext ¢ € {0, 1}3". If there
exists a message m such that Enc(pk, m) = ¢, define Testy(pk, ¢) := 1. Otherwise, define
Testy(pk, ¢) := 0.

We shall refer to this collection of oracles the PKE oracle. Trivially, the PKE oracle enables
public-key encryption. We shall prove that it does not enable optimally-fair coin-tossing.

» Remark. We stress that it is necessary to include the test functions Test; and Tests.
As shown by [GKM™00, LOZ12], public-key encryption with additional features could be
used to construct oblivious transfer protocols, which, in turn, could be used to construct
optimally-fair coin-tossing protocols [MNS09]. [MMP14] proved that with the test functions
Test; and Testsy, Alice’s and Bob’s private views can only be correlated as a disjoint union of
independent views, which is not sufficient to realize oblivious transfer. We refer the readers
to [MMP14] for more details.

5.2  Our Results
We shall prove the following theorem.

» Theorem 5 (Main theorem for PKE Oracle). There exists a universal polynomial p(-,-,-,-)
such that the following holds. Let w be any fair coin-tossing protocol in the PKE oracle
model, where Alice and Bob make at most m queries. Let Xo be the expected output, and r
be the message complexity of w. There exists an (information-theoretic) fail-stop attacker
that deviates the expected output of the other party by (at least)

(27)

This attacker shall ask at most p (n, m,T, m) additional queries.

It is instructive to understand why Theorem 3 does not imply Theorem 5. One may
be tempted to model the public-key encryption primitive as an idealized secure function
evaluation functionality to prove this implication. The idealized functionality for public-key
encryption delivers sender’s message to the receiver, while hiding it from the eavesdropper.



H. K. Maji, M. Wang

So, the “idealized public-key encryption” functionality is a three-party functionality where

the sender’s input is delivered to the receiver; the eavesdropper has no input or output.

This idealized effect is easily achieved given secure point-to-point communication channels,
which we assume in our work. The non-triviality here is that our result is with respect to
an oracle that implements the public-key encryption functionality. An oracle for public-key
encryption is not necessarily used just for secure message passing. Section 6 has a discussion
elaborating the difference between an “ideal functionality” and an “oracle implementing the
ideal functionality.”

» Remark. As usual in the literature [DLMM11, DMM14, MW20], we shall only consider
instant protocols. That is, once a party aborts, the other party shall not make any additional
queries to defend, but directly output her current defense coin. We refer the reader to
[DLMM11] for justification and more details on this assumption.

In fact, our proof technique is sufficient to prove the following stronger theorem.

» Theorem 6. There exists a universal polynomial p(-,-,-,-) such that the following holds.
Let f be any (randomized) functionality that is not complete. Let w be any fair coin-tossing
protocol in the f-hybrid model where parties have access to the PKE oracle model. Assume
Alice and Bob make at most m queries. Let Xo be the expected output, and r be the message
complezity of m. There exists an (information-theoretic) fail-stop attacker that deviates the
expected output of the other party by (at least)

(252)

This attacker shall ask at most p (m m,r, M) additional queries.
Our proof strategy consists of two steps, similar to that of [MMP14].

1. Given a protocol in the PKE oracle model, we shall first convert it into a protocol where
parties do not invoke the decryption queries. By Imported Theorem 1 proven in [MMP14],
we can convert it in a way such that the insecurity of these two protocols in the presence
of a semi-honest adversary is (almost) identical. In particular, this ensures that the
insecurity of fair coin-tossing protocol in the presence of a fail-stop adversary is (almost)
identical.

2. Next, we shall extend the results of [MW20], where they proved a fair coin-tossing protocol
in the random oracle model is highly insecure, to the setting of PKE oracles without
decryption oracle. Intuitively, The proof of [MW20] only relied on the fact that in the
random oracle model, there exists a public algorithm [BM09] that asks polynomially
many queries and decorrelate the private view of Alice and Bob. Mahmoody, Maji,
and Prabhakaran [MMP14] proved that (summarized as Imported Theorem 2) the PKE
oracles without the decryption oracle satisfies the similar property. Hence, the proof of
[MW20] extends naturally to this setting,.

Together, these two steps prove Theorem 5. The first step is summarized in Section 5.3.
The second step is summarized in Section 5.4.
5.3 Reduction from PKE Oracle to Image Testable Random Oracle

A (keyed version of) image-testable random oracles is a collection of pairs of oracles (R*®Y, T*Y)
parameterized by a key such that the following holds.
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R*Y: {0,1}" — {0,1}*" is a randomly sampled injective function.

T v: {0,1}*" — {0,1} is uniquely determined by function R as follows. Define
Tk (B) := 1 if there exists an o € {0,1}" such that R*¥(a) = 8. Otherwise, define
T* () = 0.

Observe that the PKE oracle without the decryption oracle Dec is exactly a (keyed version
of) image-testable random oracles with the keys drawn from {L} U {0,1}*". If the key is
L, it refers to the pair of oracles (Gen, Testy). If the key € {0, 1}3", it refers to the pair of
oracles (Enc(key, -), Testa(key, -)). We shall refer to the PKE oracle without the decryption
oracle Dec as ITRO. We shall use the following imported theorem, which is implicitly proven
in [MMP14].

» Imported Theorem 1 ([MMP14]). There exists a universal polynomial p(-,-) such that the
following holds. Let w be a fair coin-tossing protocol in the PKFE oracle model. Let Xy and
r be the expected output and message complexity. Suppose Alice and Bob ask (at most) m
queries. For any € > 0, there exists a fair coin-tossing protocol ©' in the ITRO model such
that the following holds.

Let X}y and 1" be the expected output and message complexity of n'. Then, v’ = r and
|X6 — X0| < €.

Parties asks at most p(m,1/€) queries in protocol ’.

For any semi-honest adversary A’ for protocol 7', there exists a semi-honest adversary A
for protocol 7, such that the view of A is e-close to the view of A'. And vice versa. In
particular, this implies that if n’ is a-insecure. 7 is (at least) (o — €)-insecure.

The intuition behind this theorem is the following. To avoid the uses of decryption oracle,
parties are going to help each other decrypt. In more detail, suppose Alice generates a
ciphertext using Bob’s public key. Whenever the probability that Bob invokes the decryption
oracle on this ciphertext is non-negligibly high, Alice will directly reveal the message to Bob.
Hence, Bob does not need to use the decryption oracle. This shall not harm the security as a
semi-honest Bob can recover the message by asking polynomially many additional queries.
We refer the readers to [MMP14] for more details.

Looking forward, we shall prove that any fair coin-tossing protocol in the ITRO model is

X} (1-x)
‘W)—insecure. By setting € to be 1/poly for some sufficiently large polynomial, we

SNEIEE

This guarantees that the insecurity of the protocol in the PKE oracle model is (qualitatively)
identical to the insecure of the protocol in the ITRO model.

Q

shall guarantee that

5.4 Extending the proof of [MW20] to Image Testable Random Oracle
We first recall the following theorem from [MMP14].

» Imported Theorem 2 (Common Information Learner [MMP14]). There exists a universal
polynomial p(-,-) such that the following holds. Let  be any two-party protocol in the ITRO
model, in which both parties make at most m queries. For all threshold e € (0,1), there
exists a public algorithm, called the common information learner, who has access to the
transcript between Alice and Bob. After receiving each message, the common information
learner performs a sequence of queries and obtain its corresponding answers from the ITRO.
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Let M; denote the it" message of the protocol. Let H; denote the sequence of query-answer
pairs asked by the common information learner after receiving the message M;. Let T; be the
union of the it" message M; and the it" common information learner message H;. Let ViA
(resp., V) denote Alice’s (resp., Bob’s) private view immediately after message T;, which
includes her private randomness, private queries, and the public partial transcript. , The
common information learner guarantees that the following conditions are simultaneously
satisfied.

Cross-product Property. Fiz any round i,

E_[SD((V VP T = t<i), (VAT = t<i) x (VP|T<s = t<i))] < e
t<i+T<;
Intuitively, it states that on average, the statistical distance between (1) the joint distribution
of Alice and Bob’s private view, and (2) the product of the marginal distributions of Alice’s
private views and Bob’s private views is small.
Efficient Property. The expected number of queries asked by the common information
learner is bounded by p(m,1/e).

This theorem, combined with proof of [MW20] gives the following theorem.

» Theorem 7. There exists a universal polynomial p(-, -, -, -) such that the following holds. Let
m be a protocol in the ITRO model, where Alice and Bob make at most m queries. Let Xy and
r be the expected output and message complexity. Then, there exists an (information-theoretic)
fail-stop adversary that deviates the expected output of the other party by

(255

This attacker asks at most p (n, m,T, M) additional queries.

Below, we briefly discuss why Imported Theorem 2 is sufficient to prove this theorem.
The full proof is analogous to [MW20] and the proof of the results in the f-hybrid model.

Hence we omit it here.

On a high level, the proof goes as follows. We prove Theorem 7 by induction. Conditioned
on the first message, the remaining protocol becomes an (r — 1)-message protocol, and one
can apply the inductive hypothesis. For every possible first message i, we consider whether to
abort immediately or defer the attack to the remaining sub-protocol. By invoking Imported
Lemma 1, we obtain a potential function, which characterizes the insecurity of the protocol
with first message being ¢. This potential function will be of the form

(w4, ai,b;) = (1 — 23) + (v — a;)® + (25 — b;)?,

where x;, a;, and b; stands for the expected output, expected Alice defense, and expected
Bob defense, respectively. To complete the proof, [MW20] showed that it suffices to prove
the following Jensen’s inequality.

7 7 [ %

B@(ss0i b)) > @ (Blod Blad BD1)
To prove this, one can rewrite ®(x,a,b) as

®(x,a,b) = 2+ (x — a — b)* — 2ab.
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We note that z and (z — a — b)? are convex functions, and hence Jensen’s inequality holds.
As for the term ab, we shall have

]?[aibi] ~ E[a;] - E [bi]

7 7

as long as, conditioned on every possible first message i, Alice’s private view is (almost)
independent to Bob’s private view. This is exactly what Imported Theorem 2 guarantees
except for a small error depending on €, which we shall set to be sufficiently small. Therefore,
the proof shall follow.

6 Open Problems

In this work, we proved that access to ideal invocations to the secure function evaluation
functionalities like the Kushilevitz function [KN97] (Figure 2) does not enable optimal fair
coin-tossing. However, we do not resolve the following stronger statement. Suppose there
exists an oracle relative to which there exists a secure protocol for the Kushilevitz function.
Is optimal fair coin-tossing impossible relative to this oracle?

To appreciate the distinction between these two statements, observe that there may be
additional ways to use the “oracle implementing Kushilevitz function” than merely facilitating
the secure computing of the Kushilevitz function. More generally, there may be implicit
consequences implied by the existence of such an oracle. For example, “the existence of
an efficient algorithm for 3SAT” not only allows solving 3SAT problems, but it also allows
efficiently solving any problem in PH because the entire PH collapses to P.

This problem is incredibly challenging and one of the major open problems in this field.
The technical tools developed in this paper also bring us closer to resolving this problem.
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