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Abstract

Many recent private set intersection (PSI) protocols encode input sets as polynomials. We
consider the more general notion of an oblivious key-value store (OKVS), which is a data
structure that compactly represents a desired mapping ki 7→ vi. When the vi values are random,
the OKVS data structure hides the ki values that were used to generate it. The simplest (and
size-optimal) OKVS is a polynomial p that is chosen using interpolation such that p(ki) = vi.

We initiate the formal study of oblivious key-value stores, and show new constructions
resulting in the fastest OKVS to date.

Similarly to cuckoo hashing, current analysis techniques are insufficient for finding concrete
parameters to guarantee a small failure probability for our OKVS constructions. Moreover,
it would cost too much to run experiments to validate a small upper bound on the failure
probability. We therefore show novel techniques to amplify an OKVS construction which has a
failure probability p, to an OKVS with a similar overhead and failure probability pc. Setting p
to be moderately small enables to validate it by running a relatively small number of O(1/p)
experiments. This validates a pc failure probability for the amplified OKVS.

Finally, we describe how OKVS can significantly improve the state of the art of essentially all
variants of PSI. This leads to the fastest two-party PSI protocols to date, for both the semi-honest
and the malicious settings. Specifically, in networks with moderate bandwidth (e.g., 30 - 300
Mbps) our malicious two-party PSI protocol has 40% less communication and is 20-40% faster
than the previous state of the art protocol, even though the latter only has heuristic confidence.

1 Introduction

Private set intersection (PSI) allows parties to learn the intersection of sets that they each hold,
without revealing anything else about the individual sets. One common technique that has emerged
in several PSI protocols (and protocols for closely related tasks) is to encode data into a polynomial.
More precisely, a party interpolates a polynomial P so that P (xi) = yi, where the xi’s are their PSI
input set and yi are some values that are relevant in the protocol. The polynomial P compactly
encodes a chosen mapping from xi’s to yi’s, but it has the additional benefit that it hides the xi’s,
when the yi’s are random. This property is critical since the xi’s coincide with some party’s private
input set, which must be hidden.
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We present two major contributions. First, we abstract the properties of polynomials that are
needed in these applications, and define “oblivious key-value stores” (OKVS) as objects satisfying
these properties. We show how to construct a substantially more efficient OKVS that has linear size,
similar to polynomials, and replaces the task of polynomial interpolation with an efficient linear time
computation. Second, we observe that current analysis techniques are insufficient for setting concrete
parameters to ensure a concrete upper bound (say, 2−40) for the failure probability of our OKVS
construction. (This is also true for many other randomized constructions, such as cuckoo hashing,
used in PSI and in other cryptographic algorithms.) Furthermore, running experiments in order to
validate this upper bound for a specific choice of parameters is extremely resource-intensive. Most
previous work used heuristic techniques for setting the parameters for similar constructions. We
overcome this issue by introducing new techniques for amplifying a randomized OKVS construction
with a failure probability p, to an OKVS with a similar overhead and a failure probability pc. Since
p can be rather moderate, it is relatively easy to empirically validate that the failure probability of
a specific choice of parameters is indeed bounded by p.

1.1 Polynomial Encodings for PSI

Cryptographic protocols which use polynomial encodings to hide input values date back to at least
the work of Manulis, Pinkas, and Poettering [MPP10], in the context of “secret handshake” protocols
(closely related to covert MPC and to PSI). Other examples that we are aware of include:1

• Cho, Dachman-Soled, and Jarecki [CDJ16] achieve 2-party PSI using a polynomial whose
outputs (yi values) are protocol messages from a suitable string-equality test protocol.

• Kolesnikov et al. [KMP+17] introduce a primitive called oblivious programmable PRF (OP-
PRF), which acts like an oblivious PRF with a twist. A sender selects (or learns) a PRF
seed k and a receiver learns PRF (k, a) for one or more values a of his/her choosing. But
additionally, the sender gets to “program” the PRF on values of its choice as PRF (k, xi) = zi,
where the special xi points remain secret. This is achieved by combining a standard oblivious
PRF F (k, xi) with a polynomial which encodes “output corrections” that the receiver applies
in order to make the output match the sender’s xi 7→ zi mappings.

They use this OPPRF to construct a multi-party PSI protocol. Later, Pinkas et al. [PSTY19]
also use an OPPRF to construct a protocol for computing arbitrary functions of the intersection
(of two sets). Recently, OPPRFs were used by Chandran et al. for constructing circuit-PSI
and multi-party PSI [CGS21, CDG+].

• Pinkas et al. [PRTY19] construct a low-communication PSI protocol using a polynomial
whose outputs are values from the IKNP OT extension protocol [IKNP03].

• Kolesnikov et al. [KRTW19] construct a private set union protocol, using a variant of the
OPPRF technique.

One downside to polynomials is that interpolating and evaluating them is not cheap. To interpolate
a polynomial through n (unstructured) points, or to evaluate such a polynomial at n points, requires

1We note that there are also PSI constructions which use arithmetic manipulations of polynomials. These
constructions encode input values as roots of polynomials [FNP04, KS05, GN19] or into separate monomials of a
polynomial [GS19], and manipulate the polynomials in order to compute set operations. Our focus is on encodings,
which is the more efficient versions of PSI, and do not require arithmetic manipulation of polynomials in order to
compute the intersection.
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O(n log2 n) field operations, using the FFT algorithms of [MB72]. This cost becomes substantial for
larger values of n, and raises the following natural question:

Is there a data structure that is better than a polynomial, for use in these PSI (and
related) protocols?

In addition to these applications of polynomials, Pinkas et al. [PRTY20] used a related technique to
construct the fastest malicious-secure 2-party PSI protocol to date. They introduced a data structure
called a PaXoS (probe and XOR of strings) which, similar to a polynomial, encodes a mapping
from keys to values while hiding the keys. PaXoS took a significant step toward the abstraction of
an OKVS, however, it is not sufficiently general. In particular, PaXoS is a specific, binary type of
OKVS, whereas other types exist (like a linear OKVS, which is applicable in Oblivious Polynomial
Evaluation [NP99]). The PaXoS data structure is the starting point for our constructions.

1.2 Correctness Amplification

One of the most challenging aspects of designing efficient PSI and OKVS constructions, is obtaining
concrete bounds on extremal properties of randomized data structures. For example, exactly how
many bins are required for cuckoo hashing with 3 hash functions, to ensure that the induced
“cuckoo graph” avoids a certain structure with probability at least 1 − 2−40? This problem is
crucial for PSI, since most PSI constructions are based on randomized data structures such as
cuckoo hashing. Any failure in these constructions (e.g., too many collisions) leads to a violation
of privacy. An implementation of PSI needs to be instantiated with specific parameters that will
ensure a sufficiently small failure probability, but the available literature describing and analyzing
the randomized constructions only describes asymptotic bounds, and it seems highly non-trivial to
translate them to concrete numbers.

Prior PSI work which used such constructions, in particular variants of cuckoo hashing, either
ran a small number of experiments in order to heuristically set the parameters, or, as in [PSZ18],
invested significant efforts (e.g., millions of core hours) to empirically measure the failure probability
of these data structures. (This is needed since validating an upper bound of p on the failure
probability requires running more than 1/p experiments.) But even after expending such efforts, it
was not possible to validate the desired failure probabilities (e.g., 2−40), since they were too small.
So ultimately in [PSZ18] and in other constructions which are based on the same set of experiments,
the failure probabilities of the final constructions were only extrapolated from these empirical
trials.

The lack of a concrete analysis for the failure probabilities of different randomized constructions,
and the extreme cost of experimentally verifying small upper bounds on these probabilities, raise
the following question:

Is is possible to start with a construction that has a moderately high failure probability,
and which can therefore be validated through efficient experiments, and amplify it to
obtain a construction which has a much smaller failure probability?

For example, we can validate on a laptop an upper bound of 2−25 or 2−13, whereas validating a
2−40 failure probability might require using a large cluster.

1.3 Our Results

In this work, we initiate the study of OKVS data structures and their properties.
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• We introduce the abstraction of an oblivious key-value store (OKVS). An OKVS consists
of algorithms Encode and Decode. Encode takes a list of key-value pairs (ki, vi) as input and
returns an abstract data structure S. Decode takes such a data structure and a key k as input,
and gives some output. Decode can be called on any key, but if it is called on some ki that
was used to generate S, then the result is the corresponding vi. The most basic property of an
OKVS echoes the important property of polynomials; namely, S hides the ki’s, when the vi’s
are random. We identify and formalize important properties that allow OKVS to be plugged
into different protocols.

• We catalog existing OKVS constructions and introduce several new and improved ones.

• We describe amplification techniques that can be used to bootstrap strong OKVS out
of weaker ones. Amplification only requires to validate a relatively high upper bound on
the failure probability of the corresponding randomized construction, a task that can be
accomplished through efficient experiments. As an example, we can construct an OKVS
with provable error probability 2−40, from an OKVS with error probability 2−25. The latter
probability is high enough that it can be empirically and efficiently verified with very high
statistical confidence.

Besides having more manageable error analysis, our new OKVS constructions improve consid-
erably over the state of the art in terms of size and speed.

• We show that many existing PSI protocols can be written abstractly in terms of a generic
OKVS. These PSI protocols are therefore automatically improved by instantiating with our
improved OKVS constructions. As a flagship example, we demonstrate the improvement on
the so-called “PaXoS-PSI” protocol of [PRTY20], which is the state of the art protocol with
malicious security. Specifically, our protocol has 40% less communication and is 20% and
40% faster over medium and slow networks2, respectively, for sets of a million items (over a
fast network it is only 5% slower). In addition, on slow networks, our malicious protocol is
even faster than the state of the art semi-honest protocol [PRTY19] (and is only about 10%
and 20% slower than the best semi-honest protocols over fast [KKRT] and medium [CM20]
networks, repectively).

We also note that the covert MPC protocols of [MPP10, CDJ16] can be expressed using our
OKVS constructions to exhibit a higher level of abstraction and to achieve a better runtime.

• Finally, we show two improvements to existing PSI protocols, beyond replacing their underlying
OKVS with a better one.

First, we observe that the leading state-of-the-art PaXoS PSI protocol of [PRTY20] can
be generalized to be built from vector-OLE rather than 1-out-of-N OT extension. Since
vector-OLE enjoys more algebraic structure, the generalized PSI protocol can take advantage
of a more general class of OKVS, and also avoid one source of overhead in the construction.

Second, we show that one of the multi-party PSI constructions of Kolesnikov et al. [KMP+17],
which is the most efficient of the constructions presented in that paper but only has “augmented
semi-honest security” rather than semi-honest security, actually enjoys malicious security.
Hence, we obtain the most efficient malicious, multi-party PSI protocol to date.

2The slow network (33 Mib/s); medium network (260Mib/s); fast network (4.6 Gib/s)
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2 Oblivious Key-Value Stores

2.1 Definitions

Definition 1. A key-value store is parameterized by a set K of keys, a set V of values, and a set
of functions H, and consists of two algorithms:

• EncodeH takes as input a set of (ki, vi) key-value pairs and outputs an object S (or, with
statistically small probability, an error indicator ⊥).

• DecodeH takes as input an object S, a key k, and outputs a value v.

A KVS is correct if, for all A ⊆ K × V with distinct keys:

(k, v) ∈ A and ⊥ 6= S ← EncodeH(A) =⇒ DecodeH(S, k) = v

In the rest of the exposition we choose to omit the underlying parameter H as long as the text
remains unambiguous.

In all the algorithms that we describe, the decision whether Encode outputs ⊥ depends on
the functions H and the keys ki and is independent of the values vi. If the data is encoded as a
polynomial then Encode always succeeds.

To be clear, one may invoke Decode(S, k) on any key k, and indeed it is our goal that one cannot
tell whether k was used to generate S or not. This is stated in the next definition.

Definition 2. A KVS is an oblivious KVS (OKVS) if, for all distinct {k01, . . . , k0n} and all
distinct {k11, . . . , k1n}, if Encode does not output ⊥ for (k01, . . . , k

0
n) or (k11, . . . , k

1
n), then the output

of R(k01, . . . , k
0
n) is computationally indistinguishable to that of R(k11, . . . , k

1
n), where:

R(k1, . . . , kn):

for i ∈ [n]: do vi ← V
return Encode({(k1, v1), . . . , (kn, vn)})

In other words, if the OKVS encodes random values (as it does in our applications), then for any
two sets of keys K0,K1 it is infeasible to distinguish between an OKVS encoding of the keys of K0

from an OKVS encoding of the keys of K1. In fact, all our constructions satisfy the property that if
the values encoded in the OKVS are random (as in the experiment R), then the two distributions
are perfectly indistinguishable.

2.2 Linear OKVS

Some applications of an OKVS use it to encode data that is processed in some kind of homomorphic
cryptographic primitive. In that case, it is convenient for Decode(·, k) to be a linear function for
all k.

Definition 3. An OKVS is linear (over a field F) if V = F (“values” are elements of F), the
output of Encode is a vector S in Fm, and the Decode function is defined as:

Decode(S, k) = 〈d(k), S〉 def=
m∑
j=1

d(k)jSj

for some function d : K → Fm. Hence Decode(·, k) is a linear map from Fm to F.
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The mapping d : K → Fm are typically defined by the hash function H.

For a linear OKVS, one can view the Encode function as generating a solution to the linear
system of equations: 

− d(k1) −
− d(k2) −

...
− d(kn) −

S> =


v1
v2
...
vn


Hence, it is necessary that for all distinct k1, . . . , kn, the set {d(k1), . . . , d(kn)} is linearly independent,
with overwhelming probability. However, we also consider how efficiently Encode finds such a solution,
since solving systems of linear equations is expensive in general . It is often convenient to characterize
a linear OKVS by its d function alone.

Note that when Encode chooses uniformly from the set of solutions to the linear system, and the
vi values are uniform, the output S is uniformly distributed (and hence distributed independently
of the ki values). In other words, a linear OKVS satisfies the obliviousness property.

2.3 Binary OKVS

A binary OKVS over a field F is a special case of a linear OKVS, where the d(k) vectors are
restricted to {0, 1}m ⊆ Fm. Then Decode(S, k) is simply the sum of some positions in S.

We generally restrict our attention to F = GF (2`) ∼= {0, 1}`, in which case the addition operation
over F is XOR of strings. In [PRTY20], a binary OKVS is called a probe and XOR of strings
(PaXoS) data structure.

In a binary OKVS we have (in addition to the usual properties of a linear OKVS) the property
that:

Decode
(

(S1 ∧ x, . . . , Sm ∧ x), k
)

= Decode
(

(S1, . . . , Sm), k
)
∧ x

where “∧” is bitwise-AND of strings, and x ∈ {0, 1}`. This additional property is used in one of the
important applications of OKVS.

2.4 OKVS Overfitting

Often in malicious protocols, the simulator obtains an OKVS from a corrupt party and must “extract”
the items that are encoded in that OKVS. Generally this is done by requiring an OKVS to include
mappings (ki, vi) 7→ H(ki) where H is a random oracle.3 The simulator can observe the adversary’s
queries to H, and then later test which of those k sastisfy Decode(S, k) = H(k).

An OKVS whose parameters are chosen to encode n items can often hold even more than n
items, especially when generated by an adversary. In the context of PSI, this leads to an adversary
holding more items than advertised. It is therefore important to be able to bound the number of
items that an adversary can “overfit” into an OKVS. In order to define this property we define a
“game” which lets the adversary choose an arbitrary data structure S, of a size which can normally
encode n (key,value) pairs. The adversary wins the game if it can find an S which encodes much
more than n pairs of the form (ki, H(ki)). More formally, we use the following definition.

Definition 4. The (n, n′)-OKVS overfitting game is as follows. Let Encode,Decode be an
OKVS with parameters chosen to support n items, and let A be an arbitrary PPT adversary. Run

3We abuse notation herein and use H to denote a random oracle rather than the underlying OKVS parameter,
which remains implicit.
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S ← AH(1κ). Define

X = {k | A queried H at k and Decode(S, k) = H(k)}

If |X| > n′ then the adversary wins.

We say the (n, n′)-OKVS overfitting problem is hard for an OKVS construction if no PPT
adversary wins this game except with negligible probability.

The work in [PRTY20] gives an unconditional bound on the success probability in the overfitting
game. They prove the bound for binary OKVS (“PaXoS”, in their terminology), but the only
property of OKVS they use is its correctness; hence it applies to any KVS:

Lemma 5 ([PRTY20]). Let H be a random oracle with output length `, and let Encode,Decode
be an OKVS scheme supporting n key-value pairs, where the output of Encode is a bit string of
length `′. Then the probability that an adversary who makes q queries to H wins the (n, n′)-OKVS
overfitting game is ≤

(
q
n′

)
2`
′−n′`.

The nature of this bound is to argue that an OKVS that encodes n′ items simply can’t exist; for
if it did exist, then it could be used to construct a compressed representation of the random oracle.
One may further conjecture that an OKVS construction has a hard overfitting problem (for some
relationship between n and n′) against polynomial-time adversaries. For example, perhaps it may
be hard to find a single polynomial of degree n that matches the random oracle on n′ = n+ 100
points, even in the case that such a polynomial exists.

Better cryptanalysis of these kinds of overfitting problems would lead to a tighter security
analysis of our malicious-secure PSI protocols: the protocols would be proven to more strongly
enforce the size of corrupt party’s input sets.

2.5 Efficiency of OKVS

We can measure the efficiency of an OKVS based on the following measures: (1) The rate of an
OKVS which encodes n elements from F is the ratio between the size of the OKVS and n · |F|,
which is the minimal size required for this encoding. (2) The encoding time is the time which
is required for encoding n items in the OKVS. (3) The decoding time is the time required for
decoding (querying) a single element, while the batch decoding time is the time required for
decoding n elements.

3 Existing OKVS constructions

In this section we list existing constructions that fit to the OKVS definition. These are summarized
in Table 1.

Polynomials A simple and natural OKVS is a polynomial P satisfying P (ki) = vi. The coefficients
of the polynomial are the OKVS data structure, and decoding amounts to evaluating the polynomial
at a point k. This OKVS has optimal rate 1, and is linear since P (k) is the inner product of
(1, k, k2, . . .) and the vector of coefficients. Encoding n items takes O(n log2 n) field operations using
the FFT interpolating algorithms of [MB72]. Batch decoding of n items likewise takes O(n log2 n)
operations, while decoding a single items takes O(n) operations.
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OKVS type rate encoding cost (batch) decoding cost

polynomial linear 1 O(n log2 n) O(n log2 n)
random matrix linear 1 O(n3) O(n2)
random matrix binary 1/(1 + λ) O(n3) O(n2)
garbled Bloom filter [DCW13a] binary O(1/λ) O(nλ) O(nλ)
PaXoS [PRTY20] binary 0.4− o(1) O(nλ) O(nλ)

Ours: 3H-GCT (§4.1)
binary

0.81− o(1) O(nλ) O(nλ)
linear

Figure 1: Different OKVS constructions and their properties, for error probability 2−λ. (The rate of
the 3H-GCT construction can be improved to 0.91 by using the hypergraph construction of [Wal21b],
but this improvement takes effect only for very large values of n.)

Dense matrix Another simple OKVS sets d(k) to be a random vector in Fm for each k. This
means that the encoding matrix is a random matrix. It is well-known that a random matrix with n
rows and m ≥ n columns has linearly dependent rows with probability at most

n∑
j=1

Pr[row j ∈ span of first j − 1 rows | first j − 1 rows linearly ind.] (1)

=
n−1∑
i=0

|F|i

|F|m
=

1

|F|m
· |F|

n − 1

|F| − 1
< |F|n−m−1 (2)

For an exponentially large field F, we can have m = n and hence achieve rate 1. If we desire a
binary OKVS, then d(k) are {0, 1}-vectors and we must have m ≥ n+ λ− 1 for error probability
2−λ.

While achieving a good rate, the encoding and decoding procedures are expensive. Encoding n
items corresponds to solving a linear system of n random equations, which requires O(n3) operations
using Gaussian elimination. Decoding each item costs O(n). A random matrix OKVS has worse
performance than a polynomial-based OKVS. The main reason for using a random matrix OKVS is
if the underlying field F is smaller than n, for example, is a binary field, in which case it is impossible
to define an n-degree polynomial over F.

Garbled Bloom filter (GBF) In a garbled Bloom filter [DCW13a], n items are encoded into a
vector of length m = O(λn), i.e. it has a rate of O(1/λ). The scheme is parameterized by λ random
functions H = {h1, . . . , hλ} with range [m]. We have d(k) zero everywhere except in the positions
h1(k), . . . , hλ(k), where it is 1. Hence a garbled Bloom filter is a binary OKVS.

Encoding is done in an online manner, one item at a time. Encoding fails with probability
1/2λ, and the specific error probability is exactly the same as the false-positive probability for a
standard Bloom filter with the same parameters (namely, using λ hash functions and a vector of
size m = 1.44λn result in a failure probability of 1/2λ [MU05]).

Encoding n items costs O(nλ), and decoding each item likewise costs O(λ), since only λ positions
in d(k) are nonzero.

GBFs were used in multiple PSI papers, beginning in [DCW13b], and including the multi-party
protocols of [IOP18, ZLL+19, BENOPC]. A major drawback of the usage of GBFs is the larger
communication overhead of sending a GBF of length O(λn), instead of sending an object of size
O(n), and computing O(λn) oblivious transfers.

8



PaXoS [PRTY20] In a probe-and-xor of strings (PaXoS), n items are encoded into a vector S
of length m = (2 + ε)n+ log(n) + λ.

Let us describe a simplified version of PaXos for which S is of size m = (2 + ε)n. This scheme
is parameterized by 2 random hash functions H = {h1, h2} with a range [(2 + ε)n]. Decoding
of a key x sums the vector entries at h1(x) and h2(x). Encoding is done by generating the
“cuckoo graph” implied by the n keys and the functions h1, h2. In that graph, there are m vertices
u1, . . . , um such that each ki implies an edge (uh1(ki), uh2(ki)). The encoding then peels that graph,
by recursively removing each edge (uh1(ki), uh2(ki)) for which the degree of either uh1(ki) or uh2(ki) is
1, and pushing that ki to a stack. That process ends when the graph is empty of edges. Then, the
unpeeling process iteratively pops an item kj from the stack and uses it to fill the vector’s entries:
If both S[uh1(kj)] and S[uh2(kj)] are unassigned yet, then they are assigned random values such
that S[uh1(kj)] + S[uh2(kj)] = vj . Otherwise, if only S[uh2(kj)] is unassigned (w.l.o.g) then assign
S[uh2(kj)] = vj − S[uh1(kj)]. This process succeeds as long as the peeling indeed removes all edges.
However, there is a high probability for the peeling process to end with a non-empty graph where
none of the vertices is of degree 1. The size of the remaining graph is known to be with at most
O(log n) vertices. This is solved by extending the vector S with extra O(log n) + λ entries.

In a concrete instantiation of PaXoS [PRTY20] the authors set ε = 0.4, which becomes standard
in Cuckoo hashing based constructions. However, that assignment is heuristic, and no failure
probability was proven. Encoding is linear in the number of items and decoding takes 2 + c·logn+λ

2
time, for some constant c ([PRTY20] used c = 5).

4 New OKVS Constructions

The main issue that the new OKVS constructions aim to improve over the existing polynomial-based
or random matrix OKVS constructions, is improving the run time to be linear in the number of
key-value pairs. This comes at the cost of slightly increasing the size of the OKVS.

4.1 OKVS based on a 3-Hash Garbled Cuckoo Table (3H-GCT)

The PaXoS construction of [PRTY20] uses cuckoo hashing with two hash functions. It is well-known
that the efficiency of cuckoo hashing improves significantly when using three rather than two hash
functions (see orientability analysis, with ` = 1 and k ∈ {2, 3} in [Wal21a, Table 1]). Hence, in
this section we suggest generalizing the OKVS construction to three hash functions. (It is crucial
that the construction uses not more than three hash functions. We describe in Footnote 5 that
using more functions will result in better memory and network utilization, but will not support an
efficient linear time peeling algorithm for finding the right assignment of values to memory locations.
Therefore, with current techniques it seems that using three hash functions is optimal.)

Peeling. The construction follows a basic peeling based approach. The OKVS data structure S is
a hypergraph G3,n,m, with m nodes and n hyperedges, each touching 3 nodes. The construction
uses three hash functions h1, h2, h3, and maps each key k to the hyperedge (h1(k), h2(k), h3(k)).4

The simplest OKVS construction is binary, and encodes a pair (k, v) into the graph to satisfy the
property that v = S(h1(k))⊕ S(h2(k))⊕ S(h3(k)). Namely, the value associated with a key k is

4The hyperedge is sampled uniformly at random from all subsets of 3 different nodes in the graph. We simplify the
notation by referring to hash functions h1, h2, h3, but these functions are invoked together under the constraint that
the outputs of the three hash functions are distinct from each other.
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encoded as the exclusive-or of the three nodes of the hyperedge to which it is mapped. The number
of nodes m must be at least the number of values n, and our aim is to make it as close as possible
to n.

This mapping is possible if the binary n ×m matrix in which each row represents a key and
has 1 entry corresponding to the three nodes to which the key is mapped, is of rank n, and can
be therefore be found in time O(n3). However, our goal is to compute a mapping in time which is
close to linear. This is done by a peeling based algorithm: Suppose that there is a key k with a
corresponding hyperedge (h1(k), h2(k), h3(k)), and that, say, h2(k) is a node to which no other key
is mapped. Then we can set values to all other nodes in the graph, including nodes h1(k) and h3(k),
and afterwards set the value of node h2(k) so that the equality v = S(h1(k))⊕ S(h2(k))⊕ S(h3(k))
holds. To denote this property we can orient the hyperedge towards h2(k). This property also
means that we can remove this hyperedge from the graph, solve the mapping for all other keys, and
then set the value of node h2(k) so that the mapping of k is correct. This can of course be done for
all hyperedges that touch nodes of degree 1. Moreover, removing these hyperedges might reduce the
degrees of other nodes, and this enables removing additional hyperedges from the graph.

The peeling process that we described essentially works by repeatedly choosing a node of degree
0 or 1 and removing it (and the incident edge if present) from the hypergraph. The removed edge is
oriented towards the node. If this process can be repeated until all nodes are removed then the
graph is said to be “peelable”. Otherwise, the process ends with a 2-core of the hypergraph (the
largest sub-hypergraph where all nodes have a degree of at least 2). We first discuss the expected
number of nodes that is required to ensure that the peeling process can remove all edges. We then
discuss how to handle the case that the peeling process ends with a non-empty 2-core.

Peelability threshold. It is well known that for random 3-hypergraphs, peelability asymptotically
succeeds with high probability when the number of nodes is at least 1.23n. (See [Mol04, BPZ13] for
an analysis, and [GL19] for implementation and measurements.) A recent result in [Wal21b] shows
that choosing hyperedges based on a specific different distribution reduces the number of nodes to
be as low as 1.1n, but based on experiments in [Wal21b] and on our experiments these results seem
to be applicable only to very large graphs of tens of millions of nodes.)5 Of course, we also wish
to ensure that the OKVS construction fails with only negligible probability, or with a sufficiently
small concrete probability (2−λ, for λ = 40). The known analysis methods do not provide concrete
parameters for guaranteeing a 2−λ failure probability. We will describe in Section 5 how to amplify
OKVS constructions in order to verify experimentally that failures happen with sufficiently small
probability.

Handling the 2-core in binary 3-hash OKVS. Let χ(G) be the number of hyperedges in
the 2-core of a hypergraph G with n edges, and let d(n) be an upper bound on χ(G) which holds
with overwhelming probability (d(n) will typically be very small). The peeling stops working when
reaching the 2-core. We follow [PRTY20] in using a datastructure of the form S = L||R, where L

5For uniformly random d-regular hypergraphs (we use d = 3), increasing d improves the threshold of memory
utilization that enables mapping values to hyperedges. Namely, increasing d enables to use a graph of fewer nodes
in order to successfully orient the same number of hyperedges towards different nodes. Successfully orienting the
nodes implies that it is possible to assign values to nodes to enable the recovery all values associated with hyperedges.
However, this does not imply that mapping values to nodes can be efficiently found in linear time, such as by running
by a peeling process. Unfortunately, increasing the degree d also makes it harder to succeed in peeling, and requires a
substantially higher ratio between the number of nodes and the number of hyperedges in order for peeling to succeed
(see first row of Table 1 in [Wal21b].) Our construction is based on peeling, and therefore our usage of hyperedges of
size d = 3 is optimal.
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consists of the nodes of the hypergraph, and R includes additional d(n) + λ nodes, where 2−λ is the
allowed statistical failure probability. The hypergraph construction maps each key k to 3 nodes in
L. Denote these nodes using a binary vector l(k) of length L, which has 3 bits set to 1. In addition,
we use another hash function to map k to a random binary string r(k) of length d(n) + λ, where the
bits which are set to 1 indicate a subset of the nodes in R. The value of a key k from the OKVS is
retrieved as the exclusive-or of the values of the 3 nodes to which it is mapped in L and the values
of the nodes to which it is mapped in R, namely it is (l(k)||r(k)) ·S. Therefore the encoding process
must set the values in S to satisfy these requirements.

After running the peeling process, we are left with χ(G) ≤ d(n) hyperedges in a 2-core of G. We
solve the system of linear equations (l(ki)||r(ki)) · S for all keys ki whose corresponding hyperedges
are in the 2-core.6 Solving this system of equations sets values to the nodes in R, and to the nodes
in L to which the edges in the 2-core are mapped. This can be done in O((d + λ)3) time. We
can then run the peeling process in reverse: take the peeled hyperedges in reversed order and set
values to the nodes in L to which they are oriented, to satisfy the decoding property for all other
hyperedges in the graph. The entire algorithm is defined in Figure 2. The proof of Lemma 6 below
is in Appendix A.1.

Lemma 6. Let d(n) be a parameter such that Pr[G3,n,m has 2-core > d(n)] ≤ ε1. Then the
construction with |R| = d(n) + λ is an OKVS with error ε1 + 2−λ.

4.2 OKVS based on Simple Hashing and Dense Matrices

Another possible approach for constructing an OKVS is to randomly map the key-value pairs
into many bins, and implement an independent OKVS per bin (using the polynomial-based or
the random matrix approaches). The computation cost of these smaller OKVS instances is much
smaller, and the space utilization only needs to take into account the maximum number of items
that might be mapped into a bin.

Suppose we hash n pairs into m bins, where key-value pair (k, v) is placed into bin h(k) based
on a random function h : {0, 1}∗ → [m]. Encode each bin’s set of key-value pairs into its own
OKVS using any “inner OKVS” construction. The overall result is also an OKVS. More formally, if
(Encode,Decode) is the inner OKVS, then given (D1, . . . , Dm)← Encode({ki, vi}) the new OKVS is

Decode∗
(

(D1, . . . , Dm), k
)

def
= Decode(Dh(k), k)

The corresponding Encode∗ is defined as explained above.

In choosing parameters for the inner OKVS, the näıve error analysis would proceed as follows.
First compute a bound β such that all bins have at most β items except with the target ε probability.
Choose parameters such that each bin’s OKVS fails on β items with probability bounded by ε/m.
Then by a union bound the entire encoding procedure fails with probability at most m · ε/m = ε.

We can do better when the inner OKVS is a polynomial OKVS. If the field is small, we can
use a random dense-matrix OKVS. For this OKVS the error probability within each bin drops

6An alternative approach is to use a graph without an R component, and try to solve the system of equations for
the l(ki) nodes of the 2-core alone. However, experiments that we ran show that in many cases where the 2-core is
small but not empty, the 2-core includes only two hyperedges. This means that these two hyperedges are mapped to
exactly the same set of 3 nodes, and therefore the two associated linear equations are identical and cannot be solved.

We additionally note that PSI applications require using a Binary linear combination of the OKVS values. Other
applications might allow using linear combinations with larger coefficients. In these cases there will likely be no need
for adding the R nodes to the graph.
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Encode({ki, vi}):
Parameters:

• The algorithm is parameterized with the functions H = {h1, h2, h3}, each has a range [m].

• In addition the algorithm uses the functions l(·) and r(·) where l(x) outputs a bit-vector of length
m with zero at all entries except of entries h1(x), h2(x) and h3(x). The function r(x) outputs a
random bit-vector of length r.

Algorithm:

1. Initialize empty vectors L ∈ Fm and R ∈ Fr.

2. Initialize stack P .

3. (Identify nodes which are touched by only a single hyperedge, and push them to P .) While there
is a node j ∈ [m] such that the set {ki 6∈ P | j ∈ {h1(ki), h2(ki), h3(ki)}} is a singleton: Let ki be
the element of that singleton, and push ki onto P .

4. Solve the system of equations 〈l(ki)‖r(ki), L‖R〉 = vi for ki 6∈ P , and assign the solutions to the
corresponding locations in S.

5. While P not empty:

(a) pop ki from P .

(b) L is undefined in at least one of the positions h1(ki), h2(ki), h3(ki). Set the undefined
position(s) so that 〈l(ki)‖r(ki), L‖R〉 = vi.

6. Set any empty position in L or R with a random value from F.

Figure 2: 3-Hash Garbled Cuckoo Table, fitting n key-value pairs (ki, vi) to a data structure
S ∈ Fm+r.

off gradually with the number of items (rather than having a sharp threshold). Suppose we have
n items into m bins, and each bin is a dense-matrix OKVS with w slots (so that the entire data
structure is mw in size). If exactly t items happen to be assigned to a particular bin, then that bin’s
OKVS fails with probability bounded by |F|w−t. Using the union bound, we bound the probability
of the overall OKVS failing as:

m · Pr[bin #1 OKVS fails] ≤ m
∑
t

(
n

t

)(
1

m

)t(m− 1

m

)n−t
︸ ︷︷ ︸
Pr[bin #1 holds exactly t items]

min

{
1,

1

|F|w−t

}

It is straightforward to calculate this probability exactly, and it leads to better bounds on OKVS
size.

Example. Consider the case of |F| = {0, 1}, hashing n = 1000 items into m = 100 bins. How wide
must each bin’s dense-matrix OKVS be for an overall error probability of 2−40? The näıve analysis
proceeds as follows. With probability 1 − 2−40 all bins have at most 42 items. We must ensure
Pr[inner OKVS fails on 42 items] < 2−47, so that the union bound over m = 100 bins bounds the
overall failure probability by 2−40. Hence, each bin must have w = 42 + 47 = 89 slots. In contrast,
the more specialized analysis above shows that only w = 61 slots suffice per bin, for error probability
2−40 (a 31% improvement).
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5 Amplifying OKVS Correctness

Premise: Empirically Measuring Failure Probabilities. The most efficient OKVS construc-
tions are likely to be based on randomized constructions. Unfortunately, we lack techniques for
finding tight concrete bounds of the relevant failure probabilities for constructions of this type,
such as cuckoo hashing, and for choosing appropriate concrete parameters (e.g., how many bins are
needed to hash a concrete number of n items with k hash functions so that the 2-core of the cuckoo
graph has size bounded by 2 log2 n with probability 1− 2−λ?78

The best we can currently hope for is to empirically measure failure probabilities. Since we seek
data structures where the failure probabilities are extremely small (e.g., 2−40) empirical measurement
is extremely costly. One would have to perform trillions of trials before expecting to see any failures
at all. Alternatively, one must typically perform many trials with higher error probabilities, and
extrapolate to the lower probabilities. This approach was used in, e.g., [PSZ18, CLR17].

In this section we show methods for amplifying the probabilistic guarantees of an OKVS.
For example, we show how to use an OKVS with failure probability ε to build an OKVS with
failure probability c · εd (for explicit constants c, d). Think of ε as being moderately small, e.g.,
ε = 2−15, and therefore sufficiently large to enable running efficient empirical experiments to
obtain 99.99% certainty about whether ε bounds the failure event. Using an OKVS with such an
empirically-validated failure probability, we can construct a new OKVS with the desired failure
probability (e.g., 2−40).

Since our amplification algorithms may instantiate two or more OKVS structures for the same
set of keys and values, in this section we make the set of hash functions used in each instantiation
explicit. That is, an OKVS scheme is a pair of algorithms (EncodeH ,DecodeH) as defined in Section
2.

In the following, we describe three amplification architectures for constructing a new OKVS
scheme (Encode∗H ,Decode

∗
H) using an underlying OKVS scheme (EncodeH ,DecodeH). We assume

that the OVKS is over a finite field and that randomly sampling a vector of appropriate length from
that field samples a random OVKS. For the underlying scheme, we denote by size(n) the size of the
resulting OKVS for encoding n items. (Recall that by the obliviousness property, it follows that the
OKVS size depends only on the size of the key-value set and not on the keys themselves.) We note
that the amplification constructions sometimes invoke EncodeH with a set of key-value pairs only to
check whether encoding succeeds or fails, and do not necessarily use the outcome of that encoding.
Recall that even though the input to EncodeH consists of key-value pairs, success or failure depend
only on the keys.

5.1 Replication Architecture

The following construction is mainly described as a warmup towards more involved constructions,
since it substantially increases the space requirements. The idea is to amplify the success probability
by doubling the size and computation, by using two OKVS constructions and retrieving values as

7For cuckoo hashing, the relation between the number of items n, number of hash functions k, number of bins
m = (1 + β)n for β ∈ (0, 1), stash size s, and the insertion failure probability ε, is proven in [KMW09]: for any
k ≥ 2(1 + β) ln 1

β
and s > 0, mapping n items to (1 + β)n bins fails with probability O(n1−c(s+1)) for a constant c and

n→∞. However, the constants in the big “O” notation are unclear and therefore we do not know which concrete
parameters are needed in order to instantiate such constructions.

8We stress that the failure events in Cuckoo hashing and in OKVS are slightly different. Specifically, an OKVS
fails if the size of the 2-core is too large whereas CH can handle a large 2-core, as long as there are not too many
intersecting cycles.
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the sum of the retrieved values from both constructions. The encoding procedure checks if any of
two random hash functions results in a successful OKVS for the given set of keys. The encoding
fails only if both hash functions result in a failure. Its main disadvantage is the double space usage.

Formally:

• Encode∗H({(ki, vi)}) views H as two sets of hash functions H1 and H2. It outputs two
dictionaries S1 and S2 as follows:

– Compute S′ ← EncodeH1({(ki, vi)}).
– If S′ 6= ⊥: set S2 ← Fsize(n) randomly, i.e. S2 is a random OKVS independent of
{(ki, vi)}. Then, define the set {(ki, v′i)} where v′i = vi − DecodeH2(S2, ki). Finally,
compute S1 ← EncodeH1({(ki, v′i)}). We know that S1 6= ⊥ (since S′ 6= ⊥ and S1 uses
the same set of keys as S′) and therefore output S = (S1, S2).

– Otherwise (S′ = ⊥): set S1 ← Fsize(n). Then, define the set {(ki, v′i)} where v′i =
vi − DecodeH1(S1, ki) and compute S2 ← EncodeH2({(ki, v′i)}). If S2 6= ⊥ then output
S = (S1, S2), otherwise, output ⊥.

• Decode∗H(S, x): Interpret H = (H1, H2) and S = (S1, S2). Output y = DecodeH1(S1, x) +
DecodeH2(S2, x).

Clearly, this construction only fails if both encodings fail. Therefore, if (Encode,Decode) fails
with probability ε then (Encode∗,Decode∗) fails with probability ε2.

Generalization The above construction uses two ‘replicas’. It could be generalized to c > 2
replicas, resulting in an OKVS of size c · size(n), failure probability εc and overall encode/decode
time that is c times greater than the underlying scheme. Denote an OKVS scheme with c replicas
by (Encode∗c,Decode∗c). We use such a scheme in the generalized construction described below
(Section 5.3).

The obvious undesirable property of this construction is that the size of the OKVS increases
by a factor of c. (This is also true for the encoding and decoding times, but these performance
parameters are typically less critical since they are small for hashing-based OKVS.) In the rest of
this section we describe how to amplify the failure probability from ε to εc while keeping the size of
the resulting OKVS not much larger than the underlying OKVS (certainly not larger by a factor of
c).

5.2 Star Architecture

We next show how to reduce the error probability while keeping the OKVS size to be almost size(n).
In our concrete instantiation (presented in Section 8) we are able to almost square the failure
probability while increasing the OKVS size by less than 10% for n = 220 items.

At the high-level idea, imagine a star-shaped graph consisting of q + 1 nodes, one central node
and q leaves. Each node, including the central node, is associated with an OKVS data structure
and should be large enough to store about n/q items. Each item is retrieved from one leaf node and
from the root node, and the returned value is the sum of the two retrieved values. More precisely,
to probe for an item x, probe for x in the central OKVS and probe for x in the OKVS of leaf h̃(x)
(where h̃ is a random function), and add the results. The construction is robust to a hashing failure
of a single node since we can set that node to have random values and can still set the values of all
the other nodes to ensure that the correct sums are returned (this is true for either a leaf node or
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the root node). Therefore the system fails only if at least two nodes fail. Security holds since one
node is set to be random, while the other nodes store random OKVS values.

Formally, the new OKVS scheme is defined in the following way: Let n′ be an upper bound on
the maximum load of a bin when mapping n balls into q bins, except with probability 2−λ. In the
following description we treat the first OKVS (indexed by 0) as the center node, and the following q
OKVS’s, indexed 1 to q, as the leaf nodes.

• Encode∗H({(ki, vi)}): Interpret H = (h̃,H0, . . . ,Hq).

– Map the set {(ki, vi)} to q subsets: A1, . . . , Aq where Aj = {(ki, vi) | h̃(ki) = j}.
– For j = 1, . . . , q compute Sj ← EncodeHj (Aj)

– No failure. (∀j∈[q] : Sj 6= ⊥) In this case, set random values to the central node and
adjust the values of other nodes accordingly.

∗ Sample a random S0 from Fsize(n′).

∗ For j ∈ [q] compute the new set A′j = {(k, v′) | (k, v) ∈ Aj} where v′ = v −
DecodeH0(S0, k); then, compute Sj ← EncodeHj (A

′).

– One failure. (∃j∗ : Sj∗ = ⊥ ∧ ∀j∈[q]\{j∗} : Sj 6= ⊥) In this case, set the central node
to ensure the correct decoding of the values mapped to the failed node, and adjust the
values of other nodes accordingly.

∗ Sample a random Sj∗ from Fsize(n′).

∗ Compute a new set A′0 = {(k, v′) | (k, v) ∈ Aj∗} where v′ = v − DecodeHj∗ (Sj∗ , k)
and then S0 ← EncodeH0(A′0). If S0 = ⊥ then output S = ⊥ and halt.

∗ For j ∈ [q] \ {j∗} compute the new set A′j = {(k, v′) | (k, v) ∈ Aj} where v′ =
v − DecodeH0(S0, k); then, compute Sj ← EncodeHj (A

′).

– Two or more failures. If Sj = ⊥ for more than one OKVS j then output S = ⊥ and
halt.

– Output S0, . . . , Sq.

• Decode∗H(S, x): Interpret H = (h̃,H0, . . . ,Hq) and S = (S0, . . . , Sq). Compute j = h̃(x) and
output y = DecodeHj (Sj , x) + DecodeH0(S0, x).

Failure probability The construction can tolerate a failure in any one of the q + 1 components
(either a leaf or the center node). In other words, the new construction fails only when two of the
q + 1 components fail. So if each of the underlying OKVS instances fails with probability ε, then
the new construction fails with probability

Pr[S = ⊥] =

q+1∑
i=2

(
q + 1

i

)
εi(1− ε)q+1−i (3)

= 1− (1− ε)q+1 − (q + 1)ε(1− ε)q (4)

Looking at equation 3 and ignoring high order terms, we observe that if the failure probability
of the underlying OKVS scheme is ε = 2−ρ then the failure probability of the star architecture is

≈
(
q+1
2

)
ε2 = 2log (q+1

2 )−2ρ. Thus, in order for the star architecture to fail with probability 2−λ we

need log
(
q+1
2

)
− 2ρ = −λ and thus ρ =

λ+log (q+1
2 )

2 ≈ λ+2 log(q)−log 2
2 ≈ λ/2 + log(q).
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OKVS size and encoding/decoding time The size of the new OKVS is (q + 1) × size(n′)
where n′ is the upper bound on the maximum load when mapping n balls to q bins, that is,

n′ = min
ñ

: Pr[“there exists bin with ≥ ñ elements”] ≤ 2−λ (5)

where

Pr[“there exists bin with ≥ ñ elements”] ≤
q∑
i=1

Pr[“bin i has ≥ ñ elements”]

= q ·
n∑
i=ñ

(
n

i

)(
1

q

)i(
1− 1

q

)n−i
These equations enable to easily compute the maximal size ñ of the bins. Note that since

the number of bins q is typically very small compared to n, then ñ is not much greater than the
expected size of a bin which is n/q. Section 5.4 shows a concrete size analysis for a specific choice of
parameters.

The new encoding requires at most 2q + 1 invocations of the underlying encoding algorithm.
Decoding works exactly as in the replication architecture, with 2 calls to the underlying decoding
algorithm.

5.3 Generalized Star Architecture

In this section we improve the amplification method to achieve a failure probability of O(εd) for an
arbitrary d. This enables to weaken the requirement from the underlying scheme, and only require
that it fails with probability of at most ε = O(2−λ/d) instead of ε = O(2−λ/2). This is an important
step if we wish to use an underlying OKVS scheme for which the failure probability is empirically
proven, like our 3-hash garbled cuckoo table scheme presented in Section 4.1. The larger d is, the
less experiments we have to conduct in order to empirically prove a failure probability of ε for the
overall scheme.

The generalized idea is exactly the same as the star architecture, except that the center OKVS
can tolerate up to d− 1 failures of the OKVS instances in the leaves. The new OKVS is composed
of two components: (1) q leaf nodes as before, each of size size(n′), and (2) a center node of size
d · size(n′) (whereas in the simple star architecture the center is of size only size(n′)). The center
node uses the replicated scheme (Encode∗d,Decode∗d) described in Section 5.1. We require that
both components fail with negligible probability in λ. Specifically, in order for the entire scheme to
fail with probability 2−λ each component has to fail with probability 2−(λ+1).

The formal description of the new OKVS scheme is as follows:

• Encode∗H({(ki, vi)}): Interpret H = (h̃, Ĥ,H1, . . . ,Hq) , then,

– Map the set {(ki, vi)} to q subsets: A1, . . . , Aq where Aj = {(ki, vi) | h̃(ki) = j}.
– For j = 1, . . . , q compute Sj ← EncodeHj (Aj) and record the set F = {j | Sj = ⊥} (the

indices of leaf nodes for which encoding failed).

– Too many failures. If |F | ≥ d: output S = ⊥ and halt.

– Otherwise. If |F | < d:

∗ For all j ∈ F sample a random Sj from Fsize(n′). (This procedure sets random values
for all failed OKVS nodes.)
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∗ Define the set Â =
⋃
j∈F Aj of all items in the failed OKVS nodes. Compute

a new set A′0 = {(k, v′)} which contains for each k ∈ Â the pair (k, v′) where
v′ = v − DecodeHj (Sj , k) where j = h̃(k). (This ensures that the central node
corrects the value assigend for the key in the node OKVS.)
Set Ŝ ← EncodeĤ(A′). If Ŝ = ⊥ then output S = ⊥ and halt.

∗ For j ∈ [q]\F , define the set A′j = {(k, v′) | (k, v) ∈ Aj} where v′ = v−DecodeĤ(Ŝ, k)
and compute Sj ← EncodeHj (A

′
j).

∗ Output S = (S1, . . . , Sq, Ŝ).

• Decode∗H(S, x): Interpret H = (h̃,H1, . . . ,Hq, Ĥ) and S = (S1, . . . , Sq, Ŝ). Compute j = h̃(x)
and output y = DecodeHj (Sj , x) + Decode∗d

Ĥ
(Ŝ, x).

In the description used above we denoted the central node’s OKVS by Ŝ instead of S0 as in the
simple star architecture, to emphasize the fact that the central node is encoded using a stronger
OKVS, namely a replicated OKVS scheme (Encode∗d,Decode∗d).

Failure probability The generalized star architecture fails if either the leaf nodes OKVS con-
structions or the central OKVS fail. Thus, we require that each component fails with probability
2−(λ+1).

Let ε be the failure probability of the underlying OKVS scheme (Encode,Decode). The first
component, with q leaf nodes, fails when |F | ≥ d, which happens with probability

∑q
i=d

(
q
i

)
εi(1−

ε)q−i = O(εd). The second component, which is a scheme with d replicas, fails with probability εd,
corresponding to the event where all replicas fail.

OKVS size and encoding/decoding time The size of the new OKVS is q · size(n′) + size∗d(n′)
where size(n′) and size∗d(n′) are the sizes of the resulting OKVS for the (Encode,Decode) and
(Encode∗d,Decode∗d) schemes, respectively. The value n′ is the upper bound on the maximum load
when mapping n balls to q bins, as presented in Eq. (5).

The new encoding requires 2q invocations of Encode algorithm for the leaf nodes and a single
invocation of Encode∗d. The new decoding requires one invocation of Decode and one invocation of
Decode∗d.

5.4 A Concrete Instantiation

The underlying scheme (EncodeH ,DecodeH) is instantiated using the scheme of Section 4.1 where the
resulting OKVS, when encoded using n′ items, is S = L‖R where |L| = 1.3n and |R| = λ+ 0.5 log n
(i.e. size(n′) = 1.3n′ + λ+ 0.5 log n′). In this scheme an encoding ‘failure’ happens when the 2-core
which remains after peeling is of size larger than 0.5 log n′.

We conducted 233 runs of such a scheme with n′ = 6600, using different sets of hash functions
in each run. There was only a single run in which the 2-core was greater than 0.5 log n′. By the
Clopper-Pearson method [CP34], we get that for a random set of hash function H

ε = Pr[EncodeH({(ki, vi)}) = ⊥] = 2−29.355

with confidence level of 0.9999.

We can use that result in order to construct a new scheme (Encode∗H ,Decode
∗
H) using the star

architecture (Section 5.2, replication factor is d = 1, i.e., no replication):
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• n = 216. We use q = 10 bins. Then, the maximum load according to Eq. (5) is n′ = 7117,
for which the above experiment applies9. Thus, the failure probability of the new scheme,
according to equation (3), is 2−52.9.

• n = 220. We use q = 160 bins. Then, the maximum load according to Eq. (5) is n′ = 7163.
Thus, the failure probability of the new scheme, according to equation (3), is 2−45.05.

In both cases, the space usage is (q + 1) · (1.3n/q + λ+ 0.5 log(n/q)) ≈ 1.3n.

6 Applications of OKVS

In this section we discuss how OKVS can be used as a drop-in replacement for polynomials in many
protocols.

6.1 Sparse OT Extension

Pinkas et al. (SpOT-light [PRTY19]) proposed a semi-honest PSI protocol with very low commu-
nication, based on oblivious transfer techniques. Suppose the PSI input sets are of size n, and
hold items from the universe [N ]. There is a natural protocol for PSI that uses N OTs, where the
receiver uses choice bit 1 in only n of them and choice bit 0 in the rest. This protocol will have
cost proportional to N because communication is required for each OT, making it unsuitable for
exponential N . The work in [PRTY19] introduces a technique called sparse OT extension, which
reduces this cost.

Suppose the N OTs are generated with IKNP OT extension [IKNP03]. In IKNP, the receiver
sends a large matrix with N rows. The parties perform the ith OT by referencing only the ith
row of this matrix. Consider the mapping i 7→ [ith row of IKNP matrix]. In the PSI protocol,
the receiver only cares about n out of the N values of this mapping. So instead of sending the
entire mapping (i.e., the entire IKNP matrix), the receiver sends a polynomial P that satisfies
P (i) = [ith row of matrix], for the i-values of interest. Crucially, the communication has been
reduced from N rows’ worth of information to only n.

When the IKNP matrix is encoded in this way, the result is the spot-low PSI protocol of
[PRTY19]. Any OKVS may replace the use of a polynomial in spot-low.10

6.2 Oblivious Programmable PRF and its Applications

Kolesnikov et al. [KMP+17] introduced a primitive called oblivious programmable PRF (OP-
PRF). In an OPPRF, the sender has a collection of n pairs of the form xi 7→ yi, and the receiver has
a list of x′i values. The functionality chooses a pseudo-random function R, conditioned on R(xi) = yi
for all i. It gives (a description of) R to the sender and it gives R(x′i) to the receiver, for each i.
In [KMP+17] a natural OPPRF protocol is described, based on polynomials. The parties invoke
a (plain) oblivious PRF protocol, where the sender learns a PRF seed s and the receiver learns
PRF (s, x′i) for each i. Then the sender interpolates a polynomial P containing “corrections” of the
form P (xi) = PRF (s, xi)⊕ yi, and sends it to the receiver. Now both parties define the function

9We assume that if Pr[EncodeH({(ki, vi)}) = ⊥] = ε for encoding n′ items then the same probability ε applies also
to n′′ > n′.

10[PRTY19] describe another protocol, spot-fast, which also uses polynomials. Instead of using one polynomial
of large degree n, spot-fast uses many polynomials of very small degree (and by this incurs a larger communication
overhead). Due to the low degree, replacing these polynomials with an OKVS would have minimal effect.
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R(x)
def
= PRF (s, x)⊕ P (x), which indeed agrees with the xi 7→ yi mappings of the receiver but is

otherwise pseudo-random. In this application it is of course crucial that P hides the points which
were used for interpolating it. Naturally, any OKVS can replace the polynomial in the OPPRF
construction.11

Applications. [KMP+17] used an OPPRF to construct the first concretely efficient multi-party
PSI. They described two protocols: The first protocol is fully secure against semi-honest adversaries.
The second is more efficient but proven secure in a weaker augmented semi-honest model, where
the corrupt parties are assumed to run the protocol honestly, but the simulator in the ideal world
is allowed to change the inputs of corrupt parties. Intuitively, the protocol leaks no more to a
semi-honest party than what can be learned by using some input (not necessarily the one they
executed the protocol on) in the ideal model. We discuss this latter protocol in more detail in
Section 7.2, where we show that, surprisingly, the protocol is secure against malicious adversaries
despite not being secure in the semi-honest model.

OPPRF is also used in the PSI protocol in [PSTY19] for circuit PSI – computing arbitrary
functions of the intersection rather than the intersection itself. In this protocol the overall effect of
the OPPRF (and hence OKVS) is minor, accounting for only ∼1% of the total running time and
communication. They also show an optimization, which can be viewed as its own OKVS constrution,
where key-value pairs are hashed into bins, and a polynomial is interpolated for each bin. OPPRF
is also used in the recent multi-party PSI protocols of Chandran et al. [CGS21, CDG+].

In a private set union protocol [KRTW19], a variant of OPPRF is used to perform a functionality
of reverse private membership test. The functionality allows a party holding the set X to learn
whether an input y of another party is in X, and nothing else. [KRTW19] also rely on simple
hashing to improve the computation of the polynomial-based OKVS.

Finally, [RS21] proposes a new OPRF-based PSI protocol. Their construction combines a vector
OLE with the PaXoS construction. We observe that it is possible to replace their use of PaXoS
with any abstract OKVS, and with our new OKVS constructions in particular.

6.3 PaXoS PSI

The leading malicious 2-party PSI protocol is due to [PRTY20], and is known as PaXoS-PSI. The
underlying data structure, a probe and XOR of strings (PaXoS), is what we call a binary
OKVS in this work. Their protocol and proofs are written in terms of an arbitrary PaXoS data
structure, with definitions that are identical to the ones we require of a binary OKVS. Hence,
the improved constructions of binary OKVS that we present in this work automatically give an
improvement to the PaXoS-PSI protocol. We have implemented these improvements to PaXoS-PSI,
and report on their concrete performance in Section 8.2.

In Section 7 we discuss more details of the PaXoS PSI protocol, and also introduce a new
generalization that can take advantage of a non-binary OKVS.

11Besides encoding these “corrections” as a polynomial, [KMP+17] actually propose two other methods. One
method is a garbled Bloom filter [DCW13a], which is indeed an OKVS (with expansion λ). Another method that
they refer to as the “table” construction is not a true OKVS, as it only is oblivious when the mapping ki 7→ vi is
such that all of the ki (not just the vi) are uniformly distributed except possibly one ki which can be known to
the distinguisher. As such, this “table” construction is suitable only when the receiver learns one output from the
underling OPRF/OPPRF.
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6.4 Covert Computation

Covert computation is an enhanced form of MPC (not to be confused with the definition of covert
security) which ensures that participating parties cannot distinguish protocol execution from a
random noise, until the protocol ends with a desired output. The constructions in [MPP10, CDJ16]
enable two parties to run multiple such computations in linear time, while keeping the covertness
property. The challenge is identifying the correspondence between the protocol invocation sets of
both parties. This is solved using a primitive called Index-Hiding Message Encoding (IHME). The
constructions in [MPP10, CDJ16] convert a protocol for single-input functionality into a secure
protocol for multi-input functionality, by encoding as value P (x) of a polynomial P the protocol
message for input x. (Here, the polynomial P implements the IHME primitive.) The usage of a
polynomial can be replaced by any OKVS, to result in improved performance.

7 Other PSI Improvements

We present several improvements to leading PSI schemes which use OKVS.

7.1 Generalizing PaXoS-PSI to Linear OKVS

The PaXoS-PSI protocol [PRTY20] uses any binary OKVS data structure. We now present a
generalization that can support any linear (not necessarily binary) OKVS. First, we review the
protocol to understand its restriction to binary OKVS: The PaXoS-PSI protocol starts with the
parties invoking the malicious OT-extension protocol of Orrú, Orsini & Scholl [OOS17]. The receiver
chooses a vector of strings D = (d1, . . . , dm), and learns an output vector R = (r1, . . . , rm). The
sender chooses a random string s and learns output Q = (q1, . . . , qm). The important correlation
among these values is:

ri = qi ⊕ C(di) ∧ s (6)

where C is a binary, linear error correcting code with minimum distance κ, and ∧ denotes bitwise-
AND.

If we view D, R, and Q as OKVS data structures, we will see that equation (6) is compatible
with the homomorphic properties of a binary OKVS (see Section 2.3). Hence:

Decode(R, k) = Decode(Q, k)⊕ C
(
Decode(D, k)

)
∧ s

Now, suppose the receiver has chosen their input D (an OKVS) so that Decode(D, y) = H(y), for
each y in their PSI input set, where H is a random oracle. Suppose that for each x in their set, the
sender computes

mx = H ′
(
Decode(Q, x)⊕ C(Decode(D,x)) ∧ s

)
,

where H ′ is a random oracle. If that x is in the intersection, then the receiver can also com-
pute/recognize mx, since it is equal to H ′(Decode(R, x)). If x is not in the intersection, then
Decode(D,x) = H(x)⊕ δ for some nonzero string δ. Then through some simple substitutions, we
get mx = H ′(Decode(R, k)⊕ C(δ) ∧ s).

When H ′ is a correlation-robust hash function, values of the form H ′(ai ⊕ bi ∧ s) are indistin-
guishable from random, when each bi has hamming weight at least κ (as is guaranteed by the code)
and s is uniform. In other words, when the sender has an item x and computes mx, this value looks
random to the receiver.
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Binary OKVS and the generalization. Revisiting equation (6), we see that the relation
ri = qi ⊕ C(di) ∧ s is homomorphic with respect to xor:

ri ⊕ rj = (qi ⊕ qj)⊕ C(di ⊕ dj) ∧ s.

This is what makes these correlated values compatible with a binary OKVS. However, if we view all
strings as elements of a binary field, we see that more general linear combinations of ri’s do not
work because the ∧ operation is bit-wise, i.e. it is not compatible with the field operation.

The fact that ∧ is not a field operation is also the reason for the error-correcting code C in the
expression ri = qi ⊕ C(di) ∧ s. For any nonzero di, we use the fact that C(di) ∧ s is an expression
with at least κ bits of uncertainty (i.e., we are bitmasking at least κ bits of s).

Now suppose that the parties had values that were not correlated according to equation (6), but
instead used a field operation · in place of ∧:

ri = qi ⊕ di · s (7)

Then we could view D, R, and Q each as OKVS data structures, and if they were linear OKVS we
would have:

Decode(R, k) = Decode(Q, k)⊕ Decode(D, k) · s.

Additionally, for any ai, bi pairs with nonzero bi, a value of the form H(ai⊕ bi ·s) would look random
to the receiver.

Indeed, replacing the correlation of equation (6) with that of (7) and using any linear (not
necessarily binary) OKVS will lead to a secure PSI protocol whose proof follows closely to PaXoS-
PSI. Additionally, since an error-correcting code is not needed, communication is reduced relative
to PaXoS-PSI. A protocol that generates correlations that follow equation (7) is called a vector
oblivious linear evaluation (vOLE) protocol [BCGI18, BCG+19, SGRR19]. Our protocol would
require a malicious-secure vOLE protocol, but to date no such vOLE has been implemented. We
leave it to future work to determine whether a vOLE-based approach will be competitive with the
original PaXoS (OT-extension) approach.

Theorem 7. If (Encode,Decode) is a linear OKVS, and other parameters `1, `2 are as in [PRTY20],
then the protocol in Figure 3 securely realizes 2-party PSI against malicious adversaries.

7.2 Malicious Multi-Party PSI

Multi-party Private Set Intersection(Fm-psi) allows a set of parties, each with a private set of
items (Pi owns a set Xi), to learn the intersection of their sets X0 ∩X1 ∩ · · · ∩Xn and nothing
beyond that. The work of Kolesnikov et al. in [KMP+17] presents generic transformations from
any 2-party oblivious PRF to a multi-party PSI protocol. One of these transformations is secure
in the semi-honest model, and a more efficient transformation is secure in the weaker “augmented
semi-honest” model, in which the ideal-world simulator is allowed to change the inputs of the
corrupt parties. Here we observe that this more efficient protocol can actually be made secure in
the malicious model with only a minor modification (post-processing of the OPRF outputs with
a random oracle).

Malicious-secure but not Semi-honest secure? Here, we briefly address this apparent paradoxical
situation of a protocol being malicious-secure but not semi-honest secure. For a semi-honest secure
protocol the simulator cannot change the inputs of the corrupt parties; that is, it should be able to
explain any well-defined input provided by the environment on behalf of the corrupt parties. We

21



Parameters:

• Computational and statistical security parameters κ and λ

• Sender with set X ⊆ {0, 1}∗ of size n

• Receiver with set Y ⊆ {0, 1}∗ of size n

• Linear OKVS scheme (Encode,Decode) mapping n items to m slots

• Random oracles H1 : {0, 1}∗ → {0, 1}`1 and H2 : {0, 1}∗ → {0, 1}`2

Protocol:

1. The parties invoke the vOLE functionality where the sender’s input is random string
s← {0, 1}`1 and the receiver’s input is:

D = (d1, . . . , dm) = Encode({(y,H1(y)) | y ∈ Y }).

As a result, the sender obtains output Q = (q1, . . . , qm) and the receiver obtains output
R = (r1, . . . , rm) satisfying qi = ri ⊕ di · s, with · denoting the field operation in GF (2`1).

2. The sender computes and sends a random permutation of the set

M =
{
H2

(
x,Decode(Q, x)⊕H1(x) · s

) ∣∣∣ x ∈ X}.
3. The receiver coutputs {y ∈ Y | H2(y,Decode(R, y)) ∈M}.

Figure 3: Our generalized PaXoS-PSI protocol, adapted from [PRTY20]

can interpret the “augmented semi-honest” secure protocol as “the protocol is semi-honest secure
apart from the issue of simulators changing inputs”. In contrast, simulators changing a corrupt
party’s inputs is no issue while proving malicious-security. It just so happens, that without the issue
of “simulators changing inputs” the protocol in [KMP+17] is malicious-secure.

We discuss the protocol in detail in Appendix B, as well as its cost analysis, proof of security
and possible extensions. We also discuss there the interesting interaction between semi-honest and
malicious security.

To the best of our knowledge, [ZLL+19, BENOPC] are the only other works that study concretely
efficient malicious multi-party PSI. Their constructions rely heavily on BF/GBF, which is the most
communication-expensive construction amongst the three PSI constructions presented in [KMP+17].
While our protocol achieves almost the same cost as that of the most efficient construction in
[KMP+17], with only a minor (inexpensive) modification, the protocols of [ZLL+19] and [BENOPC]
are about 10× and 2× slower than [KMP+17]. We present a more detailed qualitative comparison
with the recent work of [BENOPC] in Appendix B.

8 Concrete Performance

We now benchmark different OKVS constructions and our PSI schemes. We also present a
comparison based on implementations of state-of-the-art semi-honest and malicious PSI protocols.
We used the implementation of semi-honest protocols (KKRT [KKRT], SpOT-low and SpOT-
fast [PRTY19], CM [CM20]) and malicious protocols (RR [RR17b], PaXos [PRTY20]) from the
open source-code provided by the authors, and perform a series of benchmarks on the range of set
size n = {212, 216, 220}. All cuckoo hash functions are public parameters of the protocols, and can be
simply implemented as one party chooses the hash functions and broadcasts them to other parties.
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We assume there is an authenticated secure channel between each pair of participants (e.g.,
with TLS). We evaluated the PSI protocols over three different network settings (so-called fast,
medium, slow networks). The LAN setting (i.e, fast network) has two machines in the same region
(N.Virginia) with bandwidth 4.6 Gib/s; The WAN1 (i.e, medium network) has one machine in Ohio
and the other in Oregon with bandwidth 260 Mib/s; and the WAN2 (i.e, slow network) has one
machine in Sao Paolo and the other in Sydney with bandwidth 33 Mib/s. While our protocol can be
parallelized at the level of bins, all experiments, however, are performed with a single thread (with
an additional thread used for communication). In all tables and figures of this section,“SH” and “M”
stand for semi-honest and malicious, respectively. We describe detailed microbenchmarking results
for OKVS in Appendix A.2.

8.1 Parameters for OKVS and PSI

n 212 216 220

Simple #bins (m) 10 100 2000
hashing bin size (µ) 555 854 714

GBF
# hash functions 40
table size 60n

2hf Cuckoo expansion 2.4n

3hf Cuckoo expansion 1.3n

codeword length (SH) 448 473 495

codeword length (M) 627 616 605

`2 (SH) (see [PRTY20]) 64 72 80

`2 (M) (see [PRTY20]) 256

λ 40

Figure 4: Parameters for OKVS and PSI.

Some OKVS schemes (‘bins+polynomials’,
‘bins+dense matrix’ and ‘star architecture’ in
Table 2; ‘SpOT-fast’ and ‘star arch.’ in Table 1)
rely on a simple hashing which maps n pairs into
m bins. The number of items assigned of any bin
leaks a distribution about input set. Therefore,
all bins must be padded to some maximum possi-
ble size. Using a standard ball-and-bin analysis
based on the input size and number of bins, one
can deduce an upper bound bin size m such that
no bin contains more than m items with high
probability 1− 2−λ. When n balls are mapped
at random to m bins, the probability that the
most occupied bin has µ or more balls is m

(
n
µ

)
1
mµ [RS98, PSZ14]. We provide our choices of µ for

which the probability of a bin overflow is most 1− 2−λ, as well as other relevant parameters for the
OKVS schemes and PSI protocols in Figure 4.

A garbled Bloom filter (GBF) [DCW13a] fails if a false-positive even occurs. Using λ hash
functions and a vector of size 1.44λn results in a failure probability of 1/2λ [MU05]. Therefore, we
use λ hash functions and an OKVS table size of 60n. We use m = 2.4n and m = 1.3n bins as the
acceptable heuristic for the PaXoS and 3H-GCT OKVS constructions, respectively, and the PSI
protocols that use them. We use the concrete parameters for the star architecture based OKVS
that are described in Section 5.4.

8.2 Improving PSI Protocols

A detailed benchmark and comparison of different PSI protocols is given in Table 1. Note that the
SpOT-low [PRTY20] and RR [RR17b] protocols run out of memory for set size n = 220, and are
not included in the comparison for this case.

Communication improvement. The overall communication of our 3H-GCT and star-arch. based
malicious PSI is 1.61× and 1.43×, respectively, less than the previous state of the art, PaXoS. This
is greatly due to the fact that our protocols invoke 1.3n and 1.41n OTs, respectively, compared to
2.4n in PaXoS.

Computation improvement. Over fast networks (4.6Gbits/sec) and n = 220, our protocol is only
1.05×–1.1× slower than the fastest PSI protocols (KKRT and PaXoS), where the running time is
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Protocol Sett.
comm (MB) 4.6 Gbits/sec 260 Mbits/sec 33 Mbits/sec

212 216 220 212 216 220 212 216 220 212 216 220

KKRT [KKRT]

SH

0.48 7.73 128.49 201 368 4512 665 2390 12568 4352 10220 146067
SpOT-low [PRTY19] 0.25 3.9 63.18 495 10035 220525 894 11154 — 3406 20337.7 —
SpOT-fast [PRTY19] 0.3 4.61 76.46 173 1795 24676 678 7455 26050 4364 17923 38737
PaXoS-2hf (2-core) [PRTY20] 0.59 9.9 169.67 217 410 4680 443 1395 11935 1974 8448 60159
CM∗ [CM20] 0.36 5.34 87.6 149 518 7251 807 2816 7966 4395 10303 85476
Ours: 3H-GCT (§4.1) 0.34 5.63 96.71 216 416 5831 300 1890 10604 1264 7248 38349
Ours: Star arch. (§5.4) 0.39 6.09 104.04 227 483 4938 355 1343 9504 1373 9491 34870

RR (EC-ROM variant) [RR17b]

M

4.54 75.52 1260.82 122 951 16240 3505 9127 45962 19220 24867 271442
RR (SM variant, σ = 64) [RR17b] 48.66 815.43 — 534 7694 — 4506 33236 — 35959 187801 —
PaXoS (2-core) [PRTY20] 0.92 14.23 223.89 221 418 4779 392 2119 12042 2531 8152 60771
Ours: 3H-GCT (§4.1+§6.3) 0.57 8.68 136.66 219 420 5855 300 2929 10417 1365 6981 37695
Ours: Star arch. (§5.4+§6.3) 0.64 9.27 145.42 227 496 4987 308 1350 9631 1375 7654 36871

Table 1: Communication in MB and run time in milliseconds. All protocols run with inputs of
length σ = 128 except RR (SM) that supports 64 bits at most. The upper part of the table refers
to semi-honest (SH) protocols whereas the lower part refers to malicious (M) protocols. Missing
entries refer to experiments that failed due to lack of memory or took too much time. Reported
results are by running over AWS c5d.2xlarge.
Note that we found an issue with the implementation of [KKRT, PRTY19, CM20, RR17b], which
use network connection library [Rin]. Specifically, over a real network their protocols take more time
than over a simulated network with similar bandwidth and latency. The difference is noticeable in
CM [CM20].

dominated by computation. Over slower networks our protocols are almost always the fastest in the
semi-honest setting and always fastest in the malicious setting. For example, over a 33 Mbits/sec
network, our malicious star architecture-based construction is almost 2× faster than PaXoS.
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[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Dis-
tributed vector-ole: Improved constructions and implementation. In ACM Conference
on Computer and Communications Security, pages 1055–1072. ACM, 2019.

[Wal21a] Stefan Walzer. Peeling close to the orientability threshold - spatial coupling in hashing-
based data structures. In Dániel Marx, editor, SODA, pages 2194–2211. SIAM, 2021.

[Wal21b] Stefan Walzer. Peeling close to the orientability threshold – spatial coupling in hashing-
based data structures. SODA, pages 2194–2211, 2021.

[ZLL+19] En Zhang, Feng-Hao Liu, Qiqi Lai, Ganggang Jin, and Yu Li. Efficient multi-party
private set intersection against malicious adversaries. In ACM SIGSAC Conference on
Cloud Computing Security Workshop, CCSW’19, page 93–104, 2019.

27

https://github.com/ladnir/cryptoTools


A OKVS

A.1 Sketched Proof of Lemma 6

We solve the system of linear equations (l(ki)||r(ki)) ·S for all keys k whose corresponding hyperedges
are in the 2-core. There at most d(n) such equations, and the R-parts of these equations include
random binary combinations of d(n) + λ variables. Based on eq. (2) the probability that the system
is unsolvable, is at most 1/2λ. After assigning values to S in the positions corresponding to this
solution, the unpeeling process can set values so the remaining positions in S to satisfy all remaining
key-value pairs.

A.2 Benchmarking OKVS

We implement and evaluate the existing and new OKVS schemes described in Sections 3-4. For
polynomial interpolation and batch evaluation we use the algorithm of Moenck and Borodin [MB72],
which has an overhead of O(n log(n)2) field operations for both tasks. Since interpolation always
succeeds, this scheme’s error probability is 0. To speed up the computation of the polynomial-based
OKVS, we use a simple hashing to bins. Then, we interpolate and evaluate for each bin separately.
The ‘bins+polynomial’ scheme takes less computation cost than a single big polynomial, but requires
more bandwidth since we pad all bins up to µ items. The failure probability of this scheme equals
the probability of having a bin to which more than µ items are mapped, which is fully analyzed.

As expected, Table 2 shows that all hashing based OKVS’s (GBF, PaXoS, 3H-GCT and star
architecture) are much faster than the polynomial-based ones, since their running time is linear in n.
The fastest among those are PaXoS, 3H-GCT and star architecture, whose run times are comparable.
We note that in the context of PSI the smaller size of the 3H-GCT and star constructions leads to a
better run time of the PSI protocol. Also, although the star construction is a little slower it is the
only one with an empirically proven error probability.

We now describe detailed microbenchmarking results for OKVS in Table 3. We measured the
time (in milliseconds) and percentage of each sub operation in the three hash-based OKVS’s.

• Star architecture’s encoding has five main sub operations (we highlight in bold the tasks
which take the bulk of the run time): (1) generate the cuckoo graph of all bins and perform
the peeling algorithm to check whether or not the encoding fails; (2) encode the center bin
according to whether one leaf node’s encoding failed or not; (3) adjust the new values of all
leaves according to the encoded center node; (4) encode the leaf nodes using the new values;
and (5) merge all the tables of all bins to a single consistent vector, which is the final OKVS.
The decoding has three main sub operations: (1) preprocessing - in which a lookup tables are
prepared, in order to reduce the XOR time of the additional λ+ 0.5 log n entries (see Section
5.4 for the description of the concrete instantiation); (2) getting the indices of the entries
of all keys, this consists of many invocations of the scheme hash functions; and (3) performing
the XOR operation to obtain the decoded results.

• 3H-GCT and PaXoS. Encoding has 3 main sub operations: (1) generating the cuckoo-graph;
(2) peeling, in order to get the 2-core sub-graph; and (3) unpeeling – which fills the entries
with values. The decoding has 3 main sub-operations as well: (1) getting indices, as above,
consists of many invocations of the scheme’s hash functions; (2) Xor main performs the XOR
on the main graph; and (3) Xor extra performs the XOR on the additional λ + 0.5 log n
entries.
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Construction
n = 212 n = 216 n = 220

Error Size Time (ms) Size Time (ms) Size Time (ms)
Analysis (MB) Enc. Dec. (MB) Enc. Dec. (MB) Enc. Dec.

Polynomial no error 0.07 196 168 1.05 4876 4371 16.78 111920 102834

Bins + polynomial analytic 0.09 187 336 1.37 2938 2413 22.85 48099 39096

GBF [DCW13a] analytic 3.93 21 16 62.91 367 275 1006.63 6412 4884

PaXoS [PRTY20] heuristic 0.15 5 2 2.40 120 42 38.40 3114 853

Dense matrix (§3) analytic 0.07 – – 1.05 – – 16.78 – –

Bins + dense matrix (§4.2) analytic 0.09 52310 130 1.36 184220 290 23.01 109320 210

3H-GCT (§4.1) heuristic 0.08 6 3 1.30 154 49 20.80 4996 1034

Star architecture (§5.4) empiric 0.12 9 4 1.56 180 71 22.83 2915 1625

Table 2: Performance of various OKVS constructions, for n items from GF (2128), with error 1/2−40.
Reported results are by running over AWS c5d.4xlarge.

Star architecture 3H-GCT PaXoS

Sub operation n = 220 n = 216 Sub operation n = 220 n = 216 n = 220 n = 216

Encode

Check bins 453 (14.2%) 25 (14.3%) Generate graph 1198 (26.2%) 29 (21.1%) 520 (18.3%) 14 (13.5%)
Encode center 106 (3.7%) 5 (2.8%) Peeling 1962 (43%) 34 (24.8%) 753 (26.5%) 14 (13.5%)
Adjust values 884 (31.0%) 57 (32.7%) Solve system 0 0 2 (0%) 0
Encode leaves 1046 (36.7%) 63 (36.2%) Unpeeling 1408 (30.8%) 74 (54%) 1563 (55%) 75 (72.8%)
Merge bins 405 (14.2%) 24 (13.8%)
Total 2846 174 4568 137 2838 103

Decode

Preprocess 36 (5.5%) 2 (8.1%) Get indices 93 (7.7%) 5.7 (10%) 68.7 (6.9%) 4.3 (8.6%)
Get indices 220 (33.8%) 12.5 (51%) Xor main 1032 (85.7%) 44 (80.7%) 845 (85.3%) 41 (82%)
Xor all 393 (60.5%) 10 (40%) Xor extra 79 (6.5%) 4.8 (8.8%) 76.8 (7.7%) 4.7 (9.4%)
Total 649 24.5 1204 54.5 990.5 50

Table 3: Micro-benchmarks of the main OKVS constructions. Time in ms.

B Multi-Party PSI

B.1 Overview and Intuition

Multi-party Private Set Intersection(Fm-psi) allows a set of parties, each with a private set of items
(Pi owns a set Xi), to learn the intersection of their sets X0∩X1∩ · · ·∩Xn and nothing beyond that.
We observe that, one of the multi-party PSI protocols proposed by Kolesnikov et al. in [KMP+17]
that is ”augmented semi-honest” secure (and semi-honest secure with significant additional cost)
is malicious secure. We describe the protocol, proof of security against malicious adversaries and
discuss the cost analysis. We explicitly address this apparent contradiction between a protocol
achieving malicious but not semi-honest security in Section B.6 and other extensions in Section B.7.

B.2 Protocol

We highlight here the main ideas of the protocol. The protocol is a generic transformation from any
(malicious-secure in this case) 2-party oblivious PRF (OPRF) functionality. An OPRF allows a
sender to learn (or specify) a PRF key, while the receiver learns the output of the PRF on a limited
number of chosen inputs. The sender learns nothing about the receiver’s choice of inputs.

Following the precedent set by [HV17], the protocol is in the star topology communication model,
where most communication is with a central party P0 which is also the only one that learns the
output. P0 runs many instances of the malicious secure Foprf (which is almost equivalent to the
2-party PSI) functionality, once with every other party.

The main challenge is to ensure that P0 doesn’t learn any of the intermediate intersection values
from the two-party Foprf outputs, unless all parties hold the corresponding item. In order to achieve
this, the protocol is augmented by a zero-sharing setup, where the n+ 1 parties non-interactively
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generate an unlimited number of additive shares of the value zero. That is, for every h (from
an exponentially large domain), each party Pi can generate its individual share shi(h) such that∑n

i=0 shi(h) = 0.

Parties use these zero-shares to mask their OPRF outputs in the following way. Each party Pi
generates an OKVS (in [KMP+17], only polynomial and GBF are considered)Qi where Decode(Qi, h)
is the OPRF output on h, masked by the zero-share shi(h), for every h ∈ Xi. Only if all parties
hold an item do the shares cancel out, revealing the presence of all OPRF outputs.

The protocol is described in detail in Figure 5. We generalize the treatment of [KMP+17],
writing the protocol in terms of an arbitrary OKVS rather than explicitly a polynomial. Our only
deviation from the protocol of [KMP+17] is to wrap the OPRF output in a random oracle before
using it to generate the OKVS. As we will see, the random oracle layer allows the simulator to
extract a corrupt party’s input.

B.3 Costs

Computational cost. Every party computes a single instance of OKVS on a set of m points.
Additionally, the central party performs decode of m points on OKVS.

Communication cost. Zero-sharing involves the exchange of keys (of length κ) between every
pair of parties, costing O(n2κ). Every party participates in a 2-party Foprf protocol with the
central and in step 2(c) sends a OKVS of m points to the central party. Thus, we can express our
communication complexity as O(n2κ+ n · |OPRF|+ n ·m| logF|), where κ is the security parameter,
OPRF is the 2-party OPRF protocol and F is the field of inputs.

Round complexity. Zero-sharing can be run in parallel with the call to the Foprf since the shares
are used only after the the parties have finished querying (in step 2). Additionally, if the chosen
instantiation of the Foprf sends the key to the sender (here the non-central parties) before the
receiver learns all his outputs, the non-central parties can send their OKVS (step 2(c)) before the
Foprf-interaction ends. Thus, we achieve a round complexity that’s almost equal to that of the Foprf

instantiation, namely, |OPRF|+ 1 rounds.

B.4 Security Proof

In this section we outline the security proof of the protocol in Figure 5.

We assume without loss of any generality that set C = {P ∗1 , P ∗2 , . . . , P ∗k } indicates the set of
corrupt non-central parties. Our proof considers two cases, depending on whether the central party
P0 is corrupt.

We start by noticing that
∑n

i=0 shi(h) = 0 for any value h. This implies that the corrupt parties
can learn the sum of the shares of the honest parties for any value.∑

i∈C
shi(h) = −

∑
i/∈C

shi(h), (8)

We start our proof with the following lemma:

Lemma 8. Given a set of parties that run the zero-sharing setup (step 1 in Figure 5) such that a
pair of parties Pi, Pj are honest and the adversary’s view is independent of Pi’s share shi(x), then
Pj’s share shj(x) is indistinguishable from uniform to the adversary.
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Proof. The parties Pi, Pj share a key kij that is unknown to the adversary as per the zero-sharing
setup. As such, the value PRF′(kij , x) is indistinguisahble from uniform. The only place this
value is used in the protocol is as a term in both shi(x) and shj(x) (referring to the definition of
shi(x) in Step 1 of Figure 5). But since shi(x) is independent of the adversary’s view, the only
place PRF′(kij , x) is used to influence the adversary’s view is as a term in shj(x). Hence, this
pseudorandom value causes the entirety of shj(x) to be indistinguishable from random, in the
adversary’s view.

Theorem 9. The protocol in Figure 5 realizes UC-secure PSI in the Foprf-hybrid model, when the
field F is exponentially large.

Proof. The central party is either corrupt or honest and we write a simulator for these two cases.
We always assume that some subset of the non-central parties are corrupt.

(i) We begin with the scenario when the central party P0 is corrupt. The goal of the
simulator is to extract the effective input of the central party and simulate the interaction between
the honest non-central parties and P0 using the output of the Fm-psi functionality. Consider all the
technical details in the simulation below:

• Hybrid 0 We begin with the real interaction where all honest parties follow the protocol on
their given inputs. Each honest Pi computes his OKVS Qi (sent in step 2(c)) by encoding the
points h ∈ Xi as follows:

Qi = Encode
({(

h,H(PRFi(h), h) + shi(h)
) ∣∣∣ h ∈ Xi

})
(9)

• Hybrid 1 An honest P0 is supposed to use the same input X0 in each instance of Foprf, but a
corrupt P0 may not. In this hybrid we write Xi

0 to denote P0’s input to the Foprf used with
party Pi. We refer to Ai = Xi ∩Xi

0 as the ith “active set”.

In this hybrid we modify each honest party Pi to generate its OKVS to satisfy the following
different m constraints (instead of as Equation 9)

Qi =

{
Encode

(
h,H(PRFi(h), h) + shi(h)

)
if h ∈ Ai

Encode
(
h, shi

)
if h ∈ Xi \ Ai where shi

$← F
(10)

To see why the hybrids are indistinguishable, we use the fact that PRFi(h) is indistinguishable
from random for h 6∈ Xi

0 (i.e., the adversary did not query PRFi at this point). Hence, the
probability that the adversary queries H on input containing PRFi(h) is negligible, and so the
output of H at this point is indistinguishable from random.

• Hybrid 2 In this hybrid we further modify the way the honest parties create their OKVS.
Here, Pi creates its OKVS to satisfy the following different set of m constraints:

Qi =


Encode

(
h,H(PRFi(h), h) + shi(h)

)
if h ∈

⋂
Pi /∈C Ai

Encode
(
h, shi

)
if h ∈ Xi \

⋂
Pi /∈C Ai

where shi ← F

(11)
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First, we notice that if there is only one honest party then this hybrid is indentical to the
previous one. The subsequent reasoning assumes that we have at least two honest parties.

It’s easy to see that if h ∈
⋂
Pi /∈C Ai, then this hybrid is identical to hybrid 1. Pi’s behavior

only differs for a value h ∈ Ai where h 6∈ Aj for some other honest party Pj . When h /∈ Aj ,
we see that in Hybrid 1, Pj does not use the value shj(h) anywhere. By Lemma 8, the corrupt
central party’s view is independent of the share shi(h). Thus, even when the adversary knows
the evaluation PRFi(h) (since h ∈ Ak), the view of Decode(Qi, h) = H(PRFi(h), h) + shi(h)
is indistinguishable from a independently random field element because shi(h) is uniformly
random. Thus, this hybrid is indistinguishable from the previous one.

• Final simulation: The previous hybrid can be carried out by a simulator in the ideal interaction,
as follows:

– The simulator computes the collection Xi
0 from the adversary’s inputs to instances of

Foprf.

– The simulator sends X̃0 :=
⋂
i 6∈C X

i
0 to Fm-psi, as the input of all corrupt parties, and

receives X̃0 ∩ (
⋂
i 6∈C Xi) as the output. Note that X̃0 ∩ (

⋂
i 6∈C Xi) =

⋂
i 6∈C Ai.

– The simulator simulates the OKVS Qi from honest party Pi as in Equation 11. Generating
the OKVS in this way requires only the output of Fm-psi.

(ii) Now, we consider the case when central party P0 is honest. The goal of the simulator is
to extract the inputs of the corrupt non-central parties and simulate their interaction with P0 in a
way that is consistent with the output he computes.

Now, we present all the hybrids to simulate the central party’s interaction with every corrupt
non-central party Pi.

• Hybrid 0: We start with the real interaction with all honest parties running the protocol
honestly on their inputs. Honest P0 computes the protocol output as:{

h ∈ X0

∣∣∣ ∑
i∈C

Decode(Qi, h) +
∑
i/∈C

Decode(Qi, h) = 0
}

(12)

• Hybrid 1: In this hybrid, we modify how P0 computes the output as:{
h ∈

⋂
i/∈C Xi

∣∣∣ ∑
i∈C

Decode(Qi, h) +
∑
i/∈C

Decode(Qi, h) = 0
}

(13)

Note that this computation differs only for values h ∈ X0 where h 6∈ Xi for some honest Pi
(in particular, there must be two honest parties for this hybrid to be any different). Such
an h will never satisfy Equation 13 (since h 6∈ Xi), and it suffices to show that h satisfies
Equation 12 only with negligible probability.

For such an h, since h 6∈ Xi, Qi is generated independently of shi(h). But Decode(Q0, h)
contains a term sh0(h), which renders the entire expression

∑
iDecode(Qi, h) uniformly

random (by Lemma 8). Hence, the probability that h satisfies the condition in Equation 12 is
1/|F| which is negligible.
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Note that if h ∈
⋂
i 6∈C Xi, then all honest parties have intentionally chosen Decode(Qi, h) on

their OKVS, according to the protocol. Using this fact along with Equation 8 we can rearrange
Equation 13 as:{

h ∈
⋂
i/∈C

Xi

∣∣∣∑
i∈C

Decode(Qi, h) =
∑
i∈C

shi(h) +
∑
i∈C
H(PRFi(h), h)

}
(14)

• Hybrid 2: This hybrid differs from the previous one, in that we again modify how P0 computes
the final protocol output. During the interaction we monitor all random oracle queries made
by the adversary. When the adversary sends the final Qi, we define the set

O = {x | adversary made a query of the form H(PRFi(x), x)}

Note that the PRFi functions are determined before the OKVS tables are sent in Step 2c.
Then P0 computes the output with a modified computation as follows:{

h ∈ O ∩
⋂
i/∈C

Xi

∣∣∣∑
i∈C

Decode(Qi, h) =
∑
i∈C

shi(h) +
∑
i∈C
H(PRFi(h), h)

}
(15)

It suffices to show that if h 6∈ O, then it is only with negligible probability that h
would have satisfied the condition in Equation 14. Indeed, if h 6∈ O then at the time
the adversary sends Qi, the value of H(PRFi(x), x) is distributed independently of the
adversary’s view (it hasn’t queried H at this input). Since the condition in Equation 14 is a
linear equality involving this term, the probability that it is satisfied is 1/|F| which is negligible.

• Final simulation: We can observe that Equation 15 can be written as:{
h ∈ O

∣∣∣∑
i∈C

Decode(Qi, h) =
∑
i∈C

shi(h) +
∑
i∈C
H(PRFi(h), h)

}
∩
⋂
i 6∈C

Xi

Therefore the interaction can be carried out in the ideal world as follows:

– The simulator plays the role of Foprf honestly and also observes the adversary’s oracle
queries.

– When the adversary sends Qi in Step 2c, the simulator defines the set O (of oracle
queries) as above, and computes

X̃ :=
{
h ∈ O

∣∣∣∑
i∈C

Decode(Qi, h) =
∑
i∈C

shi(h) +
∑
i∈C
H(PRFi(h), h)

}
It sends X̃ to ideal Fm-psi as the input for every corrupt party.

– Fm-psi delivers output X̃ ∩
⋂
i 6∈C Xi to P0.

One subtlety is how big the set X̃ is, which the simulator sends to the ideal functionality. We
can think of the adversary as choosing

∑
i∈C Decode(Qi, h), which stores m key-value pairs, and the

simulator extracts by checking which pairs of this aggregate OKVS satisfy a certain condition. In
principle there may be more than m pairs that satisfy the condition that defines X̃. (This issue
does not affect the case of a corrupt P0 since in that case the simulator extracts by finding all pairs
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in the OKVS.) It is for this reason that our ideal functionality allows corrupt parties to provide
larger input sets than honest parties (see Figure 5).12

We can bound the size m′ of the set X̃ as follows. Suppose the adversary makes q queries to H
and outputs Qi such that the resulting X̃ has m′ items. We could use this adversary to “compress”
the random oracle H as follows (the following analysis is information-theoretic, as it operates on the
exponentially large object H):

• Run the adversary on oracle H until it outputs Qi for i ∈ C.

• Compute the set of values X̃ as above.

• For every h ∈ X̃, consider all oracle queries of the form H̃(PRFi(h), h). Mark whichever of
these queries was made last by the adversary as “overdetermined.”

• Output the following:

– The list of overdetermined oracle queries made by the adversary, given by which order they
are made by the adversary (i.e., “the 3rd, 5th, 19th oracle queries are overdetermined”).
This list consists of log

(
q
m′

)
bits.

– For every non-overdetermined oracle query made by the adversary, in the order that they
are made, give the output of H on that query. This list consists of (q −m′) log |F| bits.

– For all queries not made by the adversary, in lexicographic order, give the output of H.
This list consists of (N − q′) log |F| bits, where N is the size of the input domain for H.

– Output
∑

i∈C Qi.

Note that all of H can be reconstructed from this information: Simply run the adversary, answering
its oracle queries from the information provided. If the query is not overdetermined, then the correct
response is given in the list explicitly. If the query is overdetermined, then it can be solved for in
the equation

∑
iDecode(Qi, h) =

∑
i∈C shi(h) +

∑
i∈CH(PRFi(h), h), since by construction, at the

time the H-output is needed, all other H-outputs in this expression are already known. Note that
since h is included in the oracle query (whose output we are trying to reconstruct), so we know the
identity of h in this expression as well. All other outputs of H are given explicitly in the information
provided above.

Overall, we have provided information consisting of log
(
q
m′

)
(N −m′ +m) log |F|, from which

the random oracle can be reconstructed. The size of the random oracle is N log |F|. Hence, we must
have

log

(
q

m′

)
(N −m′ +m) log |F| ≥ N log |F|

=⇒ log

(
q

m′

)
≥ (m′ −m) log |F|

Take |F| = 22κ and q = 2κ. Since
(
q
m′

)
≥ (q/m′)m

′
, it suffices to have:

m′ log(q/m′) = κm′ −m′ logm′ ≥ 2κ(m′ −m)

Ignoring the insignificant term m′ logm′, we see that it suffices to have m′ = 2m, because it makes
both sides equal to 2κm.

In other words, the simulator will extract a set for the corrupt parties, with size bounded by
2m.

12This property is common to many malicious PSI protocols, for example those of [RR17b, RR17a].
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We leave it as an interesting open problem to understand whether it is possible to restrict corrupt
parties to input sets of size m within this PSI protocol framework.

B.5 Comparison

In this section, we present a detailed comparison of our work to existing protocols on various
parameters. The works of [HV17, KMP+17] describe multi-party PSI protocols that are semi-honest
secure, and [GN19, HV17, BENOPC] and the protocol described in this paper are robust against
malicious adversaries.

We start by observing that the protocol of Hazay et al. in [HV17] relies heavily on public-key
encryption and calls on expensive tools like threshold homomorphic encryption and zero-knowledge
proofs. Further, they use a broadcast channel in 3 out the 8 rounds in their malicious secure protocol.
In comparison, all other mentioned protocols can be instantiated using fast symmetric-key based
operations and do not assume a broadcast channel.

To the best of our knowledge, all multi-party PSI protocols use the star-topology communication
model to avert the cost associated with a complete network of communication. Therefore, a relevant
parameter of efficiency is the amount of non-star communication cost of the protocols. The work
of Ghosh et al. [GN19] and the protocol in our paper are comparable, with a single round of
input-independent setup where each pair of parties exchanges κ bits of information. In contrast, the
work of [HV17] in the malicious setting, involves 3 rounds of communication between all pairs of
parties. One of those rounds, is a setup key-generation phase for threshold homomorphic encryption
scheme. The other two rounds are during the online phase, and involve a coin toss and n broadcasts,
one by each of the parties.

We wish to highlight that the multi-party PSI protocols of Kolesnikov et al. [KMP+17] and in
this paper are the most ”general” transformation from any 2-party protocol that can be expressed as
an OPRF functionality (where this is true for a vast majority of protocols). Another distinguishing
feature is that our protocol restricts all parties to participate with input sets of the same size. The
works of [GN19, HV17] do not suffer from this drawback.

The concurrent work of [BENOPC] uses garbled Bloom filters to construct a concretely efficient
malicious-secure protocol. In their work, P0 needs to do an exhaustive search (that scales with the
number of parties) to learn the intersection. That is, P0 expects to see a codeword yx to learn that x
belongs to the intersection, other parties send unordered sets of their codewords. P0 needs to check
all combinations of codewords to see if any of them XOR to match yx. In contrast, our OKVS-based
solution does not suffer from this drawback, the central party always knows where to look to check
if x is in the intersection, and its computation does not scale with the number of parties. Further,
the asymptotic cost of our 2 party OPRF is much cheaper than the GBF based instantiation
of [BENOPC] that requires many random OTs (as many as the size of the garbled Bloom filter)
augmented with a costly cut-and-choose check to make the construction malicious-secure. Lastly,
we compare the sizes of the GBF and OKVS sent to the central party. For sets of size m, we send
an OKVS with field elements, of total size O(m(λ+ logm)) while [BENOPC] send strings of size
O(mκ) (security parameter), while it almost always holds that λ+ logm < κ. To summarize, the
[BENOPC] construction relies heavily on BF/GBF, which is the most communication-expensive
construction amongst three PSI constructions presented in [KMP+17]. While our protocol achieves
almost the same cost as that of the most efficient construction (the augmented semi-honest protocol)
in [KMP+17] with only a minor (inexpensive) modification.
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Protocol Security Tools, Assump. Communication Computation Rounds

KMPRT17 [KMP+17]
aug SH OPPRF O(n2κ+ nm(κ+ λ+ logm)) O(nκ) |OPRF| + 1

SH OPPRF O(n2κ+ nmt(κ+ λ+ logm)) O(ntκ) |OPRF| + 1

HV17 [HV17]
SH THE O(nmκ) O((nm+m2) logF) 4
M THE, RO/CRS O((n2 + nm logm)κ) O((nm+m2) logF) 8

GN19 [GN19] M OLE O((n2 + nm)κ) O(nm log2m) 4
ENO21 [BENOPC] M GBF, OPPRF O((nmκ2 +mnκ log(mκ)) O(mnκ) 6
Ours M vOLE, RO O(n2κ+ nm(κ+ λ+ logm)) + o(nm) Ω(nm) 4

Table 4: We compare protocols assuming n parties, each owning private sets of equal size m with
λ as the statistical parameter and κ as the computational security parameters. Some protocols
require us to indicate the number of colluding parties as t. All protocols are designed in the
star-topology communication model and only one abritrarily chosen central party learns the output.
The protocols are robust against n− 1 corruptions. All computational cost is written in terms of
field multiplications. “aug SH”, “SH”, and “M” refer to augmented semi-honest, semi-honest and
malicious, respectively.

B.6 Comparison with KMPRT17 (How Can it be Secure Against Malicious but
not Semi-Honest Adversaries?)

As we have mentioned, our construction is “isomorphic” to a construction of Kolesnikov et al. (KM-
PRT) [KMP+17]. We briefly review their construction now. The construction of KMPRT achieves
an intermediate functionality that they call “oblivious programmable PRF” (OPPRF). This is
similar to an 2-party OPRF, where the sender can additionally “program” the random function
with a small set of desired points. Formally, the sender provides points (x1, y1), (x2, y2), . . ., and the
receiver provides points z1, z2, . . .. The receiver receives F (z1), F (z2), . . . and the sender receives
(a description of) F , where F is a pseudorandom function constrained so that F (xi) = yi for all i.
Importantly, the receiver doesn’t learn whether any given point was one of the “special” ones xi.

KMPRT construct an OPPRF from an OPRF as follows (among other constructions): The
parties run an OPRF for PRF F , where the sender learns key k. Then the sender generates and
sends a polynomial P such that P (xi) = yi ⊕ F (k, xi) for all pairs (xi, yi) on which he wishes to
“program” the OPRF. Defining the new function F ′(k, x) = F (k, x)⊕ P (x) we can see that indeed
F ′(k, xi) = yi for all programming-pairs (xi, yi).

Furthermore, KMPRT use an OPPRF in their multi-party PSI protocol by programming it so
that the yi values are shares of zero (using the same non-interactive zero-sharing approach that we
also use). Hence, their approach boils down to sending a polynomial interpolated through points
P (x) = OPRF (k, x) + shi(x), just as we have presented here. The only notable difference is to
apply the transformation to a malicious-secure OPRF protocol.

Semi-honest vs Malicious. How can it be that this construction is apparently not secure enough
for semi-honest adversaries but we prove it to be secure against malicious adversaries?

Hazay and Lindell [HL10] explicitly address this seemingly paradoxical scenario, and we present
a synopsis here: Here, we start by considering a simpler example. Suppose Alice has a bit a ∈ {0, 1}
and Bob has a bit b ∈ {0, 1}. Bob should receive the bit a ∧ b, while Alice should receive nothing.
The protocol where Alice simply sends a to Bob is actually a secure protocol against malicious
adversaries. Indeed, if Bob is malicious then (in the ideal world) he can always use input b = 1 and
learn a anyway, without Alice noticing. However, this trivial protocol is not secure for semi-honest
adversaries because in the case where semi-honest Bob has input b = 0 the protocol reveals too
much. In fact, it is highly nontrivial to construct a semi-honest protocol for this functionality, as it
is known to be equivalent to oblivious transfer [Kil00].
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The problem is that the simulator for a malicious Bob always sends input b = 1 to the ideal
functionality (so it can learn a from the output a∧b and simulate Alice’s protocol message). However,
in the semi-honest model all parties (even corrupt parties) have a well-defined input (provided
by the environment) and the semi-honest simulator is obligated to send that input to the ideal
functionality. If semi-honest Bob has input b = 0 and his semi-honest simulator sends b = 0 to the
ideal functionality, it clearly does not receive enough information to simulate the message a from
Alice, making the protocol “insecure.”

In short, semi-honest security considers a strict subset of possible real-protocol adversaries (so in
that sense is less demanding), but also is limited to a strict subset of possible ideal-world simulators
(so in that sense is more restrictive).

Our multi-party PSI protocol is similar to the simple a ∧ b example. Kolesnikov et al. showed
that it does achieve “augmented semi-honest” security which is essentially semi-honest security
where the simulator is now allowed to send a different input to the ideal functionality. Intuitively,
we can interpret their result as “the protocol is semi-honest secure apart from the issue of simulators
changing inputs.” It just so happens that the protocol furthermore is malicious-secure, and simulators
“changing” a corrupt party’s input is completely irrelevant in the malicious model. Thus we achieve
the standard notion of malicious security.

B.7 Extensions

Sets of different sizes. Our protocol is written for the case where all parties have sets of the
same size n. It is natural to extend our protocol so that each party Pi has input of size ni and sends
an OKVS consisted of ni − 1 key-value pairs. Perhaps surprisingly, there is a subtle security issue
associated with this generalization. Specifically, the protocol cannot guarantee the fact that the
intersection will have size at most mini{ni}.

More concretely, consider a 3-party scenario where P1 and P2 are corrupt and the central party
P0 is honest. For simplicity, we consider the polynomial OKVS. P1 advertises 10 items and therefore
sends a polynomial Q1 of degree 9, while P2 advertises 1000 items and sends a polynomial Q2 of
degree 999. Note that Q1 and Q2 do not have an individual effect on P0’s ultimate output — only
their sum Q1 +Q2 has an effect.13 This observation indeed leads to a concrete “attack” whereby P1

and P2 arrange so that Q1 +Q2 (which, recall, has degree 999) has 1000 pairs h that satisfy:

Decode(Q1, h) + Decode(Q2, h) = H(PRF1(h), h) +H(PRF2(h), h) + sh1(h) + sh2(h)

When this is true, the intersection can easily contain more than 10 items (depending on which items
honest P0 has).

On the positive side, this is the only issue with the generalized protocol. It does achieve security
with respect to a slightly weaker ideal PSI functionality. In particular, if a party is corrupt then
it is allowed to provide a set of size nmax = maxi{ni} where i ranges over the indices of corrupt
parties. In other words, corrupt parties may have more items than they “advertise” by the size of
their OKVS, but still learn no more than from an intersection on (perhaps slightly larger) sets. This
relaxation of PSI ideal functionality is not unprecedented, as several other malicious PSI protocols
(e.g., [RR17b, RR17a]) cannot strictly enforce the cardinality of the corrupt parties’ input sets to
what is “advertised” by the structure/size of the protocol messages.

We leave it as an interesting open question to extend our multi-party protocol to strictly enforce
the size of each corrupt party’s input set.

13Note that when the simulator extracts inputs for P1, P2, it only inspects the aggregate OKVS Q1 +Q2 and sends
the same input set to the ideal functionality on behalf of both parties!
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Output to more than one party. Our protocol and ideal functionality provide output only to
the central party P0. We can provide output to all parties with the following modifications to the
protocol:

• All parties, even P0 publicly commit to their OKVS Qi. (Recall that P0 computes an OKVS
in the original protocol but only uses it locally.)

• After all parties have committed, all parties reveal their OKVS.

• All parties compute output as {h ∈ Xi |
∑

iDecode(Qi, h) = 0}.

In this way, all parties will receive output. However, there are some important subtleties to consider.

Suppose P0 is corrupt and commits to a garbage OKVS. Other parties will compute empty
output, while P0 knows the “correct” Q0 (that it should have committed/sent) and can compute
the “true” output. More generally, P0 can commit/send an “incorrect” Q0 that encodes through the
correct values only on a subset X∗0 ( X0 of the true items. Other parties will output X∗0 ∩ (

⋂
iXi)

while P0 will be able to learn X0 ∩ (
⋂
iXi). It can be shown that this is the only kind of attack

possible – a corrupt party P0 can only cause the honest parties to learn a strict subset of the “correct”
output, but cannot cause them to accept an item outside of X0 in their output.

More formally, this protocol can be shown to achieve a variant multi-party PSI ideal functionality
that works as follows. Corrupt parties provide both an “honest” input set Xh

i as well as a “corrupt”
input set Xc

i , with the restriction that Xh
i ⊆ Xc

i . The corrupt parties learn the intersection of all
sets, computed using their “corrupt” input sets, but the honest parties are given the intersection
computed using the “honest” input sets.

This kind of behavior regarding outputs is endemic to many other malicious PSI protocols. It is
a significant challenge for the receiver to convey the output to other parties, even in the 2-party
case! It is for this exact reason that existing malicious 2-party PSI protocols like [RR17a, RR17b]
provide output to only one party — they too could be made to provide output to both parties but
the receiver (who gets output first) could cause the sender to learn a strict subset of the “true”
output. The multi-party PSI protocol of [GN19] has this property as well.

We point out one interesting difference between our approach here and the one of [GN19]. In
that work, they prove that the protocol realizes an ideal functionality that works as follows: The
corrupt parties provide input, then receive output, and then the corrupt parties choose which subset
of the true output is delivered to the honest parties. In other words, the adversary can decide what
outputs to deliver to the honest parties based on the output it learns. In our protocol, the adversary
is committed, before seeing the output, to which subset of the true output it will deliver to the
honest parties.
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Parameters:
• n+ 1 parties P0, . . . , Pn, where P0 is designated to receive output.

• An exponentially large field F, and random oracle H : {0, 1}∗ → F.

• A malicious-secure Foprf ideal functionality for underlying PRF PRF.

• A PRF PRF′ (possibly the same as above) with output in F.

Inputs:
• Each party Pi owns an input set Xi, such that Xi ⊆ F and |Xi| = m.

Protocol:
1. Zero-sharing setup: Assume an ordering on the parties {P0, P1, . . . Pn}. Every Pi samples a key

for PRF′ uniformly at random kij
$← F and sends it to every Pj , where i > j. We use the following

notation for non-interactive zero-shares throughout the protocol:

shi(h) =
∑
j<i

PRF′kij
(h)−

∑
j>i

PRF′kji
(h)

Note that party Pi can compute shi(h) for any h, and also note that
∑

i shi(h) = 0 for any h.

2. P0 interacts with every other party Pi as follows:

(a) The two parties invoke an instance of Foprf where Pi acts as sender and learns a key, and
P0 acts as receiver with input X0. We write PRFi to denote the underlying PRF specialized
to the key used in this instance. P0 learns the set {PRFi(h) | h ∈ X0}.

(b) Pi computes OKVS Qi via:

Qi = Encode
({(

h,H(PRFi(h), h) + shi(h)
) ∣∣∣ h ∈ Xi

})
(c) Pi sends Qi to P0.

3. P0 computes OKVS Q0 via:

Q0 = Encode
({(

h, sh0(h)−
n∑

i=1

H(PRFi(h), h)
) ∣∣∣ h ∈ X0

})
4. After P0 receives OKVS from the other n parties he determines the output {h ∈ X0 |∑n

i=0 Decode(Qi, h) = 0}

Figure 5: Malicious-secure Multi-party PSI protocol Πmpsi in the Foprf-hybrid model
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