
MPC-Friendly Symmetric Cryptography from Alternating Moduli:

Candidates, Protocols, and Applications

Itai Dinur
Ben-Gurion University

Steven Goldfeder
Cornell Tech

Tzipora Halevi
Brooklyn College, CUNY

Yuval Ishai
Technion

Mahimna Kelkar
Cornell Tech

Vivek Sharma
Graduate Center, CUNY

Greg Zaverucha
Microsoft Research

Abstract

We study new candidates for symmetric cryptographic primitives that leverage alternation
between linear functions over Z2 and Z3 to support fast protocols for secure multiparty compu-
tation (MPC). This continues the study of weak pseudorandom functions of this kind initiated
by Boneh et al. (TCC 2018) and Cheon et al. (PKC 2021).

We make the following contributions.

• Candidates. We propose new designs of symmetric primitives based on alternating mod-
uli. These include candidate one-way functions, pseudorandom generators, and weak pseu-
dorandom functions. We propose concrete parameters based on cryptanalysis.

• Protocols. We provide a unified approach for securely evaluating modulus-alternating
primitives in different MPC models. For the original candidate of Boneh et al., our pro-
tocols obtain at least 2x improvement in all performance measures. We report efficiency
benchmarks of an optimized implementation.

• Applications. We showcase the usefulness of our candidates for a variety of applications.
This includes short “Picnic-style” signature schemes, as well as protocols for oblivious
pseudorandom functions, hierarchical key derivation, and distributed key generation for
function secret sharing.

1 Introduction

Symmetric-key cryptographic primitives, such one-way functions (OWFs) [Lev85], pseudorandom
generators (PRGs) [BM84; Yao82] and pseudorandom functions (PRFs) [GGM84], are deployed in
innumerable settings, and serve as fundamental building blocks of modern cryptography. While
traditional use cases primarily considered settings where the function evaluation was done by a
single party, many applications (recently also arising in the context of cryptocurrencies) require
evaluation in a distributed fashion to avoid single points of failure. This motivates the study of
secure multiparty computation (MPC) protocols for evaluating such symmetric-key primitives in
a setting where inputs, outputs, and keys are secret-shared or distributed between two or more
parties.

Towards this goal, a long line of work [DK10; PSSW09; WRK17] has made substantial progress
on concretely efficient MPC protocols for distributing the computation of symmetric primitives,

A preliminary version of this paper appears in the proceedings of CRYPTO 2021. This is the full version.

1

such as AES or SHA-256, which are widely used in practice. Unfortunately, the constructions
themselves were not designed with distributed evaluation in mind, and are thus optimized for
performance metrics relevant to the single-party setting. More recent work (see [ARS+15; GRR+16;
BIP+18; APR+19; AABS+20] and references therein) has therefore proposed to start from scratch
by designing MPC-friendly primitives from the ground up. In this work, we continue this line
of research by proposing a new suite of simple MPC-friendly candidate designs for a number of
symmetric primitives.

Our MPC setting. We focus on the semi-honest setting of security for simplicity. This is
considered adequate in many cases. In particular, it suffices for the construction of signature
schemes via an “MPC-in-the-head” technique [IKOS07; CDG+17]. While recent general techniques
from the literature [BBC+19; BGIN19] can be used to extend some of our protocols to the malicious
security model with a low amortized cost, we leave such an extension to future work. We consider
protocols for both two parties (2PC) and multiple parties, both with and without an honest majority
assumption, and both with and without preprocessing. In the following, we consider by default the
setting of (semi-honest) 2PC with preprocessing. However, our contributions apply to the other
settings as well.

Efficiency metrics for MPC. Concretely efficient MPC protocols can be divided into two
broad categories: protocols based on garbled circuits [Yao86] and protocols based on linear secret
sharing [GMW87; BGW88; CCD88]. Protocols based on garbled circuits have low round complexity
but their communication cost will be prohibitively high for our purposes. We will therefore focus on
protocols based on secret sharing. Roughly speaking, the complexity of evaluating a given function
f using such protocols is determined by the size and the depth of a circuit C that evaluates f .
Here we assume that C is comprised of atomic gates of two kinds: linear gates (computing modular
addition or multiplication by a public value) and MPC-friendly nonlinear gates that are supported
by efficient subprotocols. A typical example for a nonlinear gate is modular multiplication of two
secret values. Given such a representation for f , the communication cost of an MPC protocol for
f scales linearly with the size of C, namely the number of gates weighted by the “MPC cost” of
each gate, whereas the round complexity scales linearly with the depth of C, namely the number
of gates on a longest input-output path. Since linear gates do not require any interaction, they do
not count towards the size or the depth. We use the term “nonlinear size” and “nonlinear depth”
to refer to the size and the depth when excluding linear gates.

Our design criteria. The above efficiency metrics for MPC are quite crude, since not all kinds
of nonlinear gates are the same. However, they still serve as a good intuitive guideline for the
design of MPC-friendly primitives. More concretely, we would like to design primitives with the
following goals in mind.

• Low nonlinear depth. Minimizing round complexity calls for minimizing nonlinear depth.
Unfortunately, constructions like AES or even MPC-friendly ones such as LowMC [ARS+15]
have quite a high nonlinear depth, which leads to high-latency protocols when using the
secret-sharing approach.

• Small nonlinear size. For keeping the communication complexity low, we would like to mini-
mize the number of nonlinear gates and make them as “small” and “MPC-friendly” as possible.

2

• High algebraic degree. Security of block ciphers and (weak) PRFs provably requires high
algebraic degree. While there are low-degree implementations of weaker primitives such as
OWFs and PRGs [MI88; Gol11; AIK04], these typically come at the price of bigger input size
and higher nonlinear size [CDM+18; YGJL21].

• Simplicity. A simple design is almost always easier to implement and prone to fewer errors
and attacks. This is particularly valuable since a substantial amount of work has previously
gone into implementations that resist timing and cache side-channels. Simple constructions
are also easier to reason about and cryptanalyze, which builds confidence in their security, and
may serve as interesting objects of study from a theory perspective [Gol11; MV15; ABG+14].

The alternating moduli paradigm. The above design goals may seem inherently at odds with
each other. How can “high algebraic degree” co-exist with “small gates” and “low nonlinear depth”?
Towards settling this apparent conflict, a new design paradigm was recently proposed by Boneh et
al. [BIP+18] and further explored by Cheon et al. [CCKK21]. The idea is to break the computation
into two or more parts, where each part includes a linear function over a different modulus. The
simplest choice of moduli, which also seems to lead to the best efficiency, is 2 and 3.

Boneh et al. [BIP+18] proposed a weak PRF1 (wPRF) candidate with the following simple
description: the input x is a vector over Z2 and the secret key specifies a matrix K over Z2. The
PRF first computes the matrix-vector product Kx over Z2, then interprets the result as a vector
over Z3 in the natural way, and finally applies a public, compressive linear map over Z3 to obtain
an output vector y over Z3. (When the output is a single Z3 element, the final compressive map is
just a sum over Z3.)

The above mapping from x and K to y has two nonlinear steps: The first is the matrix-vector
product over Z2, whose cost can be reduced when the matrix K has a special form. The second
is a conversion of a mod-2 vector to a mod-3 vector, which consists of small (finite-size) parallel
nonlinear gates. Overall, the nonlinear depth is 2. Why is this a high-degree function? Viewing
both the input and the (binary representation of) the output as vectors over Z2, high degree over
Z2 comes from the final linear map over Z3. Viewing the input as a vector over Z3, high degree
comes from the linear map over Z2 defined by the key. Despite its simplicity, the design can be
conjectured to have a good level of security with small input and key size (say, 256 bits for 128-bit
security). It mostly resisted the initial cryptanalysis, where attacks found in [CCKK21] require a
very big number of samples and are quite easy to circumvent by slightly modifying the design (as
suggested in [CCKK21]).

A primary motivation for the alternating moduli paradigm was its MPC-friendliness. Indeed,
several MPC protocols were proposed in [BIP+18]. These protocols demonstrated significant effi-
ciency advantages over earlier MPC-friendly designs, mainly in the setting of 2PC with preprocess-
ing or 3-party computation with an honest majority.

Another, very different, motivation is the goal of identifying simple function classes that are
“hard to learn.” Indeed, the conjectures from [BIP+18] imply hardness of learning results for low
complexity classes such as (depth-2) ACC0 circuits, sparse Z3 polynomials, or width-3 branching
programs. These conjectures are also of interest outside the field of cryptography [Che19; FIKK20;
CR20; KKL+20], which further motivates cryptanalysis efforts.

1A weak PRF is one whose security only holds when evaluated on random inputs. In many applications of strong
PRF, a weak PRF can be used instead by first applying a hash function (modeled as a random oracle) to the input.

3

Remaining challenges. The initial works of [BIP+18; CCKK21] have only scratched the surface
of the kind of questions one may ask.

• What about simpler symmetric primitives such as OWFs and PRGs? MPC protocols for
these primitives are motivated by many applications, including Picnic-style post-quantum
digital signatures [CDG+17; KZ20] and lightweight distributed key generation for function
secret sharing [BGI15].

• Are there similar candidates where the input, output, and key are all over Z2? This too is
motivated by natural applications.

• Can the MPC protocols given in [BIP+18] be further improved? Can the preprocessing be
realized at a low amortized cost? This motivates an additional design criterion: “PCG-
friendliness,” leveraging recent advances in pseudorandom correlation generators [BCGI18;
BCG+19b; YWL+20].

1.1 Our Contributions

Motivated by the above questions, we make the following contributions.

1.1.1 New candidate constructions

We introduce several candidate constructions for OWF, PRG, and (weak) PRF, all based on alter-
nation between linear maps over Z2 and Z3.

• Candidate OWF. We expand on the general structure of the (2, 3)-wPRF candidate from
[BIP+18] to construct a candidate OWF. Recall that the wPRF candidate computes B(Kx)
where K is the secret key (over Z2) and B is a compressive Z3 linear map. For our (2, 3)-
OWF candidate, we replace the secret key matrix with another randomly sampled (expanding)
public matrix A. Specifically, given A ∈ Zm×n2 and B ∈ Zt×m3 where m ≥ n, t, our OWF
candidate is defined as F(x) = B(Ax) where Ax is first reinterpreted as a 0/1 vector over Z3.

• Candidate wPRF. The wPRF candidate from [BIP+18] has inputs over Z2 but outputs
over Z3. This is not suitable for applications in which the output should be further processed
using secret sharing over Z2. To this end, we propose an “LPN-style” wPRF candidate where
both the input and output are over Z2. Specifically, given a secret key matrix K ∈ Zm×n2 and
a public compressive map B ∈ Zt×m2 , for an input x ∈ Zn2 , our LPN-wPRF candidate first
computes an intermediate vector

w = [(Kx mod 2) + (Kx mod 3) mod 2] mod 2

where for Kx mod 3, both K and x are first reinterpreted over Z3. Then, the candidate is
defined as FK(x) = Bw. Intuitively, each intermediate vector bit can be thought of as a
deterministic Learning-Parity-with-Noise (LPN) instance with a noise rate of 1/3. The noise
is deterministically generated and is dependent on the input x and a specific column of K.
A similar candidate was considered in [BIP+18] (as their alternate candidate) but it only
outputs a single bit (it uses K ∈ Z1×n

2 and outputs the intermediate vector directly). Our
candidate generalizes this to multiple output bits. But more importantly, it also does not

4

output the intermediate vector directly and instead applies an additional compressive linear
map (using B). We show how this allows our candidate to resist standard attacks on LPN.

• Candidate PRG. We also propose a candidate length-doubling PRG that is similar to our
LPN-wPRF. Specifically, we use a public matrix A ∈ Zm×n2 instead of the key for the first
linear map. It follows the same structure as the LPN-wPRF, by first expanding the input
to the intermediate vector w and then applying a compressive Z2 linear map B. Choosing
the length m of the intermediate vector to be large enough, we can ensure that the final
compressive map still results in an output of size t = 2n.

1.1.2 Cryptanalysis and implications on parameter choices

Algebraic attacks. Given that the constructions heavily mix linear operations over Z2 and Z3,
we will rely on the arguments of Boneh et al. [BIP+18], and conjecture that algebraic attacks do
not threaten their security. Instead, we will focus on combinatorial attacks and statistical tests.

OWF. Our most interesting attack on the candidate OWF reduces the inversion problem to a
particular type of subset-sum problem, where addition simultaneously involves operations over Z2

and Z3. Thus, we can invert the OWF by applying a variant of recent advanced algorithms for
solving subset-sum that are based on the representation technique [HJ10; BCJ11; BBSS20]. Com-
pared to a standard meet-in-the-middle approach, this attack forced us to increase the parameters
by about 30%.

wPRF and PRG constructions. Our candidate wPRF and PRG constructions are related to
the ones proposed in [BIP+18] and recently analyzed in [CCKK21]. The latter work describes
distinguishing attacks on the constructions of [BIP+18] with asymptotically exponential (yet, con-
cretely significant) complexity. Specifically, the attack on the (2, 3)-wPRF candidate of [BIP+18]
exploits an interaction between the structure of the circulant matrix K and the choice of B (which
is fixed to the vector ~1). On the other hand, our construction uses a random choice of B which,
as we show, is unlikely to result in such an interaction. The weakness in the “LPN-style” wPRF
candidate of [BIP+18] was due to conditional correlation between the key and the output. We fix
it by applying an additional compressive linear map.

It is important to emphasize that [CCKK21] analyzed constructions where the output length
is t = 1, while our constructions use t � 1. Although longer output gives better performance,
it may also degrade security. For example, at the extreme end, if t = m the scheme is trivially
broken in polynomial time by linear algebra, forcing t� m. Our security analysis of the candidate
wPRF and PRG constructions shows that they resist such simple linear algebra attacks. Yet, the
main part of security analysis is focused on statistical distinguishers that exploit a bias in the
output. The strength of such a bias depends on the minimal distance of the code generated by
the rows of the t ×m matrix B (the second linear operation of the construction). As this code is
generated at random, we use the probabilistic method (in a similar way it is used to obtain the
Gilbert–Varshamov bound for linear codes) to argue that its minimal distance is sufficiently large,
except with negligible probability. Note that larger t results in a smaller minimal distance.

We place a concrete limit of 240 on the number of samples generated by our wPRF candidates
with any particular key. This reduces the probability of bad events such as collisions (where the

5

Construction
Parameters

Comment
(n,m, t)

(2, 3)-OWF (s, 3.13s, s/ log 3) aggressive
(s, 3.53s, s/ log 3) conservative

(2, 3)-wPRF (2s, 2s, s/ log 3) aggressive
(2.5s, 2.5s, s/ log 3) conservative

LPN-PRG (s, 3s, 2s)
LPN-wPRF (2s, 2s, s)

Table 1: Concrete parameters for s-bit security.

same input to the wPRF is selected twice) and undesired interactions between the input and the
structured circulant matrix K. More details about such inputs are given in the security analysis.

Concrete parameters. In Table 1 we summarize the recommended concrete parameters for
our constructions with the goal of obtaining s-bit security. For the (2, 3)-OWF and (2, 3)-wPRF
constructions we give both aggressive and more conservative parameter sets. Note that the OWF
and PRG use the minimal secret input (and output) sizes, while for wPRFs we use a larger secret.
This is a result of different tradeoffs between security and performance. For example, we could have
set n = s for the (2, 3)-wPRF, but cryptanalysis would force setting m to be much larger than 2s
and result in less efficient protocols. A lower bound on m in case n = s is deduced by a subset-sum
attack which resembles the one on the (2, 3)-OWF construction. Yet, optimizations that exploit
the additional data available may be possible. While we do not expect security to degrade sharply
in this case, we leave the concrete analysis for this parameter setting to future work. On the other
hand, setting n = 2s for the (2, 3)-OWF would also require doubling the size of the output,2 once
again, degrading efficiency.

Our constructions are new and it is not unlikely that some will be broken and require updating
the parameter sets (even the “conservative” ones). Conversely, if for some of our constructions the
more aggressive parameter sets turn out to resist future analysis, we would gain further confidence
in their security.

One of the main questions we leave open is how to better exploit the structured matrices
used in our constructions in cryptanalysis. This question is particularly interesting for the wPRF
constructions where the attacker obtains several samples, and can perhaps utilize the structured
matrices to combine their information in more efficient attacks.

1.1.3 Distributed protocols and optimized implementations

As discussed above, our design criteria are guided by the goal of supporting efficient MPC protocols
for distributed evaluation. We consider protocols for semi-honest parties in several standard MPC
models, either with or without preprocessing.

Efficient protocols. For our wPRF candidates, we present protocols in several different settings:
(1) 2PC with preprocessing, where the input, key, and output are all secret-shared between the
parties; (2) 3PC with one passive corruption, and (3) an OPRF-style 2PC with preprocessing,

2 Otherwise, each output would have 2s preimages and there would be no security advantage.

6

where one party holds the key and the other holds the input. For the (2, 3)-wPRF candidate, our
2PC protocols perform 1.5-5x better than the protocols from [BIP+18] for the same functionality,
in both online communication and preprocessing size. For instance, in the 2PC setting, our protocol
requires 2 rounds, 1536 bits of online communication, and 662 bits of preprocessing (i.e., correlated
randomness). In contrast, the protocol from [BIP+18] for the same setting requires 4 rounds,
roughly 2600 bits of online communication and roughly 3500 bits of preprocessing. Similarly, our
OPRF protocol requires 2 rounds and 641 bits of online communication while the one from [BIP+18]
requires 4 rounds and roughly 1800 bits of online communication.

A key ingredient for the efficiency improvement is a subprotocol for modulus conversion gates
that switch between shares in Z2 and Z3 using circuit-dependent correlations. While [BIP+18]
used OT in their protocols, we use these modulus conversion gates for better efficiency. We note
that the same blueprint can also be used to construct efficient distributed protocols for alternate
variants of our constructions.

Distributing the dealer at a low amortized cost. The 2PC protocols presented in [BIP+18]
rely on trusted preprocessing to generate two kinds of correlated randomness. The first kind, used
to securely multiply the input and the key matrix, can be thought of as a standard multiplication
triple [Bea91] over a ring. (Using a circulant matrix for the key, this involves a single multiplica-
tion in a ring of polynomials over Z2.) It was also pointed out that using efficient pseudorandom
correlation generators (PCGs) for vector oblivious-linear evaluation (VOLE) correlations [BCGI18;
BCG+19b; SGRR19], this kind of correlation can be generated at a low amortized cost when
the same key is reused with multiple inputs. (In fact, using more recent PCGs for independent
OLE correlations [BCG+20] the latter restriction can be removed, albeit at a considerably higher
cost.) The second kind of correlated randomness used in [BIP+18] is a standard oblivious trans-
fer (OT) correlation, which can also be efficiently generated using either classical [IKNP03] or
“silent” [BCG+19b; YWL+20] OT extension. The latter techniques use a PCG for OT to enable
fast local generation of many random instances of OT from a pair of short, correlated seeds. How-
ever, the main source of improvement over the protocols from [BIP+18] is our use of the modulus
conversion correlations described above. We show how to generate both kinds of correlations from
a standard OT correlation using only a single message, where in the Z2 → Z3 case the (amortized)
communication is < 1.38 bits per instance, and in the (less commonly used) Z3 → Z2 case it is 6
bits per instance. This means that the amortized cost of distributing the dealer in our protocols is
typically much lower than the cost of the online protocol that consumes the correlated randomness.

1.1.4 Applications

MPC protocols for the symmetric primitives we consider in this work are useful for a variety of
cryptographic applications. Here we discuss some of these motivating applications.

Digital signatures. Using the MPC-friendliness of candidates, we can efficiently prove knowledge
of an input (e.g., of an OWF input, wPRF key, or PRG seed), using proof protocols based on the
MPC-in-the-head paradigm [IKOS07]. This is the approach taken by many recently designed post-
quantum signature schemes [CDG+17; KKW18; Beu20; BSG20; SGMOS19; BSGK+21], as it only
requires a secure OWF and hash function, and has opened up the range of hardness assumptions

7

possible for public-key signatures. We present the first optimized public-key signature scheme based
on alternating moduli cryptography.

We provide a detailed description of a signature scheme using our OWF candidate, as a mod-
ification to the Picnic algorithm [CDG+17; KKW18; KZ20; Tea20], a third round candidate in
the NIST Post-Quantum Cryptography Standardization Process.3 We replace the OWF used in
Picnic (an instance of the LowMC block cipher [ARS+15], which is assumed to be a OWF), update
the MPC protocol accordingly, and quantify the resulting signature sizes. Using our conservative
(2, 3)-OWF parameters, we find that signatures sizes are slightly shorter, with signatures at the
128-bit security level (64-bit quantum) having size ranging from 10.3–13.3KB (depending on MPC
parameter choices). This shows that OWFs based on alternating moduli are competitive with
block-cipher based designs, with potential for future improvements, and we can choose a OWF
with an (arguably) simpler mathematical description, without sacrificing performance.

We remark that while our efficiency metrics of low nonlinear depth and small nonlinear size are
ideal for MPC, and as a consequence, helpful for signatures based on zero-knowledge proofs, some
proof systems can be very efficient for limited computations with large nonlinear size. A recent
example is the Rainier signature scheme [DKR+21], whose underlying one-way function Rain uses
inversion in large finite fields as a nonlinear operation. When compared to the (2, 3)-OWF, Rain
currently results in shorter signatures, but is tightly coupled to that application, and Rain-like
primitives would not be efficient in the other applications of this paper, since general-purpose MPC
protocols for these primitives are relatively inefficient, either due to high nonlinear depth or (for
MPC with no honest majority) due to arithmetic operations over large moduli.

Oblivious pseudorandom functions. We construct an OPRF protocol that computes our
(2, 3)-wPRF candidate in an oblivious setting. In the multi-input setting (where the key is used
for multiple evaluations), our protocol requires only 2 rounds and 641 bits of online communica-
tion. Compared to a standard DDH-based OPRF [JKK14; JKKX16], which require 512 bits of
communication for 128-bit security, our protocol requires slightly higher communication but has a
much faster online computation, which typically forms the efficiency bottleneck. In particular, our
implementation shows that our OPRF protocol is faster than a single scalar multiplication over
the Curve25519 elliptic curve. Consequently, we expect our protocol to be faster than a number
of OPRF protocols [FIPR05; JL09] that are based on number theoretic PRFs. Note that, un-
like OPRFs based on number theoretic assumptions, ours provide plausible post-quantum security.
Motivated by the latter goal, recent works [GRR+16; SHB21] construct an OPRF protocol from
the Legendre PRF [Dam88]. For 128-bit security and only a single output bit, the recent protocol
from [SHB21] has online communication cost of 13KB, substantially higher than ours (with 128
output bits), and with a higher computational cost.

Fully distributed wPRF. Unlike the OPRF setting, in which one party holds the PRF key
and another holds the input, there are settings in which both the input and the key need to be
distributed between two or more parties. In this setting, most of the techniques for efficient OPRF
protocols (including the DDH-based protocols discussed above) do not apply. One motivating
application for fully distributed wPRF, already considered in [IKLO16; BIP+18], is a distributed
implementation of searchable symmetric encryption (SSE) service. In distributed SSE, a client can

3See https://csrc.nist.gov/projects/post-quantum-cryptography/.

8

https://csrc.nist.gov/projects/post-quantum-cryptography/

obtain a decryption key of database entries matching a chosen keyword w by interacting with two
or more servers, while keeping the keyword w secret. To this end, the client secret-shares w between
the servers, who also hold shares of a wPRF key. Following interaction between the servers, the
servers reveal the wPRF output to the client. This output can be used by the client to decrypt
database entries associated with keyword w.

Secret-output wPRF. Our (2, 3)-wPRF candidate is well suited for applications that have
privately held secret-shared inputs but require a public output that is delivered in the clear to one
or more parties. However, it is insufficient for applications in which the output of the function
needs to itself be kept secret and reused as the input to a subsequent PRF invocation.

One such common application arises in the context of deterministic signatures, which consists
of generating a nonce by applying a PRF to the private key. In Schnorr and ECDSA, the nonce
and a corresponding signature are sufficient to recover the private key. Thus, the nonce must
also be distributed using the same secret-shared structure as the key. Distributed generation of
deterministic signatures is once application that has both private input (the private key) and output
(the nonce). Another example arises in the context of key derivation functions (KDFs), especially
in a hierarchical structure, where the output of the PRF may need to be used as an input (or even
a key) for another evaluation of the PRF. A related application arises in the context of Bitcoin’s
BIP-32 derivation [Pro17]. Motivated by such applications, we propose our LPN-wPRF candidate
which has both its input and output over Z2.

Distributed FSS key generation. Function secret sharing (FSS) [BGI15] is a useful tool for
a variety of cryptographic applications; see [BCG+21; BCG+20] for recent examples. In many of
these applications, two or more parties need to securely generate FSS keys, which in turn reduces
to secure evaluation of a length-doubling PRG. Our LPN-style PRG candidate serves as a good
basis for such protocols. In contrast to the black-box FSS key generation protocol of Doerner and
shelat [DS17], its computational cost only scales logarithmically with the domain size. The optimal
conjectured seed length of our PRG candidate ensures that FSS the key size is optimal as well.

1.1.5 Future directions

Our work leaves several interesting avenues for further work. One direction is designing MPC pro-
tocols with malicious security while minimizing the extra cost. Recent techniques from [BBC+19;
BGIN19] can be helpful towards this goal. Another direction is designing and analyzing other
symmetric primitives based on the alternating moduli paradigm. Relevant examples include hash
functions, strong PRFs, and block ciphers. In fact, a strong PRF candidate was already suggested
in [BIP+18], but analyzing its concrete security is left for future work.

2 Preliminaries

Notation. We start with some basic notation. For a positive integer k, [k] denotes the set
{1, . . . , k}. Zp denotes the ring of integers modulo p. We use bold uppercase letters (e.g., A,K)
to denote matrices. We use 0l and 1l to denote the all zeros and the all ones vector respectively
(of length l), and drop l when sufficiently clear. For a vector x, by x mod p, we mean that each

element in x is taken modulo p. We use x
$←− X to denote sampling uniformly at random a set X .

9

Funcs[X ,Y] denotes the set of all functions from X to Y. a ‖ b denotes concatenating the strings a
and b.

For distributed protocols with N parties, we use P = {P1, . . . ,PN} to denote the set of parties.
For a value x in group G, we use JxK to denote an additive sharing of x (in G) among the protocol

parties, and JxK(i) to denote the share of the ith party. When clear from context (e.g., a local
protocol for Pi), we will often drop the superscript. When G′ = Gl is a product group (e.g., Zlp),
for x ∈ G′, we may also say that JxK is a sharing over G, similar to the standard practice of calling
x a vector over G.

For a value v in a group G, we use ṽ to denote a random mask value sampled from the same
group, and v̂ = v+ ṽ (where + is the group operation for G) to denote v masked by ṽ. We use the +
operator quite liberally and unless specified, it denotes the group operation (e.g., component-wise
addition mod p for Zlp) for the summands.

2.1 Primitives

We briefly recall the standard definitions for the symmetric primitives we consider.

Definition 2.1 (Weak Pseudorandom Function (wPRF)). Let K = {Kλ}λ∈N, X = {Xλ}λ∈N, and
Y = {Yλ}λ∈N be ensembles of finite sets indexed by a security parameter λ. Consider an efficiently
computable function family {Fλ}λ∈N where each function is given by Fλ : Kλ × Xλ → Yλ. We
say that {Fλ}λ∈N is an (l, t, ε)-weak pseudorandom function if for infinitely many λ ∈ N and all

adversariesA running in time at most t(λ), the following holds: taking fλ
$←− Funcs[Xλ,Yλ], k

$←− Kλ,

and x1, . . . , xl
$←− Xλ, we have that,∣∣∣Pr
[
A
(

1λ, {xi,Fλ(k, xi)}i∈[l]
)]
− Pr

[
A
(

1λ, {xi, fλ(xi)}i∈[l]
)]∣∣∣ ≤ ε(λ).

Definition 2.2 (One-way Function (OWF)). Let X = {Xλ}λ∈N, and Y = {Yλ}λ∈N be ensembles
of finite sets indexed by a security parameter λ. Consider an efficiently computable function family
{Fλ}λ∈N where each function is given by Fλ : Xλ → Yλ. We say that {Fλ}λ∈N is a (t, ε)-one-way
function if for infinitely many λ ∈ N and all adversaries A running in time at most t(λ), we have
that,

Pr
[
x

$←− X ; y ← Fλ(x) : Fλ(A(1|x|, y)) = y
]
≤ ε(λ)

Definition 2.3 (Pseudorandom Generator (PRG)). Let X = {Xλ}λ∈N, and Y = {Yλ}λ∈N be
ensembles of finite sets indexed by a security parameter λ. Consider an efficiently computable
function family {Fλ}λ∈N where each function is given by Fλ : Xλ → Yλ. We say that {Fλ}λ∈N is
an (l, t, ε)-pseudorandom generator if F is length-expanding (i.e., ∀λ,∀x ∈ Xλ, |x| < |Fλ(x)|) and
for infinitely many λ ∈ N and all adversaries A running in time at most t(λ), the following holds:

taking x1, . . . , xl
$←− Xλ y1, . . . , yl

$←− Yλ, we have that,∣∣∣Pr
[
A
(

1λ, {Fλ(xi)}i∈[l]
)]
− Pr

[
A
(

1λ, {yi}i∈[l]
)]∣∣∣ ≤ ε(λ).

3 Candidate Constructions

In this section, we introduce our suite of candidate constructions for a number of cryptographic
primitives: weak pseudo-random function families (wPRF), one-way functions (OWF), and pseudo-
random generators (PRG). Our constructions are all based on alternating mod-2 and mod-3 linear

10

maps. Given the wide range of candidates we propose, we find it useful to have a clean and unified
way to describe the candidate constructions in a way that will later (in Section 5) support a unified
design of matching MPC protocols.

Circuit gates. We make use of five types of basic operations, or “gates,” which we detail below.
All our constructions can be succinctly represented using just these gates. We denote by Gates the
set comprising of these gates.

• Mod-p Public Linear Gate. For a prime p, given a public matrix A ∈ Zs×lp , the gate

LinAp (·) takes as input x ∈ Zlp and outputs y = Ax ∈ Zsp.

• Mod-p Addition Gate. For a prime p, the gate Addp(·, ·) takes input x, x′ ∈ Zlp and outputs
y = x+ x′ mod p.

• Mod-p Bilinear Gate. For a prime p, and positive integers s and l, the gate BLs,lp (·, ·) takes

as input a matrix K ∈ Zs×lp and a vector x ∈ Zlp and outputs y = Kx ∈ Zsp. When clear from
context, we will drop the superscript and simply write BLp(K, x).

• Z2 → Z3 conversion. For a positive integer l, the gate Convertl(2,3)(·) takes as input a vector

x ∈ Zl2 and returns its equivalent representation x∗ in Zl3. When clear from context, we will
drop the superscript and simply write Convert(2,3)(x).

• Z3 → Z2 conversion. For a positive integer l, the gate Convertl(3,2)(·) takes as input a vector

x ∈ Zl3 and computes its map x∗ in Zl2. For this, each Z3 element in x is computed modulo 2
to get the corresponding Z2 element in the output x∗. Specifically, each 0 and 2 are mapped
to 0 while each 1 is mapped to 1. When clear from context, we will drop the superscript and
simply write Convert(3,2)(x).

The Lin and the BL gates will behave very differently in the context of distributed protocols. For
Lin, the matrix A will be publicly available to all parties, while the input x will be secret shared.
On the other hand, for BL, both the key K and the input x will be secret shared. We call this gate
bilinear because its output is linear in both of its (secret-shared) inputs. Also note that although
the Convert(2,3) gate is effectively a no-op in a centralized evaluation, in the distributed setting, the
gate will be used to convert an additive sharing over Z2 to an additive sharing over Z3.

As described previously, for the (bi)linear maps, we focus only on constructions that use mod-2
and mod-3 maps. In Figure 1, we provide a pictorial representation for each circuit gate. We will
connect these pieces together to also provide clean visual representations for all our constructions.

The homomorphic properties of linear secret sharing directly imply that the gates Lin and
Add can be computed locally on shared inputs without any preprocessing or communication. For
the other gates, we provide protocols to evaluate them in a distributed setting (i.e., where all
inputs/outputs are secret shared) in Section 5.

Construction styles. The candidate constructions we introduce follow one of two broad styles
which we detail below. A wPRF construction for the first style was first proposed by [BIP+18].
Here, we also propose a suite of symmetric primitives (e.g., OWFs, PRGs) with the same basic
structure.

11

A

Non-compressive LinAp gate

x y

A

Compressive LinAp gate

x y

K

x

Non-compressive BLp gate

y

K

x

Compressive BLp gate

y

Convert(2,3) gate

Convert(3,2) gate

x

x′
y

Addp gate
p = 2 p = 3

Figure 1: Pictorial representations of the circuit gates. For the linear and bilinear gates, non-
compressive means that the length of the output vector is greater than or equal to the length of
the input vector, while compressive means that the output vector is smaller than the input vector.
Additionally, for p = 2, the gates are shaded in violet, and for p = 3, the gates contain diagonal
orange lines.

• (p, q)-constructions. For distinct primes p, q, the (p, q)-constructions have the following
structure: On an input x over Zp, first a linear mod p map is applied, followed by a linear
mod q map. Note that after the mod p map, the input is first reinterpreted as a vector over
Zq. For unkeyed primitives (e.g., OWF), both maps are public, while for keyed primitives
(e.g., wPRF), the key is used for the first linear map. The construction is parameterized by
positive integers n,m, t (functions of the security parameter λ) denoting the length of the
input vector (over Zp), the length of the intermediate vector, and the length of the output
vector (over Zq) respectively. The two linear maps can be represented by matrices A ∈ Zm×np

and B ∈ Zt×mq . For keyed primitives, the key K ∈ Zm×np will be used instead of A.

Concretely, given an input x ∈ Znp , the construction output is of the form y = Bw ∈ Ztq
where w = Ax is first viewed over Zq. In this paper, we will analyze this style of construction
for (p, q) = (2, 3) and (3, 2) since these are arguably the simplest constructions that employ
linear maps over alternate moduli. We find that the (2, 3)-constructions outperform the (3, 2)-
constructions and we will primarily use the former style for our constructions. We will use
(3, 2)-conversion gates in primitives where both the input and the output are shared over Z2.

• LPN-style-constructions. These constructions have the following general structure: On
input x over Z2, first a linear mod 2 map given by the matrix A is applied to obtain u.
Concurrently, the same linear map is also applied over Z3 (where both x and A are now

12

(2, 3)-constructions

Parameters. Let λ be the security parameter and define parameters n,m, t as functions of
λ such that m ≥ n,m ≥ t.
Public values. Let A ∈ Zm×n2 and B ∈ Zt×m3 be fixed public matrices chosen uniformly at
random. The matrices can also be chosen to be full-rank circulant matrices.

Construction 3.1 (Mod-2/Mod-3 wPRF Candidate [BIP+18]). The (2, 3)-wPRF candidate
is a family of functions Fλ : Zm×n2 ×Zn2 → Zt3 with key-space Kλ = Zm×n2 , input space Xλ = Zn2
and output space Yλ = Zt3. For a key K ∈ Kλ, we define FK(x) = Fλ(K, x) as follows:

1. On input x ∈ Zn2 , first compute w = BL2(K, x) = Kx.

2. Output y = LinB3
(
Convert(2,3)(w)

)
. That is, view w as a vector over Z3 and then output

y = Bw.

Construction 3.2 (Mod-2/Mod-3 OWF Candidate). The (2, 3)-OWF candidate is a function
Fλ : Zn2 → Zt3 with input space Xλ = Zn2 and output space Yλ = Zt3. We define F(x) = Fλ(x)
as follows:

1. On input x ∈ Zn2 , first compute w = LinA2 (x) = Ax.

2. Output y = LinB3
(
Convert(2,3)(w)

)
. That is, view w as a vector over Z3 and then output

y = Bw.

K

x

B y

(2, 3)-wPRF

Ax B y

(2, 3)-OWF

Figure 2: (2, 3)-constructions

reinterpreted over Z3) and then reduced modulo 2 to obtain v. The sum w = u ⊕ v is then
multiplied by a second linear map (given by B) over Z2. The map B is always public, while
for keyed primitives, the key K is used instead of A.

The construction is parameterized by positive integers n,m, t (as functions of the security
parameter λ) denoting the size of the input vector, the intermediate vector(s), and the output
vector (all over Zp). Concretely, given A ∈ Zm×n2 and a public B ∈ Zt×m2 , for an input x ∈ Zn2 ,
the construction first computes the intermediate vector:

w = [(Ax mod 2) + (Ax mod 3) mod 2] mod 2.

The output y is then computed as y = Bw mod 2. The upshot of this style is that the input
and the output are both over Z2. Intuitively, each intermediate vector bit can be thought of
as a deterministic Learning-Parity-with-Noise (LPN) instance with a noise rate of 1/3. The
noise is deterministically generated and is dependent on the input x and a specific column of
A. The noise for the ith instance will be 1 if and only if 〈Ai, x〉 = 1.

13

LPN-style-constructions

Parameters. n,m, t are functions of the security parameter λ.
Public values. Let A ∈ Zm×n2 and B ∈ Zt×m2 be fixed public matrices chosen uniformly at
random. Alternatively, the matrices can also be chosen to be full-rank circulant matrices.

Construction 3.3 (LPN-wPRF Candidate). The LPN-wPRF candidate is a family of func-
tions Fλ : Zm×n2 × Zn2 → Zt2 with key-space Kλ = Zm×n2 , input space Xλ = Zn2 and output
space Yλ = Zt2. For a key K ∈ Kλ, we define FK(x) = Fλ(K, x) as follows:

1. On input x ∈ Zn2 , first compute u = BL2(K, x) = Kx.

2. Let K∗ = Convert(2,3)(K) and x∗ = Convert(2,3)(x). Compute v =
Convert(3,2)(BL3(K

∗, x∗)) = K∗x∗ mod 2. That is, compute v = (Kx mod 3) mod 2
where both K and x are first reinterpreted over Z3.

3. Compute w = u⊕ v and output y = LinB2 (w).

Construction 3.4 (LPN-PRG Candidate). The LPN-PRG is a length-doubling PRG can-
didate defined as the function Fλ : Zn2 → Z2n

2 with input space Xλ = Zn2 and output space
Yλ = Z2n

2 . For this construction, we consider the parameters n,m, t with m ≥ n, t and t = 2n.
We define F(x) = Fλ as follows:

1. On input x ∈ Zn2 , first compute u = Lin2(A, x) = Ax.

2. Let x∗ = Convert(2,3)(x). Compute v = Convert(3,2)(Lin
A
3 (x∗)) = (Ax∗) mod 2. That is,

compute (Ax mod 3) mod 2 where both A and x are first reinterpreted over Z3.

3. Compute w = u⊕ v and output y = LinB2 (w).

K

x

K

x

LPN-wPRF

B y

Ax

x A

B y

LPN-PRG

Figure 3: LPN-style-constructions

A similar construction was considered in [BIP+18] but only for a single-bit output. Specif-
ically, they considered A ∈ Z1×n

2 and output the single bit w. In our construction, we addi-
tionally apply a compressive linear map (using B) to get the final output. This is done to
resist standard attacks on LPN (see Section 4 and Appendix A for details).

Winning candidates. Through cryptanalysis and considering the cost for each candidate (See
Sections 4 and 5 for details), we find that some of our candidates are more suited (i.e., “win”) for

14

a particular setting. For instance, we found that the (3, 2)-constructions are overshadowed by the
corresponding (2, 3)-constructions in all settings we consider. Specifically, out of the candidates we
consider, we found the following:

1. (2, 3)-wPRF is the best wPRF candidate with no restriction for input and output space.

2. LPN-wPRF is the best wPRF candidate where both the input and output are over Z2.

3. (2, 3)-OWF is the best OWF candidate with no restriction for input and output space.

4. LPN-PRG is the best PRG candidate.

We provide formal and pictorial descriptions of our winning candidates in Figures 2 and 3.

Structured keys. The constructions we described previously use general matrices in, e.g., Zm×np .
For keyed primitives, this results in a key size of mn elements of Zp which is expensive to communi-
cate within distributed protocols. Therefore, we will instead take advantage of structured matrices
whose representation is only linear in n and m. Since both n and m are O(λ) in our construc-
tions, this reduces the communication complexity from quadratic to linear in λ. Furthermore, some
structured matrices also benefit from asymptotically faster algorithms (e.g., FFT-based) for matrix
multiplications and matrix-vector products. We briefly describe the types of structured matrices
we utilize below. For this, consider a matrix M ∈ Zm×np .

• (Toeplitz matrices). A Toeplitz matrix, or a diagonal-constant matrix, is a matrix where each
diagonal from left to right is constant. Specifically, M is Toeplitz if for all i ∈ [m] and j ∈ [n],
it holds that Mi,j = Mi+1,j+1 where Mi,j denotes the element in row i and column j of M.
This means that a Toeplitz matrix can be represented by a single column and a single row,
i.e., with n+m− 1 field elements.

• (Generalized circulant matrices). A generalized circulant matrix is a matrix where each row
after the first, is a cyclic rotation of the first row. Specifically, if the first row of generalized
circulant matrix M is the vector (a1, . . . , an), then the mth row of M will be given by the
same vector cyclically rotated m− 1 times. In general, m 6= n, but the special case of m = n
is called a (square) circulant matrix. Unless specified, for brevity, we will often use the term
circulant to denote either generalized circulant matrices or the more specific (square) circulant
matrices. This will not matter for our setting, since both can be efficiently represented using
just n field elements (given the dimension of the matrix).

We will usually instantiate our constructions using generalized circulant matrices to take ad-
vantage of their efficient representations. However, care must be taken while adding structure since
this could potentially reduce the security of a construction. This is particularly relevant in case of
multi-element outputs since elements in the intermediate vectors will be correlated. For example,
in the LPN-style construction, the noise for each deterministic LPN instance will be correlated
since two columns of a circulant matrix are just cyclic rotations.

The cryptanalysis in Section 4 will therefore consider our constructions with structured matrices.
Of course, general m × n matrices can also be used for all our constructions (with at least equal
security) but this could result in substantially more communication costs. In many cases, it is also
helpful to choose the matrices to be full-rank (see Section 4 for details).

15

4 Cryptanalysis

We give a summary of cryptanalysis of our constructions, focusing on the main attacks that influence
our parameters. The details are found in Appendix A.

4.1 Summary of Security Evaluation of the (2, 3)-OWF

The attacker is given ŷ ∈ Zt3 and tries to invert it. Our most interesting attack on the (2, 3)-OWF
is based on a reduction to subset-sum. We give the full details below.

Reduction to subset-sum. For a vector w ∈ Zm2 , there is an (m−n)×m (parity check) matrix
P such that there exists x ∈ Zn2 for which Ax = w if and only if Pw = 0. Assume that ŷ is the
output of the (2, 3)-OWF on x ∈ Zn2 , and let w = Ax. Then, w satisfies the conditions Pw = 0
(over Z2) and Bw = ŷ (over Z3). We attempt to find such w by a reduction to subset-sum, as
detailed below. Suppose we find a set J ⊆ [m] such that∑

j∈J
Pej mod 2,

∑
j∈J

Bej mod 3

 = (0, ŷ),

where ei ∈ {0, 1}m is the i’th unit vector. Then, the preimage x can be computed by solving the
linear equation system Ax =

∑
j∈J ej mod 2.

Thus, we have reduced the problem to subset-sum with m binary variables (ε1, . . . , εm) ∈
{0, 1}m, where we associate εi = 1 with (Pei,Bei) ∈ Zm−n2 × Zt3, and define the target as (0, ŷ) ∈
Zm−n2 × Zt3.

We further note that the parity check matrix P defines the linear code spanned by the columns of
A. Therefore, the reduction is bi-directional, implying that inverting the (2, 3)-OWF is equivalent
to solving this special type of subset-sum problem.

Solving the subset-sum problem. We can now apply the advanced subset-sum algorithm by
Howgrave-Graham and Joux [HJ10] and the more recent ones [BCJ11; BBSS20], which are based on
the representation technique. These algorithms were mostly designed to solve subset-sum problems
over the integers. Below, we describe the main ideas of these algorithms and explain how to apply
them to the special subset-sum problem we consider.

In the subset-sum problem over the integers, we are given a list (a1, a2, . . . , am) of m positive
integers and another positive integer S such that S =

∑m
i=1 εiai for εi ∈ {0, 1}. The goal is to

recover the unknown coefficients εi.
A standard meet-in-the-middle approach for solving the problem has time complexity of about

2m/2. The representation technique gives an improved algorithm as briefly summarized below.
Assume that a solution to the subset-sum problem is chosen uniformly from {0, 1}m and the

parameters are set such that the instance has about one solution on average. Effectively, this means
that the density of the problem d = n

logmax({ai}mi=1)
is set to 1.

The main idea of the basic algorithm of Howgrave-Graham and Joux [HJ10] is to split the
problem into two parts by writing S = σ1 + σ2, where σ1 =

∑m
i=1 αiai, σ2 =

∑m
i=1 βiai and

(αi, βi) ∈ {(0, 0), (0, 1), (1, 0)}. Thus, εi = αi + βi for each i is a solution to the problem.

16

Note that each coefficient εi with value 1 can be split into (0, 1), or (1, 0). Thus, assuming that
the solution has Hamming weight4 of m/2 (which occurs with probability Ω(1/

√
m)), it has 2m/2

different representations. Consequently, we may focus on finding only one of these representations
by solving two subset-sum problems of Hamming weight m/4. Focusing on a single representation
of the solution beats the standard meet-in-the-middle approach which requires time 2m/2.

Adaptation of previous subset-sum algorithms. The algorithm of [HJ10] can be easily
adapted to our specialized subset-sum problem (although it is not defined over the integers). More-
over the improved algorithm of [BCJ11] considers additional representations of the solution by
allowing αi and βi to also take the value -1 (implying that εi = 0 can be decomposed into
(αi, βi) ∈ {(0, 0), (−1, 1), (1,−1)}). In our case, we associate αi = −1 with (P(−ei),B(−ei)) =
(Pei, 2 ·Bei) ∈ Zm−n2 ×Zt3. Finally, the recent improved algorithm of [BBSS20] considers represen-
tations over {−1, 0, 1, 2} and we can adapt this algorithm to our setting in a similar way.

In terms of complexity, ignoring polynomial factors in m, the attack of [HJ10] runs in time
20.337m and uses 20.256m memory, while the complexity of attack of [BBSS20] requires 20.283m time
and memory.

Thus, conservatively ignoring polynomial factors, for s-bit security we require 0.283m ≥ s, or
m ≥ 3.53s.

4.2 Summary of Security Evaluation of the (2, 3)-wPRF

For the (2, 3)-wPRF, the attacker obtains several samples (x1,B, y1), . . . , (x2r ,B, y2r) and tries to
mount a key recovery and/or a distinguishing attack. We restrict the number of samples produced
with a single secret to 240.

We will set the parameters such that n − log 3 · t ≥ s, and thus there are 2s keys on average
that are consistent with a single sample. Therefore, any key recovery attack faster than 2s has to
make use of at least two samples. Particularly, the subset-sum attack can also be applied to the
(2, 3)-wPRF, but it is not clear how to use it efficiently on more than one sample (without strong
relations between them).

The most important distinguishing attack looks for a bias in a linear combination of the output
over Z3. Given a single sample (x,B, y), assume there exist v ∈ Zm3 and u ∈ Zt3 such that uB = v
and the Hamming weight of v is `. As y = Bw mod 3, the attacker computes uy mod 3 = vw mod 3
and thus obtains the value of a linear combination mod 3 of ` entries of w ∈ {0, 1}m. Since w ∈ Zm2 ,
this linear combination is biased, and the strength of the bias depends on how small ` is. The bias
can be amplified using several samples. Consequently, we require that the rows of B do not span
a vector of low Hamming weight. This analysis is probabilistic and leads to a lower bound on m.

Another important attack we consider exploits the fact that K is circulant and preserves sym-
metric properties of the input x (e.g., the two halves of x are equal). This attack imposes a
lower bound on n so that such a symmetric vector is not found in the data, except with negligible
probability. We leave it as an open problem to extend this basic attack.

Overall, we set n = m = 2s and t = s/ log 3. These are somewhat aggressive parameters as
the security margin against the above attacks in rather narrow. A choice of n = m = 2.5s is more
conservative.

4In general, one may guess the Hamming weight of the solution and repeat the algorithm accordingly a polynomial
number of times.

17

4.3 Summary of Security Evaluation of the LPN-PRG

The attacker is given a single sample A,B, y and tries to mount a key recovery and/or a distin-
guishing attack.

The construction differs from the alternative weak PRF construction proposed in [BIP+18]
in two ways. The first transformation generates t = 2n samples using a public matrix. Similarly
to [BIP+18], each such sample can be viewed as an LPN sample, namely, a noisy linear equation over
Z2 in the bits of the seed (although the noise is generated deterministically). However, in [BIP+18]
A is a random matrix, whereas we use a (structured) Toeplitz matrix. This may be considered as
weakening of the construction. On the other hand, the second transformation B “compresses” the
samples and generally strengthens the construction.

A significant consideration in selecting the parameters is that the rows of B do not span a low
Hamming weight vector, imposing a lower bound on m. Thus, only dense linear combinations of
samples are available at the output, accumulating the noise. This should defeat standard attacks
against LPN.

Overall, setting n = s,m = 3s, t = 2s seems to provide sufficient resistance against the consid-
ered attacks.

4.4 Summary of Security Evaluation of the LPN-wPRF

The attacks we consider against this primitive include a union of some of the attacks considered for
the LPN-PRG and for the (2, 3)-wPRF constructions with some adjustments. Overall, we propose
to set n = m = 2s and t = s.

5 Distributed Protocols

We now describe efficient MPC protocols to compute our candidate constructions in several useful
distributed settings. This section is structured as follows. First, in Section 5.1, we provide a
technical overview for our overall protocol design. This includes secure subprotocols for each of
our circuit gates as well as a generic way to compose them to obtain fully distributed protocols in
the preprocessing model for all our constructions. Section 5.2 quantifies this approach by providing
concrete communication and preprocessing costs for distributed evaluations for our constructions.
In Section 5.3, for our (2, 3)-wPRF construction, we provide a 3-party protocol that does not
require any preprocessing and is secure against one passive corruption. In Section 5.4, we provide
two OPRF protocols for our (2, 3)-wPRF construction in the preprocessing model. Finally, in
Section 5.5 we describe efficient protocols for distributing the generation of correlated randomness
for modulus conversion gates using only standard OT correlations. All provided protocols are for
the semi-honest setting.

5.1 Technical Overview

Recall that all our constructions can be succinctly represented using a set Gates of five basic gates.
We will view each construction as a circuit over the basis Gates and follow the approach of [DNNR17;
BGI19] to securely evaluate such circuits using circuit-dependent correlated randomness.

We begin with distributed protocols to evaluate each of the five gates. Abstractly, the goal
of a gate protocol is to convert shares of the inputs to shares of the outputs (or shares of a

18

Protocol
Public
Inputs

Shared
Inputs

Shared
Correlated Randomness

Output Shares
(over base group G)

πA,p
Lin A x - y = Ax (over Zp)

πpAdd x, x′ - y = x+ x′ (over Zp)

πpBL K̂, x̂ - K̃, x̃, K̃x̃ y = Kx (over Zp)

π
(2,3)
Convert x̂ (over Z2) - r = x̃ (over Z3) x∗ = x (over Z3)

π
(3,2)
Convert x̂ (over Z3) -

u = x̃ mod 2 (over Z2)
v = (x̃+ 1 mod 3) mod 2 (over Z2)

x∗ = x mod 2 (over Z2)

Table 2: Summary of input, output, and randomness for circuit gate protocols.

masked output). To make our formalism cleaner, the gate protocols, by themselves, will involve no
communication. Instead, they can additionally take in masked versions of the inputs, and possibly
some additional correlated randomness. When composing gate protocols, whenever a masked input
is needed, the parties will exchange their local shares to publicly reveal the masked value. This
choice also prevents redoing the same communication when the masked value is already available
from earlier gate evaluations.

Protocol notation and considerations. For a protocol π, we use the notation π(a1, . . . , ak |
b1, . . . , bl) to denote that the values a1, . . . , ak are provided publicly to all parties (P1 to PN) in the
protocol, while the values b1, . . . , bl are secret shared among the parties. When Pi knows the values
(a1, . . . , ak), and has shares Jb1K(i) , . . . , JblK), we use the notation π(a1, . . . , ak | Jb1K(i) , . . . , JblK(i))
to denote that Pi runs the protocol with its local inputs.

Given public values a1, . . . , ak, it is straightforward for the protocol parties to compute a sharing
Jf(a1, . . . , ak)K for a function f (for example, P1 computes the function as its share, and all other
parties set their share to 0).

5.1.1 Distributed Computation of Circuit Gates

We provide detailed (local) protocols to compute each circuit gate in this section. The description
of inputs (including shared correlated randomness) and outputs for each gate protocol is also
summarized in Table 2. Note that the protocols work for any number of parties. Protocols for
the Lin and Add gates directly follow from the homomorphic properties of additive secret sharing,
while the protocol for the BL gate is a generalization of Beaver’s multiplication triples [Bea91] (see,
e.g., [BGI19]).

Linear gate protocol πA,p
Lin . The linear gate is the easiest to evaluate, and follows from the

standard linear homomorphism of additive secret sharing.

• Functionality: Each party is provided with the matrix A and shares of the input x (over
Zp). The goal is to compute shares of the output y = Ax.

• Preprocessing: None required.

19

• Protocol details: For the protocol πA,p
Lin (A | x), each party Pi computes its output share as

JyK(i) = A JxK(i). Note that this works because Ax =
∑

Pi∈P A JxK(i) as a direct consequence
of the linear homomorphism of additive shares.

Addition gate protocol πpAdd. The addition modulo p gate is also easy to evaluate. Given
shares of x, x′ over Zp, for the protocol each party Pi can locally compute its share of x + x′ as

JxK(i) + Jx′K(i) mod p. This directly follows from the additive homomorphism of additive shares.

Bilinear gate protocol πpBL. The bilinear gate protocol is a generalization of Beaver’s multipli-
cation triples [Bea91] that computes the multiplication of two shared inputs. For Beaver’s protocol,
to compute a sharing of ab given shares of a and b (all sharings are over a ring R), the protocol
parties are provided shares of a randomly sampled triple of the form (ã, b̃, ãb̃) in the preprocessing
stage. Beaver’s protocol first reconstructs the masked inputs â and b̂ after which local computation
is enough to produce shares of the output. For our bilinear gate protocol, we assume that all
parties are already provided with the masked inputs (to move the communication outside of the
gate protocol), along with correlated randomness similar to a multiplication triple.

• Functionality: Abstractly, the goal of the bilinear gate protocol is to compute shares of the
output y = Kx given shares of both inputs K and x. For our purpose however, the masked
inputs will have already been constructed beforehand, i.e., each party is provided with K̂ and
x̂ publicly, along with shares of correlated randomness similar to a multiplication triple (see
below).

• Preprocessing: Each party is provided shares of K̃, x̃, and K̃x̃ as correlated randomness.

• Protocol details: For the protocol πpBL(K̂, x̂ | K̃, x̃, K̃x̃), each party Pi computes its share
of ŷ as:

JŷK(i) =
r
K̂x̂

z(i)
− K̂ Jx̃K(i) −

r
K̃

z(i)
x̂+

r
K̃x̃

z(i)

Correctness. Note that this works since:∑
Pi∈P

JŷK(i) = K̂x̂− K̂x̃− K̃x̂+ K̃x̃

= (K + K̃)x− K̃(x+ x̃) + K̃x̃

= Kx

Since the output of the bilinear gate will usually feed into a conversion gate which requires the input
to be already masked, as an optimization, we can have the bilinear gate itself compute shares of the
masked output, i.e., ŷ = Kx+ ỹ. This can be done by providing the correlated randomness K̃x̃+ ỹ
instead of K̃x̃. The upshot of this optimization is that one fewer piece of correlated randomness
will be required.

20

Z2 → Z3 conversion protocol π
(2,3)
Convert.

• Functionality: Abstractly, the goal of the Z2 → Z3 conversion protocol is to convert a
sharing of x over Z2 to a sharing of the same x∗ = x, but now over Z3. For our purpose, the
parties will be provided the masked input x̂ = x⊕ x̃ (i.e., masking is over Z2) directly along
with correlated randomness that shares x̃ over Z3.

• Preprocessing: Each party is also provided with shares of the mask r = x̃ over Z3 as
correlated randomness.

• Protocol details: For the protocol π
(2,3)
Convert(x̂ | r), each party proceeds as follows:

Jx∗K(i) = Jx̂K(i) + JrK(i) + (x̂� JrK(i)) mod 3

where � denotes the Hadamard (component-wise) product modulo 3.

Correctness. To see why this works, suppose that x̂ ∈ Zl2. Consider any position j ∈ [l], and
denote by using a subscript j, the jth position in a vector. Note that now, the position j of
the output can be written as:

Jx∗K(i)j = Jx̂K(i)j + JrK(i)j + (x̂ JrK(i)j mod 3) mod 3

Consider two cases:

– If x̂j = 0, then x̃j = xj . Therefore,
∑

Pi∈P Jx∗K(i)j = 0 + x̃j = xj .

– If x̂j = 1, then xj = 1 − x̃j . Therefore,
∑

Pi∈P Jx∗K(i)j = 1 + 2x̃j mod 3. If x̃j = 0, this
evaluates to 1 = xj , while if x̃j = 1, it evaluates to 0 = 1− x̃j = xj

In other words, in all cases, each component of the sum (mod 3) of shares Jx∗K(i) is the same
as the corresponding component of x. Therefore,∑

Pi∈P
Jx∗K(i) (mod 3) = x

will hold. Therefore,
∑

Pi∈P Jx∗K(i) (mod 3) = x will hold.

Z3 → Z2 conversion protocol π
(3,2)
Convert.

• Functionality: Abstractly, the goal of the protocol is to convert a sharing of x over Z3

to a sharing of x∗ = x mod 2 over Z2. For our purpose, the parties will be provided with
the masked input x̂ = x + x̃ mod 3 directly, along with correlated randomness over Z3 (see
below).

• Preprocessing: Each party is also given shares (over Z2) of two vectors: u = x̃ mod 2 and
v = (x̃+ 1 mod 3) mod 2 as correlated randomness.

21

• Protocol details: For the protocol π
(3,2)
Convert(x̂ | u, v), each party computes its share of x∗ as

follows: For each position j ∈ [l],

Jx∗K(i)j =

1− JuK(i)j − JvK(i)j if x̂j = 0

JvK(i)j if x̂j = 1

JuK(i)j if x̂j = 2

Correctness. To see why this works, consider three cases:

– If x̂j = 0, then
∑

Pi∈P Jx∗K(i)j mod 2 = 1−uj−vj . This evaluates to 1 only when x̃j = 2,
and is exactly the case when xj is also 1.

– x̂j = 1, then
∑

Pi∈P Jx∗K(i)j mod 2 = vj = (x̃j + 1 mod 3) mod 2). This evaluates to 1
only when x̃j = 0, and is exactly the case when xj is also 1.

– x̂j = 2, then
∑

Pi∈P Jx∗K(i)j mod 2 = uj . This evaluates to 1 only when x̃j = 1, and is
exactly the case when xj is also 1.

Consequently,
∑

Pi∈P Jx∗K(i) mod 2 = x mod 2 holds.

5.1.2 Composing Gate Protocols

We now describe how to evaluate a circuit composed of the previously specified gates in a distributed
fashion. We provide details for the semi-honest fully distributed setting (with preprocessing), where
all inputs are secret shared between all parties initially. This can also be thought of as a toolbox
for constructing efficient distributed protocols for other constructions similar to ours. While the
technique will also work for other settings (e.g., OPRF, public input), the concrete communication
costs will be worse than more specially designed protocols. For these settings, we will provide more
efficient protocols than provided by this general technique.

Circuit notation. We use the convention of [BGI19] to describe circuits whose wires take values
from finite Abelian groups and whose gates come from Gates.

Definition 5.1 (Computation circuit). A computation circuit C with input space Gin =
∏

Gin
i

and output space Gout =
∏

Gout
i is a (labeled) directed acyclic graph (V, E) where V denotes the

set of vertices and E denotes the set of edges according to the following:

• Each source vertex corresponds to exactly one Gin
i and vice versa. The label for the vertex is

the identity function on the corresponding Gin
i . Each sink vertex corresponds to exactly one

Gout
i and vice versa. The label for the vertex is the identity function on the corresponding

Gout
i . Each non-source V ∈ V is labeled with a gate GV ∈ Gates that computes the function
GV : Gin

V → Gout
V . The depth of a vertex V ∈ V, denoted by depth(V) is the length of the

largest directed path from a source vertex to V .

• For an edge (Va, Vb), let Gout
Va

=
∏

Gout
Va,i

and Gin
Vb

=
∏

Gin
Vb,i

. Then, there exists indices j and

k such that Gout
Va,j

= Gin
Vb,k

. Further, for each input Gin
Vb,i

for Vb, there is some edge (Vc, Vb)
that satisfies the above.

22

• The evaluation of the gate for vertex V on input x ∈ Gin
V is defined as y = GV (x). The

evaluation of the circuit C, denoted by EvalC(x), where x ∈ Gin is the value y ∈ Gout, that is
obtained by recursively evaluating each gate function in the circuit.

Composition protocol. Consider a circuit C (Definition 5.1) with input space Gin =
∏

Gin
i .

To evaluate C with input (x1, . . . , xl) ∈ Gin, in the fully distributed setting, all parties are given
additive shares for each xi. Now, the distributed evaluation of C proceeds as follows:

• All vertices at the same depth in C are evaluated simultaneously, starting from the source
vertices that contain the inputs of the computation.

• The evaluation of a (non-source) vertex in the graph of C is done by each party running the
corresponding gate protocol locally on their share of the inputs.

• For an edge (Va, Vb), suppose that the output of Va is used as one of the inputs of Vb. If the
gate protocol corresponding to GV requires this input to be masked (e.g., the bilinear gate
protocol), then before evaluating Vb, each party first masks its share of the output. Now, all
parties simultaneously reveal their shares to publicly reveal the masked value. The masking
values are provided to the parties in the preprocessing phase. The same value also need not
be masked multiple times if it is required for multiple gates.

• The required output shares of the distributed evaluation are given by the evaluation of the
sink vertices in the circuit.

Communication cost. Since the gate protocols themselves are locally computable, the commu-
nication cost during a distributed evaluation of a circuit comes solely from the public reconstructions
of masked values required for gate protocols. For example, before feeding the output x of a LinA2
gate into a Convert(2,3) gate, in the distributed evaluation, all parties will first mask their shares
of x to obtain shares of x̂. Then, the parties will exchange messages to reconstruct the x̂ value

required for π
(2,3)
Convert.

Consider N parties taking part in the distributed evaluation. To reconstruct an l-bit value x̂
that is additively shared among the parties, one of the following can be done.

• Each party sends its share of x̂ to each other party. Now, all parties can compute x̂ locally.
This requires only 1 online round but has a communication cost of (N − 1)l bits per party.
Each party sends N − 1 messages. The simplest case for this is when n = 2, in which case,
both parties can simultaneously exchange their shares, and add the two shares locally to
reconstruct x̂. This requires 1 online round, and has a communication cost of 1 message and
l bits per party.

• All parties can send their share to a designated party, say P1, who computes x̂ and sends it
back to everyone. This requires 2 rounds and has a communication cost of (N − 1)l bits for
P1 and l bits each for other parties. Here, P1 sends N − 1 messages while all other parties
send a single message.

23

Reducing round complexity. It is also straightforward to parallelize the communication to re-
duce the number of rounds. For this, suppose that we call an edge (Va, Vb) communication-requiring
if the output of the protocol for Va needs to be masked before it is input into the protocol for Vb (in
other words, the gate protocol for Vb requires a masked input). Now, define the communication-
depth of a vertex V as the maximum number of communication-requiring edges in any path from
a source vertex to V . Now, instead of evaluating vertices with the same depth simultaneously, we
will evaluate vertices with the same communication-depth together before the next communication
round. By doing so, we can reduce the total number of rounds to the maximum communication-
depth. As our primitives are designed to have low depth, this optimization has a large impact on
performance.

Preprocessing cost. A näıve technique to compute the preprocessing required is to add the
preprocessing for each gate in the circuit as follows:

• The Lin and Add gates are computed locally and require no preprocessing.

• Each BLp gate requires a (generalized) multiplication triple which provides masks for the two
inputs and a multiplication of the two masks. Specifically, for BLp(K, x) where K ∈ Zl2×l1p

and x ∈ Zl1p , the preprocessed shares are of the form (K̃, x̃, K̃x̃). Consequently, when K is
circulant, a total of (2l1 + l2) logp bits needs to be provided as preprocessing to each party.

• Each Convert(2,3) gate requires shares of a random mask x̃ both over Z2 and Z3. In other

words, for x ∈ Zl2, it requires l + log2 3 · l bits of preprocessing per party.

• Each Convert(3,2) gate requires shares of a random mask x̃ (over Z3) as well as u = x̃ and

v = (x̃+ 1 mod 3) mod 2 (both over Z2). In other words, for x ∈ Zl3, it requires log2 3 · l+ 2l
bits of preprocessing per party.

Compressing correlated randomness. We describe several optimizations to reduce the size of
preprocessed correlated randomness. We assume here the presence of a trusted dealer to generate
this correlated randomness; see Section 5.5 for eliminating this trust. We note that some of the
optimizations, while reducing the size of preprocessing, would increase the cost of distributing the
dealer.

• (Reducing redundant preprocessing). A straightforward optimization is to not mask the same
value twice. For example, if the same value x is considered as input for both a BL gate and
a Convert gate, the same mask x̃ can be used for both.

• (Masking BL gate outputs.) The standard BL gate requires preprocessing of the form (K̃, x̃, K̃x̃).
However, if the output of the BL gate is then later input to a gate that requires a masked input
(e.g., a Convert gate or even another BL gate), the BL gate can directly mask its output by
providing K̃x̃+ ỹ instead. If this is done, the parties will compute a sharing of ŷ = Kx+ ỹ us-
ing the BL gate. This means that the parties can directly exchange their shares to reconstruct
ŷ without requiring more preprocessing to mask y.

For both the Convert2,3 and Convert(3,2) gates, if the masked version x̂ of the input x is already
known to all parties, only log2 3 · l and 2l bits respectively of preprocessing are required per
party.

24

Primitive Construction
Param.
(n,m, t)

Distributed 2PC
(with preprocessing)

Distributed
3PC

Public-Input 2PC
(with preprocessing)

Online
Comm.

Prepr.
Online
Comm.

Online
Comm.

Prepr.

wPRF
(2, 3)-wPRF (256, 256, 81) (1536, 4, 2) (2348, 662) (1430, 4, 1) (512, 2, 1) (1324, 406)
LPN-wPRF (256, 256, 128) (2860, 6, 3) (4995, 1730) (1324, 4, 2) (3160, 918)

OWF (2, 3)-OWF (128, 452, 81) (904, 2, 1) (2337, 717) (2525, 4, 1) - -

PRG LPN-PRG (128, 512, 256) (1880, 4, 2) (4334, 1227) - -

Table 3: Concrete MPC costs for our winning candidate constructions in three settings (Distributed
2PC (with preprocessing), 3PC, and Public-input 2PC) using our proposed parameters. For the
distributed 2PC and the public-input 2PC settings, we provide the total online communication (bits,
messages, rounds) and the preprocessing required in bits (without compression, with compression).
For the compressed size of the preprocessing, we do not include values that can be reused (e.g.,
PRG seeds). For the distributed 3PC setting, we provide the total online communication cost (bits,
messages, rounds) for our (2, 3)-constructions. The cost of the reusable PRG seeds is not included.

• (Compression using a PRG). Another standard technique for compressing the size of prepro-
cessing is to use a PRG. Intuitively, each party is given a different PRG seed by the trusted
dealer which they can use locally to generate their randomness. Only a single party has its
shares given by the dealer to ensure that the randomness is appropriately correlated.

Concrete costs. In Table 3, we provide the concrete costs for our protocols in different settings
for our specific parameter choices. For the distributed 2PC and public-input 2PC settings that use
preprocessing, we provide the online and preprocessing costs when using a trusted dealer. Later, in
Section 5.5, we will show how to distribute the trusted dealer as well, through efficient protocols for
generating the preprocessed correlations we require from standard OT-correlations. This combined
with fast silent OT [BCG+19a; YWL+20] makes the gap between the online cost mentioned in
Table 3 and the total cost (including distributing the dealer) quite small. As a concrete example,
the (amortized) total communication for the (2,3)-wPRF in the distributed 2PC setting is only
23% higher than the online cost when a trusted dealer is used.

5.2 Distributed Evaluation in the Preprocessing Model

Equipped with our technical overview, we now move to constructing distributed protocols (with
preprocessing) for our candidate constructions. By distributed evaluation, we mean that all inputs
are secret shared between all parties and the protocol provides parties with a sharing of the output.
As a concrete example, we provide the complete details of a 2-party distributed evaluation protocol
for our (2, 3)-wPRF candidate.

5.2.1 2-Party Protocol for (2, 3)-wPRF

We detail a 2-party semi-honest protocol for evaluating the (2, 3)-wPRF candidate (Construc-
tion 3.1). In this setting, two parties, denoted by P1 and P2 hold additive shares of a key K ∈ Zm×n2 ,
and an input x ∈ Zn2 . The goal is to compute an additive sharing of the wPRF output y = LinB3 (Kx)
where B ∈ Zt×m3 is a publicly known matrix.

25

Preprocessing. Our protocol requires preprocessed randomness as follows. A dealer randomly
samples masks K̃ and x̃ for K and x respectively. It also randomly samples w̃ ∈ Zm2 as mask for
the intermediate output. Let r ∈ Zm3 ; r = w̃ (viewed over Z3). The dealer creates additive sharings

for K̃, x̃, K̃x̃, w̃, and r. Each Pi∈{1,2} is now provided
r
K̃

z(i)
, Jx̃K(i) ,

r
K̃x̃

z(i)
, Jw̃K(i), and JrK(i) as

preprocessing.

Protocol details. The distributed protocol proceeds as follows:

• Each party Pi computes masks their key and input shares as

r
K̂

z(i)
= JKK(i) +

r
K̃

z(i)

Jx̂K(i) = JxK(i) + Jx̃K(i)

using its given randomness. The shares are then exchanged simultaneously by both parties
to reconstruct K̂ and x̂.

• Each party Pi now locally runs π2
BL

(
K̂, x̂ |

r
K̃

z(i)
, Jx̃K(i) ,

r
K̃x̃

z(i)
)

and adds to it its share of

w̃ to obtain its share (over Z2) of ŵ = Kx+w̃. The shares are then exchanged simultaneously
by both parties to reconstruct ŵ.

• Each party Pi now locally runs π
(2,3)
Convert(ŵ | JrK

(i)) to obtain its shares of w∗ = w (over Z3).

• Finally, each party Pi obtains its share of the final output y (over Z3) by running πB,3
Lin (B |

Jw∗K(i)).

Cost analysis. The distributed protocol takes 2 communication rounds in total, with both parties
sending a message in each round. When K is a circulant matrix (i.e., it can be represented by n
bits), each party communicates 2n bits in the first round and m bits in the second round.

As preprocessing, each party also receives shares of K̃, x̃, K̃x̃, w̃ (over Z2) and r̃ = w̃ (over Z3).
This can also be optimized by providing shares of K̃x̃ + w̃ for the BL gate directly. In total, if
circulant keys are used, the preprocessing cost per party is 2n+m+ log2 3 ·m bits.

Furthermore, if each party is given a PRG seed, then they can use the PRG to compute their
shares of K̃ and x̃. In this case, the dealer only needs to provide P1 with its shares for K̃x̃ + w̃
and r. P2 can compute its shares for those values using its PRG seed and the dealer can use its
knowledge of P2’s seed to appropriately set the shares for P1. Consequently, across both parties,
only m + log2 3 ·m bits of preprocessing is required apart from the PRG seeds. Short λ-bit seeds
can be provided to each party beforehand and reused for multiple evaluations.

5.2.2 Public-Input Setting

It is also straightforward to use the same generic technique to construct distributed protocols in the
public-input setting. For keyed primitives, in public-input setting, the key is secret shared between
the parties but the input is publicly known. The goal of the protocol is for the parties to compute
shares of the output.

26

One useful optimization is that in the public-input setting, a BL gate where the input is known,
essentially reduces to a linear gate where the key K is secret shared and the input x is publicly
known.

2PC public-input protocol for (2, 3)-wPRF. Concretely, for the evaluation of (2, 3)-wPRF in
the public-input setting, the first round from the distributed protocol can be entirely skipped. The
two parties can directly compute shares of w = Kx =

∑
i∈{1,2} JKK(i) x locally. This also means

that the preprocessing previously required for the BL gate that computed Kx is no longer necessary.

The rest of the evaluation can now proceed as before with both parties first using π
(2,3)
Convert to retrieve

shares of w over Z3, and then using πB,3
Lin to compute shares of the final output y.

In total, the evaluation takes a single round and a communication of m bits per party (to

reconstruct ŵ). The only preprocessing required is for the π
(2,3)
Convert gate, for which each party

will be given m + log2 3 · m bits. Furthermore, with PRG compression, P2 will require no extra
preprocessing and P1 can be given only log2 3 ·m bits.

5.3 3-Party Distributed Evaluation

In this section, we provide a 3-party (semi-honest) protocol for computing the (2, 3)-wPRF candi-
date that is secure against one passive corruption and does not require any preprocessing.

Functionality. Denote the servers by P1,P2, and P3. We assume that the servers hold replicated
additive shares of the key K and the input x. The key is assumed to be circulant and can be
represented by k ∈ Zn2 . Concretely, let (k1, k2, k3) and (x1, x2, x3) be additive shares of k and x
respectively. Then, each party Pi is given kj , xj with j 6= i. At the end of the protocol, P2 and P3

should hold y2 and y3 respectively such that (y2, y3) is a sharing of the wPRF output y.

Protocol details.

• First, the three servers compute additive shares of the linear mapping Kx locally using
their replicated shares. Note that this can be locally since for two secret shared values
a = a1 + a2 + a3 and b = b1 + b2 + b3, their product can be computed as ab =

∑
1≤j,k≤3 ajbk.

Since each party holds two shares of a, b in a replicated sharing scheme, each term ajbk can

be computed by at least 1 party. Suppose that the share of Pi is denoted by JKxK(i).

• Now, P1 samples w̃
$←− Zm2 , r2 ← Zm3 , and sets r3 = w̃ − r2 mod 3. In other words (r2, r3) is

a random Z3 sharing of r = w̃. P1 sends JKxK(1) + w̃ and ri to Pi∈{2,3}. At the same time,
P2 and P3 exchange their shares of Kx. All of this can be done in one round.

• At this point, P2 and P3 can both compute ŵ = w̃+
∑

1≤i≤3 JKxK(i). Now, for i ∈ {2, 3}, Pi

can locally compute w∗i ← π
(2,3)
Convert(ŵ | ri). Finally, Pi can locally compute its share yi of the

output by running πB,3
Lin (B | w∗i).

Cost analysis. The protocol requires only 1 round, with two messages sent by P1 and one message
each sent by P2 and P3. P1 sends a total of 2m+ 2 log2(3) ·m bits while the other two parties send

27

m bits each. P1 can also generate a reusable PRG seed and provide it to one of the parties which
saves log2(3) ·m bits of communication.

5.4 Oblivious PRF Evaluation in the Preprocessing Model

Our distributed evaluation protocols from Section 5.2 can be used directly for semi-honest oblivious
PRF, or OPRF, evaluation in the preprocessing model. Recall that in the OPRF setting, one party
P1 (called the “server”) holds the key K and the other party P2 (called the “client”) holds the
input x. The goal of the protocol is to have the client learn the output of the PRF for key K and
input x, while the server learns nothing. In the semi-honest setting, both parties can first use the
distributed protocol to obtain shares of the PRF output. The server can then send its share to the
client so that only the client learns the final output. Such an OPRF protocol would require one extra
round over the corresponding distributed PRF protocol. We can however construct much better
protocols whose efficiency rivals that of existing DDH-based OPRF protocols. Here, we provide
two concrete efficient protocols for evaluating the (2, 3)-wPRF candidate (Construction 3.1) in the
OPRF setting.

General structure. Both protocols take 3 rounds and involve 2 messages from the server to
the client and 1 message from the client to the server. The first server message however, is only
required when the key needs to be changed (or re-masked). We call this the key-update phase.
Now, when the masked key is already known, our protocols are optimal in the sense that they
require only a single message from the client followed by a single message from the server. Since
OPRF applications usually involve reusing the same key for many PRF invocations, in such a multi-
input setting, our protocols are comparable to other 2-round OPRF protocols in literature (e.g.,

DDH-based). We detail the two protocols, πoprf
1 and πoprf

2 , in Sections 5.4.1 and 5.4.2 respectively.

Cost comparison. In Section 5.4.3, we compare our OPRF protocols to other common construc-
tions in the literature. Later, in Section 7 (specifically Table 8), we also report on our protocol
implementations and compare their performance (both computation and communication) with re-
lated work. To foreshadow, a key observation is that in comparison to common OPRF protocols,
our protocols are much faster to compute but require preprocessing as well as slightly more com-
munication. Similar to our distributed protocols, it is also possible to distribute the trusted dealer
at a reasonable cost. Depending on how frequently the key is changed, the total online communica-
tion (i.e., including the cost to generate the preprocessing), is 30%-39% higher than the online cost
when processing is already done by a trusted dealer. This is still quite competitive with DDH-based
OPRFs, especially since our constructions are substantially better for computation, which typically
dominates the overall cost in real-world settings (see Section 7 for details).

5.4.1 Oblivious PRF Protocol πoprf
1

Our first OPRF protocol is in spirit similar to the distributed evaluation for the (2, 3)-wPRF
construction. Since K is known to the server, and x is known to the client, both parties do not
need to exchange their shares to reconstruct the masked values K̂ and x̂; the party that holds a
value can mask it locally and send it to the other party. This allows us to decouple the server’s

28

message that masks its PRF key from the rest of the evaluation. To update the key, the server can
simply send K̂ = K + K̃ to the client. Many PRF evaluations can now be done using the same K̂.

Preprocessing. The protocol requires the following preprocessed randomness. The mask K̃ is
given to the server only when the key-update phase needs to be run. For PRF evaluations, the

trusted dealer samples w̃
$←− Zm2 and provides the server and client Z2 shares of w̃ along with Z3

shares of r = w̃. Additionally, the dealer also generates an OLE correlation pair (K̃, ṽ) and (x̃, v̂)

such that K̃ ∈ Zm×n2 is a random circulant matrix that is same for all correlations, ṽ
$←− Zm2 ,

x̃
$←− Zn2 , and v̂ = K̃x̃+ ṽ. The server is given (K̃, ṽ) while the client is given (x̃, v̂). Note that we

simply use OLE correlations and do not make use of an actual OLE protocol. In practice, if the
key-update phase is run after every k evaluations (where k is known), the OLE correlations for all
evaluations can be preprocessed at the beginning.

Protocol details. Assuming that the masked key K̂ is known to the client, for an input x, the
evaluation protocol now proceeds as follows:

• The client computes x̂ = x+ x̃ and JŵK(2) = −K̂x̃+ v̂ + Jw̃K(2) and sends both x̂ and JŵK(2)

to the server.

• The server first computes JŵK(1) = Kx̂ − ṽ + Jw̃K(1), and adds to it the client’s share to

reconstruct ŵ. Identical to the distributed protocol, the server now runs π
(2,3)
Convert followed by

πB,3
Lin to obtain its share JyK(1) of the PRF output. Finally, it sends both ŵ and JyK(1) to the

client.

• The client also runs π
(2,3)
Convert followed by πB,3

Lin to obtain its share JyK(2) of the PRF output.
It can now use the server’s share to reconstruct the PRF output y.

For evaluating a client input, πoprf
1 takes 2 rounds and involves a single message in each direction.

The client sends 2n bits while the server sends m bits and t Z3 elements. For our parameters
(n = m = 256, t = 81), and with proper Z3 packing, this amounts to roughly 897 bits of online
communication. To update K̃, the server sends a 256-bit message to the client.

5.4.2 Oblivious PRF Protocol πoprf
2

For the second protocol, the server masks the PRF in a different way; a multiplicative mask is used
instead of an additive one. For simplicity, suppose that n = m and that the key K is a random
full-rank circulant matrix. Then to mask K, the server computes K̄ = RK using a random matrix
R that is also full-rank and circulant. R will be provided as preprocessing to the server, and can be
reused for multiple PRF evaluations. The server will send K̄ to the client in the key-update phase.
Note that since the product of two circulant matrices is also circulant, this message is only n bits.
Additionally, since the product RK is essentially a convolution, it can be efficiently computed in
Θ(n log n) asymptotic runtime using the fast Fourier transform (FFT) algorithm.

Preprocessing. The protocol requires the following preprocessed randomness. The mask R is
given to the server only when the key-update phase needs to be run. For PRF evaluations, similar

29

to first protocol, the dealer samples w
$←− Zm2 and provides the server and client Z2 shares of w̃ along

with Z3 shares of r = w̃. Additionally, the dealer gives ũ
$←− Zm2 to the client and ṽ = R−1ũ+ w̃ to

the server.

Protocol details. Now, assuming that the masked key K̄ is known to the client, for an input x,
the evaluation protocol now proceeds as follows:

• The client computes û = K̄x+ ũ and sends it to the server.

• The server first computes R−1û+ ṽ = R−1(RKx+ ũ) + (R−1ũ+ w̃) = ŵ mod 2. Identical

to the distributed protocol, the server now runs π
(2,3)
Convert followed by πB,3

Lin to obtain its share

JyK(1) of the PRF output. Finally, it sends both ŵ and JyK(1) to the client.

• The client also runs π
(2,3)
Convert followed by πB,3

Lin to obtain its share JyK(2) of the PRF output.
It can now use the server’s share to reconstruct the PRF output y.

For evaluating a client input, πoprf
2 also takes 2 rounds and involves a single message in each

direction. The client sends n bits while the server sends m bits and t Z3 elements. This is n
fewer bits of communication as compared to the first protocol. The key-update phase is slower
however, since it involves a convolution rather than a simple vector addition. For our parameters
(n = m = 256, t = 81), and with proper Z3 packing, this amounts to roughly 641 bits of online
communication. To update K̄, the server sends a 256-bit message to the client.

5.4.3 Comparison

Here, we compare the concrete efficiency of our protocols with other protocols in literature.

DDH-based OPRFs. A simple and widely used OPRF is based on the Decision Diffie-Hellman
(DDH) assumption. Abstractly, given a cyclic group G of prime order q, consider a PRF F defined
as follows: For key k ∈ K and input x ∈ X , define F(k, x) = H(x)k where H : X → G is a hash
function modeled as a random oracle. F is a secure PRF under the DDH assumption in the random
oracle model [NPR99].

The PRF F leads to a natural 2-party (semi-honest) protocol for oblivious evaluation. Con-
cretely, suppose that the client holds x and the server holds k. To evaluate the PRF obliviously,

the client initiates the interaction by first sampling a mask r
$←− Zq and then sending a← H(x)r to

the server. The server responds with b← ak. Finally, the client can retrieve the PRF computation
as y ← br

−1
where r−1 is the multiplicative inverse of r in Zq. Security of this OPRF protocol has

been shown in [JKK14; JKKX16], assuming the one-more discrete-log assumption [BNPS03] (and
in the random oracle model).

We instantiate a DDH-based OPRF over the Curve25519 elliptic curve and compare its efficiency
to our OPRF constructions. The key takeaway we found was that for both our constructions,
the total computation time is smaller than the time it takes for a single elliptic curve scalar
multiplication. One caveat is that our protocols require preprocessing, as well as slightly higher
communication. However, we show that for reasonable network speeds, the overall cost of our
protocol is still smaller. We provide more details of this comparison as part of our evaluation in
Section 7.2.

30

Other OPRFs. Many prior OPRF constructions [FIPR05; JL09] require expensive exponentia-
tions because they are based on algebraic PRFs. This means that we can expect similar performance
tradeoffs for our protocols when compared to them (i.e., much faster computation, slightly more
communication). [KKRT16] provides an efficient batched-OPRF protocol based on OT extension
in the preprocessing. While we did not perform with the same setup, based on their performance
results, we found that our protocol is substantially more efficient for a single (or a small number
of) evaluation, but becomes more comparable in performance as the batch-size increases which
is unsurprising considering our protocols are not optimized for the batched evaluation. Recent
work [SHB21] constructs an OPRF protocol from the Legendre PRF [Dam88]. For 128-bit security,
their protocol has a communication cost of ≈ 13KB which is substantially higher than ours.

5.5 Distributing the Trusted Dealer

While our distributed protocols are primarily built for use in the preprocessing model, in this section
we will also show how to generate the preprocessing we require efficiently and without a trusted
dealer. We will focus on the 2-party setting specifically. Three of our gate protocols, namely πBL,

π
(2,3)
Convert, and π

(3,2)
Convert, require correlated randomness as preprocessing. In this section, we will show

how to efficiently generate the randomness they require.

5.5.1 Bilinear correlations

To compute a secure multiplication Kx where K and x are both secret shared, our bilinear gate pro-

tocol requires preprocessed shares of the form (
r
K̃

z
, Jx̃K ,

r
K̃x̃

z
). These triples can be compressed

using variants of existing PCGs for VOLE / OLE as shown by recent work [BCG+19a; BCG+20].
Using these techniques, n correlations can be generated with � n bits of communication.

5.5.2 (2, 3)-correlations from OT correlations

We provide a new technique to generate the correlations needed for the π
(2,3)
Convert protocol. The key

technique we use is to convert OT correlations to the types of correlations our protocols require.
Since prior work [BCG+19a; YWL+20] has shown how to efficiently create OT-correlations, this
implies that the correlations required for our protocols can also be efficiently generated. We start
by recalling OT correlations in the 2-party setting.

1-out-of-2 OT correlation over Z3. An OT correlation over Z3 has the following form: P1

holds (z0, z1) and P2 holds (c, zc) where z0, z1
$←− Z3, c ∈ Z2 and zc = z0 if c = 0 and zc = z1 if

c = 1. We refer to ((z0, z1), (c, zc)) as an OT correlation pair.

Conversion technique. Recall that for the Z2 → Z3 conversion protocol π
(2,3)
Convert, as preprocess-

ing, a dealer provides the parties with shares of a bit-vector both over Z2 and Z3. For simplicity,
we first consider the correlated randomness for a single element. To convert the sharing for a single
bit, the dealer provides the following correlated randomness to the parties: P1 is given (w1, r1) and
P2 is given (w2, r2) such that w1, w2 ∈ Z2; r1, r2 ∈ Z3 and (w1 + w2) mod 2 = (r1 + r2) mod 3. We
refer to ((w1, r1), (w2, r2)) as a (2, 3)-correlation pair.

31

We now show, in Protocol 5.2, how to convert an OT-correlation into a (2, 3)-correlation.
Suppose for now that we have the ability to “throw” away OT-correlations where z0 = z1. We
will get rid of this assumption later by communicating a single message from P1 to P2 which will
intuitively detail which OT correlations to discard.

Protocol 5.2. Given a (1-out-of-2) OT correlation ((z0, z1), (c, zc)) over Z3 where z0 6= z1, to
generate a (2, 3)-correlation, the parties proceed as follows:

• P1 computes

(w1, r1) =

{
(0, z0) if z1 = z0 − 1 mod 3

(1, z1) if z0 = z1 − 1 mod 3

• P2 computes (w2, r2) = (c,−zc mod 3).

Lemma 5.3. Protocol 5.2 securely generates a random (2, 3)-correlation.

Proof. It is easy to see that the secret w = w1 + w2 mod 2 is hidden. Regardless of what w2 = c
is, w1 could be either 0 or 1 with equal probability. It is also straightforward to verify that the
generated (2, 3)-correlation is random by iterating through all the possible cases.

This means that an OT correlation can locally be converted to a (2, 3)-correlation when z0 6= z1.
Since P1 knows these values, it still needs to communicate to P2 whether to use a given correlation or
not. For this, P1 sends a single message which describes the set of instances to consider. Specifically,
for a sequence of k OT-correlations, P1 can send a k bit message where each bit signals whether to
use the corresponding correlations.

Therefore, to the obtain l single-element (2, 3) correlations necessary for an x ∈ Zl2, on expecta-
tion, 1.5l OT correlations will be required. Näıvely, this would require a 1.5l length message from
P1 to P2. This can be easily compressed however, using the binary entropy function Hb(p) which
computes the entropy of a Bernoulli process with probability p. Specifically, since we expect to
throw away p = 1/3 fraction of the OT correlations, the message from P1 to P2 can be compressed
to only 1.5l ·Hb(1/3) ≈ 1.377l bits. Consequently, on expectation, a single (2, 3) correlation can be
generated using just 1.377 bits of communication.

As another upshot, this means that the required (2, 3) correlations can be generated on the
fly even during the online phase. For example, in the (2, 3)-wPRF protocol, the (2, 3) correlations
required can be generated along with the first round of the online protocol without needing them
to be given earlier as preprocessing. Note that the number of communication rounds still stays the
same.

5.5.3 (3, 2)-correlations from OT correlations

We now show, in Protocol 5.4, how to convert OT-correlations to the correlations we require for

the π
(3,2)
Convert protocol. For this, we will need 1-out-of-3 OT correlations for 2-bit strings. Formally,

in such a correlation, P1 receives (z0, z1, z2) where each zj is a 2-bit string, while P2 receives (c, zc)
where c ∈ Z3 and zc is the corresponding zj indexed by j = c. As before, these OT correlations
can also be efficiently generated and compressed using existing work [BCG+19a; YWL+20].

32

Now, to convert a single Z2 element to Z3, our protocol requires the following correlated ran-
domness: Pi is given (x̃i, ui, vi) where x̃i ∈ Z3, ui, vi ∈ Z2 such that the following holds. De-
fine x̃ = x̃1 + x̃ mod 3, u = u1 + u2 mod 2, and v = v1 + v2 mod 2. Then, u = x̃ mod 2 and
v = (x̃+ 1 mod 3) mod 2. We call this sharing between the two protocol parties a (3, 2)-correlation
pair.

Protocol 5.4. Given a (1-out-of-3) OT-correlation ((z0, z1, z2), (c, zc)) for 2-bit strings, to generate
a (3, 2)-correlation from this, the parties proceed as follows:

• First, P1 samples its shares randomly as x̃1
$←− Z3, u1, v1

$←− Z2.

• Now, for each j ∈ Z3, P1 sets the 2-bit string sj as follows. Let w = x̃i + j mod 3. Then,
sj = (u1 ‖ ¬v1) if w = 0; sj = (¬u1 ‖ v1) if w = 1; sj = (u1 ‖ v1) if w = 2. Intuitively, P1

sets the OT tuple to be what P2’s share would be if it chose that particular index in an OT
protocol.

• P1 masks the sj and sends them to P2. Specifically, P1 sends rj ← sj + zj (where each bit is
added modulo 2) for each j ∈ Z3.

• P2 sets x̃2 ← c, and u2 ‖ v2 ← rc (i.e., the corresponding 2-bit string rc sent by P1 is parsed
into u2 and v2)

• Finally, for the (3, 2)-correlation, Pi takes its share as (x̃i, ui, vi)

This is less efficient than our protocol to generate a (2, 3) correlation and takes 6 bits of com-
munication per instance. Note that the communication is still unidirectional as only P1 sends a
message. Consequently, the (3, 2) correlations can also be generated on the fly given OT correlations
as part of the first protocol round.

Lemma 5.5. Protocol 5.4 securely generates a random (3, 2)-correlation.

Proof. Since P1 generates x̃1, u1, v1 randomly, [s0, s1, s2] + [(u1 ‖ v1), (u1 ‖ v1), (u1 ‖ v1)] is a
random cyclic rotation of [“01”, “10”, “00”] where the shift depends on x̃1. Now, since P1 masks
the sj , its message to P2 simulates an OT protocol given an OT correlation. Consequently, the
security of the OT protocol will directly imply that the message from P1 to P2 hides x̃1. The proof
that the generated correlation is random is also straightforward by iterating through all possible
cases.

6 Application: Signatures with the (2, 3)-OWF

Here we describe a signature scheme using the (2, 3)-OWF. Our presentation is tailored to the
(2, 3)-OWF, but we note that this approach is general. All of the candidate primitives in this paper
would be a suitable choice of F (note that they are all OWFs when the input is chosen at random)
and we evaluated them all before settling on (2, 3)-OWF, which gives the shortest signatures.

Abstractly, a signature scheme can be built from any one-way function F that has an MPC
protocol to evaluate it, by setting the public key to y = F(x) for a random secret x, and then
proving knowledge of x, using a proof system based on the MPC-in-the-head paradigm [IKOS07].
To make the proof non-interactive, typically these schemes use the Fiat-Shamir transform, and

33

OWF Params KKW params
Sig. size (KB)

(n,m, t) (N,M, τ)

(128, 453, 81) (16, 150, 51) 13.30
(16, 168, 45) 12.48
(16, 250, 36) 11.54

Picnic3-L1 (16, 250, 36) 12.60

(128, 453, 81) (64, 151, 45) 13.59
(64, 209, 34) 11.70
(64, 343, 27) 10.66

Picnic2-L1 (64, 343, 27) 12.36

OWF Params KKW params
Sig. size (KB)

(n,m, t) (N,M, τ)

(256, 906, 162) (16, 324, 92) 50.19
(16, 400, 79) 47.08
(16, 604, 68) 45.82

Picnic3-L5 (16, 604, 68) 48.72

(256, 906, 162) (64, 322, 82) 51.23
(64, 518, 60) 44.04
(64, 604, 57) 43.45

Picnic2-L5 (64, 604, 58) 46.18

Table 4: Signature size estimates for Picnic using (2, 3)-OWF, compared to Picnic using LowMC.
The left table shows security level L1 (128 bits) with N = 16 and N = 64 parties, and the right
table shows level L5 (256 bits).

the message to be signed is bound to the proof by including it in the hash when computing the
challenge. In addition to assuming the OWF is secure, the only other assumption required is a
secure hash function. As no additional number-theoretic assumptions are required, these types of
signatures are often proposed as secure post-quantum schemes.

Concretely, our design follows the Picnic signature scheme [CDG+17], specifically the variant
instantiated with the KKW proof system [KKW18] (named Picnic2 and Picnic3). We chose to use
the KKW, rather than ZKB++ proof system since our MPC protocol to evaluate the (2, 3)-OWF
is most efficient with a pre-processing phase, and KKW generally produces shorter signatures.
We replace the LowMC block cipher [ARS+15] in Picnic with the (2, 3)-OWF, and make the
corresponding changes to the MPC protocol.

This is the first signature scheme based on the hardness of inverting the (2, 3)-OWF (or similar
function), a function with a simple mathematical description, making it an accessible target for
cryptanalysis, especially when compared to block ciphers. Arguably, the simplicity of the OWF can
lead to simpler implementations: the MPC protocol is simpler, and no large precomputed constants
are required.

Our presentation is somewhat brief here, as many details are identical to Picnic, and the (2, 3)-
OWF MPC has been described in Section 5. Appendix C includes additional details.

Parameters. Let κ be a security parameter. The (2, 3)-OWF parameters are denoted (n,m, t).
The KKW parameters (N,M, τ) denote the number of parties N , the total number of MPC in-
stances M , and the number τ of MPC instances where the verifier checks the online phase of
simulation. The scheme also requires a cryptographic hash function.

Key generation. The signer chooses a random x ∈ Zn2 as secret key, and a random seed s ∈
{0, 1}κ such that s expands to matrices A ∈ Zm×n2 and B ∈ Zm×t3 that are full rank (using a suitable
cryptographic function, such as the SHAKE extendable output function [KCP16]). Compute y =
F(x) and set (y, s) as the public key. Recall that the (2, 3)-OWF is defined as y = F(x) where
x ∈ Zn2 and y ∈ Zt3, and is computed as y = B(Ax) where Ax is first cast to Z3. We use unique
A and B per signer in order to avoid multi-target attacks against F. We specify the scheme using
random matrices, however, it could also be instantiated with circulant matrices, which may improve

34

the performance of sign and verify operations.

MPC protocol. By combining the protocols for the gates π3
Add, πA,2

Lin , πB,3
Lin , and π

(2,3)
Convert de-

scribed in Section 5 we have an N -party protocol for the (2, 3)-OWF. The most challenging and
costly step (in terms of communication) is the conversion gate, all other operations are done locally
by the parties. In Appendix C, we describe this protocol in full detail.

Sign and verify. The signature generation and verification algorithms for the (2, 3)-OWF signa-
ture scheme are given in Fig. 4 (of Appendix C). Here we give an overview. The prover simulates
the preprocessing and online phase for all M MPC instances, and commits to the preprocessing
values, and MPC inputs and outputs. Then she is challenged to open τ of the M MPC instances.
The verifier will check the simulation of the online phase for these instances, by re-computing all
values as the prover did for N − 1 of the parties, and for remaining unopened party, the prover will
provide the missing broadcast messages and commitments so that the verifier may complete the
simulation and recompute all commitments. For the M − τ instances not chosen by the challenge,
the verifier will check the preprocessing phase only, by recomputing the preprocessing phase as the
prover did.

Parameter selection and signature size. In Appendix C, we give the formula for estimating
signature size. The impact of OWF choice is limited to one term, which is the sum of the sizes of
the MPC inputs, broadcast messages, and auxiliary values produced by preprocessing. Selecting
the KKW parameters (M,N, τ) once the MPC costs are known follows the approach in Picnic: a
range of options are possible, and we try to select parameters that balance speed (mostly dependent
on the number of MPC executions and number of parties) and size. Since the MPC costs of the
(2, 3)-OWF are very close to those of LowMC, the options follow a similar curve.

Table 4 gives some options with N = 16, 64 parties, providing 128 and 256 bits of security.
For each category, we highlight the row of (2, 3)-OWF parameters that are a direct comparison to
Picnic. Signatures using the (2, 3)-OWF are slightly shorter (five to fifteen percent) than Picnic
using LowMC.

7 Implementation and Evaluation

We implemented our 2-party protocols to compute the (2, 3)-wPRF candidate (Construction 3.1)
both in the distributed setting (Section 5.2.1), and the oblivious evaluation setting (Sections 5.4.1
and 5.4.2). Our implementations are in C++. For the (2, 3)-wPRF construction, we used the
parameters n = m = 256 and t = 81. The implemented 23-constructions use a Toeplitz matrix
in Z256×256

2 as the key, take as input a vector in Z256
2 and output a vector in Z81

3 . The correlated
randomness was implemented as if provided by a trusted third party. See Section 5.5 for concretely
efficient protocols for securely generating the correlated randomness, which we did not implement
but give efficiency estimates based on prior works.

7.1 Optimizations

We start with a centralized implementation of the 23-wPRF. We find optimizations that provide
a roughly 25x better performance over a näıve implementation. We use three major optimizations

35

in our implementation. First, we use bit packing for Z2 vectors through which we can pack several
elements in a machine word and operate on them together in an SIMD manner. Second, we use
bit slicing for Z3 vectors by representing them as a pair of Z2 vectors. All operations on the Z3

vectors can now be translated to operations on the Z2 vectors. Finally, we use a lookup table
optimization for the final Z3 linear mapping (i.e., multiplication by B). For this, we split the
256-column matrix B into 16 pieces with 16 columns each and store multiplications with all Z16

3

vectors for each piece. The size for each piece was decided as a tradeoff between the lookup table
size and the computational efficiency. We provide details below.

Bit packing for Z2 vectors. Instead of representing each element in a Z2 vector separately,
we pack several elements into a machine word and operate on them together in an SIMD manner.
For our architecture with 64-bit machine words, we can pack a vector in Z256

2 (e.g., the input x)
into 4 words. Since the key K is circulant and can be represented with n = 256 bits, it can also
be represented by 4 words. This results in a theoretical ×64 maximum speedup in run-time for
operations involving K and x.

Bit slicing for Z3 vectors. We represent each element in Z3 using the two bits from its binary
representation. For z ∈ Z3, the two bits are the least significant bit (LSB) lz = z mod 2, and
the most significant bit (MSB) hz which is 1 if z = 2 and 0 otherwise. Z3 vectors are now
also represented by two binary vectors, one containing the MSBs, and one containing the LSBs.
Operations involving a Z3 vector are translated to operations on these binary vectors instead.
We also take advantage of the bit packing optimization when operating on the binary vectors.
In Table 5, we specify how we perform common operations on Z3 elements using our bit slicing
approach.

Operation Result MSB Result LSB

z1 + z2 mod 3 (l1 ∨ l2)⊕ (l1 ∨ h2)⊕ (l2 ∨ h1) (h1 ∨ h2)⊕ (l1 ∨ h2)⊕ (l2 ∨ h1)
−z1 mod 3 l1 h1
z1z2 mod 3 (l1 ∧ l2)⊕ (h1 ∧ h2) (l1 ∧ h2)⊕ (h1 ∧ l2)

MUX(s; z1, z2) (h2 ∧ s) ∨ (h1 ∧ ¬s) (l2 ∧ s) ∨ (l1 ∧ ¬s)

Table 5: Operations in Z3. z1 and z2 are elements in Z3 with (MSB, LSB) = (h1, l1) and (h2, l2)
respectively. For a bit s, the operation MUX(s; z1, z2) outputs z1 when s = 0 and z2 when s = 1.

Lookup table for matrix multiplication. Recall that the (2, 3)-wPRF evaluation contains a
mod-3 linear map using a public matrix B ∈ Z81×256

3 . Specifically, it computes the matrix-vector
product Bw where w ∈ Z256

3 . Since B is known prior to evaluation, we can use a lookup table to
speedup the multiplication by B[ADKF70]. The same preprocessing can also by reused for multiple
evaluations of the wPRF.

For this, we partition B, which has m = 256 columns, into 16 slices of 16 columns each. These
matrices, denoted by B1, . . . ,B16, are all in Z81×16

3 . Now, for each Bi, we will effectively build a
lookup table for its multiplication with any Z3 vector of length 16. A point to note here is that since
we represent Z3 vectors by two binary vectors (from the bit slicing optimization), it is sufficient to

36

Optimization
Runtime (µs) Evaluations / sec

Packing Bit Slicing Lookup Table

Baseline implementation 156.41 6K
X 26.84 37K
X X 18.5 65K
X X X 6.08 165K

Table 6: Centralized 23-wPRF benchmarks for a baseline implementation and for different opti-
mization techniques. Packing was done into 64-bit sized words (for both Z2 and Z3 vectors). For
the lookup table optimization, a table with 81 × 220 Z3 elements, or roughly of size 135MB, was
preprocessed. Runtimes are all given in microseconds (µs).

preprocess multiplications (modulo 3) for binary vectors of length 16. To multiply Bi by a vector
in Z16

3 , we can first multiply it separately by the corresponding MSB and LSB vectors, and then
subtract the former from the latter modulo 3. This works since for z1, z2 ∈ Z3 the multiplication
z1z2 mod 3 can be given by z1(2 · h2 + l2) mod 3 = z1l2− z1h2 mod 3 where h2, l2 are the MSB and
LSB of z2 respectively. Now, to multiply B by v ∈ Z256

3 , we first evaluate all multiplications of
the form Bivi where vi is the Z16

3 vector denoting the ith slice of v if it was split into 16-element
chunks. Then, multiplication by B is given by Bv =

∑
i∈[16] Bivi mod 3.

In general, a B ∈ Zt×m3 can be partitioned into m/c partitions with c columns each (assume c
divides m for simplicity), and would require a total multiplication lookup table size of (m/c) · 2c · t
Z3 elements. Multiplying B by v ∈ Zm3 requires 2(m/c) lookup table accesses (one each for MSB
and LSB of v per partition of B) and an addition of (m/c− 1) Zt3 vectors.

For our parameters, this results in a table size of roughly 135MB with proper Z3 packing. We
chose c = 16 as a compromise between the size of the lookup table and increased computational
efficiency.

7.2 Performance Benchmarks

Experimental setup. We ran all our experiments on a t2.medium AWS EC2 instance with
4GiB RAM (architecture: x86-64 Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz) running on
Ubuntu 18.04. The performance benchmarks and timing results we provide are averaged over 1000
runs. For the distributed construction benchmarks, both parties were run on the same instance.
We separately report the computational runtime for the parties, and analytically compute the
communication costs.

Optimization results. We start with benchmarks for the different optimization techniques de-
tailed in Section 7.1. Table 6 contains timing results for our centralized implementation of the
(2, 3)-wPRF construction with parameters n = m = 256 and t = 81 using these optimizations. The
table also reports results for a baseline implementation which uses the naive Θ(nm) algorithm for
multiplication between a m×n matrix and a n length vector. We find that our best implementation
is 25x faster than the baseline implementation.

Distributed wPRF evaluation. We also implement the 2-party semi-honest distributed proto-
col detailed in Section 5.2.1 for evaluating the (2, 3)-wPRF construction and report timings for our

37

Protocol Runtime (µs) Evaluations / sec
Preprocessing

(bits)
Comm.
(bits)

(2, 3)-wPRF Protocol
[BIP+18]

28.02 36K 3533 2612

(2, 3)-wPRF Protocol
(Section 5.2.1)

12.12 82K 662 1536

Table 7: Comparison of 2-party semi-honest protocols for distributed evaluation of the (2, 3)-wPRF
candidate (Construction 3.1) in the preprocessing model. The parameters n = m = 256 and t = 81
were used for the wPRF. The runtime reported is the maximum between the two parties.

Protocol
Runtime (µs)

Preprocessing (bits)
Communication (bits)

Client Server Client Server

πoprf
1

(Section 5.4.1)

Key Update - 0.65 256 - 256
Evaluation 8.54 9.45 2092 512 385

πoprf
2

(Section 5.4.2)

Key Update - 3.16 256 - 256
Evaluation 7.91 8.21 1836 256 385

DDH-based OPRF 57.38 28.69 - 256 256

Table 8: Comparison of protocols for (semi-honest) OPRF evaluation in the preprocessing model.
Runtimes in microseconds (µs) are provided separately for refreshing the key (Key Update) and for
evaluating an input (Evaluation). Communication and preprocessing are also provided separately
for the two stages.

implementation. Further, since this candidate was first proposed in [BIP+18], we also implement
their protocol as a comparison point. For both protocols, we use the parameters n = m = 256,
t = 81 for the PRF and use the same optimizations (from Section 7.1). We use a trusted party to
generate the preprocessed randomness. We provide a comparison in Table 7.

OPRF evaluation. In Table 8, we provide performance benchmarks for both our oblivious
protocols (see Section 5.4) for the (2, 3)-wPRF construction. We also compare our results to the
standard DDH-based OPRF (see Section 5.4.3). For our timing results, we report both the server
and client runtimes (averages over 1000 runs). For each construction, we also include the size of
the preprocessed correlated randomness, and the online communication cost. All constructions are
parameterized appropriately to provide 128-bit security.

For our constructions, we report separately, the timings for refreshing the key and evaluating
the input. For the comparison with the DDH-based OPRF construction, we use the libsodium
library [Lib] for the elliptic curve scalar multiplication operation. We use the Curve25519 elliptic
curve, which has a 256-bit key size, and provides 128 bits of security.

We point out that both of our OPRF protocols are much faster than the DDH-based OPRF
although they require higher communication as well as preprocessing. To better represent the
tradeoffs, we compute the minimum network speed for which the total time for one evaluation of
our protocol is smaller than that for the DDH-based OPRF. We compare only the online costs for
the evaluation. Analytically, we can compute that our two protocols are faster than the DDH-based
OPRF protocol when the network speed is greater than ≈ 5.7Mbps and ≈ 1.85Mbps respectively.

38

On a 50Mbps network, The communication of OPRF Protocol 1 outpaces its respective computa-
tion. The same happens with OPRF protocol 2 on an 40 Mbps network. While these numbers only
present a simplified picture, we note that they should depict the overall tradeoffs for our OPRF
protocols.

Acknowledgments

Itai Dinur is supported by ISF grants 573/16 and 1903/20, and by the European Research Council
under the ERC starting grant agreement No. 757731 (LightCrypt). Yuval Ishai is supported by
ERC Project NTSC (742754), ISF grant 2774/20, NSF-BSF grant 2015782, and BSF grant 2018393.

References

[AABS+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepi-
eniec. “Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols”.
In: TOSC 2020.3 (2020), pp. 1–45.

[ABG+14] Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen. “Can-
didate weak pseudorandom functions in AC mod 2”. In: ITCS. 2014, pp. 251–260.

[ADKF70] Vladimir L’vovich Arlazarov, Yefim A Dinitz, MA Kronrod, and Igor Aleksandrovich
Faradzhev. “On economical construction of the transitive closure of an oriented
graph”. In: Doklady Akademii Nauk. 1970, pp. 487–488.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. “Cryptography in NC0”. In:
FOCS. 2004, pp. 166–175.

[APR+19] Martin R. Albrecht, Lorenzo Grassi Léo Perrin, Sebastian Ramacher, Christian Rech-
berger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. “Feistel Structures for
MPC, and More”. In: ESORICS. 2019, pp. 151–171.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. “Ciphers for MPC and FHE”. In: EUROCRYPT. 2015, pp. 430–
454.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. “Zero-
Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs”. In: CRYPTO.
2019, pp. 67–97.

[BBSS20] Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Yixin Shen. “Improved
Classical and Quantum Algorithms for Subset-Sum”. In: ASIACRYPT. 2020, pp. 633–
666.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
“Efficient Pseudorandom Correlation Generators: Silent OT Extension and More”.
In: CRYPTO. 2019, pp. 489–518.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. “Efficient Two-Round OT Extension and Silent Non-Interactive
Secure Computation”. In: CCS. 2019, pp. 291–308.

39

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
“Efficient Pseudorandom Correlation Generators from Ring-LPN”. In: CRYPTO.
2020, pp. 387–416.

[BCG+21] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant
Kumar, and Mayank Rathee. “Function Secret Sharing for Mixed-Mode and Fixed-
Point Secure Computation”. In: EUROCRYPT. 2021, pp. 871–900.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. “Compressing Vector
OLE”. In: CCS. 2018, pp. 896–912.

[BCJ11] Anja Becker, Jean-Sébastien Coron, and Antoine Joux. “Improved Generic Algo-
rithms for Hard Knapsacks”. In: EUROCRYPT. 2011, pp. 364–385.

[Bea91] Donald Beaver. “Efficient Multiparty Protocols Using Circuit Randomization”. In:
CRYPTO. 1991, pp. 420–432.

[Beu20] Ward Beullens. “Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes”.
In: EUROCRYPT. 2020, pp. 183–211.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function Secret Sharing”. In: EURO-
CRYPT. 2015, pp. 337–367.

[BGI19] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Secure Computation with Preprocessing
via Function Secret Sharing”. In: TCC. 2019, pp. 341–371.

[BGIN19] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. “Practical Fully Secure Three-
Party Computation via Sublinear Distributed Zero-Knowledge Proofs”. In: CCS.
2019, pp. 869–886.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness Theorems
for Non-Cryptographic Fault-Tolerant Distributed Computation”. In: STOC. 1988,
pp. 1–10.

[BIP+18] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu. “Exploring
Crypto Dark Matter: New Simple PRF Candidates and Their Applications”. In: TCC.
2018, pp. 699–729.

[BM84] Manuel Blum and Silvio Micali. “How to Generate Cryptographically Strong Se-
quences of Pseudorandom Bits”. In: SICOMP 13.4 (1984), pp. 850–864.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko.
“The One-More-RSA-Inversion Problems and the Security of Chaum’s Blind Signa-
ture Scheme”. In: J. Cryptology 16.3 (2003), pp. 185–215.

[BSG20] Ward Beullens and Cyprien de Saint Guilhem. “LegRoast: Efficient Post-quantum
Signatures from the Legendre PRF”. In: PQCRYPTO. 2020, pp. 130–150.

[BSGK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela Orsini,
Peter Scholl, and Greg Zaverucha. “Banquet: Short and Fast Signatures from AES”.
In: PKC. 2021, pp. 266–297.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. “Multiparty Unconditionally
Secure Protocols”. In: STOC. 1988, pp. 11–19.

40

[CCKK21] Jung Hee Cheon, Wonhee Cho, Jeong Han Kim, and Jiseung Kim. “Adventures in
Crypto Dark Matter: Attacks, Fixes for Weak Pseudorandom Function Candidates”.
In: PKC. 2021, pp. 739–760.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-
macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. “Post-Quantum
Zero-Knowledge and Signatures from Symmetric-Key Primitives”. In: CCS. 2017,
pp. 1825–1842.

[CDM+18] Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and Yann Rotella.
“On the Concrete Security of Goldreich’s Pseudorandom Generator”. In: ASIACRYPT.
2018, pp. 96–124.

[Che19] Lijie Chen. “Non-deterministic Quasi-Polynomial Time is Average-Case Hard for
ACC Circuits”. In: FOCS. 2019, pp. 1281–1304.

[CR20] Lijie Chen and Hanlin Ren. “Strong average-case lower bounds from non-trivial de-
randomization”. In: STOC. 2020, pp. 1327–1334.

[Dam88] Ivan Damg̊ard. “On The Randomness of Legendre and Jacobi Sequences”. In: CRYPTO.
1988, pp. 161–172.

[DK10] Ivan Damg̊ard and Marcel Keller. “Secure Multiparty AES”. In: FC. 2010, pp. 367–
374.

[DKR+21] Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus Schofnegger, and
Greg Zaverucha. Shorter Signatures Based on Tailor-Made Minimalist Symmetric-
Key Crypto. Cryptology ePrint Archive, Report 2021/692. 2021.

[DN19] Itai Dinur and Niv Nadler. “Multi-target Attacks on the Picnic Signature Scheme
and Related Protocols”. In: EUROCRYPT. 2019, pp. 699–727.

[DNNR17] Ivan Damg̊ard, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. “The
TinyTable Protocol for 2-Party Secure Computation, or: Gate-Scrambling Revisited”.
In: EUROCRYPT. 2017, pp. 167–187.

[DS17] Jack Doerner and Abhi Shelat. “Scaling ORAM for Secure Computation”. In: CCS.
2017, pp. 523–535.

[EKM17] Andre Esser, Robert Kübler, and Alexander May. “LPN Decoded”. In: CRYPTO.
2017, pp. 486–514.

[FIKK20] Yuval Filmus, Yuval Ishai, Avi Kaplan, and Guy Kindler. “Limits of Preprocessing”.
In: CCC. 2020, 17:1–17:22.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. “Keyword
Search and Oblivious Pseudorandom Functions”. In: TCC. 2005, pp. 303–324.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “On the cryptographic appli-
cations of random functions”. In: CRYPTO. 1984, pp. 276–288.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Play any Mental Game
or A Completeness Theorem for Protocols with Honest Majority”. In: STOC. 1987,
pp. 218–229.

41

[Gol11] Oded Goldreich. “Candidate One-Way Functions Based on Expander Graphs”. In:
Studies in Complexity and Cryptography. Miscellanea on the Interplay between Ran-
domness and Computation. Vol. 6650. Lecture Notes in Computer Science. 2011,
pp. 76–87.

[GRR+16] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P.
Smart. “MPC-Friendly Symmetric Key Primitives”. In: CCS. 2016, 430–443.

[HJ10] Nick Howgrave-Graham and Antoine Joux. “New Generic Algorithms for Hard Knap-
sacks”. In: EUROCRYPT. 2010, pp. 235–256.

[IKLO16] Yuval Ishai, Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. “Private Large-Scale
Databases with Distributed Searchable Symmetric Encryption”. In: CT-RSA. 2016,
pp. 90–107.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. “Extending Oblivious
Transfers Efficiently”. In: CRYPTO. 2003, pp. 145–161.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Zero-knowledge
from secure multiparty computation”. In: STOC. 2007, pp. 21–30.

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. “Round-Optimal Password-
Protected Secret Sharing and T-PAKE in the Password-Only Model”. In: ASIACRYPT.
2014, pp. 233–253.

[JKKX16] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. “Highly-Efficient
and Composable Password-Protected Secret Sharing (Or: How to Protect Your Bit-
coin Wallet Online)”. In: EURO S&P. 2016, pp. 276–291.

[JL09] Stanislaw Jarecki and Xiaomin Liu. “Efficient oblivious pseudorandom function with
applications to adaptive OT and secure computation of set intersection”. In: TCC.
2009, pp. 577–594.

[KCP16] J. Kelsey, S. J. Chang, and R. Perlner. SHA-3 derived functions: cSHAKE KMAC
TupleHash and ParallelHash. National Institute for Standards and Technology, Spe-
cial Publication 800-185. 2016.

[KKL+20] Valentine Kabanets, Sajin Koroth, Zhenjian Lu, Dimitrios Myrisiotis, and Igor Oliveira.
“Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf
Gates”. In: CCC. 2020, 15:1–15:41.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. “Efficient
Batched Oblivious PRF with Applications to Private Set Intersection”. In: CCS.
2016, pp. 818–829.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. “Improved Non-Interactive
Zero Knowledge with Applications to Post-Quantum Signatures”. In: CCS. 2018,
pp. 525–537.

[KZ20] Daniel Kales and Greg Zaverucha. “Improving the Performance of the Picnic Signa-
ture Scheme”. In: TCHES 2020.4 (2020), pp. 154–188.

[Lev85] Leonid Levin. “One-Way Functions and Pseudorandom Generators”. In: STOC. 1985,
pp. 363–365.

42

[Lib] libsodium 1.0.18-stable. https://libsodium.gitbook.io/doc/. Online; December
31 2020. 2020.

[MI88] Tsutomu Matsumoto and Hideki Imai. “Public Quadratic Polynominal-Tuples for
Efficient Signature-Verification and Message-Encryption”. In: EUROCRYPT. 1988,
pp. 419–453.

[MV15] Eric Miles and Emanuele Viola. “Substitution-Permutation Networks, Pseudorandom
Functions, and Natural Proofs”. In: J. ACM 62.6 (2015), 46:1–46:29.

[MW18] Daniele Micciancio and Michael Walter. “On the Bit Security of Cryptographic Prim-
itives”. In: EUROCRYPT. 2018, pp. 3–28.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. “Distributed pseudo-random func-
tions and KDCs.” In: EUROCRYPT. 1999, pp. 327–346.

[Pro17] Bitcoin Improvement Proposal. Hierarchical Deterministic Wallets. https://en.
bitcoin.it/wiki/BIP_0032. 2017.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. “Secure
Two-Party Computation Is Practical”. In: ASIACRYPT. 2009, pp. 250–267.

[SGMOS19] Cyprien Delpech de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and Nigel
P. Smart. “BBQ: Using AES in Picnic Signatures”. In: SAC. 2019, pp. 669–692.

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. “Dis-
tributed Vector-OLE: Improved Constructions and Implementation”. In: CCS. 2019,
pp. 1055–1072.

[SHB21] István András Seres, Máté Horváth, and Péter Burcsi. The Legendre Pseudoran-
dom Function as a Multivariate Quadratic Cryptosystem: Security and Applications.
Cryptology ePrint Archive, Report 2021/182. 2021.

[Tea20] The Picnic Design Team. The Picnic Signature Algorithm Specification. Version 3.0,
Available at https://microsoft.github.io/Picnic/. 2020.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. “Global-Scale Secure Multiparty
Computation”. In: CCS. 2017, pp. 39–56.

[Yao82] Andrew C. Yao. “Theory and application of trapdoor functions”. In: FOCS. 1982,
pp. 80–91.

[Yao86] Andrew Chi-Chih Yao. “How to Generate and Exchange Secrets”. In: FOCS. 1986,
pp. 162–167.

[YGJL21] Jing Yang, Qian Guo, Thomas Johansson, and Michael Lentmaier. Revisiting the
Concrete Security of Goldreich’s Pseudorandom Generator. 2021. arXiv: 2103.02668.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. “Ferret: Fast
Extension for Correlated OT with Small Communication”. In: CCS. 2020, pp. 1607–
1626.

43

https://libsodium.gitbook.io/doc/
https://en.bitcoin.it/wiki/BIP_0032
https://en.bitcoin.it/wiki/BIP_0032
https://microsoft.github.io/Picnic/
https://arxiv.org/abs/2103.02668

A Detailed Cryptanalysis

In this appendix we describe in detail the cryptanalysis of our new constructions. We start with
some general remarks (Section A.1) and then analyze our constructions in subsections that follow.

A.1 Overview

A.1.1 Choosing public inputs

All the cryptosystems we define receive public inputs chosen at random. For example, the (2, 3)-
OWF receives matrices A and B as public inputs. One option is to choose A and B independently
per secret input. While an alternative option is to fix one (or even both) of the matrices and reuse
them. Generally, this alternative option is more susceptible to multi-target attacks and attacks
that are based on self-similarity. Thus, in general, the first option is considered more secure and
this is the option we use. For similar reasons we choose the public parameters independently per
secret for the PRFs and the PRG we define.

Of course, there are bad choices of the public inputs which could degrade security, and we need
to show that these are unlikely to be occur.

Finally, for the PRFs we define, this still leaves open the question of how to select the public
inputs x and B per sample computed with a secret key. We chose to select x independently per
sample, while fixing B per secret key, as this allows to optimize performance by preprocessing. In
terms of security, the choice of fixing B does allow for a wider range of attacks that we need to
consider, as we demonstrate in the security analysis.

Restricted public matrices. In order to optimize performance, we select the public matrices
for the schemes as random Toeplitz matrices. These matrices define a pairwise independent hash
family and are known to satisfy the Gilbert–Varshamov bound for linear codes, which is the main
tool we use in the analysis.

Private matrices for PRF constructions. The private matrix K in the PRF constructions is
a circulant matrix defined by rotations of a secret k ∈ {0, 1}n. While a choice of K with a small rank
deficiency does not seem to have a significant impact on the security, some attacks on the schemes
(particularly on the 2-3 PRF) may exploit matrices of particularly low rank (as w = Kx mod 2
resides in a subspace of small dimension).

Thus, if possible, it is preferable to select k such that K is a full rank matrix. Yet, this may
require additional communication is distributed protocols. Otherwise, we need to understand the
rank distribution of K when k is selected uniformly at random and prove that K has very small
rank with negligible probability. For particular choices of n the analysis is simple.

Proposition A.1. Let n = 2n
′

for a positive integer n′ and let K ∈ Zn×n2 be a circulant matrix
selected uniformly at random. Then, for any a ∈ {0, . . . n}, Pr[rank(K) ≤ a] = 2−n+a.

Proof. For every vector u ∈ Zn2 we associate a polynomial of degree at most n − 1, u(x) =∑n−1
j=0 ujx

j ∈ Z2[x].
Assume that K is formed by rotations of k ∈ Zn2 . Then for i ∈ {0, . . . , n− 1}, the i’th column

of K is associated with the polynomial xi · k(x) mod xn − 1. Thus, for u ∈ Zn2 , Ku is given by the

44

coefficients of the polynomial u(x) · k(x) mod xn − 1, and Ku = 0 if and only if u(x) · k(x) divides
xn − 1.

Therefore, there is a bijection between the kernel space of K of the subspace of polynomials
u(x) ∈ Z2[x] of degree at most n− 1 that satisfy u(x) · k(x) mod xn− 1 = 0. The dimension of this
subspace of polynomials is equal to the degree of gcd(k(x), xn − 1) over Z2[x].

Recalling that n = 2n
′
, over Z2[x] we have x2

n′ − 1 = (x − 1)2
n′

= (x − 1)n. To conclude the
proof, rank(K) ≤ a if and only if the kernel dimension of K is at least n − a. Equivalently, the
degree of gcd(k(x), (x − 1)n) is at least n − a, or k(x) divides (x − 1)n−a. There are exactly 2a

polynomials of degree at most n− 1 that divide (x− 1)n−a and the probability of selecting one of
them is 2a

2n = 2−n+a as claimed.

A.1.2 Concrete security goals.

For each scheme the goal is to obtain parameter sets n,m, t such that it offers s-bit security, while
achieving good performance in distributed protocols.

The definition of s-bit security that we use below is inspired by with the work of Micciancio
and Walter [MW18]. We intentionally do not bound the attacker to a particular computational
model, as this may rule out valid attacks in other natural models. Moreover, the definition is also
valid against non-uniform adversaries (that are allowed to use a computationally unbounded pre-
processing phase), as our constructions have auxiliary inputs (with sufficiently large min-entropy)
that are not available during preprocessing.

OWF security. Given a OWF scheme F (·) (applied to a secret input, where the public param-
eters are embedded into F), we define an inversion attack game by choosing x̂ ∈ Zn2 uniformly
at random and giving ŷ = F (x̂) to the adversary, whose goal to output some x ∈ Zn2 such that
F (x) = ŷ. We say that F (·) has s bits of security if no adversary can win the inversion attack game
on F (·) with average complexity below 2s−1.

Weak PRF security. We refer to both weak PRFs we define.
The key k ∈ Zn2 that defines the secret matrix K is chosen uniformly at random. Moreover, the

public matrix B ∈ Zt×m3 (or B ∈ Zt×m2) is chosen uniformly at random (or as a random Toeplitz
matrix). For a parameter r, an adversary is given 2r samples (x1,B, y1), . . . , (x2r ,B, y2r), where
each xi ∈ Zn2 is chosen independently and uniformly at random.

We will place a restriction of r ≤ 40, corresponding to a practical limit of 240 on the number of
samples available to the adversary.

We consider two types of adversaries. The first type is a distinguisher that attempts to distin-
guish 2r samples where each yi is generated using the PRF with a fixed k from 2r samples where
each vector yi is chosen uniformly at random. The second type attempts to find the secret key
given samples generated using the PRF.

We say that the PRF has s bits of security if given (at most) 2r samples both conditions below
hold.

1. The advantage of a distinguishing adversary that runs in time 2τ is at most 2(τ−s)/2.

2. The probability that an adversary that runs in time 2τ find the key is at most 2τ−s.

45

PRG security. The secret seed x ∈ Zn2 is chosen uniformly at random, along with the public
parameters A,B. The adversary is given a single sample A,B, y. As for PRFs, security is defined
against the two types of adversaries and the definition is similar.

A.1.3 Algebraic attacks.

In algebraic attacks the attacker represents the outputs (on internal variables) of the cipher as
multivariate polynomials in the secret key (or preimage), obtaining a system of polynomial equa-
tions. The attacker then attempts to the solve the system using techniques such as linearization or
applying algorithms for finding a reduced representation of the ideal generated by the polynomials
in the form of a Gröbner basis. Such methods are known to be efficient only in particular cases
where the polynomials have a special structure, or the polynomials equations are of low degree and
the attacker obtains sufficiently many equations to solve the system by linearization.

In our case, the output of the schemes we define mix between the sums mod 2 and mod 3.
For example, in the (2, 3)-OWF and PRF constructions each output entry is a sum mod 3 of
entries of w, where each such entry is a sum mod 2 of the unknown bits of the secret input. We
conjecture (similarly to [BIP+18]) that the output cannot be represented (or well-approximated) by
a low degree polynomial over any specific polynomial ring. This was shown rigorously in [BIP+18,
Lemma 4.2] for polynomials over GF(3r) (for any r ≥ 1), and this analysis carries over to our (2, 3)
constructions since they use the same “modulus-switching” mapping map2 : {0, 1}` → Z3 (namely,
x 7→

∑
i∈[`] xi (mod 3)). Crucially, for this lemma to be meaningful, ` has to be sufficiently large

(e.g., ` ≈ n), and our choice of parameters will ensure that the sums mod 2 and mod 3 are indeed
dense and contain many terms. In particular, for the (2, 3)-OWF and PRF constructions we will
make sure that the linear code spanned by the rows of B has large minimal distance, except with
very small probability. Overall, we do not expect algebraic attacks to pose a threat to our schemes,
and our analysis is mainly based on combinatorial attacks that attempt to recover the secret, or
on statistical attacks whose goal is to distinguish the output from random.

A.2 Security Evaluation of the (2, 3)-OWF

In this section we analyze the security of the (2, 3)-OWF. Beforehand, we note that we may assume
without loss of generality that in the most efficient construction, the number of expected preimages
is (about) 1. Specifically, in our case, we may assume that n = log 3 · t (up to rounding factors).

Indeed, setting log 3 · t > n does not reduce the average number of preimages substantially.
Consequently, any attack on a scheme with n = log 3 ·t′ can be applied to a scheme with log 3 ·t > n
by truncating the output to be of length log 3 · t′. Hence a scheme in which log 3 · t > n does not
offer better security than the truncated one. On the other hand, the truncated scheme has shorter
output and is generally more efficient. Similarly, if n > log 3 · t, an attacker can fix n− log 3 · t bits
of the secret input to an arbitrary value and try to invert the image of the induced scheme where
n′ = log 3 · t (note that on average, such a preimage exists).

A.2.1 Basic attacks.

We describe several basic attacks and analyze their complexity as a function of n,m, t. First, by
exhaustive search, we can invert the (2, 3)-OWF in time complexity 2n or 3t = 2log 3·t.

46

Focusing on the value of m, by exhaustive search, we can find x such that Ax = Ax̂ (which
implies that the outputs are identical) in time complexity 2m. A tighter restriction on m is imposed
by the following attack: guess m− t bits of w = Ax and solve the linear equation system ŷ = Bw
over Z3 (which has t equations and variables) to obtain a full suggestion for w. A suggestion for
w allows to compute x by solving the linear equation system Ax = w over Z2. This attack has
complexity 2m−t. An improved attack is described next.

Enumerating w values. We show how to enumerate over all w ∈ {0, 1}m that satisfy Bw = ŷ
in time complexity of about 2m/2 if m ≤ 2 log 3 · t = 2n, and 2m−log 3·t = 2m−n, otherwise.

Given such an algorithm, we can test each w by solving the equation system Ax = w over Z2,
and if a solution exists, we have successfully inverted ŷ.

Observe that if w and w′ do not have a common 1 entry, then w + w′ mod 2 = w + w′ mod 3
(where the addition is performed entry-wise). Therefore,

B(w + w′ mod 2) mod 3 =

B(w + w′ mod 3) mod 3 =

(Bw mod 3) + (Bw′ mod 3) mod 3.

(1)

We use this observation in the following algorithm, whose complexity as claimed above.

1. Partition the m indices of w into 2 subsets I1 and I2 = [m]\I1, each of size m/2 bits.

2. For i ∈ {0, 1, . . . 2m/2 − 1}, let wi be the m-bit vector whose value on the m/2 indices of I1 is
i, and is 0 on the indices of I2. For each such i, evaluate Bwi mod 3 = yi and store the pairs
(wi, yi) in a table T , sorted by yi values.

3. For j ∈ {0, 1, . . . 2m/2 − 1}, let w′j be the m-bit vector whose value on the m/2 indices of I2
is j, and is 0 on the indices of I1. For each such j, evaluate Bw′j mod 3 = y′j and search
T for the value ŷ − y′j mod 3. If there exists a match yi such that yi = ŷ − y′j mod 3 (or
yi + y′j mod 3 = ŷ), recover the value wi such that Bwi mod 3 = yi from T and return
w = wi + w′j mod 2.

Note that the expected number of w ∈ {0, 1}m that satisfy Bw = ŷ is 2m−log 3·t. Hence, we
cannot hope to obtain better complexity than 2m−log 3·t without exploiting additional constraints
on w, imposed by the matrix A. Our subset-sum reduction (given in Section 4) shows how this
can be done.

Induced schemes. Given the scheme (2, 3)-OWF with a matrix B and output y such that
Bw = y, and any positive integer r, we can left-multiply both sides by any r× t matrix C over Z3

to obtain CBw = Cy. Note that each row of the matrix CB is a linear combination of the rows of
B. Using such a matrix C, we can perform Gaussian elimination on the rows of B.

We denote the resultant induced scheme by OWFC(·). Observe that if OWF(x) = y, then
OWFC(x) = Cy. We now describe a simple attack that uses an induced scheme where C is only a
row vector.

47

Low Hamming weight combinations of the rows of B. Assume that there is a vector v ∈ Zm3
of Hamming weight ` in the row space of B, namely, there exists a vector u ∈ Zt3 for which uB = v.
If ` is sufficiently small, then we could use the induced scheme OWFu(·) to speed up exhaustive
search.

Denote the set of ` non-zero indices of v by I. Given ŷ = Bw mod 3, we compute the value of
uŷ mod 3 = vw mod 3. We can now enumerate the values of the corresponding set I of ` bits of
w for which uŷ mod 3 = vw mod 3 holds. This set of bits has 2`

3 possible values. Each such `-bit
value gives rise of a system of ` linear equations on x, and we exhaustively search its solution space
of size 2n−`. Overall, if ` ≤ n the complexity of the attack is 2`

3 , while if ` = n+ 1, the complexity

is 2`+1

3 . When ` > n+ 1, the complexity is higher than 2n. Thus, we will require that such a vector
v of low Hamming weight about n does not exist, except with small probability. This probability
is computed in Proposition B.1 in Appendix B.

If more such low Hamming weight vectors are available, then the complexity of the attack may
be further reduced, although it seems unlikely to obtain a significant advantage over exhaustive
search with this approach.

A.2.2 Parameter Selection for the (2, 3)-OWF.

According to the analysis, we determine parameters n,m, t for which we conjecture that the (2, 3)-
OWF has s bits of security.

First, due to the exhaustive search, we require n ≥ s. Second, the most restrictive constraint
on m is imposed by the subset-sum algorithm (Section 4). If we conservatively ignore the hidden
polynomial factors and the large memory complexity of the subset-sum algorithm of [BBSS20], we
need to set

0.283m ≥ s.

Overall, we obtain
n = log 3 · t = s,

and
m = s

0.283 ≈ 3.53s.

We now consider the attack exploiting low Hamming weight combinations of the rows of B, and
in particular, Proposition B.1. In our case, we apply the proposition with log 3 · t = n and ` = n.
For m = 3.53n, we obtain that the probability of having a vector of Hamming weight at most n is
bounded by

2 · 2m(H(0.283)+2·0.283−log 3) ≈ 2 · 2−0.16m ≈ 2 · 2−0.56s.

For s ≥ 128, the expression evaluates to (less than) 2−70, so it is unlikely to encounter such an
event in practice. Moreover, even if the event occurs, security only regrades by a factor of 3, and
by the same proposition the probability that two such vectors are spanned by the rows of B is at
most 2−140. Nevertheless, one may increase n (and correspondingly t) by a few bits (at negligible
cost) to defeat this attack vector completely.

A more aggressive setting of the parameters may take into account the polynomial factors
of [BBSS20] (and perhaps its high memory complexity). Unfortunately, the polynomial factors
associated with the complexity formulas of the relevant subset-sum algorithms have not been ana-
lyzed. For example, if we assume that the polynomial factors are about m2, and we aim for s = 128

48

bits of security, then we require m2 · 20.283m ≥ 2s = 2128. Setting m = 400 = 3.125s is sufficient for
satisfying the constraint in this setting.

A.3 Security Evaluation of the (2, 3)-wPRF

As for the (2, 3)-OWF, we describe several attacks and analyze their complexity as a function of
the parameters n,m, t.

Unlike the case of the (2, 3)-OWF (where the goal was to find a preimage of a give output),
we can choose a small value of t regardless of the other parameters without sacrificing security. In
fact, it is clear that a small value of t can only contribute to security, as any attack on a scheme
with a small value of t can be applied to a scheme with a larger value of t, simply by ignoring part
of the output. Consequently, we may fix t to the smallest value acceptable by the application.

We also note that given a sufficiently large number of samples, we expect that the key k would
be uniquely determined by the samples (regardless of the value of t).

A.3.1 Key recovery attacks exploiting a few samples.

We describe key recovery attacks that make use of the minimal number of samples required to
derive the secret key k.

First, as for the (2, 3)-OWF, exhaustive search requires 2n time. Also, similarly to the (2, 3)-
OWF, given any sample (x,B, y), we can guess m− t bits of w = Kx and solve the linear equation
system y = Bw mod 3, which then allows to compute a suggestion for k (that can be tested on the
remaining samples). This attack has complexity 2m−t.

Furthermore, given a single sample, we can apply the same attack for enumerating w values for
the (2, 3)-OWF. This attack has complexity which is the maximum between 2m/2 and 2m−log 3·t.

Reduction to subset-sum. As for the (2, 3)-OWF, we can reduce the key recovery problem to
the problem of solving subset-sum over the m binary variables of w. However, it is clear that if the
algorithm is applied to a single (x,B, y) sample, then its expected complexity cannot drop below
2m−log 3·t−(m−n) = 2n−log 3·t, which is the expected number of w values possible given (x,B, y) (the
remaining key candidate after analyzing one sample are tested against another sample).

On the other hand, if we try to reduce the complexity by applying the algorithm to more than
one sample (e.g., to (x,B, y) and (x′,B, y′)), then we must take advantage of the dependency
between w = Kx and w′ = Kx′, which are related via linear constraints, imposed by k and by x, x′.
However, it is not clear how to model these complex linear constraints in the subset-sum reduction
and we were not able to improve the complexity of the single-sample attack.

A.3.2 Exploiting multiple samples.

The key recovery attacks described above make use of a minimal number of samples required to
derive the secret key. On the other hand, when given more samples, it may be possible to exploit
various relations among them to mount distinguishing and even key recovery attacks which we
investigate below.

49

Output bias. We consider a single sample (x,B, y) and analyze the bias of linear combinations
of the entries of y over Z3. If any such linear combination has a sufficiently high bias towards some
constant, then an attacker can exploit it in a distinguishing attack.

Similarly to the case analyzed for the corresponding (2, 3)-OWF, assume there are vectors
v ∈ Zm3 and u ∈ Zt3 such that uB = v and the Hamming weight of v is `. Given y = Bw mod 3,
the attacker computes uy mod 3 = vw mod 3 and thus obtains the value of a linear combination
mod 3 of ` entries of w ∈ {0, 1}m. Specifically, denoting the set of ` non-zero indices of v by I, the
attacker computes

∑
i∈I viwi mod 3. We now calculate the bias of sum the mod 3, assuming that

w is uniformly distributed in Zm2 .
Each non-zero coefficient of the linear combination v is either 1 and 2. It is easy to prove by

induction on ` (or by analysis of sums of binomial coefficients) that for any coefficients vi ∈ {1, 2}
where i ∈ I and for any a ∈ {0, 1, 2},

Pr

[∑
i∈I

viwi mod 3 = a

]
∈ {13 ±

1
2`
, 13 ±

2
2`
},

where the actual probability depends on v, a and `. Thus, the bias of vw mod 3 is bounded by 2
2`

.
We use Proposition B.1 to deduce that the subspace spanned by the rows of B contains a vector

of Hamming weight at most ` with probability at most 2 · 2m(H(`/m)−log 3)+`+log 3·t.
Our analysis is conservative, as we ignore the work performed by the attacker to find a low

Hamming weight vector v spanned by the rows of B. Thus, we will be interested in ` ≈ s/2, as we
would like to avoid having a linear combination of the output with bias at least 2−s/2 (except with
small probability). Plugging this into the formula above we bound the probability by

2 · 2m(H(s/2m)−log 3)+s/2+log 3·t. (2)

Conditional output bias. As described above, the bias of expressions of the form
∑

i∈I viwi mod
3, (where I ⊆ [m] is a set of size `, each vi ∈ {1, 2} is fixed and wi ∈ {0, 1} are independent and
uniformly distributed random variables) is bounded by 2−`+1.

However, the bias may increase if information about the variables wi is known. In particular,
the case in which

∑
i∈I wi mod 2 is known was analyzed in [CCKK21], where the authors showed

that the conditional biases such as∣∣∣∣∣Pr

[∑
i∈I

wi mod 3 = 0 |
∑
i∈I

wi mod 2 = 0

]
− 1/3

∣∣∣∣∣
can be as large as about 2−0.21`. While this is still exponentially small in `, it is more significant
than the unconditional bias.

The PRF candidate proposed in [BIP+18] and analyzed in [CCKK21] is similar to the one we
analyze for n = m, yet the matrix B contains a single row that sums mod 3 all the entries of w.
Moreover, since K is a circulant matrix and x has even Hamming weight, then

∑
i∈[m]wi mod 2 = 0

and the distinguishing attack is applicable. In our case, B is selected at random and the parameters
are chosen such that the attacker cannot obtain

∑
i∈I wi mod 3 for any fixed set I (and particularly

I = [m]), except with negligible probability. The general distinguishing attack is analyzed below.
Assume that given a sample (x,B, y), there exists a set I ⊆ [m] (that depends of x) such that∑
i∈I wi mod 2 is known to the attacker. Moreover, assume that there exists v in the row span of

50

B such that vi = 1 for each i ∈ I and vi = 0 for each i /∈ I. Then, the value
∑

i∈I wi mod 3 can
be computed from the output, and the distinguishing advantage is as high as (about) 2−0.21`. Of
course, if several samples are available, the distinguishing advantage can increase by accumulating
the bias, assuming the above conditions are fulfilled for more than one sample.

An extended variant of the attack may consider a vector v′ = v + u in the row span of B.
Denoting that Hamming weights of v and u by `1,`2, respectively, the conditional bias can be as
high as 2−0.21`1−`2+1. Note that here we conservatively ignore the work required to find such v′.

Given 2r samples (where r ≤ 40), we wish to show that the distinguishing advantage is small
(except with negligible probability). Indeed, calculation shows that this distinguisher is not stronger
that the unconditional distinguisher. Essentially, given a single sample, for any fixed I, the vector
v as described above is in the row span of B with minuscule probability 3t−m. In the extended
attack, we consider a ball around v, but this ball is much smaller than the one considered in the
unconditional distinguisher (as `2 < s/2).

Finally, in a more general variant of the attack, the attacker may guess a parity of key bits and
calculate the conditional bias over several samples, attempting to amplify it. Note that the desired
vector v changes for each sample according to x. By similar calculation, once the attacker has fixed
the guess given a sample, almost all additional samples would not allow to amplify the conditional
bias, as a good vector is unlikely to be in the row span of B.

Differential cryptanalysis and low Hamming weight samples. As we argue below, the
(2, 3)-wPRF seems to be immune to classical statistical differential cryptanalysis.

Assume that the attacker obtains two samples (x,B, y) and (x + δ mod 2,B, y′), where δ ∈
{0, 1}n. Denote w = Kx mod 2 and w′ = K(x + δ) mod 2 = w + Kδ mod 2. Thus, y′ = Bw′ mod
3 = B(w+ Kδ mod 2) mod 3. In general, y and y′ do not seem to have any statistical relation that
holds with sufficiently high probability. Particularly, w + Kδ mod 2 6= w + Kδ mod 3, except with
very small probability.

From an algebraic viewpoint, the attacker can consider the m bits of w = Kx mod 2 as variables
over Z2, but then the algebraic degree of the output over Z3 would be large. The attacker can also
consider the m bits of w as variables over Z3. In this case, the attacker obtains t linear equations
and t quadratic equations mod 3 (of the form (wi)

2 − wi = 0) from the sample (x,B, y). On the
other hand, the algebraic degree of w′ = K(x+ δ) mod 2 in the variables of w would be large due
the dense mod 2 operations, hence it is not clear how to obtain additional low degree equations.
In general, such algebraic attacks do not seem more efficient than the attack described above for
enumerating w values.

Another scenario which we consider is when the attacker obtains a sample (x,B, y) such that x
is of low Hamming weight. In this case each entry of w is a low Hamming weight sum mod 2 of the
bits of k and can thus be described as a low degree polynomial over Z3. Consequently, low degree
polynomial equations over Z3 in the secret key can be deduced from the output. Obtaining several
such samples may allow the attacker to solve for the key. In general, such low Hamming weight
samples are avoided with high probability given the data limit, but we can also place a restriction
on the sample generation, forcing it to generate vectors x with minimal Hamming weight (e.g., a
lower bound of n/4).

Attacks that exploit the structure of K. Recall the K is a circulant matrix and we consider
attacks that exploit its special structure. A notable property of K as a circulant matrices is that

51

it preserves symmetry. Specifically, if x ∈ Zn2 is 2-symmetric (i.e., its two halves are equal), then
w = Kx is also 2-symmetric. Thus, given a sample (x,B, y) such that x is 2-symmetric, we know
that w is 2-symmetric and this fact can be used to uniquely recover w (which is effectively of length
m/2) in time 2n−m/2−log 3·t. Consequently, we can derive m/2 linear equations mod 2 on the secret
key and perhaps use another sample to recover it completely.

The probability that such a 2-symmetric vector is found in the data is 2−n/2+r. We require that
this quantity is negligible.

It is also possible to consider even more symmetry, such as 4-symmetric vectors, but these have
lower probability of being picked.

Finally, we leave it to future work to extend this attack beyond the simple case analyzed above.
For example, one may consider input vectors that are close to 2-symmetric, or pairs of samples
(x,B, y), (x′,B, y′) such that x+x′ mod 2 is 2-symmetric (implying that K(x+x′) is 2-symmetric).

Attacks based on self-similarity. There are several simple attacks that take advantage of the
fact that B is fixed for all samples generated with the same secret k. A basic attack looks for
a collision on the w values for a pair of samples, which can be detected at the output. Given
2r samples, the advantage of this attack is 22r−rank(K). we will set the parameters such that the
advantage of this attack is negligible for the data complexity bound (assuming the rank of K is not
too small).

Another simple attack is a multi-target attack, where given 2r samples, the attacker guesses w,
computes Bw mod 3 and compares the result with all given outputs. A match allows to recover a
candidate for the secret k. The expected complexity of this attack is 2m−r, but cannot drop below
2m−log 3·t without exploiting relations between the different w values. In general, given the data
limit, the attack less efficient that the attack that enumerates all w values considered above.

Simultaneous sums. We describe a more involved self-similarity attack, which exploits the fixed
B value per secret k.

Assume that for some index set I of size at least 3,
∑

i∈I x
(i) mod 2 = 0. Then,

∑
i∈I w

(i) mod
2 = 0. While it is not clear how this relation influences the output, we extend this initial observation
by simultaneously considering sums mod 2 and 3, as follows: assume that there are 4 samples
(denoted for simplicity by {(x(i),B, y(i))}4i=1) such that for each j ∈ [m],

4∑
i=1

w
(i)
j = 2.

Then,
∑4

i=0 x
(i) mod 2 = 0 and

∑4
i=0 y

(i) mod 3 = B ·~2 mod 3 (where ~2 is a vector with m entries
whose values are 2). Note that a random 4-tuple of samples satisfies this simultaneous sum con-

straint with probability 2−n−log 3·t, but the probability that the constraint
∑4

i=0w
(i)
j = 2 is satisfied

for every j ∈ [m] is about ((4
2

)
16

)−m
≈ 2−1.415m,

which is higher than expected if 1.415m < n+ log 3 · t.
Since the adversary has about 24r such 4-tuples, the probability that such a simultaneous 4-sum

exists is about 24r−1.415m. It can be detected in time complexity of about 22r using a standard

52

matching algorithm. The important constraints for defending against this attack are

1.415m > n+ log 3 · t,

or

24r−1.415m (3)

is negligible, otherwise.
The simultaneous 4-sum distinguisher can be easily generalized to a simultaneous d-sum distin-

guisher for arbitrary d. In general, we look for d-tuples where (for example) for each j ∈ [m],

d∑
i=1

w
(i)
j = c,

for some value c (fixed mod 6) such that c mod 2 = 0. However, calculation shows that d = 4 gives
the most efficient distinguisher in our case (with the small data limit).

A.3.3 Parameter selection for the (2, 3)-wPRF.

According to the analysis, we determine parameters n,m, t for which we conjecture that the (2, 3)-
wPRF has s bits of security.

In order to select the parameters, we may first set t to it’s minimal possible value (depending
on the application). We also assume that t is not too large, and particularly log 3 · t ≤ s.

The constraints imposed by the above attacks are as follows. First, due to exhaustive search,
we require

n ≥ s.

Second, the subset-sum algorithm imposes the constraint n − log 3 · t ≥ s, (given that n ≥ m and
log 3 · t ≤ s).

We consider two sets of parameter. The first is

n = m = s+ log 3 · t.

In particular, if log 3 · t = s, then n = m = 2s. The second parameter set

n = m = 1.25(s+ log 3 · t),

and is less aggressive.
Next, we analyze the bias of the output based on (2), assuming that log 3 · t = s. For the first

parameter set, we obtain that the probability of having bias of 2
2s/2

is bounded by

2 · 2m(H(s/2m)−log 3)+s/2+log 3·t = 2 · 22s(H(1/4)−log 3)+3s/2 ≈ 2 · 2−0.049s,

which is non-negligible. On the other hand, the consequences of the distinguishing attack given the
data limit seem relatively mild, and this parameter set may be considered by applications where
performance is critical.

53

For the second parameter set (assuming log 3 · t = s), the probability of having bias 2
2s/2

is
bounded by

2 · 2m(H(s/2m)−log 3)+s/2+log 3·t = 2 · 22.5s(H(1/5)−log 3)+3s/2 ≈ 2 · 2−0.65s,

which we consider negligible.
The advantage of the collision attack is 22r−rank(K) ≤ 280−rank(K). Given that m = 2s ≥ 256,

if we choose n as a power of 2, based on Proposition A.1, the advantage is much smaller than 2s/2

(except with negligible probability).
Finally, we consider the attack that exploits the circulant matrix K and the simultaneous 4-sum

distinguisher. For defending against the first attack, when s ≥ 128, r ≤ 40, we have 2−n/2+r <
2−128+40 = 2−88 (n ≥ 2s), which we consider negligible.

Recall that the probability of having such a 4-sum in the output is estimated in (3) as 24r−1.415m ≤
2160−2.83s. For a minimal choice of s = 128, this probability is smaller than 2−200 which is negligible.

A.4 Security Analysis of the LPN-PRG

We analyze the security of the LPN-PRG.
If the matrix A was a random matrix, then the first step would consist of generating m samples

from the alternative weak PRF construction proposed in [BIP+18]. Each sample wi = A[i]x mod
2 + ((A[i]x mod 3) mod 2) mod 2 ∈ Zm2 can be viewed as adding noise ((A[i]x mod 3) mod 2) to
the inner product A[i]x mod 2. Given that A[i] is of sufficiently large Hamming weight, then
Prx[(A[i]x mod 3) mod 2 = 1] ≈ 1/3, which is the magnitude of noise added. The second step
consists of a compressing linear transformation B applied to w. The idea is to increase the noise
of each sample by mixing it with other samples. This step should defeat standard attacks applied
to LPN with a constant noise parameter (such as decoding attacks).

In our case, the matrix A is structured (it is a random Toeplitz matrix), but we were not able
to exploit this in an efficient attack.

A.4.1 Key recovery attacks.

We begin by considering attacks that attempt to recover the secret key (seed).
Exhaustive search for the key recovery attacks requires time 2n.
In a different approach for recovering the key, given a sample A,B, y, the attacker enumerates

over the subspace of w values that satisfy Bw = y mod 2. This subspace contains 2m−t vectors.
For each such vector, the attacker attempts to recover x given A and w. Thus, given A, w the
attacker has m samples generated from the LPN-like construction proposed in [BIP+18] as a weak
PRF (although we a structured matrix A). Given that m is not too large (i.e., it is a small multiple
of n), then the best attack we have on this scheme simply tries to break the LPN instance (which
has noise of 1/3), without exploiting the deterministic way in which it is generated. The concrete
security of LPN given a small number was analyzed in several publications such as [EKM17], and
the complexity of known attack is generally exponential in n. Nevertheless, the attacker is required
to solve 2m−t related LPN instances, and perhaps can amortize the complexity. Moreover, the
matrix A is structured. Thus, we (conservatively) estimate the total complexity of such attacks by
2m−t.

54

A.4.2 Noisy linear equations.

As noted above, each bit wi for i ∈ [m] can be viewed as a noisy linear equation over Z2 with noise
of about 1/3, or bias 2/3 − 1/2 = 1/6. Our goal is to select the parameter m such that the all
linear combinations of the output bits of y have exponentially small bias towards a linear equation
in the secret x. We will (heuristically) model each bit wi as having independent bias of 1/6.

If the linear subspace spanned by the rows of B contains a vector of Hamming weight `, then
by the piling-up lemma, the bias of the corresponding linear combination of the bits of w is

2`−1 · (16)` < 2− log 3·`. (4)

Thus, we will require that the rows of B do not span a vector whose Hamming weight is too low.
This is similar to the previously analyzed schemes, but the lower bound on the Hamming weight
we will enforce for the PRG will be lower. Indeed, the bias above is calculated with respect some
linear equation in the unknown secret key bits. Such a bias is generally much less of a security
concern compared to a bias towards a constant value (e.g., the bias analyzed for the (2, 3)-wPRF
construction) which can be used to directly distinguish the output from random using statistical
tests. Particularly, an alternative scheme where we change the first transformation to only compute
the “noise part” (w = (Ax mod 3) mod 2) would require larger parameters to be secure, as we need
a higher lower bound on the Hamming weight ` to avoid distinguishing attacks.

For a PRG with s bits of security, we will conservatively require a bias of at most 2−0.1s. We are
not aware of any attack that can exploit such a low bias. Effectively, this means that the minimal
distance of B should be at least s · 0.1/ log 3 < 0.07s (except with small probability).

Remark A.2. In [CCKK21] the authors analyze the constructions presented in [BIP+18]. In par-
ticular, for the alternative PRF construction, given a sample (a ∈ Zn2 , x · a), they show that there
exists j ∈ [n] such that

|Pr[aj = 0 | xj = 0 and (a · x mod 2 + ((a · x mod 3) mod 2) mod 2) = 0]| ≈ 1
20.21`

,

where ` is the Hamming weight of a. This property was exploited in a distinguishing attack.
Our PRG construction seems to be immune to this type of analysis because the attacker only

has access to sufficiently dense linear combinations of (structured) samples of the alternative PRF
construction.

A.4.3 Parameter selection for the LPN-PRG.

We determine parameters n,m, t for which we conjecture that the PRG has s bits of security.
Recall the we set t = 2n. Exhaustive search implies that n ≥ s and we have lower bounded

the effort required in key recover by 2m−t. Thus, a reasonable choice of parameters is n = s and
m = 3s, t = 2s.

For these parameters, we consider the maximal bias of linear combinations according to (4),
with ` = 0.07s. By Proposition B.1, the probability of having a vector of Hamming weight more
than 0.07s in the row span of B is 0.07s · 23s(H(0.07/3)−1)+2s < 0.07s · 2−0.52s. We consider this as a
negligible probability as the consequences of the this unlikely event are mild.

55

A.5 Security analysis of LPN-wPRF

The overall structure of the LPN-wPRF is similar to the PRG. However, unlike PRG, in the first
transformation, the key is part of the matrix and x is a public value. Thus, w can be viewed as m
outputs of (another) more structured version of the construction of [BIP+18].

In terms of parameters, the main differences are that we have n ≥ m and t is not constraint to
2n (in fact, we will propose to set it smaller than n). Furthermore, we assume that the attacker
obtains 2r samples for r ≤ 40 instead of a single sample.

We note that variants of the basic attacks that were analyzed for the (2, 3)-wPRF (such as
the attack that exploit the circulant (K), the collision attack and the multi-target attack) are also
applicable to this construction. As in the case of the (2, 3)-wPRF, they do not seem to be a threat
for our choice of parameters.

Overall, we have not found any class of attacks that are applicable to this construction, but
not to the previous ones. Below we briefly consider the most important attacks that influence the
choice of parameters.

Summary of attacks. As for the PRG, we estimate the total complexity of key recovery attacks
by 2m−t. Although we have more samples that for the PRF, it is not clear how to exploit them to
obtain better complexity.

In addition, similarly to the PRG, we require that each linear combination of the output has
bias of at most 2−0.1s (toward some linear combination of the key over Z2).

Parameter selection for the LPN-wPRF. For s-bit security, we set n = m = 2s and t = s.
By our analysis, exhaustive search requires 2m−t = 2s time.

We consider the maximal bias of linear combinations according to (4), with ` = 0.07s. By
Proposition B.1, the probability of having a vector of Hamming weight more than 0.07s in the row
span of B is 0.07s · 22s(H(0.07/2)−1)+s < 0.07s · 2−0.56s, which we consider negligible.

B Analysis of Random Linear Codes

We analyze the distance of random linear codes defined by a random matrix or a random Toeplitz
matrix. The analysis is based on the probabilistic method and is similar to the analysis used to
obtain the Gilbert–Varshamov bound.

Proposition B.1. Let B ∈ Zt×mq be a random matrix, or a random Toeplitz matrix whose rows
define a linear code. Then, the minimal distance of (the code defined by) B is at most ` < m/2
with probability at most

fq(m, t, `) ≤ qt−m · V olq(m, `),

where V olq(m, `) =
∑`

i=1

(
m
i

)
· (q− 1)i. Moreover, this code contains two such linearly independent

vectors with probability at most (fq(m, t, `))
2.

Finally, let H(p) = −p log p− (1− p) log(1− p) be the binary entropy function. Then

f2(m, t, `) ≤ ` · 2m(H(`/m)−1)+t,

and
f3(m, t, `) ≤ 2 · 2m(H(`/m)−log 3)+`+log 3·t.

56

Proof. The number of non-zero vectors of Hamming weight at most ` over Zmq is V olq(m, `) =∑`
i=1

(
m
i

)
· (q − 1)i.

For q = 2, we have V ol2(m, `) =
∑`

i=1

(
m
i

)
< ` ·

(
m
`

)
≤ ` · 2mH(`/m), while for q = 3, we have

V ol3(m, `) =
∑`

i=1

(
m
i

)
2i < 2 ·

(
m
`

)
2` ≤ 2 · 2mH(`/m)+`.

Since B is selected uniformly from a pairwise independent hash family (either a random matrix
or a random Toeplitz matrix), the probability that every non-zero vector is in the row space is
qt−m − 1 < qt−m. By a union bound over all vectors of Hamming weight bounded by `, the
probability that there exists such a vector in the row space of B is at most

fq(m, t, `) ≤ qt−m · V olq(m, `).

The bound (fq(m, t, `))
2 on the probability of having two such linearly independent vectors follows

by pairwise independence.
Specifically, for q = 2, we obtain f2(m, t, `) ≤ ` · 2m(H(`/m)−1)+t, while for t = 3, we obtain

f3(m, t, `) ≤ 2 · 3t−m · 2mH(`/m)+` = 2 · 2m(H(`/m)−log 3)+`+log 3·t.

C Signature Scheme Details

In this section we provide additional details on how to construct a signature scheme from our new
primitives, in particular the (2, 3)-OWF.

An N-party protocol. There will be N parties for our MPC protocol, each holding a secret
share of x, who jointly compute y = F(x). The protocol tolerates up to N − 1 corruptions: given
the views of N − 1 parties we can simulate the remaining party’s view, to prove that the N − 1
parties have no information about the remaining party’s share.

The preprocessing phase is similar to that in Picnic. Each party has a random tape that they
can use to sample a secret sharing of a uniformly random value (e.g., a scalar, vector, or a matrix
with terms in Z2 or Z3). Each party samples their share JrK and the shared value is implicitly

defined as r =
∑N

i=1 JrK(i).
We must also be able to create a sharing mod 3, of a secret shared value mod 2. Let w̃ ∈ Z2 be

secret shared. Then to establish shares of r = w̃ (mod 3), the first N − 1 parties sample a share
JrK from their random tapes. The N -th party’s share is chosen by the prover, so that the sum
of the shares is r. We refer to the last party’s share as an auxiliary value, since it’s provided by
the prover as part of pre-processing. For efficiency, the random tape for party i is generated by a
random seed, denoted seedi, using a PRG. The state of the first N − 1 parties after pre-processing
is a seed value used to generate the random tape, and for the N -th party the state is the seed value
plus the list of auxiliary values, denoted aux.

After pre-processing, the parties enter the online phase of the protocol. The prover computes
x̂ = x + x̃, where x̃ is a random value, established during preprocessing so that each party has a
share Jx̃K. The parties can then compute the OWF using the homomorphic properties of the secret
sharing, and the share conversion gate (to convert shares mod 2 to mod 3, used when computing z)
setup during preprocessing that we describe below. During the online phase, parties broadcast
values to all other parties and we write msgsi to denote the broadcast messages of party i.

57

Preprocessing phase. Preprocessing establishes random seeds of all parties and shares of

1. x̃: a random vector in Zn2 , //Sampled from random tapes

2. w̃: the vector Ax̃ in Zm2 ,

3. r: a sharing of w̃ mod 3, shares in Zm3 , //Tapes + one aux value

4. r: a sharing of 1− w̃ mod 3, shares in Zm3 . //Computed from JrK

The shares of r are computed from shares of r as follows (all arithmetic in Zm3): the first party
computes JrK = 1− JrK, then the remaining parties compute JrK = − JrK. Then observe that

N∑
i=1

JrK(i) = 1− JrK(1) − . . .− JrK(N) = 1−
N∑
i=1

JrK(i) = 1− r

as required.

Online phase. The public input to the online phase is x̂ = x+ x̃.

1. The parties locally compute ŵ ∈ Zm2 as ŵ = Ax̂ (since both x̂ and A are public).

2. Let z be a vector in Zm3 and let zi denote the i-th component. Each party defines

JziK =

{
JriK if ŵi = 0 //Note that JriK = Jw′iK
JriK if ŵi = 1 //Note that JriK = J1− w′iK

then locally computes JyK = B JzK. All parties broadcast JyK and reconstruct the output
y ∈ Zt3. In this step each party broadcasts t values in Z3.

Correctness. The protocol correctly computes the (2, 3)-OWF. The first step computes w = Ax,
updating the public value x̂ = x+ x′ with ŵ = w + w̃. The second step is where the bits of w are
cast from Z2 to Z3. The parties have sharings of w̃ and 1− w̃ mod 3 (we focus on a single bit here,
for simplicity). The key observation is that when ŵ = 0, then w and w̃ are the same, and when
ŵ = 1, w and w̃ are different. So in the first case we set the shares of z = w mod 3 to the shares
of [w̃] mod 3, and when ŵ = 1, we set the shares of z to the complement of w̃.

Communication costs. Here we quantify the cost of communication for the MPC inputs, the
aux values and the broadcast msgs of one party, as this will directly contribute to the signature size.
Let `3 be the bit length of an element in Z3; the direct encoding has `3 = 2, but with compression
we can reduce `3 to as little as log2(3) ≈ 1.58. 5 The size of the aux information is m`3, the MPC
input value has size n bits, and the broadcast values have size t`3 bits (per party). The total in
bits is thus

|MPC(n,m, t)| = m`3 + n+ t`3 . (5)

5To compress a vector v ∈ Zn
3 , convert it to the base-3 integer it represents: V =

∑n
i=0 vi3

i and output the binary
representation of V .

58

For the parameters (n,m, t) = (128, 453, 81) the total is 972 bits (L1 security: 128-bit classical,
64-bit quantum) and when (n,m, t) = (256, 906, 162) the total is 1943 bits (L5 security: 256-bit
classical, 128-bit quantum). This compares favorably to Picnic at the same security level, which
communicates 1161–1328 bits at L1 and 2295–2536 bits at L5, depending on whether LowMC uses
a full or partial S-box layer [KZ20].

Signature scheme. Given the MPC protocol above, we can compute the values x̂, aux and msgs
for the (2, 3)-OWF and neatly drop it into the KKW proof system used in Picnic. The signature
generation and verification algorithms for the (2, 3)-OWF signature scheme are given in Fig. 4.

We use a cryptographic hash function H : {0, 1}∗ → {0, 1}2κ for computing commitments, and
the function Expand takes as input a random 2κ-bit string and derives a challenge having the form
(C,P) where C is a subset of [M] of size τ , and P is a list of length τ , with entries in [N]. The
challenge (C,P) defines τ pairs (c, pc) where c is the index of an MPC instance for which the verifier
will check the online phase, and pc is the index of the party that will remain unopened.

Optimizations and simplifications. For ease of presentation, Fig. 4 omits some optimizations
that are essential for efficiency, but are not unique to the (2, 3)-signature schemes, they are exactly
as in Picnic. All random seeds in a signature are derived from a single random root seed, using a
binary tree construction. First we derive M initial seeds, once for each MPC instance, then from
from the initial seed we derive the N per-party seeds. This allows the signer to reveal the seeds of
N − 1 parties by revealing only log2(N) intermediate seeds, similarly, the initial seeds for M − τ of
M instances may be revealed by communicating only τ log2(M/τ) seeds (each κ bits long).

For the commitments h′(k) to the online execution, τ are recomputed by the verifier, and the
prover provides the missing M − τ . Here we compute the h′(k) as the leaves of a Merkle tree, so
that the prover can provide the missing commitments by sending only τ log2(M/τ) 2κ-bit digests.

Finally, Fig. 4 omits a random salt, included in each signature, as well as counter inputs to
the hash functions to prevent multi-target attacks [DN19]. Also, hashing the public key when
computing the challenge, and prefixing the inputs to H in each use for domain separation should
also be done, as in [Tea20].

Signature size. The size of the signature in bits is:

κτ log2

(
M

τ

)
︸ ︷︷ ︸

initial seeds

+ 2κτ log2

(
M

τ

)
︸ ︷︷ ︸

Merkle tree commitments

+ τ

 κ log2N︸ ︷︷ ︸
per-party seeds

+ |MPC(n,m, t)|︸ ︷︷ ︸
one MPC instance, Eq. (5)

and we note that the direct contribution of OWF choice is limited to |MPC(n,m, t)|6. However,
the size of this term can impact the choice of (N,M, τ). The Picnic parameters (N,M, τ) must be
chosen so that the soundness error,

ε(N,M, τ) = max
M−τ≤k≤M

{ (
k

M−τ
)(

M
M−τ

)
Nk−M+τ

}
.

6The size |MPC(n,m, t)| is a slight overestimate since for 1/N instances we don’t have to send aux, if the last
party is unopened. In Table 4 our estimates include this, but it’s a very small difference as τ is quite small.

59

is less than 2−κ. By searching the parameter space for fixed N and various options for M, τ , we get
a curve, and choose from the combinations in the “sweet spot”, near the bend of the curve with
moderate computation costs. This part of the curve is similar as in Picnic, and we present some
options from it in Table 4.

60

(2, 3)-OWF Signatures

Inputs Both signer and verifier have F, y = F(x), the message to be signed Msg, and the
signer has the secret key x. The parameters of the protocol (M,N, τ) are described in
the text.

Commit For each MPC instance k ∈ [M], the signer does the following.

1. Choose uniform seed(k) and use to generate values (seed
(k)
i)i∈[N], and compute aux(k)

as described in the text. For i = 1, . . . N − 1, let state
(k)
i = seed

(k)
i and let state

(k)
N =

seed
(k)
N ||aux(k).

2. Commit to the preprocessing phase:

com
(k)
i = H(state

(k)
i) for all i ∈ [N], h(k) = H(com

(k)
1 , . . . , com

(k)
N).

3. Compute MPC input x̂(k) = x + x̃(k) based on the secret key x and the random
values x̃(k) defined by preprocessing.

4. Simulate the online phase of the MPC protocol, producing (msgs
(k)
i)i∈[N].

5. Commit to the online phase: h′(k) = H(x̂(k),msgs
(k)
1 , . . . ,msgs

(k)
N).

Challenge The signer computes ch = H(h1, . . . hM , h
′
1, . . . , h

′
M ,Msg), then expands ch to the

challenge (C,P) := Expand(ch), as described in the text.

Signature output The signature σ on Msg is

σ = (ch, ((seed(k), h(k))k 6∈C , (com
(k)
pk
, (state

(k)
i)i 6=pk , x̂

(k),msgs(k)pk)k∈C)k∈[M])

Verification The verifier parses σ as above, and does the following.

1. Check the preprocessing phase. For each k ∈ [M]:

(a) If k ∈ C: for all i ∈ [N] such that i 6= pk, the verifier uses state
(k)
i to compute

com
(k)
i as the signer did, then computes h′(k) = H(com

(k)
1 , . . . , com

(k)
N) using the

value com
(k)
pk from σ.

(b) If k 6∈ C: the verifier uses seed(k) to compute h′(k) as the signer did.

2. Check the online phase:

(a) For each k ∈ C the verifier simulates the online phase using (state
(k)
i)i 6=pk ,

masked witness x̂ and msgs
(k)
pk to compute (msgsi)i 6=pk . Then compute h(k) as

the signer did. The verifier outputs ‘invalid’ if the output of the MPC simulation
is not equal to y.

3. The verifier computes ch′ = H(h1, . . . hM , h
′
1, . . . , h

′
M ,Msg) and outputs ‘valid’ if

ch′ = ch and ‘invalid’ otherwise.

Figure 4: Picnic-like signature scheme using the (2, 3)-OWF and the KKW proof system.

61

	Introduction
	Our Contributions
	New candidate constructions
	Cryptanalysis and implications on parameter choices
	Distributed protocols and optimized implementations
	Applications
	Future directions

	Preliminaries
	Primitives

	Candidate Constructions
	Cryptanalysis
	Summary of Security Evaluation of the (2,3)-OWF
	Summary of Security Evaluation of the (2,3)-wPRF
	Summary of Security Evaluation of the LPN-PRG
	Summary of Security Evaluation of the LPN-wPRF

	Distributed Protocols
	Technical Overview
	Distributed Computation of Circuit Gates
	Composing Gate Protocols

	Distributed Evaluation in the Preprocessing Model
	2-Party Protocol for (2,3)-wPRF
	Public-Input Setting

	3-Party Distributed Evaluation
	Oblivious PRF Evaluation in the Preprocessing Model
	Oblivious PRF Protocol bold0mu mumu subsubsectionoprf1
	Oblivious PRF Protocol bold0mu mumu subsubsectionoprf2
	Comparison

	Distributing the Trusted Dealer
	Bilinear correlations
	(2,3)-correlations from OT correlations
	(3,2)-correlations from OT correlations

	Application: Signatures with the (2,3)-OWF
	Implementation and Evaluation
	Optimizations
	Performance Benchmarks

	Detailed Cryptanalysis
	Overview
	Choosing public inputs
	Concrete security goals.
	Algebraic attacks.

	Security Evaluation of the (2,3)-OWF
	Basic attacks.
	Parameter Selection for the (2,3)-OWF.

	Security Evaluation of the (2,3)-wPRF
	Key recovery attacks exploiting a few samples.
	Exploiting multiple samples.
	Parameter selection for the (2,3)-wPRF.

	Security Analysis of the LPN-PRG
	Key recovery attacks.
	Noisy linear equations.
	Parameter selection for the LPN-PRG.

	Security analysis of LPN-wPRF

	Analysis of Random Linear Codes
	Signature Scheme Details

