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Abstract. We study several strengthening of classical circular security
assumptions which were recently introduced in four new lattice-based
constructions of indistinguishability obfuscation: Brakerski-Döttling-Garg-
Malavolta (Eurocrypt 2020), Gay-Pass (STOC 2021), Brakerski-Döttling-
Garg-Malavolta (Eprint 2020) and Wee-Wichs (Eprint 2020).
We provide explicit counterexamples to the 2-circular shielded random-
ness leakage assumption w.r.t. the Gentry-Sahai-Waters fully homomor-
phic encryption scheme proposed by Gay-Pass, and the homomorphic
pseudorandom LWE samples conjecture proposed by Wee-Wichs. Our
work suggests a separation between classical circular security of the kind
underlying un-levelled fully-homomorphic encryption from the strength-
ened versions underlying recent iO constructions, showing that they are
not (yet) on the same footing.
Our counterexamples exploit the flexibility to choose specific implemen-
tations of circuits, which is explicitly allowed in the Gay-Pass assumption
and unspecified in the Wee-Wichs assumption. Their indistinguishabilty
obfuscation schemes are still unbroken. Our work shows that the assump-
tions, at least, need refinement. In particular, generic leakage-resilient
circular security assumptions are delicate, and their security is sensitive
to the specific structure of the leakages involved.

1 Introduction

Indistinguishability obfuscation (iO) for general programs computable in poly-
nomial time [7] enables turning programs into unintelligible ones while preserving
their functionality. iO is a fundamental primitive and has found many applica-
tions in cryptography and beyond. As such, it is extremely important to base
the feasibility of iO on simple and well-studied hardness assumptions, and to
thoroughly understand the objects and assumptions that imply iO. Current
constructions of iO can be broadly categorized into two schools: those using
multilinear or bilinear pairing, and those without pairing. Very recently, we
have seen exciting advances on both fronts. Using pairing, Jain, Lin, and Sa-
hai [32] constructed iO from four well-studied assumptions: Learning With Er-
rors (LWE) [41], Decisional Linear assumption (DLIN) [6] over bilinear maps,
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Learning Pairity with Noise over general fields [29], and Pseudo-Random Gener-
ators in NC0 [25]. Without pairing, three works [21,11,44], following [10], based
iO on new types of circular security assumptions on integer lattices.

In this work, we focus on these recent constructions [10,21,11,44] and the new
circular security assumptions they are based on. These constructions are very
interesting because of their novel approaches and distinctive features. First, they
are built solely on integer lattices (instead of drawing hardness from multiple
cryptosystems) and therefore are possibly secure against quantum attacks. Sec-
ond, their security assumptions are similar in flavor to the classical circular
security heuristic [16,9], which by now has been extensively studied and widely
applied, most notably to un-leveled Fully Homomorphic Encryption (FHE) using
Gentry’s boostrapping mechanism [22].

At the same time, the new assumptions are stronger than classical circular
security in non-trivial ways. Consider the Gay-Pass assumption. Classical circu-
lar security w.r.t. a public key encryption scheme postulates that it is Chosen-
Message-Attack (CPA) secure, even in the presence of an encrypted key-cycle
that possibly uses other encryption schemes. The Gay-Pass assumption general-
izes this blueprint to consider leakage-resilient CPA security: it says that if an
encryption scheme is CPA secure when the adversary has access to certain leak-
age on the randomness of encryption, then additionally publishing an encrypted
key-cycle should not harm this leakage-resilient CPA security. Concretely, their
iO scheme assumes Shielded Randomness Leakage (SRL) resilience in the pres-
ence of 2-circular encryption, w.r.t. the Gentry-Sahai-Waters FHE scheme [24]
and a Packed version of Regev’s encryption [41,40]1. The work [11] proposes
a variant of the Gay-Pass assumption with a key-randomness cycle. Wee and
Wichs [44] take a different approach and construct iO based on LWE and a
new conjecture, Homomorphic Pseudorandom LWE Samples (HPLS). Though
this conjecture does not directly follow the circular security blueprint, close ex-
amination reveals a circular security flavor, involving the dual-GSW homomor-
phic commitment [24,26] and a Pseudo-Random Function (PRF).

Although stronger and more complex than the classical circular security,
these new assumptions were formulated in a principled way – indeed, on the
surface, they seem to place iO on qualitatively similar footing as un-leveled
FHE! While exciting and encouraging, when it comes to new assumptions, it is
important to be cautious and imperative to conduct cryptanalysis to develop
deeper understandings. That is the purpose of our work.

Our Results We present counterexamples to the Gay-Pass and Wee-Wichs as-
sumptions. In both cases, we consider the GSW FHE scheme and the dual-GSW
homomorphic commitment scheme for evaluating arithmetic circuits consisting
of arithmetic addition, multiplication, and multiplication by constant gates. We
stress that both schemes natively support these arithmetic operations [24]. In
particular, in our counterexample to the Wee-Wichs conjecture we will lever-
age multiplication by a large constant, 2−1 mod p (which is not needed for the
counterexample to Gay-Pass assumption).

1Or alternatively, the Damg̊ard-Jurik encryption [18,39].



– First, we show that the Gay-Pass assumption is false when instantiated with
the GSW FHE scheme by presenting a concrete attack.

– Second, Wee and Wichs’s HPLS conjecture is parameterized with a sampling
algorithm D that takes random coins τ and produces a random LWE secret
s← Znp and an error vector e according to some error distribution. We show
the conjecture is sensitive to the circuit implementation of D, namely, for
every D, there is an arithmetic circuit CD implementing it such that the
HPLS conjecture instantiated with CD is false. Again, we present a concrete
attack.

Notably, classical circular security plausibly holds w.r.t. both the modified
GSW and dual GSW schemes. Hence, our work gives the first examples that
separate classical circular security and the strengthened versions of circular se-
curity underlying recent iO schemes, showing evidence that they are not (yet)
on the same footing.

Our counterexamples exploit some flexibility in the implementation details
of the Gay-Pass and Wee-Wichs assumptions. The choice of such implementa-
tion is explicitly given to the adversary in the Gay-Pass assumption and is left
unspecified in the Wee-Wichs conjecture. It remains possible that other choices
of implementation of circuits do result in an unbroken assumption. Nevertheless,
our work shows that this will, at least, require refinement of the assumptions, and
in particular that generic circular security assumptions/definitions are delicate,
and their security is actually sensitive to the specific structure of the leakages
involved.

Next, we describe the Gay-Pass and Wee-Wichs assumptions and our coun-
terexamples in more detail.

Counterexample to the Gay-Pass assumption. As stated in Gay and
Pass [21], the 2-circular assumption w.r.t. two public key encryption schemes
Enc1 and Enc2 that are Chosen-Plaintext-Attack (CPA) secure postulates that

– Classical 2-circular security assumption w.r.t. Enc1,Enc2: Enc1 is (still) CPA

secure – that is, honestly generated ciphertexts Enc1pk1(m0) and Enc1pk1(m1)

for any two chosen messages m0,m1 are indistinguishable – when a length-
two encrypted key cycle Enc1pk1(sk2), Enc2pk2(sk1) is published.

Classical circular security has been extensively studied as encrypted key cycles
of different lengths naturally arise in applications such as encrypted storage
system, anonymous credentials [16], and un-leveled FHE [22]. So far, though
counterexamples to 2-circular security or 1-circular security for bit encryption2

(where the key cycle has length 1 {Encpk(ski)}i∈[|sk|]) have been constructed (see
e.g. [1,28,17,43,36,33,8,34,27,45]), no attacks have been shown against any “nat-
ural” encryption schemes. Therefore, classical circular security is still commonly
assumed w.r.t. natural encryption schemes such as homomorphic encryption
[24,12,15], Regev’s encryption [41] etc.

2Crafting a counterexample for 1-circular security for string encryption is trivial.



Gay and Pass extend 2-circular security to consider CPA security in the
presence of the so-called shielded randomness leakage (SRL). More specifically,
shielded randomness leakage is only defined w.r.t. FHE schemes with certain
properties including randomness homomorphism. The leakage is captured by
an oracle OSRL (described shortly below) and reveals certain information of the
randomness of encryption. A public-key FHE scheme Enc1 is SRL-secure if CPA
security holds even if the adversary has access to OSRL. Then the 2-circular SRL
security assumption w.r.t. Enc1,Enc2 where Enc1 is SRL secure and Enc2 is CPA
secure, states that:

– 2-circular SRL security assumption w.r.t. Enc1,Enc2: Enc1 is (still) SRL se-

cure – that is, honestly generated ciphertexts Enc1pk1(m0) and Enc1pk1(m1) for

any two chosen messages m0,m1 are indistinguishable, even if the adversary
has access to OSRL – when a length two encrypted key cycle Enc1pk1(sk2),

Enc2pk2(sk1) is published.

The Gay-Pass iO scheme relies on the above assumption w.r.t. the GSW FHE
scheme as Enc1 and the packed Regev encryption as Enc2. Notably, they prove
that the GSW scheme is SRL-secure based on LWE.

Let’s now understand what shielded randomness leakage is. In the plain SRL
security game (without encrypted key cycles), the adversary is given a collection
of challenge ciphertexts {cti = Enc1pk1(mb

i ; Ri)}i encrypting one of the two sets

of chosen messages, {m0
i }i or {m1

i }i, for a random b, using randomness {Ri}i.
In addition, the adversary A can interact with the SRL oracle OSRL as follows
to help it distinguish.

– The OSRL Oracle (Simplified) gives leakage on the message and randomness

{mb
i ; Ri}i underlying the challenge ciphertexts as follows:

1. Upon invocation, OSRL samples a fresh encryption ct? = Enc1pk1(0; R?)

of zero using randomness R? and sends ct? to the adversary3.
2. A chooses a circuit C and an output y.
3. OSRL homomorphically evaluates C on ct? and the challenge ciphertexts
{cti}i to obtain an output ciphertext ctC = HEval(C, ct?, {cti}) that
encrypts y′ with randomness RC (computed by the randomness homo-
morphism property of HE from {mb

i ; Ri}i). It returns R?−RC if y = y′,
or nothing if y 6= y′.

In the 2-circular SRL-security game, the adversary is additionally given an en-
crypted key cycle Enc1pk1(sk2), Enc2pk2(sk1) along with the challenge ciphertexts
{cti} at the beginning. We remark that for security of the ensuing Gay-Pass
iO construction it is crucial that the adversary is allowed to choose C adap-
tively. This means in the plain SRL security game, C may depend on ct?, {cti},
and, in the 2-circular SRL security game, additionally on the encrypted cycle
Enc1pk1(sk2), Enc2pk2(sk1). Indeed, the security reduction from iO to the 2-circular

3More concretely for the GSW scheme, this encryption of zero is extra noisy, mean-
ing the magnitude of entries of R? is large enough to smudge entries of RC below.



SRL security chooses such a “dependent” C. Looking ahead, our counterexample
also crucially exploits this adaptivity.

Our counterexample: We show that the 2-circular SRL security assumption is
false w.r.t. the GSW FHE scheme in [24]. Let us now give more details.

Our Ideas In a Nut shell: Given that (modified) GSW is both SRL-secure and
plausibly circular secure, the attack must simultaneously leverage the shield-
randomness leakage R?−RC and the encrypted key cycle Enc1pk1(sk2), Enc2pk2(sk1).
Recall that the attack can adaptively choose the circuit C depending on the key
cycle, ct?, and {cti}, meaning they can be hardcoded in C. Observe also that
the input to C is ({mb

i}, sk
2), and hence C can compute as an intermediate value

sk1 and can also “access” R? (by decrypting Enc2pk2(sk1) and ct?). Since C can

“access” both R? and {mb
i}, our attack carefully engineers C so that homomor-

phic evaluation of C produces an output ciphertext ctC with randomness RC

correlated with (R?, {mb
i}), and then the shield randomness leakage R? −RC

reveals information of b. More specifically, the attack creates correlation between
the parity bit of noises and values by carefully engineering C using the following
correlation-inducing gadget circuits.

– Correlation Gadget: The gadget circuit G(x, 0) multiplies x with 0 and
produces a fixed output of 0. Homomorphically evaluating G on GSW ci-
phertexts ct of x and ct0 of 0 produces a new ciphertext ct′ = AR′ of zero
of the following form:

ct = AR + xG, ct0 = AR0
HEval ×−→ ct′ = AR′, R′ = R ·G−1(ct0) + xR0

Consider an attack that chooses a circuit C which first computes x = f(mb
i , sk

2)
and then the above G(x, 0) (f is specified shortly below). The attack receives
from the SRL oracle leakage

R∗ + R ·G−1(ct0) + xR0 .

To learn the bit b, we want to 1) correlate x with R∗ and b, and 2) eliminate
the middle term R ·G−1(ct0).

– We achieve the second by finding a vector v ∈ {0, 1}m such that G−1(ct0) ·
v = 0 mod 2. This is possible with probability close to 1/2 as G−1(ct0)
is a pseudorandom binary matrix and hence is non-singular mod 2 with
probability close to 1/2.

– We achieve the first by letting the function f compute b · eR∗v mod 2. Ob-
serve that this is computable since homomorphically decrypting ct∗ gives
exactly eR∗. One can then further multiply b and v, followed by modulo 2.

This means the attack can learn

z = R∗v + b · (eR∗v)R0v mod 2 .

Let us observe the difference between the cases when b = 0 or 1. If b = 0,
z = R∗v mod 2 which is random since R∗ is random and independent of v.



On the other hand, if b = 0, z = R∗v + (eR∗v)R0v mod 2, which satisfies
e ·z = 0 mod 2 if eR0v = 1. The latter condition holds with probability 1/2 over
the random choice of R0. This difference is sufficient for creating a distinguishing
attack: Repeat the above many times to collect different zi w.r.t. to different
ct∗i = BR∗i , and the same ct0 = BR0. If b = 0, all zi’s are random, whereas if
b = 1, all zi’s satisfy e · zi = 0 mod 2 conditioned on the event eR0v = 1 of
probability 1/2.

Please see section 5.1 for how we construct the challenge circuit C and other
details in the attack. We note that though our attack is described w.r.t. GSW
FHE for arithmetic circuits, it can be easily translated into an attack w.r.t.
GSW FHE for Boolean circuits. In particular, the correlation gadget circuit
will compute homomorphic AND which translates to computing homomorphic
multiplication in GSW and the rest of the attack is the same.

Counterexample to the Wee-Wichs assumption. Wee and Wichs [44]
take a different approach, constructing iO assuming LWE and the ability to
obliviously generate LWE samples without knowing the corresponding secrets.
They then proposed a heuristic mechanism for oblivious LWE sampling, using
the dual-GSW homomorphic commitment and any Pseudo-Random Function
(PRF). They formulated a concrete conjecture, called the Homomorphic Pseu-
dorandom LWE Samples conjecture, to capture the security of their mechanism.
Let us now recall their conjecture.

The Dual GSW Homomorphic Commitment Scheme The scheme is a variant of
the homomorphic encryption/commitment schemes of [24,26] with the feature
that one can homomorphically evaluate a function with a vector output f :
{0, 1}` → Zmp , and the decommitment to the output commitment to f(x) is
shorter than m. Given a public random matrix A ∈ Zm×np where m � n, a

commitment C to an input x ∈ {0, 1}` is

C = (AR1 + x1G + E1, · · · ,AR` + x`G + E`)

where Ri ← Zn×m log q
p , Ei ← χm×m log q, and G is the gadget matrix.

The key difference from [24,26] are: 1) the matrix A is a thin/tall matrix,
whereas in GSW A is fat/short, 2) Ri is fat/short and uniformly sampled,
whereas in GSW, they are square matrices consisting of small entries, and 3)
because of the shapes of matrices ARi is far from (pseudo)random and hence
additional noises Ei are added. On the other hand, the hiding property of the
commitments still follows directly from LWE, and the same homomorphic eval-
uation procedure applies. For any Boolean function f : {0, 1}` → {0, 1}, one can
homomorphically derive a commitment Cf = ARf + f(x)G + Ef . Addition-
ally, using the same “packing” procedure, one can homomorphically evaluate g :
{0, 1}` → Zmp with a vector output to derive a commitment Cg = Arg+g(x)+eg.
Observe that the opening to this output commitment is rg of length n log p� m.

The Homomorphic Pseudorandom LWE Samples (HPLS) conjecture considers the
following two distributions parameterized by a PRF PRF.

∀β ∈ {0, 1}, DIST(β)→
(
{di = Aŝi + êi}i∈[Q],A,C, {si}i∈[Q]

)



where the random variables are sampled as follows: 1) {di} are fresh LWE sam-
ples with secret ŝi ← Znp and noise êi ← χm, 2) C is a dual-GSW commitment
to a randomly sampled PRF key k and the bit β, and 3) each si is derived from
homomorphically evaluating the following computation gi(k, β): the function gi
first evaluates PRF to obtain random bits τi, then uses them to sample random
LWE secret sPRFi and noise ePRFi ← χmPRF according to a sampling algorithm D,
and finally outputs a vector AsPRFi + ePRFi + βdi.

gi(k, β) : i) compute τi ← PRF(k, i) ii) sample (sPRFi , ePRFi )← D(τi)

iii) compute and output AsPRFi + ePRFi + βdi = A(sPRFi + βŝi) + (ePRFi + βêi)

Cgi = HEval(gi,C) = ArEvali + gi(k, β) + eEvali

= A (rEvali + sPRFi + βŝi)︸ ︷︷ ︸
si

+ (ePRFi + βêi + eEvali )︸ ︷︷ ︸
ei

The HPLS conjecture states that for appropriate settings of parameters, in par-
ticular when the magnitude of the noises satisfy ePRFi � êi � eEvali , there is a
choice of PRF such that DIST(0) and DIST(1) are indistinguishable.

Observe that given a sample from the distribution, one can easily compute
the noise ei in Cgi by using the opened secret vectors si. Then, the circular
security nature of the HPLS conjecture lies in that on one hand we rely on
the PRF security to argue that ePRFi smudges βêi + eEvali , otherwise dual-GSW
security is broken, on the other hand, we rely on the dual-GSW security to argue
that the PRF key k remains hidden.

Our Counterexample. Our counterexample states that when using dual-GSW for
arithmetic computation, for every sampling algorithm D used in the second step
of gi’s (that converts random bits τ to a random LWE secret vector s and an
error vector e of some distribution χPRF) there is an arithemtic circuit CD that
implements D, such that, for every PRF PRF (and every circuit implementation
of PRF), the distributions DIST(0) and DIST(1) are distinguishable. In short,
the HPLS conjecture is false for every PRF and every sampling algorithm D, if
the circuit implementation of D is allowed to be arbitrarily chosen.

Our Ideas In a Nutshell: Our counterexample attacks the noise {ei = (ePRFi +
βêi+eEvali )} that can be derived from a sample of the distribution. To distinguish
between β = 0 or 1, our idea is to create correlation between the parity of
ePRFi [1] and eEvali [1], so that ei[1] mod 2 reveals information about β. We do so
by carefully crafting the circuit CD using two gadget circuits described below.

– Even Gadget: G1(x) implements the identity function on a single element
x. It first multiplies x by 1/2, and then adds x/2 with itself to get back
x (computation over Zp). Homomorphically evaluating G1 on a dual-GSW
commitment ct = AR + xG + E to x produces a commitment C′ = AR′ +
xG + E′ with even errors E′.

C = AR + xG + E
HEval × 1

2−→ C′′ = AR′′ +
x

2
G + E′′

HEval +−→ C′ = AR′ + xG + E′, where E′ = 2E′′



– Correlation Gadget: The second gadget circuit G2(x, 1) first computes G1(x)
to get x, and then multiplies it with 1. Homomorphically evaluating G2 on
dual-GSW commitment C to x and C1 to 1 produces a new commitment
C′ = AR′ + xG + E′ of x where the parity of E′[1, 1] is correlated with x if
E1[1, 1] is odd, where E1 is the noise in C1.

ct = AR + xG + E
HEval G1−→ ct′′ = AR′ + xG + (2E′′)

HEval ×(ct1=AR1+G+E1)−→ ct′ = AR′ + xG + E′, E′ = 2E′′G−1(ct1) + xE1

Using them, we create correlation between ePRFi [1] mod 2 and eEvali [1] mod 2.
Before we can declare success, we must resolve two other issues. First, the

correlation created by the second gadget is probabilistic, depending on the par-
ity of noise E1[1, 1] embedded in commitment C1. This is not too much of a
problem since C1 is reused for all index i and hence with probability 1/2, we
see an observable pattern in all ei. Second, the homomorphic evaluation of βdi
is outside the control of CD and its noise will be added to the final output of
gi. We overcome the issue by observing that noises resulting from this homo-
morphic evaluation induces an over-determined linear system over the noises Eβ

in the commitment to β. Thus, we can use linearity testing to help the attack
distinguish.

Possible Extension. One natural follow-up question is whether our techniques
can be extended to directly attack these recent iO constructions [10,21,11,44],
beyond the circular security assumptions they rely on. On this front, we think
that our attack ideas can be extended to break the security of the iO scheme
of [10] (and possibly its followups [21,11]), if one is allowed to manipulate the
implementation of the underlying FHE scheme (e.g., using odd noises to generate
the public key of the GSW FHE scheme) and the implementation of circuits
computed (e.g., the circuit for computing mod). However, in this work, we focus
only on the assumptions, and leave direct attacks to the schemes as future work.

A Perspective. First, our attacks highlight the importance of building schemes
from well-founded assumptions. However, in cases where existing techniques
are far from reaching this goal, one way of making progress is through cycles
of proposals and attacks, and a measure of progress is the simplicity of the
proposed assumptions, and whether they are natural and connected to well-
studied areas in computer science. For instance, the recent line of iO construc-
tions [5,35,4,30,31,20] started with assuming new assumptions, and eventually
led to the first iO construction [32] based on four well-founded assumptions –
LWE, the decision linear assumption over symmetric key pairing, LPN over large
fields, and PRG in NC0.

At this moment, we still lack good understanding on the front of construct-
ing iO solely from lattices (or constructing post-quantum secure iO). The works
of [10,21,11,44] proposed refreshing approaches and ideas. The purpose of our
work, through counterexamples, is finding weak points in these new approaches,
so that, they can be addressed and the assumptions can be refined in future



works. In particular, a main lesson from our counterexamples is that when work-
ing with leakage of noises in LWE, it is important to examine the specific leakage
carefully.

Other iO Constructions. Our work focuses on the new types of circular secu-
rity assumptions / hard problems underlying recent iO constructions of [10,21,11,44].
Prior to their work, Agrawal [2] gave an iO construction based on noisy linear
functional encryption and proposed a candidate noisy linear functional encryp-
tion based on new types of NTRU assumptions. The work of [3] cryptanalyzed
of the new NTRU assumptions and further refined them. There are many iO
constructions based on multilinear maps, which can be instantiated from lat-
tices (see references in [32]). Though all known multilinear map instantiation
have been attacked, there are still iO candidates based on them that are un-
broken, for instance [19]. Furthermore, Gentry, Jutla and Kane [23] proposed
an iO candidate using tensor products. Finally, using bilinear pairing, a line of
constructions [5,35,4,30,31,20] recently led to the first iO construction by [32]
based on four well-founded assumptions – LWE, the decision linear assumption
over symmetric key pairing, LPN over large fields, and PRG in NC0.

2 Preliminaries

We start by recalling the security definitions that will be useful for the rest of
the paper.

2.1 Security Definitions Introduced by Gay-Pass

We now recall the notion of O-leakage resilience property of a public key encryp-
tion scheme, PKE. A PKE scheme satisfies O-leakage resilience property if it is
hard for a computationally efficient adversary to guess the challenge bit even in
presence of valid oracle queries from the oracle O, which may potentially leak
information about the challenge message as well as the randomness.

Definition 1 (O-leakage resilient security). We say that a PKE = (Setup,Enc,
Dec) scheme satisfies O-leakage resilience security if for every stateful non-
uniform ppt adversaries A, there exists some negligible function negl(·) such
that for λ ∈ N, Pr[ExptPKEλ,A = 1] ≤ 1

2 + negl, where the experiment ExptPKEλ,A is
defined as follows4:

ExptPKEλ,A =


(pk, sk)← Setup(1λ)

(m0,m1)← A(pk), b← {0, 1}
m∗ = mb, r ← {0, 1}∗

ct = Enc(pk,m∗; r); b′ ← AO(pk,m∗,r)(ct)
Return 1 if |m0| = |m1|, b′ = b and O did not return ⊥; 0 otherwise


4In the definition below and otherwise, we denote by shorthand r ← {0, 1}∗ to

mean that the randomness is sampled from the appropriate distribution.



We say that a PKE scheme is secure if it is not given access to any oracle in the
same experiment.

We now define the notionO-leakage resilient security in presence of encrypted
key cycles. The notion is called O-leakage resilient 2-circular security.

Definition 2 (O-leakage resilient 2-circular security). We say that the
scheme PKE1 = (Setup1,Enc1,Dec1) and the scheme PKE2 = (Setup2,Enc2,Dec2)
satisfies O-leakage resilient 2- circular security if for every stateful non-uniform
ppt adversaries A, there exists some negligible function negl(·) such that for

λ ∈ N, Pr[ExptPKE1,PKE2

λ,(A) = 1] ≤ 1
2 + negl, where the experiment ExptPKE1,PKE2

λ,A is

defined as follows:

ExptPKE1,PKE2

λ,A =


(pk1, sk1)← Setup1(1λ), (pk2, sk2)← Setup2(1λ)

(m0,m1)← A(pk1, pk2), b← {0, 1}
m∗ = sk2‖mb, r ← {0, 1}∗

ct1 = Enc1(pk1,m
∗; r); ct2 = Enc2(pk2, sk1); b′ ← AO(pk1,m

∗,r)(ct1, ct2)
Return 1 if |m0| = |m1|, b′ = b and O did not return ⊥; 0 otherwise


We say that a PKE scheme is 2-circular secure if it is not given access to any

oracle in the same experiment.

2.2 Fully-Homomorphic Encryption Scheme

We present the definition of a fully-homomorphic encryption scheme below with
additional properties as defined by [21].

Definition 3 (FHE). A fully homomorphic encryption scheme for the circuit
class C = {Cλ,d}λ,d∈N and randomness space R = {Rλ,d}λ.d∈N is a tuple of PPT
algorithms

FHE = (Setup,Enc,Eval,Dec)

satisfying the following specifications:

(pk, sk)← Setup(1λ, 1d): The setup algorithm takes as input a security parame-
ter λ ∈ N, a circuit depth bound d ∈ N (which is a polynomial in the security
parameter). It outputs a key pair (pk, sk).

ct← Enc(pk,m; r): It takes as input a public key pk and a plaintext m ∈ {0, 1}
and a randomness r ∈ Rλ,d and outputs a ciphertext ct. Here Rλ,d ⊆ {0, 1}∗
is some finite set. Encryption of multiple bits is done by encrypting each of
them separately.

ĉt← Eval(C, ct1, . . . , ct`): It takes as input a boolean circuit C : {0, 1}` → {0, 1} ∈
Cλ,d of depth ≤ d and ciphertexts ct1, . . . , ct`. It outputs an evaluated cipher-
text ĉt.

m̂← Dec(sk, ĉt): The decryption algorithm takes in the secret key sk and a pos-
sibly evaluated ciphertext ĉt. It outputs m̂ ∈ {0, 1,⊥}.



A fully-homomorphic encryption scheme satisfies correctness:

(Perfect) Correctness: For every λ, any polynomial d(λ) ∈ N and ` ∈ N,
every key-pair (pk, sk) in the support of Setup(1λ, 1d), every set of messages
m1, . . . ,m` ∈ {0, 1}`, every ciphertext {cti}i∈[`] in the support of {Enc(pk,mi)}i∈[`]
and every circuit C : {0, 1}` → {0, 1} in Cλ,d, Dec(sk, ĉt) = C(m1, . . . ,m`) where
ĉt = Eval(C, ct1, . . . , ct`).

Remark 1. For any polynomial d(·), We denote by FHEd, an FHE scheme where
the depth is hardwired to be d(λ).

Above we omit the security definition which is identical to the definition of
security for a public-key encryption scheme and the notion of (levelled) com-
pactness which says that the size of a fresh as well as an evaludated ciphertext
encrypting a single bit is bounded by poly(λ, d) for some fixed polynomial poly.
We refer the reader to [24,13] for detailed definitions.

Now we define additional algorithms that were introduced by [21]. Any FHE
scheme is not required to exhibit these, although, most of the known schemes
do.

Definition 4 (Extra-Noisy Encryption). We denote by Enc∗ an extra-noisy
encryption algorithm, which has the same syntax as the encryption algorithm
Enc, except that the randomness it uses is sampled uniformly from another set
R∗ = {R∗λ,d}λ,d∈N.

We call R∗ as the extra-noisy randomness space and any ciphertext encrypted
using Enc∗ as an “extra-noisy” encryption.

Randomness Homomorphism. Given ` ∈ N ciphertexts, {cti}i∈[`], underly-
ing message {mi}i∈[`] and randomness {ri}i∈[`] where each ri ∈ Rλ,d, and any
circuit C ∈ Cλ,d, in most FHE schemes it is possible to efficiently recover random-
ness rC ∈ R∗λ,d such that Eval(pk, C, ct1, . . . , ct`) = Enc∗(pk, C(m1, . . . ,m`); rC).
This algorithm is denoted by RandEval.

Definition 5 (Randomness Homomorphism). An FHE scheme with ex-
tra noisy randomness space R∗ satisfies randomness homomorphism property
if there exists a probabilistic polynomial time algorithm RandEval with the fol-
lowing property.
For any λ ∈ N and any polynomial d(λ) ∈ N, RandEval(pk, C, r,m) takes as in-
put a public key pk in the support of Setup(1λ, 1d), a circuit C : {0, 1}` → {0, 1} ∈
Cλ,d, randomness r = (r1, . . . , r`) ∈ R`λ,d and messages m = (m1, . . . ,m`) ∈
{0, 1}`, and it outputs rC ∈ R∗λ,d such that:

Eval(pk, C,Enc(pk,m1; r1), . . . ,Enc(pk,m`; r`)) = Enc∗(pk, C(m1, . . . ,m`); rC)

We now define the notion of SRL security for a fully-homomorphic encryp-
tion scheme with an extra-noisy encryption algorithm and randomness homo-
morphism property.



Definition 6. A fully homomorphic encryption scheme with extra-noisy encryp-
tion and randomness homomorphism property for depth d, denoted as FHEd is
said to be SRL-secure if it is OFHEd

SRL -leakage resilient secure for the following
oracle.

Oracle OFHEd
SRL (pk,m∗, r)

r∗ ← R∗, ct∗ = Enc∗(pk, 0; r∗)
(f, α)← A(ct∗)
rf = RandEval(pk, f, r,m∗)
If f ∈ Cλ,d and α = f(m∗), then set leak = r∗ − rf ∈ R∗
Otherwise set leak = ⊥. Output leak.

3 Homomorphic Encryption Schemes

Below we recall both GSW Encryption [24] and its Dual formulation [14]. In the
sections, we also specify the exact modifications we need for our counterexample.
We assume familiarity with some notations relevant in lattice based cryptogra-
phy. For completeness, they are outlined in Appendix A.

3.1 Gentry-Sahai-Waters FHE Scheme

We now describe our scheme, and set parameters later when needed in the coun-
terexample. Below is a list of symbols to be used in the scheme.

– λ is the security parameter,
– d(λ) is the polynomial depth bound,
– p is the prime modulus used in the scheme,
– n,m,w are polynomials in λ, and are used as dimensions of the matrices

involved,
– χ is an error distribution used for generating LWE samples,
– B1, B2 are poly(λ, d)-bit positive integers that are used as bounds. B1 is the

bound on the infinity norm of the randomness in the evaluated ciphertext
after evaluating a depth d circuit,

– Assuming w = n · dlog2 pe, let G be the gadget matrix of dimension n× w,
– Cλ,d consists of all polynomial sized arithmetic circuits of depth d with

Boolean inputs and outputs composed of multiplication, addition and mul-
tiplication by a constant in Zp, with the following special property: For any
Boolean input, during the evaluation, all the multiplication gates are evalu-
ated on Boolean inputs.

Remark 2. In the circuit class Cλ,d, in particular, we allow multiplication by a
potentially large field element, as long as all inputs to all multiplication gates are
Boolean. Our counterexample for 2-Circ SRL security will only exploit boolean
computations, whereas the counterexample for [44] will exploit such multiplica-
tion by constant gates.



Now we describe the scheme:

Setup(1λ, 1d)→ (pk, sk) : Perform the following steps.

– Sample A← Z(n−1)×m
p .

– Sample s← Z1×(n−1)
p .

– Sample e← χ1×m. Set b = s ·A + e mod p
– Set U = [A>|b>]> ∈ Zn×mp .
– Output pk = U and sk = s.

Enc(pk, µ)→ ct : To encrypt a bit µ ∈ {0, 1} perform the following steps.

– Sample R← [−1, 1]m×w.
– Compute and output ct = U ·R + µ ·G where G is the gadget matrix

of dimension n× w.

Eval(pk, C, ct1, . . . , ct`) → ĉt : To evaluate an arithmetic circuit C : {0, 1}` →
{0, 1}, perform the following operations gate by gate, as per the gate evalu-
ation rules below and according to the topological ordering provided by the
circuit.

– Addition: Add(ct′1, ct
′
2), Output ct′1 + ct′2.

– Multiplication: Mult(ct′1, ct
′
2), Output ct′1 ·G−1(ct′2).

– Multiplication by a constant c ∈ Zq: ConstMult(c, ct′1), Output ct′1 ·
G−1(c ·G).

Dec(sk, ĉt) : To decrypt, compute: z = (−s‖1) · ĉt · v where v ∈ {0, 1}w×1 with
vi = 1 iff i = w − 2. Output 0 if |z| ≤ p

16 and 1 otherwise.

We now observe that the GSW scheme above satisfies Randomness Homomor-
phism property.

Randomness Homomorphism: Below we define the algorithms that make
up the the randomness homomorphism property.

Enc∗(pk, µ) : For an extra noisy encryption of a bit µ ∈ {0, 1} perform the
following steps.

– Sample R∗ ← [−B2, B2]m×w.
– Compute and output ct∗ = U ·R∗+µ ·G where G is the gadget matrix

of dimension n× w.

RandEval(pk, C, {Ri}i∈[`], {mi}i∈[`]) : Just as in evaluation of ciphertext, com-
pute the randomness gate by gate. For gates with fan-in 2, let R′1 and R′2
be the input randomness, m′1, m′2 be the input messages and ct′1, ct′2 be the
corresponding ciphertext. For the multiplication gate, let the input be the
values with subscript “1”. Below we describe the process to compute the
randomness that is propogated. Messages can be computed by evaluating
the circuit.

– For addition gate, output R′1 + R′2.
– For multiplication gate, output R′1 ·G−1(ct′2) +m′1 ·R′2.
– For multiplication by the constant c, output R′1 ·G−1(c ·G).

[21] observed that GSW scheme satisfies plain SRL security.



3.2 Dual-GSW Homomomorphic Commitment Scheme

We now provide the Dual-GSW homomorphic commitment scheme [14] as de-
scribed by [44]. We set parameters later when needed in the counterexample.
Below is a list of symbols to be used in the scheme.

– λ is the security parameter,
– d(λ) is the polynomial depth bound,
– p is the prime modulus used in the scheme,
– n,m,w are polynomials in λ, and are used as dimensions of the matrices

involved,
– χ is an error distribution used for generating LWE samples,
– Assuming w = m · dlog2 pe, let G be the gadget matrix of dimension m×w,
– Cλ,d consists of all polynomial sized arithmetic circuits of depth d with

boolean inputs and outputs composed of multiplication, addition and mul-
tiplication by a constant in Zp, with the following special property: For any
boolean input, during the evaluation, all the multiplication gates are evalu-
ated on binary inputs.

Now we describe the scheme,

Setup(1λ, 1d)→ pk : Perform the following steps.
– Sample A← Zm×np .
– Output pk = A.

Enc(pk, µ)→ ct : To compute a commitment ct to a bit µ ∈ {0, 1} perform the
following steps.
– Sample R← Zn×wp .
– Sample E← χm×w.
– Compute and output ct = A ·R+µ ·G+E where G is the gadget matrix

of dimension m× w.
Evaluation We now define two evaluation algorithms, Eval1 and Eval2. Eval1

takes as inputs ct1, . . . , ct` committing bits µ1, . . . , µ` and a function C :
{0, 1}` → Zp in Cλ,d and computes a commitment of C(µ1, . . . , µ`). Eval2
takes as input commitments ĉt1, . . . , ĉtm commiting elements µ̂1, . . . , µ̂m and
outputs a packed commitment ĉtpacked ∈ Zm×1p of the form Ar̂ + µ̂ + e

where µ̂ = (µ̂1, . . . , µ̂m)>. The evaluation algorithm for circuits of the form
g : {0, 1}` → Zmp ∈ Cλ,d in [44] is a composition of these two evaluation
algorithms (Eval1 followed by Eval2).

Eval1(pk, C, ct1, . . . , ct`)→ ĉt : To evaluate an arithmetic circuit C : {0, 1}` →
Zp in Cλ,d, perform the following operations gate by gate, as per the gate
evaluation rules below and according to the topological ordering provided
by the circuit.
– Addition: Add(ct′1, ct

′
2), Output ct′1 + ct′2.

– Multiplication: Mult(ct′1, ct
′
2), Output ct′1 ·G−1(ct′2).

– Multiplication by a constant c ∈ Zp: ConstMult(c, ct′1), Output ct′1 ·
G−1(c ·G).

Eval2(ct1, . . . , ctm)→ ĉtpacked



– Output ĉtpacked =
∑
i∈[m] cti · G−1(1i) where 1i ∈ {0, 1}1×m is the

indicator vector with 1 at the ith position. We refer to this output as a
packed commitment.

Evalopen,packed(g,A, {Ri}i∈[`], {xi}i∈[`], {Ei}i∈[`]), the Evalopen,packed takes as

input a circuit g : {0, 1}` → Zmp ∈ Cλ,d, public key A, and ` randomness-

message tuples (Ri,Ei, xi), and it outputs the opening for ĉtpacked = Eval(g, ct1, . . . , ct`) =
Ar̂+ê+g(x) where cti = ARi+Ei+xiG. This is done in two steps. First, it
propagates openings for unpacked ciphertexts. Let gi for i ∈ [m], denote the
circuit computing the ith component. It runs Evalopen(gi,A, {Ri}i∈[`], {xi}i∈[`], {Ei}i∈[`])
for i ∈ [m] below:
– Evalopen(gi,A, {Ri}i∈[`], {xi}i∈[`], {Ei}i∈[`]), the Evalopen algorithm takes

as input a circuit gi : {0, 1}` → Zp ∈ Cλ,d, matrix A, randomness and
messages for commitments cti = ARi + xiG + Ei and it outputs ran-
domness and messages of the evaluated commitment ĉti = AR̂i + Êi +
gi(x1, . . . , x`)G. This is done by propagating gate by gate. Let R′1, R′2,
E′1 and E′2 be the input randomness, and x′1 and x′2 be the inputs.
For gates with a single input, let the subscript of the input be 1. Let
ct′b = AR′b + xbG + E′b for b ∈ {1, 2}.
• For addition gate, output R′1 + R′2, E′1 + E′2 and x′1 + x′2.
• For multiplication gate, output R′1·G−1(ct′2)+x′1·R′2, E′1·G−1(ct′2)+
x′1 ·E′2 and x′1 · x′2.
• For multiplication by constant output R′1 ·G−1(c ·G), E′1 ·G−1(c ·G)

and c · x′1.
Then, for the opening of the packed commitment it outputs r̂ =

∑
i∈[m] R̂iG

−1(1i),

ê =
∑
i∈[m] ÊiG

−1(1i) and y = g(x).

4 Correlation-Inducing Gates

We turn to the conceptual heart of our attacks: two simple transformations
on FHE ciphertexts which, put together, have the following effect. Given the
ciphertext ctx for a bit x ∈ {0, 1}, we produce a new ciphertext ct′x which still
decrypts to x, such that the “noise part” of ct′x is correlated with x. The exact
meaning of “noise part” depends on the underlying FHE scheme – we show this
for the dual version of [24] as described by [14].

Crucially, these transformations can be realized by standard homomorphic
evaluation of multiplication and addition gates, as well as homomorphic evalu-
ation of gates which multiply by constants c ∈ Zp. Therefore, we can package
them into a special identity gate which can be appended to any circuit to produce
a new circuit which computes the same function as the old one, but such that
standard homomorphic evaluation of that circuit produces a ciphertext where
the noise part and message part are correlated.

4.1 Correlation-Inducing Gate for Dual-GSW

In this subsection we adopt notation as in Section 3.2. In particular, we assume
the presence of a public key A ∈ Zm×np .



The first half of our correlation-inducing gate for dual-GSW is captured in
the following lemma.

Lemma 1 (Even-noise gate for dual-GSW). Let ctx = AS + xG + E be
a dual-GSW encryption of some x ∈ Zp, where each entry |E[i, j]| ≤ B for
some B ≤ p/(100w) and let ct′x be the result of homomorphically evaluating the
following two gates:

1. g1(x) = 1
2x

2. g2(x) = x+ x.

That is, ct′x = Eval(g2,Eval(g1, ctx)) (where we use the public key A). Then
ct′x = AS′ + xG + E′ for some S′ ∈ Zn×wp and some matrix E′ ∈ Zm×wp for
which every entry satisfies E′[i, j] = 2·eij for some eij ∈ Zp with |ei,j | ≤ O(Bw).

The proof is a simple calculation

Proof. Expanding,

Eval(g1, ctx) = (AS + xG + E) ·G−1( 1
2 ·G)

= A(S ·G−1( 1
2 ·G)) + x · 12 ·G + E ·G−1( 1

2 ·G)

So,

Eval(g2,A(S ·G−1( 1
2 ·G)) + x · 12 ·G + E ·G−1( 1

2 ·G))

= A(2 · S ·G−1( 1
2 ·G)) + x ·G + 2 ·E ·G−1( 1

2 ·G)

Since G−1( 1
2 ·G) ∈ {0, 1}w×w, we have |(E ·G−1( 1

2 ·G))[i, j]| ≤ O(Bw).

We turn to the second half of the correlation-inducing gate.

Lemma 2 (Multiply-by-one gate for dual-GSW). Let ct∗ = AS∗+G+E∗

be a dual-GSW encryption of the constant 1, where |E∗[i, j]| ≤ p/10. Let x ∈
{0, 1} and let ctx = AS + x ·G + E be a dual-GSW encryption of x such each
entry E[i, j] = 2E′[i, j] where |E′[i, j]| ≤ p/(100w). Let g(x, y) = x · y. Then
Eval(g, ctx, ct

∗) = AS′ + x ·G + E′, where S′ ∈ Zn×wp and E′[1, 1] = x · E∗[1, 1]
mod 2.5

Proof. We observe that

Eval(g, ctx, ct
∗) = (AS + x ·G + E) ·G−1(AS∗ + G + E∗)

= A(SG−1(AS∗ + G + E∗) + xS∗)

+ x ·G + (x ·E∗ + EG−1(AS∗ + G + E∗)) .

The entries of EG−1(M) for any matrix M are at most p/100 in magnitude.
The lemma follows.

5For two field elements a, b ∈ Zq, we write a = b mod 2 if this holds in the embed-
ding of Zq into the integers [−dq/2e, bq/2c].



From Lemmas 1 and 2 we have the following corollary, capturing the correlation-
inducing gate for dual-GSW. The gate takes x, multiplies by the constant 1/2,
adds the result to itself, and multiplies by the constant 1. Homomorphically
evaluated, this operation introduces correlation between x and the error part of
the output ciphertext.

Corollary 1. Let ct∗ = AS∗+G+E∗ be a dual-GSW encryption of the constant
1, where |E∗[i, j]| ≤ p/10 for all i, j. Let x ∈ {0, 1} and let ctx = AS + xG + E
be a dual-GSW encryption of x such that |E[i, j]| ≤ q/poly(m, log q) for all i, j.
Then, for g1, g2 as in Lemma 1 and g as in Lemma 2,

Eval(g,Eval(g2,Eval(g1, ctx)), ct∗) = AS′ + xG + E′

where E′[1, 1] = xE∗[1, 1] mod 2.

In both Lemma 2 and Corollary 1, we actually have the stronger conclusion
that E′ = x ·E∗ mod 2, rather than just the [1, 1] entry – however, we will only
use the weaker conclusion for the [1, 1] entry.

4.2 Correlation-Inducing Gate for GSW

We now state the following fact as a lemma, which follows directly from the
properties of homomorphic evaluation of the GSW ciphertexts.

Lemma 3 (Multiply-by-zero). Let ct∗ = UR∗ be a GSW encryption of the
constant 0. Let ctx = UR + x · G be a GSW encryption of a bit x ∈ {0, 1},
where |R[i, j]|, |R∗[i, j]| ≤ B, for all i, j. Let g be the multiplication gate. Let
ĉt = Eval(g, ctx, ct

∗) = UR′. Then R′ = RG−1(ct∗) + xR∗. Further, for all i, j
|R′[i, j]| = O(B · w)

We will use this structure of the multiplication by 0 operation to counterexample
to 2-circ SRL security.

5 Counter Example to 2-Circular SRL Security

In this section we show that the GSW encryption scheme provided in the Sec-
tion 3.1 serves as a counterexample to 2-Circ SRL security.

5.1 Counter Example Details

We prove the following theorem:

Theorem 1. Let PKE be any encryption scheme where the depth of the de-
cryption circuit is d′(λ) for some polynomial d′. Let FHEd be the GSW fully-
homomorphic encryption scheme described in Section 3.1 for the circuit class
Cλ,d where d > d′ + λ, then, (FHEd,PKE) are not 2-Circ-SRL secure.



We show an explicit polynomial time adversary attacking the 2-Circ-SRL- secure
scheme. Below, we write down the interaction between the challenger and ad-
versary A in the security game and then we prove that the adversary wins with
constant (better than 1/2) probability.

1. The challenger runs PKE.Setup(1λ) → (pk2, sk2) and FHE.Setup(1λ, 1d) →
(pk1, sk1). Here pk1 is a matrix U and the secret key sk1 is a vector such
that (−sk1, 1) · U = e where e was the errors sampled from χ1×m. The
ciphertexts live in Fn×wp and all dimensions n,m and w are polynomial in
λ. As a consequence given the secret key, for any ciphertext US encrypting
0 with randomness S, one can compute e · S by multiplying with the secret
key.

2. The adversary submits two messages m0,m1 ∈ {0, 1}λ+1. Here, mβ =
(β, 0, . . . , 0) for β ∈ {0, 1}. The challenger samples β ← {0, 1} and lets
m∗ = (mβ‖sk2). Denote by ` the size of sk2.

3. The challenger computes ct1 = (ct1,1, . . . , ct1,`+2) and ct2 as follows. For
j ∈ [2 + `], compute ct1,j = FHE.Enc(pk1,m

∗
j ; R1,j) where R1,j is chosen as

in the scheme. It also computes ct2 = PKE.Enc(pk2, sk1). Both ct1, ct2 are
given to the adversary A. Each ct1,j ∈ Fn×wp and G−1(ct1,j) ∈ {0, 1}w×w.

4. The adversary finds at random an index jv ∈ [2, λ+1] (which is an index for
which ct1,jv encrypts 0) such that there exists a vector v ∈ {0, 1}w×1 such
that G−1(ct1,jv )v = 0w×1 mod 2. This can be done with overwhelming
probability because each G−1(ct1,j) for j ∈ [2, λ + 1] is rank deficient with
probability at least 1

2 − negl(λ).

5. Use ct1 and ct2 to compute ctsk1 which is an FHE encryption of sk1.

6. The adversary now submits q = λ · m functions, value tuples (fi, 0) for
i ∈ [q]. For query i ∈ [q], the function fi is described below. The function
fi is described in terms of the FHEd evaluation directly. The underlying
boolean function can be inferred from the FHEd evaluation. The function
description depends on ct1, ctsk1 , ct∗i = Enc∗(pk1, 0; R∗i ) which is the ith

sampled extra noisy ciphertext, the vector v and the index jv. For every
i ∈ [q], the adversary receives leaki = R∗i − R̂i where R̂i is the randomness
in the evaluated ciphertext computed for computing fi.

7. The adversary simply finds the dimension of the spaceW = {y ∈ {0, 1}1×w|y·
(leaki · v) = 0 mod 2 ∀ i ∈ [q]} over Fm2 . If the dimension is 0, output the
guess β′ = 0, otherwise output β′ = 1.



Function FHEd.Eval(fi, ·)

Input: ct1
Hardwired: ctsk1 , ct∗i ,v

1. Compute ct′i = UR′i + (β · 〈e,R∗i · v〉 mod 2)G. This is computable
because given the secret key sk1 of the FHEd, one can compute eR∗i
as pointed earlier, and we have encryption ctsk1 hardwired. Denote
γv = (β · 〈e,R∗i · v〉 mod 2)

2. Multiply ct′i with ct1,jv to get the following ciphertext (see Lemma 3).

ĉti = U (R′iG
−1(ct1,jv ) + γvR1,jv )︸ ︷︷ ︸

R̂i

3. Output ĉti.

We now argue that the success probability of the adversary is almost 3/4.
First of all, note that the adversary is admissible because fi on m∗ always
outputs 0. This is ensured because in the step 2 of the circuit, ct′i which computes
γv is multiplied by ctjv (which encrypts 0). Hence the output is always 0.

Let’s now analyze the depth of the circuit fi. Encryption of ctsk1 can be com-
puted by a circuit that is computable in depth d′ (which is the decryption circuit
depth of PKE). The second step is in NC1, because ((−1, sk1)·cti∗) mod 2 = eR∗i
mod 2. Finally, the last step consists of taking the resulting vector’s inner prod-
uct with β · v mod 2, which can also be done in NC1. So, if d > d′ + λ, the
function fi is computable in depth d.

Now we analyze the success probability of this attack. Observe that since
G−1(ct1,j) for all j ∈ [2, λ + 1] behave pseudorandomly, with probability at
least 0.5 − negl(λ), a given ct1,j is going to have a vector in the nullspace (the
determinant of a random matrix over F2 is random over F2). Thus, point 4)
succeeds with probability at least 1−negl(λ). Now let us analyze the randomness
of the evaluated ciphertext during each step of the evaluation.

1. leaki = R∗i − R̂i. Remember, R̂i = R′i ·G−1(ct1,jv ) + γvR1,jv .
2. The last step computes leaki · v mod 2 which produces:

leaki · v = R∗i · v − γvR1,jvv mod 2.

This is because G−1(ct1,jv )v = 0 mod 2.
3. If β = 0, γv = 0 and thus leaki · v = R∗i · v. Since v is independent of R

∗

i ,
R∗i · v mod 2 is distributed identically like a random vector over F2. Since
q = m ·λ, with probability 1−negl(λ), no non-zero vector y mod 2 ∈ F1×m

2 ,
can satisfy y ·R∗i v mod 2 = 0 for all i. This can be shown by computing
the probability of a fixed y to satisfy all q independent equations, which is
2−q, and then doing a union bound over all 2m choices of y.



4. If β = 1, γv = 〈e,R∗i ·v〉 mod 2 and thus leaki ·v = R∗i ·v+γvR1,jvv. Since
e is independent of R1,jv and v and further R1,jv · v 6= 0 (with probability
1 − negl(λ) as ct1,jv is lossy for R1,jv ), it holds that with probability 0.5 −
negl(λ), 〈e,R1,jvv〉 mod 2 = 1. In this case, we have that at least the vector
e mod 2 is a solution of:

0 = y · leaki · v = yR∗i · v − (〈e,R∗i · v〉 mod 2) y ·R1,jvv mod 2,

for every i ∈ [q]. This can be seen by substituting e for y. Hence dimension
of W is at least 1, with probability 0.5− negl(λ).

Thus the probability of guessing β correctly is:

1

2
(Pr[Dim(W ) = 0|β = 0] + Pr[Dim(W ) > 0|β = 1])

≥ 1

2
(1− negl(λ) + 0.5− negl(λ))(from the observations above)

≥ 3

4
− negl(λ)

This concludes the proof.

6 Counter Example for the Conjecture by Wee-Wichs

Now we describe our counterexample to the conjecture of Wee and Wichs [44].

6.1 Homomorphic Pseudorandom LWE Samples Conjecture

The following presentation closely follows Section 6 of [44] – for additional con-
text on the use of these definitions and conjecture to construct an oblivious LWE
sampler and then iO, we refer the reader to [44].

For some parameters λ, n,m, p,Q, we will define two distributions over tu-
ples of the form ({bi}i∈[Q],A,C, {si}i∈[Q]), where bi ∈ Zmp , A ∈ Zm×np , C =

C1, . . . ,Cλ+1 with Ci ∈ Zm×m log q
p , and si ∈ Znp . The conjecture will be that

these distributions are computationally indistinguishable.
We first need some additional setup.
Setup for pseudorandom error distribution:

– Let χprf be a distribution on Zp.
– Let D be an algorithm which takes v random coins in {0, 1} and outputs

samples s← Znp and e← χmprf .

– Let PRF : {0, 1}λ × {0, 1}∗ → {0, 1}v be a pseudo-random function.

Setup for pseudorandomly generating LWE samples:

– For i ∈ [Q], b ∈ Zmp , let gi,b,A be a circuit with values (i, b,A) hard-coded

and which performs the following computation on input (k, β) ∈ {0, 1}λ+1:

Let (sprfi , e
prf
i ) = D(PRF(k, i)). Output Asprfi + eprfi + β · b



Following [44], we now define two distributions DIST(β) for β ∈ {0, 1} as
follows. Let χ be a B-bounded distribution.

– For i ∈ [Q], generate LWE samples bi. Concretely, A ← Zm×np , ŝi ← Znp ,
êi ← χ̂m.

– Let k ← {0, 1}λ and sample dual-GSW commitments C1, . . . ,Cλ to k1, . . . , kλ.
That is, sample Ri ← Zn×wp and Ei ← χm×w and set Ci = ARi+kiG+Ei.

– Let Cβ = ARβ + βG + Eβ be a dual-GSW commitment to β.

– For i ∈ [Q], let (sprfi , e
prf
i ) = D(PRF(k, i)).

– Let (rEvali , eEvali ) = Evalopen,packed(gi,Aŝi+êi,A,A, (k, β),R,E).

– Let si = rEvali + sprfi + βŝi.
– Output ({Aŝi + êi}i∈[Q],A,C1, . . . ,Cλ,Cβ , {si}i∈[Q]).

Conjecture 1 (HPLS Conjecture, [44] Conjecture 6.4). Let λ be a security pa-
rameter and n,m, q, χ, χ̂, χprf be such that the LWE assumption holds with pa-
rameters (n, q, χ) and with (n, q, χ̂). Furthermore, suppose that χprf smudges

out error of size B̂ +B ·mO(t), where t is the depth of the circuit gi,b,A (which
is dominated by the depth of PRF). Then there is a choice of PRF such that
DIST(0) and DIST(1) are computationally indistinguishable.

6.2 Counter Example Details

In our main theorem, we make the following assumption about implementation
details of the circuit gi,b,A which are left unspecified in [44]. We assume there
is a Boolean circuit CPRF computing the pseudorandom function and another
Boolean circuit CD implementing the sampling algorithm D, whose outputs are
the binary expansion of (sprfi , e

prf
i ). Then g is given by

1. composing the circuits CPRF, CD,
2. multiplying by field elements in Zp and adding to compute each entry of the

vector Asprfi + eprfi ,
3. multiplying the input β by the field element b[j] for j ≤ m, and

4. adding (2) and (3) to obtain the final outputs. (Asprfi )[j] + ei[j] + β · b[j],
for j ∈ [m]. These outputs are packed into a vector by Eval.

We prove the following theorem:

Theorem 2. With λ, n,m, q, χ, χ̂, χprf as in Conjecture 1, for any sampling al-
gorithm D as above there is an arithmetic circuit CD over Zp implementing D
such that for any function F : {0, 1}λ × {0, 1}∗ → {0, 1}v, if Q � m2 log q
then the resulting distributions DIST(0) and DIST(1) are distinguishable with
nontrivial probability in polynomial time.

Remark 3. A somewhat easier argument than the below shows the same result
if we allow ourselves nonstandard implementations of parts (2) and (3) of gi,b,A.
A merit of our attack is that it allows any sampling algorithm D and any choice
of PRF, and requires only a careful choice of circuit CD to implement D.



The circuit CD We start by describing the circuit CD. Start with any circuit
C for D, with output in binary, and modify it in the following way.

– Let C0 be a circuit which takes the first bit x1 of its input and performs the
computation x1 + (1 + (q−1) ·x1)). (The output wire of C0 therefore always
carries the value 1.)

– To the output wire of C0 corresponding to the lowest-order bit of eprfi [1],
attach a new gate which performs the correlation-inducing transformation
described in Corollary 1, using the output wire of C0 as the special “1” input.

– To all of the other output wires, attach a gate performing the “even-noise”
transformation of Lemma 1. (As noted before, these gates can be imple-
mented using only multiplication and addition of boolean values and multi-
plication by a field element.) The result is the new circuit CD.

A Linear System Part (3) above of the circuit computing gi,b,A induces a linear
system in m × m log q variables Eij , in the following way. On input Cβ(E) =
ASβ + βG + E, part (3) of that circuit, evaluated homomorphically, produces
outputs of the form ASG−1(bi[j]) + βbi[j]G + EG−1(bi[j]). Let Lbi[j](E) be
the matrix of linear functions given in E given by EG−1(bi[j]). Let Li(E) be
the linear function in E given by the Lbi[j](E)[1, 1].

Distinguishing algorithm Now we describe an algorithm to distinguish DIST(0)
and DIST(1) with the above choice of F .

Input: ({bi}i∈[Q],A,C1, . . . ,Cλ,Cβ , {si}i∈[Q]),

1. Using the commitments C1, . . . ,Cλ,Cβ , homomorphically evaluate the cir-
cuits gi,bi,A to obtain (packed) ciphertexts ct1, . . . , ctQ ∈ Zmp .

2. Compute vectors e′i = cti −Asi. Let ei be the first entry of e′i.
3. Check if the linear system in m×m log q variables E given by the equations
Li(E) = ei has a solution over F2. If it does, output “β = 0”. Otherwise,
output a random β ∈ {0, 1}.

Proof (Proof of Theorem 2). To prove the theorem it will be enough to show
that the linear system Li(E) = ei has a solution with probability Ω(1) when the
underlying distribution is DIST(0), but has a solution only with probability o(1)
when the underlying distribution is DIST(1).

We start by examining the structure of ei in both the β = 0 and β = 1 cases.
We first expand cti.

cti = ArEvali + Asprfi + eprfi + β · (Aŝi + êi) + eEvali .

Then
e′i = cti −Asi = eprfi + eEvali + β · êi .

Furthermore, eEvali has two parts, coming from parts (2) and (3) of the circuit

for g – let us call eEval
2

i the part coming from step (2) and eEval
3

i the part from

step (3), so that eEvali = eEval
2

i + eEval
3

i and

e′i = eprfi + eEval
2

i + eEval
3

i + β · êi



We claim that with probability Ω(1), all i ∈ [Q] satisfy eprfi [1] = eEval
2

i [1] mod 2,
as a result of our design of the circuit CD. In fact, we claim that this occurs
whenever the (random) commitment C1 to k1 is such that homomorphically
evaluating the circuit C0 yields a ciphertext AS∗+k1 ·G+E∗ such that E∗[1, 1]
is odd, which occurs with probability 1/2. This follows directly from Lemmas 1
and 2, Corollary 1, and our assumption about the structure of the circuit g.
Together, these ensure that:

– the noise coming from homomorphically evaluating Asprf is all 0 mod 2,
and

– the noise coming from homomorphically evaluating eprf
i [1] has upper-left en-

try equal to 0 mod 2 (this entry is preserved by packing).

We conclude that, on the event above, ei = eEval
3

i + β · êi mod 2. Now,
if β = 0, observe that eEval3i = Li(E), the linear function described above in
m ×m log q variables E. So the linear system has a solution. Finally, if β = 1,
since Q � m2 log q the linear system is whp overdetermined, and ei mod 2 is
independent of the coefficients of Li and independent of other e′i, because of the
presence of the random vector êi. So whp the linear system is unsatisfiable.
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A Lattice Preliminaries

Lattices. An m-dimensional lattice L is a discrete additive subgroup of Rm (not
contained in any subspace of strictly smaller dimension). Given positive integers
n,m, q and a matrix A ∈ Zn×mq , we let Λ⊥q (A) denote the lattice {x ∈ Zm |
Ax = 0 mod q}.

Discrete Gaussians. Let σ be any positive real number. The Gaussian dis-
tribution Dσ with parameter σ is defined by the probability distribution func-
tion ρσ(x) = exp(−π‖x‖2/σ2). For any discrete set L ⊆ Rm, define ρσ(L) =∑

x∈L ρσ(x). The discrete Gaussian distribution DL,σ over L with parameter σ
is defined by the probability distribution function ρL,σ(x) = ρσ(x)/ρσ(L).

The following lemma (e.g., [38, Lemma 4.4]) shows that if the parameter σ
of a discrete Gaussian distribution is small, then any vector drawn from this
distribution will be short (with high probability).

Lemma 4. Let m,n, q be positive integers with m > n, q > 2. Let A ∈ Zn×mq

be a matrix of dimensions n ×m, σ ∈ Ω̃(n), and L = Λ⊥q (A). Then, there is a
negligible function negl(·) such that

Pr
x←DL,σ

[
‖x‖ >

√
mσ
]
≤ negl(n),

where ‖x‖ denotes the `2 norm of x.

Truncated Discrete Gaussians. The truncated discrete Gaussian distribu-
tion over Zm with parameter σ, denoted by D̃Zm,σ, is the same as the discrete
Gaussian distribution DZm,σ except that it outputs 0 whenever the `∞ norm

exceeds
√
mσ. By definition, we can say that D̃Zm,σ is

√
mσ-bounded, where a

family of distributions D = {Dλ}λ∈N over the integers is B-bounded (for
B = B(λ) > 0) if for every λ ∈ N it holds that Prx←Dλ [|x| ≤ B(λ)] = 1.

Also by 4, D̃Zm,σ and DZm,σ are statistically indistinguishable. Therefore, in
the preliminaries below, unless specified, the lemmata will apply in the setting
where by sampling from discrete Gaussian we mean sampling from truncated
discrete Gaussian distribution.
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A.1 Learning With Errors

The learning with errors (LWE) problem was defined by Regev [42]. The LWEn,m,q,χ
problem for parameters n,m, q ∈ N and for a distribution χ supported over Z is
to distinguish between the following pair of distributions

(A, sA + e mod q) and (A,u),

where A ← Zn×mq , s ← Z1×n
q , e ← χ1×n and u ← Z1×m

q . Similarly, we can
define the matrix version of the problem, which is known to be hard, if the
version above is hard. Specifically, let k ∈ poly(n,m), then in the matrix the
task is to distinguish between the following two distributions

(A,SA + E mod q) and (A,U),

where A← Zn×mq , S← Zk×nq , E← χk×n and U← Zk×mq .

The gadget matrix [37]. Fix a dimension n and a modulus q. Define the gadget
vector g = (1, 2, 4, . . . , 2dlog qe−1) and the gadget function g−1 : Zq → {0, 1}dlog qe
to be the function that computes the (log q)th bit decomposition of an integer.
For some integer z the function is defined as g−1(z) = v = (v1, . . . , vlog q) where
vi ∈ {0, 1} such that z = 〈g,v〉. By extension we define the augmented gadget
function G−1 : Zn×mq → {0, 1}(n·dlog qe)×m to be the function that computes the
(log q)th bit decomposition of every integer in a matrix A ∈ Zn×mq , and arranges
them as a binary matrix of dimension (n · dlog qe)×m which we denote G−1(A).
Hence, Gn · G−1(z) = Z, where the gadget matrix Gn is Gn = g ⊗ In ∈
Zn×(n·dlog qe)q . When n is clear from context, we denote Gn simply by G.
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