
White Box Traitor Tracing

Mark Zhandry
Princeton University & NTT Research, USA

Abstract

Traitor tracing aims to identify the source of leaked decryption keys. Since the “traitor” can
try to hide their key within obfuscated code in order to evade tracing, the tracing algorithm should
work for general, potentially obfuscated, decoder programs. In the setting of such general decoder
programs, prior work uses black box tracing: the tracing algorithm ignores the implementation of
the decoder, and instead traces just by making queries to the decoder and observing the outputs.

We observe that, in some settings, such black box tracing leads to consistency and user
privacy issues. On the other hand, these issues do not appear inherent to white box tracing,
where the tracing algorithm actually inspects the decoder implementation. We therefore develop
new white box traitor tracing schemes providing consistency and/or privacy. Our schemes can
be instantiated under various assumptions ranging from public key encryption and NIZKs to
indistinguishability obfuscation, with different trade-offs. To the best of our knowledge, ours is
the first work to consider white box tracing in the general decoder setting.

1 Introduction
Traitor tracing [CFN94] deters piracy by embedding identifying information into users’ personalized
decryption keys. From a leaked key, it should be possible to “trace,” extracting the “traitor’s”
identifying information; with this information, remedial action can be taken such as fines, prosecution,
and/or revocation. Tracing is ideally possible even in a variety of adversarial scenarios, such as if
many users collude or if the secret key is hidden inside an obfuscated decoder program. The bulk of
the tracing literature has focused on reducing the sizes of various components, such as ciphertexts
and public and secret keys.

Analyzing (potentially obfuscated) program code is notoriously difficult. Consequently, most
recent traitor tracing works (e.g. [CFN94, BSW06, BN08, BZ14, NWZ16, GKW18, Zha20]) operate
in a black box model: the tracer actually does not try to inspect the particular software of the
decoder, but instead simply queries the decoder on various ciphertexts and observes the outputs.
From just the input/output behavior, the tracer is able to extract the identifying information1.

This work: white box tracing. In this work, we consider the use of white box algorithms for
tracing general decoders. Specifically, we allow the adversary to produce arbitrary (potentially
obfuscated) programs in an attempt to remove the embedded identifying information, but use
non-black box algorithms for tracing. The two main questions we explore in this work are:

1Another oft-cited reason to consider black box tracing is that the decoder could be contained in a hardware device
employing various tamper resistant mechanisms to prevent it’s code from being inspected. In this work, however, we
will only consider software decoders.

1

What are potential advantages of white box tracing? And,
How to white box trace general adversarial decoders?

Remark 1. An early model for traitor tracing, which we will call faked key tracing, stipulates
that the traitor outputs an actual valid key for the system. Tracing then uses the combinatorial or
algebraic structure of the key, as opposed to its input/output behavior. Many early traitor tracing
works consider faked key tracing [KD98, BF99, NP01, KY03, TS06, JKL09, JKL09, ADVW13], and
some refer to this model as “white box tracing” or “non-black box tracing” (see, e.g. [NDC+15]
and [GNPT13], respectively). Such naming reflects that non-black box tracing algorithms have
always coincided with tracing models where the traitor must output a valid key. Outside of traitor
tracing, however, the labels “white box” or “non-black box” refer to the type of access to a program,
and is potentially orthogonal to the format of the program. We therefore prefer the terms “faked
key” versus “general decoder” to refer to the structure of the adversary’s decoder, and terms “black
box” versus “white box” to refer to the level of access the tracing algorithm has to the decoder. To
the best of our knowledge, ours is the first work exploring white box tracing in the general decoder
setting.

1.1 Motivation

To motivate white box tracing, we now discuss limitations of black box tracing; overcoming these
limitations will be the focus of our work. These limitations are orthogonal to the “usual” goal of
traitor tracing, namely minimizing parameter sizes. As such, parameter sizes are only a secondary
consideration in this work.

Public tracing. We first motivate a particular type of traitor tracing which has both public tracing
and embedded identities. Embedded identities, originally proposed by Nishimaki et al. [NWZ16],
means that arbitrary information can be embedded in the secret keys; in contrast, most tracing
schemes only embed an index from a polynomial-sized set. Nishimaki et al. point out that the
tracer would naturally want to know useful identifying information about the traitor, in order to
prosecute or fine. The key issuer could of course maintain a database mapping user indices to
actual identifying information, but having to store such a database in the clear naturally creates
privacy concerns. Embedded identities allow this information to be stored directly in the issued
keys themselves, eschewing the need for such a database.

For public tracing, the tracing algorithm only needs the public key and no secrets. This is in
contrast to secret tracing, where a secret key is required to trace, and anyone with the secret key
can break the security of the system. There are at least a few reasons to prefer public tracing
algorithms:

• Secret key tracing means the tracer cannot be compromised. Public key tracing allows anyone
to trace, removing a potential point of failure.

• As explained in [Pfi96], private tracing provides no natural mechanism for submitting evidence
to a judge, as there is no way besides revealing the secret tracing key to certify the results of
tracing. While there are solutions in the secret tracing setting, public tracing automatically
solves the problem: the judge can always verify by simply re-tracing with the public key.

• In private key tracing, the tracer must somehow discover the decoder in order to trace, and
deterrence therefore relies on such discovery. It may take time for the tracer to discover the

2

decoder program, or it may never be discovered if the traitor and an unauthorized user are
secretive enough in their communication. After all, the pirate decoder would naturally be
transmitted out of band, and there is no reason to believe the tracer would automatically see
the decoder.
In contrast, with public key tracing, the sensitive information is immediately revealed to
anyone who receives the decoder, including the un-authorized user. Especially when combined
with embedded identities, public tracing yields a very strong deterrent mechanism: for example,
if the embedded information contains a bank account number, then a traitor would likely be
unwilling to send their key to anyone else, especially the unscrupulous un-authorized user.

The good news is that there already exist such public embedded identity tracing schemes, with
different trade-offs in terms of parameter sizes and assumptions used [NWZ16, GKW19]. However,
as we will now explain, public black box tracing schemes, including all existing public tracing schemes
for general decoders, are inherently vulnerable to certain kinds of attacks.

Problem 1: Privacy. Consider an encrypted group chat application, where a group of users
broadcast messages to the entire group. The broadcasts are encrypted to protect against eaves-
dropping. The group members are also mutually distrusting, and want to protect against a traitor
revealing their key to an outside user. For example, the group could consist of political dissidents
coordinating a protest against an authoritarian regime, and they are concerned that a member may
give their key to government agents.

The group therefore will use a traitor tracing scheme to encrypt their message, embedding sensitive
or identifying information of each user into personalized decryption keys. In this decentralized
scenario, it is unclear who the tracer should be, and also unclear how to securely maintain a database
of users’ identifying information. Therefore, the group would naturally want a scheme with public
tracing and embedded identities, as discussed above2.

Unfortunately, we observe that such constructions inherently come with privacy concerns, due to
having black box tracing. A malicious Alice (whether or not an authorized group member) may try
to steal Bob’s private information by running the tracing algorithm over the network. That is, Alice
can send messages to Bob, and see how he responds, mounting a chosen ciphertext attack against
Bob’s decryption functionality. This is exactly how black box tracing works, and since the scheme
has public tracing, Alice has all the access she needs to trace Bob’s key. In fact, tracing algorithms
typically work in the “minimal access” setting, meaning Alice only needs to know whether Bob
decrypts. In our political dissident scenario above, this means government agents may be able to
learn the identities of the dissidents (or whatever sensitive information is embedded in the user
keys) by simply posting messages to the group chat, and seeing if there are any responses. This
would naturally concern the group members.

Thus, it is impossible to get the best of all worlds—public tracing, embedded sensitive information,
and user privacy under chosen ciphertext attacks—with black box tracing. White box tracing, on
the other hand, may offer a solution: the remote attacker never actually sees the user’s decryption
program, and may therefore be unable to run a white box tracing algorithm. Of course, at this
point it is not clear how to actually use white box tracing to achieve these goals.

2Similar to [NWZ16], we envision the original setup and key distribution executed through multiparty computation,
so no single user is responsible for setup.

3

Remark 2. Nishimaki et al. consider an object they call “anonymous” traitor tracing, where the
users never reveal their identifying information to the key issuer. However, beyond motivating the
direct embedding of sensitive information within user keys, they do not further explore anonymity
or privacy in traitor tracing. In particular, they do not discuss the privacy issue we observe here.

Problem 2: Consistency. In traitor tracing, the functionality of the various user keys is different.
This is inherent, for similar reasons to the case of watermarking as explained by Barak et al. [BGI+01]:
if each user key had identical functionality, then a traitor could apply indistinguishability obfuscation
(iO) to their key. The guarantees of iO would then imply the obfuscations of different users’ keys
are computationally indistinguishable, and hence cannot be efficiently traced. Thus any efficient
tracing scheme that maintains perfect consistency would necessarily prove the non-existence of iO,
which currently seems out of reach.

This means certain ciphertexts will decrypt differently under different user keys. While these
differing inputs would not occur under normal operation, it is nonetheless easy to find differing
inputs in the case of public black box tracing: since the tracing algorithm must distinguish between
the keys by querying the decoder functionality, it must be querying exactly on these differing inputs.

To see why this might be an issue, consider executing a multi-party computation (MPC) protocol.
As is standard in the MPC literature, assume that the users have access to a reliable broadcast
channel: when one user sends a message on the channel, all other users are guaranteed to receive
the same message. Now, suppose that the set of users want to encrypt the broadcasts in their MPC
protocol using a traitor tracing scheme3. Unfortunately, even if the ciphertexts are sent over a
reliable broadcast channel, the MPC is run on a virtual plaintext channel that is not reliable: a
malicious user may broadcast a ciphertext specifically designed to decrypt differently by different
users. Typical MPC protocols require broadcasts to be received consistently between the various
users, and such an inconsistent decryption would break the guarantees of the MPC protocol4.

More generally, in any setting where a broadcast channel is needed to ensure that all users
receive the same message, encrypting the communication with a public black box tracing scheme
can result in an unreliable broadcast channel.

On the other hand, such consistency issues do not appear inherent to white box tracing: a
malicious user only has black box access to the other users’ decryption functionalities, and may be
unable to use this access to find an input that decrypts differently. Yet if a user actually leaks their
decryption key or an obfuscated decoder with the key inside, a white box tracing algorithm might
nevertheless be able to trace, and in particular may be able to find such a differing ciphertext by
inspecting the code. Again, it is not yet clear how exactly to use white box tracing to achieve this
goal.

1.2 Overview of Our Results

In this work, we give several new results for white box traitor tracing:

• In Section 3, we give definitions for privacy and consistency in the traitor tracing setting.
Formalizing the above observations, we show that it is impossible to satisfy either privacy

3Of course, MPC security already implies that outsiders will be unable to learn anything about the users’ inputs
even without encrypting. But perhaps the users are encrypting messages for other reasons.

4There are MPC protocols that do not need broadcast channels, but they often come at the cost of increased round
complexity (see [CGZ20] and references therein).

4

or consistency while simultaneously achieving the tracing guarantee with a public black box
tracing algorithm.

• In Section 5, we construct a secure white box public tracing system that also satisfies our
privacy notion. Our construction can be based on either generic public key encryption and
non-interactive zero knowledge, or on indistinguishability obfuscation (iO), with different
trade-offs in terms of collusion resistance and parameter sizes. This scheme is not consistent.

• We do not fully solve the consistency problem, but in Section 6 we demonstrate a white
box traitor tracing scheme that achieves the tracing guarantee for constant-sized collusions,
while also achieving consistency and privacy (both for arbitrary collusions). Our scheme uses
fully homomorphic encryption, compute-and-compare obfuscation, and non-interactive zero
knowledge, which are all implied by circularly secure Learning With Errors (LWE) or iO.

Along the way, we introduce and build a notion of black box function privacy for functional
encryption (Section 4), which may be of independent interest.

1.3 Future Directions

Our work motivates several fascinating future directions:

• We are able to construct consistent tracing only for constant-sized collusions. Is arbitrary-
collusion consistent tracing possible, potentially even under extremely strong assumptions?
Alternatively, is there an impossibility?

• Our constructions utilize heavy machinery, using non-black box techniques at many levels.
This leads our constructions to be inefficient. Can truly efficient white box tracing be achieved?

• Traitor tracing can be seen as a special case of the more general problem of software water-
marking. To the best of our knowledge, all works in the watermarking setting also use black
box mark detection/extraction, and the privacy and consistency issues naturally translate to
watermarking. Can white box techniques be used to overcome similar issues in watermarking?

• There is a large gap between known programs that can be watermarked (e.g. puncturable
PRFs [CHN+16]) and programs that are known to be un-watermarkable (e.g. un-obfuscatable
functions [BGI+01]). Can white box mark detection/extraction be use to help close this gap?

• Chosen ciphertext attacks for traitor tracing has been considered before (e.g. [DF03]), but
to the best of our knowledge, prior such explorations have been limited to message secrecy
goals. Our work highlights further consequences of CCA attacks. Are there other possible
consequences?

2 Our Techniques

2.1 Part 1: Private Traitor Tracing

Definitions and impossibility. In Section 3.2, we give a formal model for privacy of a user’s
sensitive information under chosen ciphertext queries to their decryption functionality. We give
several indistinguishability and simulation-based definitions formalizing “learning nothing”; we show

5

that the indistinguishability notions are equivalent to the corresponding simulation-based notions.
Our strongest notion actually gives the adversary the full master secret key, meaning privacy holds
even if the master key is leaked. We also formalize the above observations, showing that even the
weakest versions of our privacy notion are impossible for black box public tracing schemes. Our
strongest notion of privacy (where the adversary gets the master secret key) is even incompatible
with black box secret tracing.

Theorem 1 (Informal). Black box publicly traceable schemes cannot be private.

Achieving privacy through white box tracing. In Section 5 turn to building a scheme that
can be publicly traced while maintaining privacy. Since black box tracing is impossible, we must
devise a tracing scheme that is inherently white box, in that accessing the code of decoder allows
for tracing while black box access cannot.

The natural starting point are the un-obfuscatable functions (UOFs) of Barak et al. [BGI+01],
which can be learned from any code for the function, but not from black box access. While UOFs
are indeed closely related to our goal, they do not immediately give what we need:

• UOFs are not necessarily decryption functions. While Barak et al. show how to extend their
UOFs to encryption functions, it is not obvious that they can be extended to the decryption
functionality.

• In Barak et al.’s UOF, the functionality of the encryption scheme is tied to the UOF itself.
In the traitor tracing system, we want many different users to be able to decrypt the same
ciphertext, hence seemingly all keys would have the same UOF. But at the same time, the
users should have different sensitive information, seemingly requiring different UOFs.

• Barak et al.’s UOF does not handle the case of colluding users.

• Barak et al.’s UOF requires perfect or near-perfect correctness for the decoder. While this
can be extended to much lower correctness using robust un-obfuscatable function [BP13], the
current techniques do not extend to the inverse-polynomial correctness setting, as usually
required in traitor tracing.

Our idea is to use black box traitor tracing techniques, but set the embedded information for a
user to be a UOF in order to upgrade the black box scheme into a white box scheme. However, this
requires care. The naive approach is to set the embedded information to be the actual code of the
UOF, but this will not work: the adversary can mount the black box tracing algorithm remotely to
recover the UOF code, and then recover the user’s private information from the UOF code. We
therefore need a more sophisticated embedding.

To describe our solution, we first recall the black box tracing scheme of Nishimaki et al. [NWZ16],
which follows the PLBE framework [BSW06]. Start from a public key functional encryption (FE),
which allows for generating secret keys skf for functions g; skf allows for learning f(x) from an
encryption of x, but nothing else about x. Assume the identity space is [I], for some exponentially-
large integer I. Nishimaki et al. encrypt a message m by FE-encrypting the pair (0,m). The secret
key with identity id embedded is then skfid where

fid(z,m) =
{
m if id > z

⊥ if id ≤ z
.

6

Notice that fid(0,m) = m, meaning skfid will decrypt honest ciphertexts, while fid(I,m) = ⊥. By
FE security, given any decoder D built from skfid and any z, one can test if id > z by looking at the
decoder’s decryption probability on encryptions of (z,m). A binary search over z can then recover
id; Nishimaki et al. show how to extend the binary search to the case of colluding users and to
decoders with small decryption probability, as required for traitor tracing.

In order to embed a function into the secret key, rather than just a string, we modify Nishimaki
et al.’s construction as follows. To embed a function g, we choose a random “tag” τ , and generate
the function secret key skfg,τ where

fg,τ (z, x,m) =

m if τ > z

⊥ if (τ < z) ∨ (τ = z ∧ x = ⊥)
m if τ = z ∧ x 6= ⊥ ∧ g(x) = 1
⊥ if τ = z ∧ x 6= ⊥ ∧ g(x) = 0

.

If we set x = ⊥, then skfg,τ has the same structure as fid above with id = τ . Therefore, we can first
run a binary over z search to recover τ . Then we evaluate g on an input x by testing the decoder
on encryptions of (τ, x,m), and seeing whether it is able to decrypt; if it can decrypt, we must have
g(x) = 1, otherwise g(x) = 0. The result is what we call function-embedded traitor tracing (FETT).

Remark 3. The structure above is similar to an optimization Nishimaki et al. employ to get a
scheme where ciphertexts are very short, in particular shorter than the identity id. Essentially, they
let g be the function with polynomial-sized domain whose truth table is id. The structure was
also used in [GKW19], again with g being a truth table, with the goal of achieving efficient traitor
tracing under standard assumptions. Our use of this structure is with an entirely different goal: to
embedding functions in a non-trivial way into the secret keys.

With a FETT, we can now build our private traitor tracing scheme by setting g to be an
un-obfuscatable function UOFid, which has the identity id of the user embedded. Given a decoder
D, we can construct a program P that evaluates UOFid by running the FETT tracing algorithm
as described above. The un-obfuscatable function guarantee means that from P , we can extract
the identity id. Meanwhile, the intuition for privacy is that a remote user can only make black
box queries to the user, corresponding to black box queries to UOFid; the un-obfuscatable function
guarantee means that such queries do not reveal id. Realizing this intuition, however, comes with
several challenges:

• Since tracing is randomized, the program P is a randomized procedure, whereas the un-
obfuscatable function guarantee of Barak et al. only applied to deterministic circuits. One
can make P deterministic by hard-coding the randomness, but for any particular choice of
randomness there may be some x where P outputs the incorrect answer. Additionally, the
original P may actually completely fail to evaluate UOFid correctly on some inputs, for example
if x is the master secret key. Fortunately, we show that P correctly computes UOFid for inputs
x that are efficiently computable to the adversary. We show that the Barak et al. functions
maintain the un-obfuscatable function guarantee even for this relaxed notion of correctness
for P 5.

5Our needed notion is also implied by robust UOFs [BP13], but these are only known from trapdoor permutations.
Barak et al.’s construction relies on just one-way functions, which are implied by FE.

7

• For a secure FE, black box queries to the secret key skf might still reveal the code for f . If
such an FE is used in our construction, the result is that a remote adversary may be able to
obtain the code for UOFid, and hence id. As such, we actually need a function privacy notion
for the FE scheme, which roughly requires that black box queries to skf are “no better than”
black box queries to f itself. This notion of function privacy is incompatible with existing
notions of privacy for public key functional encryption6. In Section 4, we show a simple
transformation upgrading any plain FE scheme into one with our notion of function privacy
using non-interactive zero knowledge (NIZK) proofs.

Remark 4. Our “black box” function privacy notion may have applications beyond this work. For
example, consider a common-cited application of functional encryption to filtering spam. Here, f is
a spam filter employed by an email server. A user wants the server to be able to route encrypted
emails according to the spam filter, but does not want the server to learn anything beyond whether
or not an email was spam. The solution is to give the server skf . But now suppose that f is
proprietary, and the server wants to prevent potential spammers from learning too much about f 7.
A spammer can effectively query f by sending spam to the user and seeing whether or not the user
actually receives the email (as indicated, say, by whether the user clicks on a link). Plain functional
encryption, unfortunately, may allow the adversary to do more: the result of decrypting malicious
ciphertexts may reveal the bits of skf , or even the code of f . Black box function privacy guarantees
that the spammer is limited to just querying f and learning the input/output behavior of f .

Instantiations. We can plug any FE scheme (and NIZK) into our construction. Our conversions
preserve the ciphertext sizes of the underlying FE. Using known FE constructions, we obtain the
following:

Theorem 2 (Informal). Assuming public key encryption and NIZKs, there exists a traitor tracing
scheme with public tracing, embedded identities, and privacy, with poly(N)-sized ciphertexts for
collusions of size N . Assuming indistinguishability obfuscation and one-way functions, there exists
such a scheme with O(1)-sized ciphertexts.

2.2 Part 2: Toward Consistent Traitor Tracing

Next, we turn to the problem of making sure different users decrypt consistently.

Definition and impossibility. In Section 3.3, we define several variants of consistency. The
strongest requires that even if the master secret key is leaked, it is impossible to find a ciphertext
that decrypts differently under any two users. This variant is quite strong, and we do not know
how to achieve it. Instead we also consider weaker variants. The variant we ultimately achieve
requires that a malicious user, or group of users, cannot find a ciphertext that would cause two
honest users to decrypt differently. Note that our notion does allow a group of malicious users
to find ciphertexts that they decrypt differently (or that they decrypt differently than the honest
user(s)). We nevertheless believe our notion is meaningful, as the consistency between honest users

6Full function privacy, which in particular implies black box function privacy, is possible in the secret key setting
for functional encryption [BS15].

7To prevent the user himself from learning f , we can imagine skf is generated using a multiparty computation
protocol between the sever and user.

8

seems most important. We formalize the above observations, showing that even the weakest versions
of our consistency notion are impossible for black box public tracing schemes. Our strongest notion
of consistency (where the adversary gets the master secret key) is even incompatible with black box
secret tracing schemes.

Theorem 3 (Informal). Black box publicly traceable schemes cannot be consistent.

Challenges. We first observe that our private traitor tracing scheme is not consistent, a conse-
quence of the first step of our tracing algorithm being black box. First, known UOFs for circuits are
non-evasive, with the accepting inputs depending on the function. With this fact, the black box
tracing step can easily be used to find differing inputs. An even more basic reason is that tracing
recovers the tags τ , and keys with different tags have different functionalities. For privacy, these are
not concerning since the tags and non-evasive parts of the UOFs are independent of the identifying
information that must be kept secret. For consistency, however, these issues mean it is easy to find
differing inputs. Even if one can find evasive UOFs for circuits, the tag problem will persist, as
secret keys must have distinct tags for collusion-resistance.

Our Construction. We are unable to fully solve the consistency problem. However, in Section 6
we achieve a solution which remains traceable with public tracing for constant-sized collusions, and
achieves consistency (and privacy) for arbitrary collusions.

At a very high level, our idea is to restructure fg,τ to require a special key σ in order to activate
the functionality g. By keeping σ secret, we can guarantee that differing inputs cannot be found.
However, keeping σ secret means tracing is no longer possible. To overcome this issue, we encrypt
σ using a fully homomorphic encryption (FHE) scheme. We can then run the tracing algorithm
homomorphically on the encryption of σ, arriving at an encryption of the users’ sensitive information.
Of course, we now need a way to decrypt to recover the information in the clear, without using the
FHE decryption key (recall that we want public tracing). We show that, by providing a certain
compute-and-compare obfuscation in the public key [WZ17, GKW17], we can allow for decrypting
in exactly the instance where tracing succeeds.

Unfortunately, the above is not consistent if the adversary has even a single key. This is because
any user with a secret key can run the tracing algorithm on their key. It is not difficult to show
that doing so will actually allow the user to decrypt any FHE ciphertext—including recovering
σ—bring us back to square one. The natural solution is to have different σ and different FHE
instances for each user, so that a user can recover their own σ but no one else’s. But if the σ are
isolated in different instances, there is no way to simultaneously provide the σ for different users
when homomorphically running the tracing algorithm.

Our solution is to provide a unique σ and FHE instance for each subset of users; we set σ to simply
be a signature on the (description of the) set. Of course, there are exponentially-many such subsets,
so we only consider subsets of a constant size c to keep the number of subsets polynomial. Tracing
then runs homomorphically on every subset of tags, using the compute-and-compare obfuscations
to check if tracing succeeded, and if so recovering the sensitive information of the users for that
subset. We prove that, as long as at most c users collude, at least one of the subsets will succeed
during honest tracing.

Now, an adversary controlling a set S of secret keys will be able to run tracing on any subset
of S, and would be able to find the σ for that subset. Using such σ would allow the adversary to
find inputs that differ amongst the keys they control. However, we show that the σ for any set not

9

entirely contained in S remains hidden. This is sufficient to show that the adversary cannot find
differing inputs for the honest users.

By instantiating our scheme with known FHE and compute-and-compare obfuscations, we obtain
the following:

Theorem 4 (Informal). Assuming circularly secure learning with errors, or both sub-exponentially
secure indistinguishability obfuscation and lossy encryption, for any constant c, there exists a traitor
tracing scheme with public tracing, embedded identities, and consistency, tolerating c collusions.

3 Traitor Tracing Definitions
Here, we define traitor tracing, including our new notions of privacy and consistency. Our actual
constructions will be given in Sections 4, 5, and 6.

3.1 Basic Tracing Definition

We first recall the definition of (plain) traitor tracing appearing in recent works [NWZ16, GKRW18,
GKW18, Zha20]. A traitor tracing scheme is a tuple ΠTT = (Gen,Enc,Derive,Dec,Trace) of PPT
algorithms:

(pk,msk)← Gen(1λ, N) 8 sk ← Derive(msk, id) m← Dec(sk, c)
c← Enc(pk,m) A← Trace(pk,D,m0,m1, 1N , 11/ε) .

Above, λ is the security parameter, N an upper bound on the number of users, pk the public
key, msk the master secret key, id a user identity, sk a user-specific secret key, m a message, and
c a ciphertext, D the code of a decoder program, m0,m1 two challenge messages, and ε ∈ (0, 1/2]
a “goodness” parameter. We require that there exists a negligible function negl such that for all
λ > 0, N > 0, id,m:

Pr
[

Dec(skid, c) = m :
(pk,msk)←Gen(1λ,N)
sk id←Derive(msk,id)

c←Enc(pk,m)

]
≥ 1− negl(λ) .

For security, consider the following experiment on adversary A and parameter ε = ε(λ):

• A gets input 1λ, and produces a number N .

• Run (pk,msk)← Gen(1λ, N). Send pk to A.

• A then makes at most N “identity” queries on identities id. For each query, respond with
skid ← Derive(msk, id). Let T be the set of id queried.

• A outputs D and m0,m1. Run A← Trace(pk,D,m0,m1, 1|T |, 11/ε).

We define the following events. BadTrε(A, λ) means an honest user is accused: that is, A * T .
GoodDecε(A, λ) means the decoder succeeds in distinguishing encryptions of m0 and m1: Pr[D(c) =
b : b ← {0, 1}, c ← Enc(pk,mb)] ≥ 1/2 + ε(λ). In this case, we say D is “good.” GoodTrε(A, λ)
means someone is accused: |A| > 0.

8Note that N may be allowed to be super-polynomial.

10

Definition 1. A traitor tracing scheme ΠTT is traceable if, for all PPT A and inverse-poly ε, there
exists a negligible function negl such that Pr[BadTrε(A, λ)] ≤ negl(λ) and Pr[GoodTrε(A, λ)] ≥
Pr[GoodDecε(A, λ)]− negl(λ).

We will occasionally distinguish between traitor tracing schemes where Trace has full access to
the code of D versus schemes where Trace only makes queries to the decoder. We will say that a
scheme where Trace has full access is white box traceable, and a scheme where Trace only makes
queries is black box traceable; for the latter we write TraceD(pk,m0,m1, 1N , 11/ε). We note that
most prior work on traitor tracing explicitly defines tracing to be black box.

We will also consider traitor tracing with bounded collusions, where N is bounded to some value
c, which may be a function of λ. In this case, we say the scheme is c-bounded collusion traceable (or
c-traceable, for short).

Remark 5. The bulk of the tracing literature sets the identity space to be [N]. Starting with
Nishimaki et al. [NWZ16], some recent works have considered the case where the identity space
is exponentially large, say n-bit strings. These works often use terminology such as “embedded
identities” [GKW19] to disambiguate from the usual setting. In this work, we will largely ignore
such distinctions.

3.2 Private Traitor Tracing

We now give our new definition of privacy in traitor tracing. Let A be an adversary, and consider
the following experiment:

• A gets input 1λ, and produces a number N .

• Run (pk,msk) ← Gen(1λ, N), and send pk to A. A can now make two kinds of queries, in
any order:

– At most N “identity” queries on identities id; respond with sk ← Derive(msk, id).
– A single “challenge” query on two identities id∗0, id∗1. Choose a random bit b ∈ {0, 1} and

compute sk∗ ← Derive(msk, id∗b); There is no reply.

• After the challenge query is made, A can additionally make arbitrary “ciphertext” queries on
ciphertexts c. Respond with Dec(skid∗b , c).

• Finally, A outputs a guess b′ for b.

Definition 2. A traitor tracing scheme Π is indistinguishably private (IND-P) if, for all PPT
adversaries A, there exists a negligible function negl such that Pr[b′ = b] ≤ 1/2 + negl(λ).

Note that our definition allows for id∗b to also be asked during identity queries. We can also consider
some variations on the above notion:

• We can limit N to be at most some value c (which may depend on λ). We say such a scheme
is c-bounded collusion indistinguishably private (c-IND-P).

• Alternatively, we can imagine giving A the master secret key msk in the clear at the beginning
of the experiment. In this case, we note that identity queries are redundant, as the adversary
can now run Derive for himself. This setting captures the case where the master secret key

11

may unintentionally be leaked, or alternatively where the key distributor is initially honest
but later becomes corrupted. In this case, we say the scheme is leaked master indistinguishably
private (LM-IND-P).

Simulation-based notions. We can also define simulation-based notions of privacy for traitor
tracing, which require that the responses to ciphertext queries can be simulated without knowing
the identity. More precisely, we consider two experiments, called the “Real world” and the “Ideal
world”. The “Real world” is identical to the experiment above, except that the challenge query
consists of a single identity id∗ and sk∗ ← Derive(msk, id∗). In the “Ideal world”, the experiment is
the same, except that sk∗ is never computed, and ciphertext queries on ciphertext c are answered by
a simulator S(msk, c, r) that does not know id∗. Here, r is some randomness that is chosen at the
beginning of the experiment, and used for every ciphertext query. Let WR,WI be the probabilities
A outputs 1 in the Real/Ideal world, respectively.

Definition 3. A traitor tracing scheme Π is simulation private (SIM-P) if there exists a simulator
S such that, for all PPT adversaries A, there exists a negligible function negl such that |Pr[WR =
1]− Pr[WI = 1]| ≤ negl(λ).

We can define c-SIM-P and LM-SIM-P analogously. Note that we always give S the master secret
key msk; this is in some sense necessary, since S somehow must be able to decrypt ciphertexts in
order to simulate.

It is easy to show that the indistinguishability and corresponding simulation notions are equivalent,
by having S simply compute sk for an arbitrary id, and answer all decryption queries with sk. Thus
we have that:

Lemma 1. A traitor tracing scheme Π is IND-P(respectively c-IND-P/LM-IND-P) if and only if it
is SIM-P(resp. c-SIM-P/LM-SIM-P).

Impossibility of Black Box Traceable Private Traitor Tracing. Here, we show that black
box traceable private traitor tracing is impossible:

Theorem 1. If Π is black box 1-traceable9, then it is not even 0-IND-P.

Proof. Let A be the following adversary for privacy: on input pk,msk, it outputs two random
(distinct) identities id∗0, id∗1. It also chooses two random distinct messages m0,m1. Let ε = 1/2. A
runs A← TraceDec(pk,m0,m1, 11, 11/ε), where Dec uses A’s decryption oracle to decrypt ciphertexts
c to get m, and then outputs 1 if and only if m = m1. If A contains exactly one of id∗b , output
b; otherwise output a random bit. By the correctness of Π, with probability 1 − negl, D is a
“good” decoder and so GoodDecε(A, λ) happens. As D only depends on the single secret key skid∗b ,
1-traceability means A = {id∗b} with probability 1− negl. As such, A will output b with probability
1− negl, breaking 0-IND-P.

3.3 Consistent Traitor Tracing

In this section, we give our new definition of consistency for traitor tracing. Let A be an adversary,
and consider the following experiment:

9Recall that c-traceable means the adversary gets ≤ c secret keys.

12

• A gets input 1λ, and produces a number N .

• Run (pk,msk) ← Gen(1λ, N), and send pk to A. A can now make two kinds of queries, in
any order:

– At most N “identity” queries on identities id; respond with sk ← Derive(msk, id). Let T
be the set of id queried.

– A single “challenge” query on two identities id∗0, id∗1. Compute sk∗b ← Derive(msk, id∗b) for
b = 0, 1; there is no reply.

Throughout the experiment, we require id∗0, id∗1 /∈ T , or else we immediately abort and set the
output of the experiment to Lose.

• After the challenge query is made, A can additionally make arbitrary “ciphertext” queries on
ciphertexts c. For such queries, compute mb = Dec(skid∗b , c) for b = 0, 1. If m0 = m1, respond
with m0. Otherwise, immediately abort and set the output of the experiment to Win

• At the end of the experiment, if no abort happened, output Lose.

Definition 4. A traitor tracing scheme Π is weakly consistent (W-CONSIS) if, for all PPT adversaries
A, there exists a negligible function negl such that Pr[Win] ≤ negl(λ).

Note that we can consider numerous variants of consistency:

• We can bound N by c, in which case Π is c-bounded collusion weakly consistent (c-W-CONSIS).

• We can give A the master secret key msk, in which case we say that Π is leaked master weakly
consistent (LM-W-CONSIS). Note that in this case, identity queries are redundant.

• Instead of having separate challenge and ciphertext queries, we can simply ask the adversary
to produce a ciphertext that results in different decryption outcomes among the secret keys
controlled by the adversary. In other words, the adversary cannot find a differing input
amongst his secret keys, even though he has them in the clear. In this case, we say that Π
is strongly consistent (S-CONSIS). Bounded collusion strong consistency and leaked master
strong consistency are defined similarly.

Relation to Privacy. Here, we discuss the relationship between privacy and consistency. We
observe that consistency actually implies privacy: if the adversary cannot find a ciphertext on which
two secret keys decrypt differently, then anything it can learn by querying the secret key must be
independent of the identifying information. This is formalized by the following:

Theorem 5. If Π is W-CONSIS (respectively LM-W-CONSIS or c-W-CONSIS), then it is also IND-P
(resp. LM-IND-P, c-IND-P).

Proof. We prove the case W-CONSIS⇒ IND-P, the other cases being proved similarly. Let A be an
adversary for IND-P; we use A to construct an adversary A′ for W-CONSIS. A′ runs A, answering
all queries by forwarding all queries to its own challenger. Notice that A′ perfectly simulates the
view of A, up until A makes a ciphertext query where the secret keys sk∗0, sk∗1 result in different
outcomes. But in this case, A′ will forward the query and win.

13

Suppose that A′ does not win. Conditioned on this case, A learns nothing about b since its
queries would be answered identically with both sk∗0, sk∗1. As such, the probability A wins is exactly
1/2. Overall, if A′ wins with probability ε, A wins with probability at most 1/2 + ε. By the assumed
W-CONSIS security, ε must be negligible. We conclude that IND-P holds.

As an immediate corollary of Theorem 5, we have:

Corollary 1. If Π is black box 1-traceable, then it is not even 0-W-CONSIS.

4 Functional Encryption and Black Box Privacy
In this section, we discuss functional encryption and introduce a new notion of privacy called black
box function privacy. Black box function private functional encryption will one of the main building
blocks for our private tracing scheme, and may have applicaitons beyond the scope of this work.

A functional encryption scheme is tuple ΠFE = (Gen,Enc,Derive,Dec) of PPT algorithms:

(pk,msk)← Gen(1λ, N) c← Enc(pk,m)
skf ← Derive(msk, f) o← Dec(skf , c) .

Above, λ is the security parameter, N an upper bound on the number of users, pk the public
key, msk the master secret key, f a function, skf a function-specific secret key, m a message, c a
ciphertext, and o an output. We require that Dec recovers f(m): there exists a negligible negl such
that for all λ > 0, N, f,m:

Pr
[

Dec(skf , f, c) = f(m) :
(pk,msk)←Gen(1λ,N)
skf←Derive(msk,f)
c←Enc(pk,m)

]
≥ 1− negl(λ) .

If the probability above is identically 1, we say the scheme is perfectly correct.

Ciphertext Indistinguishability. We now recall the “usual” definition of security for functional
encryption [BSW10, O’N10], which we will call ciphertext indistinguishability. Consider the following
experiment on an adversary A:

• A gets input 1λ, and produces a number N .

• Run (pk,msk)← Gen(1λ, N) and send pk to A. A can now make two kinds of queries, in any
order:

– Up to N “function” queries on functions f ; Return skf ← Derive(msk, f).
– A single “challenge” query on a pair of messages m0,m1. Choose a random bit b ∈ {0, 1}

and reply with Enc(pk,mb).

The only restriction on m0,m1 and the various f is that f(m0) = f(m1).

• Finally, A outputs a guess b′ for b.

Definition 5. ΠFE is adaptively ciphertext indistinguishable (IND-C) if for all A, there exists a
negligible negl such that Pr[b′ = b] ≤ 1/2 + negl(λ).

We also consider a c-bounded collusion (c-IND-C) version where N ≤ c = c(λ).

14

Known Results. Indistinguishability obfuscation (plus one-way functions) implies functional
encryption with adaptive ciphertext indistinguishability [Wat14, ABSV15]. Public key encryption
implies c-bounded collusion functional encryption for any polynomial c, where the parameters of
the system grows polynomially in c [GVW12]. These schemes are perfectly correct.

4.1 Black Box Function Privacy

We now consider the privacy of f . Function privacy has been considered before (e.g. [BS15, AAB+13]),
however it has always previously tried to keep f private even given skf . Note that for public key
functional encryption, we can always construct from skf a circuit Cf (x) = Dec(skf ,Enc(pk, x))
which computes f . Here, we consider a stronger notion of privacy, but in a weaker threat model.
We do not care about hiding f from the user who holds skf ; instead, we want to hide f from other
remote users mounting a chosen ciphertext attack against the holder of skf . Now, an adversary can
query f(x) by querying skf on Enc(pk, x). By Barak et al.’s impossibility result [BGI+01], such
queries may reveal less than the actual code Cf , allowing for stronger privacy in the black box
model.

Our Definition. Our formalization black box function privacy uses the Real/Ideal paradigm. Let
f∗ be a function and consider the following “Real” experiment BB-FP-Expf

∗

Real(A, λ) between an
adversary A and a challenger:

• A gets input 1λ, and produces a number N .

• Run (pk,msk)← Gen(1λ, N) and send pk and msk to A. Run sk∗ ← Derive(msk, f∗); sk∗ is
kept secret.

• A can now make an arbitrary number of “ciphertext” queries, where it produces a ciphertext
c. In response, it gets Dec(sk∗, c).

• Finally, A outputs a bit b, which is the output of the experiment.

Also consider the “Ideal” experiment BB-FP-Expf
∗

Ideal(S, λ) for a “simulator” S. The Ideal experiment
is identical to the Real experiment, except “ciphertext” queries are replaced with “function” queries,
where S sends x and receives f∗(x), and sk∗ is never generated. Note that by giving A, S the master
secret key, A and S can always compute function secret keys on its own.

Definition 6. A functional encryption scheme ΠFE is black box function private (BB-FP) if, for
every PPT A, there exists a PPT simulator S and a negligible negl such that, for every function f∗,∣∣∣Pr[1← BB-FP-Expf

∗

Real(A, λ)]− Pr[1← BB-FP-Expf
∗

Ideal(S, λ)]
∣∣∣ < negl(λ).

4.2 Upgrading to Black Box Function Privacy

Now we upgrade any (perfectly correct) functional encryption scheme to be black box function
private. The idea is simple: the simulator runs the adversary, decrypting any ciphertext query it to
learn the input x, which it then sends as a function query. To decrypt, the simulator obtains the
secret key for the identity function by using the master secret key. The potential problem is that
the adversary may try to devise a ciphertext which decrypts inconsistently under the identity secret

15

key vs the secret key for the function f∗. To overcome this problem, we include a zero-knowledge
proof of well-formedness, which combined with (perfect) correctness guarantees that decryption will
be consistent.

Construction 1. Let ΠFE = (Gen,Enc,Derive,Dec) be a functional encryption scheme, and
(P, V) be a NIZK proof system in the common reference string model. Then define ΠFE

′ =
(Gen′,Enc′,Derive′,Dec′) as follows:

• Gen′(1λ): run (pk,msk) ← Gen(1λ) and sample a common reference string crs for (P, V).
Output pk′ = (pk, crs) and msk′ = msk.

• Enc′(pk′,m): Interpret pk′ = (pk, crs) and run c← Enc(pk,m; r) with uniform randomness r.
Also run π ← P (crs, x) where x is the NP statement:

∃m, r : Enc(pk,m; r) = c

Output c′ = (c, π).

• Derive′(msk, f) = Derive(msk, f).

• Dec′(sk, c′): Interpret c′ = (c, π) and run o← Dec(sk, c). Then verify the proof π. If π verifies,
output o; otherwise output ⊥.

The following theorem is straightforward given the above discussion:

Theorem 6. If ΠFE is perfectly correct and IND-C (resp. c-IND-C) and (P, V) is a secure NIZK,
then ΠFE

′ in Construction 1 is perfectly correct, IND-C (resp. c-IND-C) and BB-FP.

5 Constructing Private Traitor Tracing
In this section, we give our private traitor tracing scheme with whitebox tracing. Our construction
will consist of two pieces: we first build a function-embedded traitor tracing scheme, which allows
for embedding functions, rather than identities. We then embed un-obfuscatable functions into the
scheme. The result allows for tracing, while maintaining privacy.

5.1 Function-Embedded Traitor Tracing (FETT)

Here, we introduce and construct function-embedded traitor tracing (FETT). The rough idea of a
FETT is that user secret keys have functions embedded in them, rather than just data. The tracing
algorithm will take as an additional input x, and will output the embedded function f evaluated on
x. While our ultimate goal is to construct a white box tracing scheme, this part of our construction
will actually leverage prior techniques and will therefore be black box.

We will require a notion of black box function privacy analogous to functional encryption, where
having oracle access to the decryption function of a secret key with f embedded is “no better than”
having black box access to f itself. Black box function privacy implies that we cannot simply use
identity-embedded traitor tracing (e.g. [NWZ16]) where we set the identity to be some (perhaps
obfuscated) code of f . Indeed, in such a solution tracing would recover the code of f . Looking
forward to our private tracing construction, black box function privacy allows us to embed an

16

un-obfusctatable function (UOF), and use the inability to learn the UOF under black box queries
to argue privacy.

In order to formalize our notion of tracing, we actually break tracing into two steps that we call
FindTags and Eval. The first step, FindTags, extracts from a decoder a list of “tags” that were used
in generating the user secret keys. The tracing guarantee insists that the recovered tags correspond
to users controlled by the adversary. We note that these tags are independent of the function f .
We then have a second step, Eval, which takes as input a tag and an input x, and computes f(x),
where f is the function embedded in the secret key associated with the given tag.

In the case of colluding users, these tags allow for disambiguating between the functions controlled
by the adversary, both in the construction and also in the definition. We now give the full definition:
a FETT is a tuple ΠFETT where:

(pk,msk)← Gen(1λ, N) sk ← Derive(msk, f, τ)
c← Enc(pk,m) A← FindTagsD(pk,m0,m1, 1N , 11/ε)
m← Dec(sk, c) o← EvalD(pk,m0,m1, 1N , 11/ε, τ, x) .

Above, λ, pk,msk, sk,m, c,D,m0,m1, N, ε are the same as in plain traitor tracing. τ is a tag from
set Γ and x is an input. Correctness is similar to standard traitor tracing: there exists a negligible
function negl such that for all λ > 0, N, f,m:

Pr

Dec(sk, c) = m :
(pk,msk)←Gen(1λ,N)

τ←Γ
sk←Derive(msk,f,τ)

c←Enc(pk,m)

 ≥ 1− negl(λ) .

Consider the following experiment on adversary A and parameter ε = ε(λ):

• A gets input 1λ, and produces a number N .

• Run (pk,msk)← Gen(1λ, N). Send pk to A.

• A then makes an arbitrary number of queries on functions fi. For each query, respond with
sk ← Derive(msk, τi), where τi ← Γ is chosen randomly. Let T be the set of τi generated.

• A produces a decoder D, two messages m0,m1, and an input x∗.

• Run A← FindTagsD(pk,m0,m1, 1|T |, 11/ε).

• Additionally, let yi = fi(x∗) and y′i ← EvalD(pk,m0,m1, 1|T |, 11/ε, τi, x
∗) for each i such that

τi ∈ A.

We define the following events. BadTrε(A, λ),GoodDecε(A, λ),GoodTrε(A, λ) are as before: BadTr
means A * T , GoodDec means Pr[D(Enc(pk,mb)) = b] ≥ 1/2 + ε(λ), and GoodTr means |A| > 0.
Finally, Incorrectε(A, λ) means yi 6= y′i for some i such that τi ∈ A.

Definition 7. ΠFETT is traceable if, for all PPT A and inverse-poly ε, there exists a negligible
negl such that Pr[BadTrε(A, λ)] ≤ negl(λ), Pr[GoodTrε(A, λ)] ≥ Pr[GoodDecε(A, λ)]− negl(λ), and
Pr[Incorrectε(A, λ)] ≤ negl(λ).

17

Note that the first two inequalities correspond to the standard tracing guarantee, with the τi
playing the role of identities. The final inequality corresponds to the requirement that the function
computed by Eval matches the function embedded in the secret key, at least on inputs computable
by the adversary.

We also need a notion of black box function privacy for traitor tracing. The definition is
syntactically identical to that of black box function privacy, and so we omit the formal definition.
However, we note that the function f plays a different role in functional encryption vs traitor tracing:
in functional encryption, the secret key for a function f recovers f(m). In function-embedded traitor
tracing, the secret key for a function f recovers m entirely. Yet in both cases it is possible to query
f on arbitrary inputs, either through encryption or through tracing. Black box function privacy in
both cases means, essentially, that you cannot do better than black box queries.

5.2 From BB Private FE to FETTs

We now show how to use functional encryption with black box function privacy to build function-
embedded traitor tracing. Our construction is an adaptation of a construction from Nishimaki
et al. [NWZ16]. Specifically, they give a variant of their main construction which achieves short
ciphertexts, despite having secret keys with large embedded identities. In this work, we do not focus
on the sizes of parameters, but the general structure of their construction will be useful for us.

5.2.1 The Oracle Jump-Finding Problem

Here we recall the oracle jump finding problem defined by Nishimaki et al. [NWZ16], and implicit
in [BCP14]. Much of the following text is adapted or taken verbatim from [NWZ16]. Let [a, b]R
denote the set of real numbers from a to b (inclusive), and [a, b] the set of integers from a to b
(inclusive).

Definition 8 (The (n, q, δ, ε)-Jump Finding Problem). A set T ⊆ [1, 2n] of q unknown points is
chosen. Then, the an oracle P : [0, 2n]→ [0, 1]R is provided, such that:

• |P (N)− P (0)| > ε. That is, over the entire domain, P varies significantly.

• For any x, y ∈ [0, 2n], x < y in interval (x, y] that does not contain any points in T (that is,
(x, y] ∩ T = ∅), it must be |P (x)− P (y)| < δ. That is, outside the points in T , P varies very
little.

The task is to make queries to the oracle P and output some element in T .

A pictorial representation of the jump finding problem, taken from [NWZ16], is given in Figure 1.
As explained in [NWZ16], the (n, q, δ, ε)-Jump Finding Problem is impossible in general if ε < qδ,

and can be inefficiently solved in the case ε ≥ qδ by querying every single point in the domain. They
then show that, for sufficiently large ε relative to δ, that the problem can be solved efficiently. We
omit the theorem here, and instead discuss a closely related problem that [NWZ16] also consider,
which hides the oracle P inside a noisy oracle Q:

Definition 9. The (n, q, δ, ε) noisy jump finding problem is as follows. A set T ⊆ [1, 2n] of q
unknown points and oracle P : [0, 2n]→ [0, 1]R are chosen as above. Now let Q : [0, 2n]→ {0, 1} be
the probabilistic oracle which chooses and outputs a random bit that is 1 with probability P (x),

18

0" N"

δ"

ε"

Figure 1: Example of an oracle P from [NWZ16]. Here, T contains 4 points. The purple curve
represents the outputs of the oracle P on inputs in the interval [0, 2n]. The red hatch marks on
the number line indicate the positions of the elements in T . The horizontal dashed lines show that,
between the points in T , P is never changes more than δ. At the points in T , P can make arbitrary
jumps in either direction.

and 0 otherwise. A fresh sample is chosen for repeated calls to Q(x), and is independent of all other
samples outputted by Q. The task is to interact with the oracle Q and output some element in T .

Theorem 7 ([NWZ16]). There is a probabilistic algorithm TraceQQ(n, q, δ, λ) that runs in time
t = poly(n, q, 1/δ, λ) (and in particular makes at most t queries to Q) that will a set A, such that:

• There exists a negligible function negl such that, except with probability negl(λ), |P (x)−P (x−
1)| ≥ δ for all x ∈ A; in particular A ⊆ T .

• If ε ≥ δ(5 + 2nq), there exists a negligible function negl such that A will be non-empty except
with probability negl(λ).

Moreover, the algorithm works even for “cheating” P that may not satisfy |P (x)− P (y)| < δ for all
(x, y] which do not intersect T , as long as the property holds for all pairs x, y that where queried by
TraceQ.

5.2.2 The Conversion

Construction 2. Let ΠFE = (GenFE,EncFE,DeriveFE,DecFE) be a functional encryption scheme.
We will assume without loss of generality that all functions considered output a single bit; we can
convert any long-output function into a single-bit function by providing an additional input which
selects the desired output bit. Let ΠFETT = (GenFETT,EncFETT,DeriveFETT,DecFETT,FindTags,Eval)
be the following traitor tracing scheme:

• GenFETT = GenFE.

• EncFETT(pk,m) = EncFE(pk, (0,⊥,m)).

• DeriveFETT(pk, g, τ) = DeriveFE(pk, fg,τ) where τ ← [2λ] and

fg,τ (z, x,m) =

m if τ > z

⊥ if (τ < z) ∨ (τ = z ∧ x = ⊥)
m if τ = z ∧ x 6= ⊥ ∧ g(x) = 1
⊥ if τ = z ∧ x 6= ⊥ ∧ g(x) = 0

.

19

Note that z is allowed to range from 0 to 2λ, and x comes from the domain of g, or x can be
the special symbol ⊥.

• DecFETT(sk, c) = DecFE(sk, c).

Before describing tracing in detail, we first give an intuition for the above construction. Under
normal operation, z = 0 and x = ⊥, meaning that fτ,g outputs m. Therefore, the scheme is correct.
We also note that black box function privacy of ΠFETT follows immediately from the black box
function privacy of ΠFE.

For tracing, FindTags sets up an oracle Q(z), which runs D on random FE ciphertexts encrypting
index z, and outputs 1 if the decoder successfully decrypts. The oracle Q is an instance of the noisy
oracle jump finding problem, with the implicit oracle P which outputs the decryption probability of
the decoder on the given index. FindTags therefore runs the algorithm TraceQ from Theorem 7, to
find a list of accused tags. For every such tag τ returned by TraceQ has the property that there is a
significant “jump” in decryption probability between z = τ and z = τ − 1.

Then Eval will set x to be the desired input and z = τ , and see which side of the jump the
decryption probability is closer to. Functional encryption security implies that the decoder cannot
tell whether the ciphertext contains (τ−g(x),⊥,m) or (τ, x,m) (since both cases decrypt identically),
and as a result the decryption probability in Eval will indicate the value of g(x).

We now give the algorithms FindTags and Eval.

FindTagsD(pk,m0,m1, 1|T |, 11/ε). Define PD(τ) = Pr[D(EncFE(τ,⊥,mb)) = b : b ← {0, 1}] as the
probability that D correctly decrypts an encryption of mb. Note that P cannot be efficiently
computed, but if it could be computed, then PD(·) would be an instance of the oracle jump finding
problem. Instead, FindTags constructs the oracle QD(τ) which does the following:

• Sample b← {0, 1} and c← EncFE(τ,⊥,mb)

• Run b′ ← D(c)

• Output 1 if b = b′, 0 otherwise.

We see that QD is constructed from PD as in the noisy jump finding problem. Next, FindTags runs
and outputs A← TraceQQD(n, q, 8δ, λ), where n = λ, q = |T |, and 8δ = ε/(5 + 2nq). We have the
following:

Lemma 2. Assume ΠFE is (IND-C), for all PPT adversaries A and all inverse-polynomials ε, there
exists a negligible function negl such that

• Pr[BadTrε(A, λ)] ≤ negl(λ),

• Pr[GoodTrε(A, λ)] ≥ Pr[GoodDecε(A, λ)]− negl(λ),

• Except with probability negl(λ), |P (τ)− P (τ − 1)| ≥ 8δ for all τ ∈ A.

Proof. For any (x, y] that does not intersect T , all ciphertexts EncFE(x,⊥,m),EncFE(y,⊥,m) decrypt
identically under the adversary’s various secret keys. As such, P (x) and P (y) are negligibly close,
by the assumed security of the functional encryption scheme. Hence, by Theorem 7, except with

20

negligible probability, TraceQ outputs an A such that |P (τ) − P (τ − 1)| ≥ 8δ for all τ ∈ A. In
particular, A is a subset of T . Thus Pr[BadTrε(A, λ)] ≤ negl(λ).

Now suppose that D is ε-good. Then P is an instance of the (λ, q, δ, ε) jump finding problem
(and hence Q is an instance of the corresponding noisy problem), for any inverse-polynomial
δ′ ≤ ε/(5+2nq); in particular δ′ = 8δ will do. By Theorem 7, this means that, except with negligible
probability, A will be non-empty. Hence Pr[GoodTrε(A, λ)] ≥ Pr[GoodDecε(A, λ)]− negl(λ).

Next, we describe the algorithm Eval.

EvalD(aux, τ, x). Define R(τ, x) = Pr[D(EncFE(τ, x,mb)) = b : b ← {0, 1}]. Eval will compute
estimates P̂ (τ), P̂ (τ − 1), R̂(τ, x) of P (τ), P (τ − 1), R(τ, x) by making O(λ/δ2) queries to D on
ciphertexts with plaintext (τ,⊥,mb), (τ − 1,⊥,mb), (τ, x,mb), respectively. The result is:

Lemma 3. Except with negligible probability in λ, |P̂ (τ) − P (τ)|, |P̂ (τ − 1) − P (τ − 1)|, and
|R̂(τ, x)−R(τ, x)| are < δ.

We know that |P (τi)− P (τi − 1)| ≥ 8δ. Therefore, except with negligible probability, |P̂ (τi)−
P̂ (τi − 1)| ≥ 6δ.

Now, notice that the τi are all distinct with overwhelming probability, and that fg,τ (τ, x,m) =
fg,τ (τ−g(x),⊥,m), while fg,τ ′(τ, x,m) for τ ′ 6= τ is independent of g. Therefore, by ciphertext indis-
tinguishability, encryptions of (τi, x,m) are indistinguishable from encryptions of (τi − gi(x),⊥,m),
for any x that can be produced by the adversary. As a result, except with negligible probability,
|R(τi, x) − P (τi − f(x))| < negl(λ) < δ. Thus, |R̂(τi, x) − P̂ (τi − f(x))| < 3δ, which then implies
|R̂(τi, x)− P̂ (τi − (¬f(x)))| > 3δ.

Therefore, Eval outputs b such that R̂(τi, x) is closer to P̂ (τi − b) than to P̂ (τi − (¬b)). By the
above, we have that Pr[Incorrectε(A, λ)] ≤ negl(λ).

Putting everything together, we have the following theorem:

Theorem 8. If ΠFE is IND-C, then ΠFETT is traceable. If ΠFE is black box function private, then
so is ΠFETT.

5.3 Un-Obfuscatable Functions (UOFs)

We will make use of un-obfuscatable functions (UOFs). These were originally constructed by Barak
et al. [BGI+01]. Here, we define a variant which differs in a few key ways from that of Barak et al.:

• We allow for embedding messages into the program.

• We only require that the embedded message can be reconstructed from the program code,
whereas Barak et al. reconstruct the entire function.

• For technical reasons, we must allow the obfuscated code to be randomized and have differing
inputs from the original code. We instead require, essentially, that as long as differing inputs
are hard to find, it is possible to learn the embedded message.

More formally, an un-obfuscatable function ΠUOF = (Sample,Extract,Diff) is a tuple of PPT
algorithms:

f ← Sample(1λ,m; r) m← Extract(f ′) x← Diff(f ′, r,m, 11/ε) .

21

Above, m is a message, r the random coins for Sample, f ′ a probabilistic circuit, and ε a parameter.
We require two security properties. First is black box unlearnability, where we require that it is
impossible to learn anything about m with just black box access to f . Concretely, consider the
following experiment on an adversary A:

• A, on input the security parameter 1λ, produces two messages m0,m1. Choose a random bit
b and compute f ← Sample(1λ,mb).

• A now can now make arbitrary queries to f .

• Finally, A produces a guess b′ for b.

We say that ΠUOF is black box unlearnable if, for any PPT adversary A, there exists a negligible
negl such that Pr[b′ = b] < 1/2 + negl(λ).

The second security requirement is reverse engineerability, where we require that m can be
learned given any code f ′ computing m. For technical reasons, we need to allow f ′ to be randomized
and also potentially have some differing inputs from f . But if m cannot be learned, then it must be
possible to actually compute such differing inputs. In more detail, consider the following experiment
on adversary A and parameter ε:

• A, on input the security parameter 1λ, produces a messagem. Reply with f ← Sample(1λ,m; r)
for random coins r.

• A then outputs f ′. Run m′ ← Extract(f ′) and x← Diff(f ′, r,m, 11/ε).

Let Goodfuncδ(A, λ) be the event that Pr[f ′(x) 6= f(x)] < δ(λ) where the probability in Pr is over
the random coins of f ′. Let BadExtrε(A, λ) be the event that f ′ satisfies Pr[Extract(f ′) 6= m] ≥ ε(λ),
where the probability in Pr is over the random coins on Extract. We say that ΠUOF is reverse
engineerable if, for every PPT A and inverse polynomial ε, there exists a inverse polynomial δ and
negligible negl such that Pr[BadExtrε(A, λ) ∧ Goodfuncδ(A, λ)] < negl(λ). Note that in Barak et
al.’s notion, f ′ and f are required to compute identical functions, Goodfunc is always guaranteed to
happen and there is no need to consider Diff.

Definition 10. An un-obfuscatable function ΠUOF is secure if it is black box unlearnable and
reverse engineerable.

5.3.1 Barak et al.’s Construction

We now recall Barak et al.’s [BGI+01] un-obfuscatable functions, and show that they satisfy our
definition. The construction presented below is essentially identical to Barak et al.’s, except that we
add the algorithm Diff.

Construction 3. Let (E,D) be a secret key encryption scheme for single-bit messages, and F be
a pseudorandom function. Let ΠUOF = (Sample,Extract,Diff) be as follows:

• Sample(1λ,m): Sample k, s, α, β ← {0, 1}λ. Let c = (c1, . . . , cλ) where ci = Enc(k, αi). Define

22

f as

f(j, x) =

c if j = 1
β if j = 2 and x = α

⊥ if j = 2 and x 6= α

Enc(k, b1 � b2; F (s, x)) if j = 3, where
{
x=(c1,c2,�)
b1=Dec(k,c1)
b2=Dec(k,c2)

}
m if j = 4 and Dec(k, x) = β

⊥ if j = 4 and Dec(k, x) 6= β

• Extract(f ′): Choose random coins z for f ′ and let h(·) = f ′(2, · ; z). Run (c1, · · · , cλ)← f ′(1, 0).
Note that f ′ allows for computing homomorphically over ciphertexts. Label the input wires
to h as 1, . . . , λ, and the remaining wires i = λ+ 1, . . . , |h| such that every wire has a higher
label than its children. For i = λ+ 1, . . . , |h|, let ci ← f ′(3, (ciL , ciR , gi)) where iL, iR are the
two children of wire i and gi is the gate operation. Finally, output m← f ′(4, {ci}i∈o) where o
is the list of output wires.

• Diff(f ′, r,m, 11/ε): Let δ = ε/(6|f ′|). From r,m, recover f = Sample(1λ,m; r), including
k, s, α, β. Define p(i, x) = Pr[f ′(i, x) = f(i, x)], where the probability is over the random coins
of f ′. First, by making O(λ/ε2) queries to f ′, it is possible for any (i, x) to compute estimates
p̃(i, x) of p(i, x) such that |p̃(i, x)− p(i, x)| < δ, except with non-negligible probability.
Diff does the following. First compute the estimate p̃(2, α). If p̃(2, α) < 1 − 2δ, abort and
output α.
Next, run Extract(f ′) for T = λ/ε times. Each time Extract queries f ′(i, x), compute the
estimate p̃(i, x). If p̃(i, x) < 1− 2δ, abort and output (i, x).
If no abort happens after T runs of Extract, output an arbitrary (i, x).

Theorem 9. If F is a secure pseudorandom function, (E,D) is secure under chosen plaintexts and
non-adaptive chosen ciphertext attacks, then ΠUOF is secure.

Proof. The construction is essentially identical to Barak et al., and black box unlearnability follows
immediately from their proof of un-obfuscatability. For reverse engineering, note that if Diff aborts
and outputs (i, x), then except with negligible probability p(i, x) < 1− δ, meaning Goodfuncδ does
not happen. Therefore, we want to bound the probability that BadExtrε(A, λ) happens, but Diff
does not abort.

Suppose BadExtrε(A, λ) happens, meaning Pr[Extract(f ′) 6= m] ≥ ε(λ). Then we have that
Prh[Pr[Extract(f ′) 6= m] ≥ ε/2] ≥ ε/2, where the outer Pr is the probability over the choice of h,
and the inner Pr is the probability over the remaining randomness of Extract once h is fixed.

Now consider running Diff(f ′, r,m, 11/ε), which runs Extract as a subroutine. Consider a run of
Extract using an h such that Pr[Extract(f ′) 6= m] ≥ ε/2 for that h. With overwhelming probability,
there will be at least one such h when running Diff. During such a run of Extract, suppose Diff
never aborts. This means that, except with negligible probability, every query to f ′ results in the
correct answer with probability at least 1− 3δ; the probability all queries are correct is therefore at
least 1 − 3|f ′|δ. Assuming all queries are correct, {ci}i∈o will be an encryption of h(α). Then if
h(α) = β and all queries are correct, Extract will output m. But recall that Extract fails to output
m for such h with probability greater than ε/2 = 3|f ′|δ. Thus we must actually have that h(α) 6= β

23

for such h, except with negligible probability. But this means that Pr[h(α) 6= β] ≥ ε/2 − negl;
in other words p(2, α) ≤ 1 − ε/2 + negl. But then, except with negligible probability, we have
p̃(2, α) ≤ 1−ε/2+δ+negl ≤ δ, which would cause Diff to abort. Thus, Diff aborts with overwhelming
probability when BadExtrε(A, λ) happens.

5.4 Our Private Traitor Tracing Scheme

We now turn to our private tracing scheme.
Construction 4. Let ΠFETT = (Gen,Enc,DeriveFETT,Dec,FindTags,Eval) be a FETT and ΠUOF =
(Sample,Extract,Diff) a UOF. Define the new tracing scheme Π = (Gen,Enc,Derive,Dec,Trace)
where

• Derive(msk, id) : Return sk ← DeriveFETT(msk, Sample(1λ, id)).

• Trace(pk,D,m0,m1, 1N , 11/ε): Produce A← FindTagsD(pk,m0,m1, 1N , 11/ε). Then, for each
τi ∈ A, define Pi as the (randomized) program x 7→ EvalD(pk,m0,m1, 1N , 11/ε, τi, x). Now run
idi ← Extract(Pi) for each τi, and output {idi : τi ∈ A}.

The correctness of Π is immediate. We now discuss security:
Theorem 10. If ΠFETT is traceable and black box function private and if ΠUOF is secure, then Π is
traceable and leaked master indistinguishably private.
Proof. First, we consider privacy. By black box function privacy, the view of a privacy adversary can
be simulated by making black box queries to the functions f . But by the black box unlearnability
of ΠUOF, such queries reveal nothing about the identities. Thus, privacy follows.

We now consider tracing. Let A be a tracing adversary for Π. We construct a new adversary A′
for ΠFETT. A′ simulates A. For each secret key query on identity idi, A′ runs fi ← Sample(1λ, idi; ri)
with fresh randomness ri and makes a secret key query on fi, which it forwards to A. A′ thus
perfectly simulates the view of A. Now, once A produces a decoder D, A′ outputs D. Additionally,
A′ runs the (public) algorithm FindTags on D to collect a set A′ of tags τi. Next, A′ matches the τi
to the ri, idi, and constructs the programs Pi as in Trace. It then runs xi ← Diff(Pi, ri, idi, 11/ε′) for
an ε′ to be specified later. It outputs D and sets x∗ to be a random choice amongst the xi.

Consider running Trace on D, and let A be the set of τi recovered by FindTags when run as a
part of Trace. By the tracing security of ΠFETT, we know that, except with negligible probability,
FindTags correctly outputs a subset of the tags τi generated during the adversary’s identity queries.
It remains to show that Trace correctly recovers the corresponding idi. Let p be the probability that
A is indeed a subset of the correct τi, but for some i∗, the recovered identity id′i∗ := Extract(Pi∗)
is such that id′i∗ 6= idi∗ . We must show that p is negligible. Suppose toward contradiction p is
non-negligible, and let ε′ be a polynomial which lower bounds (p/N)2 infinitely often; note that p is
determined entirely by A, ε, meaning we can set ε′ freely.

Suppose we choose i∗ at random from A; then with probability at least p/N , we will have that
id′i∗ 6= idi∗ . Note also that, once A outputs the decoder D, A and the A′ generated by A′ are two
samples from identical distributions. As a consequence, with probability at least (p/N)2 ≥ ε′, the
x∗ produced by A′ is equal to xi∗ and id′i∗ 6= idi∗ . Moreover, the Pi∗ constructed by A′ is identical
to the Pi∗ constructed inside Trace. Therefore, by the reverse engineerability of ΠUOF, we must have
that x∗ is a differing input: there exists a δ such that Pr[Pi∗(x∗) 6= f(x∗)] ≥ δ. This implies that, in
the FETT experiment, yi∗ := fi∗(x∗) and y′i∗ := Pi∗(x∗) differ with non-negligible probability. In
other words, Pr[Incorrectε(A′, λ)] is non-negligible, contradicting the security of ΠFETT.

24

6 Toward Consistent Traitor Tracing
Here, we give our construction of consistent traitor tracing. We first recall some additional definitions.

Fully Homomorphic Encryption. Fully homomorphic encryption (FHE) can be built from
circularly-secure variants of LWE [Gen09, GSW13], or from sub-exponentially secure iO and “lossy”
encryption [CLTV15]. An FHE scheme is a tuple ΠFHE = (Gen,Enc,Dec,Eval) where (Gen,Enc,Dec)
form a public key encryption scheme. Additionally, Eval(c, f) takes as input a ciphertext and a
circuit f , with the property that, for every polynomial poly, there exists a negligible function such
that, for every λ > 0, x and f such that |f | ≤ poly(λ):

Pr
[
Dec(sk, Eval(c, f)) = f(x) : (pk,sk)←Gen(1λ)

c←Enc(pk,x)

]
≥ 1− negl(λ) .

Compute and Compare Obfuscation. Compute and compare obfuscation can be built from
LWE [GKW17, WZ17], or seen as a special case of iO. It consists of a PPT algorithm CCObf(C, β)
which takes as input a circuit C : {0, 1}n → {0, 1}λ, and a value β ∈ {0, 1}λ. It outputs a circuit
C ′ : {0, 1}n → {0, 1} such that:

• Correctness: C ′(x) = 1 if C(x) = β, and C ′(x) = 0 otherwise.

• Security: There exists an algorithm Sim with the following guarantee. For any C, let β be
chosen uniformly from {0, 1}λ. Then for any PPT A, there exists a negligible negl such that∣∣∣Pr[A(CCObf(C, β)) = 1]− Pr[A(Sim(1|C|, 1n, 1λ)) = 1]

∣∣∣ < negl(λ) .

In other words, if β is uniform, then C ′ reveals nothing about C, β.

6.1 The Construction

We now give our construction. The intuition behind our construction is to essentially have a secret
tracing algorithm, which requires certain secrets in order to operate. In such a setting, it is not
difficult to devise a consistent traitor tracing scheme. The challenge is to somehow allow the tracer
to recover the result of the secret tracing, without compromising consistency.

Towards a solution, we homomorphically encrypt the secret tracing key. This allows tracing to
be public, except that the result of tracing remains encrypted under the homomorphic encryption
scheme. To rectify this, we can imagine obfuscating a program which takes as input an encryption
of the tracing result, and returns the result in the clear. The good news is that, by carefully
setting things up, we can use compute-and-compare obfuscation exactly for this task. The result
is that any remote outside user will be unable to learn the tracing results (since he cannot trace
homomorphically without the actual decoder code), while anyone in possession of the decoder’s
code can trace in the clear.

The bad news is that the construction is inherently insecure against any user of the system. We
show a simple attack which, given the compute-and-compare program and a single user’s key, any
FHE ciphertext can be decrypted, including the encrypted tracing secret. This applies regardless of
the particular fully homomorphic encryption scheme or particular obfuscation scheme used. The
intuition is that the user can run the tracing algorithm on themselves. Since tracing succeeds (their
key represents a good decoder, after all), this implies that they learn an accepting input to the

25

compute-and-compare program. Certainly this violates the security guarantee as defined above
and proven in [GKW17, WZ17]. But even with a best-possible obfuscation scheme, security still
fails. Basically, using the homomorphic properties of the encryption scheme, one can decrypt any
ciphertext bit-by-bit: homomorphically overriding a particular bit of the plaintext, and see if tracing
still succeeds. If so, then the overridden bit is correct; otherwise it is incorrect.

Our solution. Our solution is to have a separate tracing secret, FHE instance, and compute-and-
compare obfuscation for each user. When we move to the case of colluding users, the problem will
be that the different secrets are isolated in different FHE instances, meaning there is no way to
homomorphically tracing, let alone trace in the clear, in the case that even two users collude. Our
solution is instead to have a separate secret for each subset of users. More precisely, for each set S
of users, a signature on S, denoted σS will play the role of tracing secret. Our system is set up so
that, when using the secret σS , users outside of S will have no differing input. Users inside of S, on
the other hand, will have differing inputs that are used to trace.

Given σS , it will be possible to trace a decoder built using secret keys from exactly this subset
of users. The result of tracing is that the tracer learns some other secret βS associated with the
set S. βS will be derived using a pseudorandom function. We therefore encrypt each σS under
different FHE instances. We additionally provide, for each S, a compute-and-compare program
which accepts encryptions (under that FHE instance) of βS . If S has at least one honest user,
tracing will fail to recover βS , and the compute-and-compare obfuscation will reject. On the other
hand, a decoder built from keys in set S will trace (homomorphically) to βS , which will cause the
compute-and-compare obfuscation to accept. Tracing therefore homomorphically traces all possible
subsets S, and accuses whichever one accepts.

For consistency, the security of compute-and-compare obfuscation means that the FHE instance
for set S remains secure if there is any honest user in S, and therefore σS remains hidden to the
adversary. Thus, an attacker can only learn σS for S that are entirely comprised of malicious users.
Since σS only allows for finding differing inputs between users in S, we therefore have that the
adversary can only find differing inputs for keys they control.

The problem with our construction is that we need different components for each set S, and
moreover that our tracing algorithm has to try every set S. In general, there will be exponentially-
many sets S, meaning our scheme is not polynomially efficient. Instead, we restrict to subsets of
constant size, so that the number of subsets is only a polynomial.

Construction 5. Fix a constant c. Let ΠFHE = (GenFHE,EncFHE,DecFHE,EvalFHE) be a fully
homomorphic encryption scheme, ΠFE = (GenFE,EncFE,DeriveFE,DecFE) a functional encryption
scheme, ΠSig = (GenSig, Sign,Ver) a signature scheme, F a PRF, and CCObf a compute and compare
obfuscation scheme. Define the traitor tracing scheme Π = (Gen,Enc,Derive,Dec,Trace) as follows:

• Gen(1λ, N): run (pkFE,mskFE)← GenFE(1λ, N). Also run (pkSig, skSig)← GenSig(1λ). For each
i ∈ [N], choose a random key ki ← {0, 1}λ. Then, for every S ⊆ [N] such that |S| ≤ c, let
σS ← Sign(skSig, S), run (pkS , skS)← GenFHE(1λ), cS ← EncFHE(pkS , σS), βS ← ⊕i∈SF(ki, S)
and finally PS ← CCObf(DecFHE(skS , ·), βS). Output pk = (pkFE, (pkS , cS , PS)S) and msk =
(mskFE, (ki)i∈[N], ctr = 0).

• Enc(pk,m) = EncFE(pkFE, (⊥,⊥,⊥,⊥,m))

26

• Derive(msk, id): Run sk ← DeriveFETT(mskFE, hid,i) where i = ctr and

hid,i(S, σ, j, x,m) =
{
m if Ver(pkSig, S, σ) = 0 ∨ i ∈ S \ {j}
gid,i(S, j, x,m) if Ver(pkSig, S, σ) = 1 ∧ i /∈ S \ {j}

,

gid,i(S, j, x,m) =

⊥ if i 6= j ∨ x = ⊥
m if i = j ∧ fid,i(S, x) = 1
⊥ if i = j ∧ fid,i(S, x) = 0

, and

fid,i(S, x = (b, u)) =
{

F(ki, S)u if b = 0
idu if b = 1

.

Also increment ctr within msk. Here, F(ki, S)u is the uth bit of F(ki, S).

Remark 6. We note that our construction requires a stateful Gen, which keeps a counter. This is
to ensure that the tags used for different users are unique. An alternative, similar to what was done
in [GKW19], would be to have Derive take the tag as an explicit input, and assume some external
mechanism to ensure distinct tags.

Before formally giving the tracing algorithm and proving security, we discuss the intuition behind
the above construction in more detail. Consider encryptions of plaintexts (S, σS ,⊥,⊥,m). Since
gid,i(S,⊥,⊥,m) = ⊥, such ciphertexts can be decrypted by users with indices i ∈ S, but cannot be
decrypted by i /∈ S. Let p(S) be the probability a decoder decrypts such ciphertexts.

For any good decoder, we must have p([N]) be large. FE security implies p(Q) is close to p([N]),
where Q is the set of indices the adversary controls. Moreover, FE security implies that p(∅) is close
to 0. A straightforward argument implies that there must therefore exist a set S∗ ⊆ Q such that
p(S∗) is noticeably larger than p(S∗ \ {i}) for all i ∈ S∗. Supposing we could sign arbitrary sets, we
can recover S∗ by estimating the various p(S) values.

On the other hand, the ability to sign sets S also allows for easily finding differing inputs, which
would break consistency. Instead, we can use the encryptions of signatures to homomorphically
compute p(S). Unfortunately, we cannot directly compare different p(S), since the signatures
for different S, and therefore the p(S), are isolated in different FHE instances. However, given
an (encrypted) signature on S, we can (homomorphically) estimate p(S \ {i}) for any i ∈ S by
testing the decoder on ciphertexts encrypting (S, σS , i,⊥,m). Indeed, these ciphertexts can only
be decrypted by users in S \ {i}, and functional encryption security implies that encryptions of
(S, σS , i,⊥,m) are indistinguishable from encryptions of (S \ {i}, σS\{i},⊥,⊥,m).

For the set S∗ (which at this point is still FHE encrypted), we can then run the decoder (again,
homomorphically) on encryptions of (S∗, σS∗ , i, x,m). Depending on the value of fid,i(S∗, x), the
decryption probability will either be roughly p(S∗) or p(S∗ \ {i}); since the definition of S∗ means
the two probabilities are noticeably different, this allows us to learn fid,i(S∗, x). From here, we can
compute F(ki, S∗) by setting b = 0, and hence βS∗ .

Up until this point, we cannot actually tell which set is S∗, since all results are computed
homomorphically and therefore still hidden under FHE encryptions. We perform the above procedure
for each set S, as there are only polynomial many. We then apply the program PS to the resulting
ciphertext, which will output 1 in the case S = S∗. This allows us to actually determine S∗.

27

The next step is to determine the identities for users in S∗. We show that any accepting input to
PS
∗ actually allows us to decrypt ciphertexts encrypted under pkS∗ ; in particular we can find σS∗

in the clear. This then allows us to evaluate fid,i(S∗, x) on arbitrary inputs x in the clear. Using
such queries we can easily compute the various id by setting b = 1.

It remains to justify consistency, which follows from the fact that βS is pseudorandom as long
as S contains honest users. By applying compute and compare security, we have that σS remains
hidden for such sets. Since the adversary cannot obtain a signature on any S containing honest
users, any ciphertext he devises will be decrypted correctly by all honest users; in particular, all
honest users answer identically.

6.2 Tracing

We now give the algorithm Trace(pk,D,m0,m1, 1c, 11/ε). Define

p(S) = Pr[D(EncFE(pkFE, (S, σS ,⊥,⊥,mb))) = b : b← {0, 1}]
p(S, i) = Pr[D(EncFE(pkFE, (S, σS , i,⊥,mb))) = b : b← {0, 1}]

q(S, i, x) = Pr[D(EncFE(pkFE, (S, σS , i, x,mb))) = b : b← {0, 1}] .

Let δ = ε/(10c + 2). For any S, given σS we can compute an estimates p̃(S), p̃(S, i), q̃(S, i, x)
such that |p̃(S)−p(S)|, |p̃(S, i)−p(S, i)|, |q̃(S, i, x)−p(S, i, x)| < δ, except with negligible probability.
Each quantity is computed by making O(λ/δ2) queries to D. We define several subroutines:

• ConfirmTagsD(pk,m0,m1, 1c, 11/ε, S, σ): This algorithm plays an analogous role as FindTags
from Section 5, except that instead of discovering a set of accused users, it simply confirms
whether the input set S should be accused. In this sense, ConfirmTags works in the black box
confirmation model of [BF99]. The algorithm is also somewhat different that that of Section 5,
owing to the different tracing structure in this construction.
Compute estimate p̃(S), and for each j ∈ S, compute estimates p̃(S, j). If there exists
a j ∈ S such that |p̃(S, j) − p̃(S)| < 4δ, abort and output ⊥. Otherwise, output aux =
(p̃(S), (p̃(S, j))j∈S).

• EvalD(pk,m0,m1, 1c, 11/ε, aux, S, σ, j, x): This algorithm is analogous to Eval from Section 5.
Compute estimate q̃(S, j, x), and output 1 such that q̃(S, j, x) is closer to p̃(S) than it is to
p̃(S, j); otherwise output 0.

• Dec∗(pkS , cS , PS , C, d): here, C is a circuit, with the property that C(σS) = βS , meaning
PS(EvalFHE(cS , C)) = 1; d is a ciphertext encrypting a bit b. Dec∗ will output b. Dec∗ works
as follows. It homomorphically computes d′, an encryption of b · σS , from d, cS . Then it will
run and output PS(EvalFHE(d′, C)).

With these subroutines in hand, Trace works as follows. Let CS(σ) be the function which runs
ConfirmTags to recover aux or ⊥. If aux is recovered, then for each i ∈ S, it runs the algorithm
EvalD(pk,m0,m1, 1c, 11/ε, aux, S, σ, i, x) on the various x = (0, u) to compute strings βS,i = F(ki, S).
Finally, it outputs ⊕i∈SβS,i. The circuit CS is ostensibly randomized, but we will hard-code the
randomness to get a deterministic circuit.

For each set S, we will say that tracing succeeds if PS(Eval(cS , CS)) = 1, which is equivalent to
requiring CS(σS) = βS . For each S, Trace runs Dec∗(pkS , cS , PS , CS , d = cS). Let S be some set

28

such that Dec∗ outputs a signature σ. Then Trace runs ConfirmTagsD(pk,m0,m1, 1c, 11/ε, S, σ) to
recover aux, and runs EvalD(pk,m0,m1, 1c, 11/ε, aux, S, σ, i, x) on various x = (1, u) to compute the
bits of idi for i ∈ S.

Remark 7. Note that our tracing algorithm is homomorphically running the decoder algorithm.
In general, the decoder will have no a priori polynomial bound. As such, we need the full power of
FHE, and cannot rely on “leveled” FHE, which only supports an a priori bounded computation.

6.3 Security

Theorem 11. If ΠFHE,ΠSig,F,CCObf are secure, and ΠFE is both ciphertext indistinguishable and
black box function private, then Π in Construction 5 is c-traceable and (unbounded) weakly consistent.

Proof. We first prove weak consistency. Let A be an adversary for consistency. By the black box
function privacy of ΠFE, there exists a simulator Sim that only makes queries to the functions hid,i
of the various honest users, and can still find a differing input with non-negligible probability. In
particular, it must with non-negligible probability find a query (S∗, σ, z, x,m) to some hid,i such that
σ is a valid signature on S∗ and i ∈ S∗. Let q be the index of the first query where this happens.
For all prior queries, hid,i outputs m. Therefore, all prior queries can be simulated without knowing
a signature on any S that contains honest users, and also without knowing ki for any honest user i.

For every honest user i, we can therefore replace each evaluation of βS,i with random. This
change will be undetectable before query q, by the PRF security of F. But this means, by compute
and compare security, that PS,i can be simulated without knowing skS,i, which again will be
undetectable before query q. We finally rely on the security of pkS,i to conclude that the entire view
of the adversary up until query q can be simulated just knowing σS , where S ranges over all subsets
containing only adversarial users.

The result is that the view of the adversary up until query q can be simulated by making signing
queries on S containing only adversarial users, but then query q produces a signature on an S∗
containing at least one honest user, which must therefore be different than any of the queries S.
Thus, such an algorithm can forge signatures, a contradiction to the security of pkSig.

We now prove c-traceability. Consider an attacker A which makes up to c queries. Let Q be
the set of i ∈ [N] corresponding to the adversary’s queries. Let D be the output of A, and suppose
GoodDecε happens. We note that for any honest user i /∈ Q, by functional encryption security p(S)
and p(S \ {i}) will be negligibly close, except with negligibly-small probability. As such, honest
users will never be accused. We now prove that some user will be accused.

Claim 1. Except with negligible probability, p(Q) > 1/2 + ε− δ and p(∅) < 1/2 + δ

Proof. Under all the adversary’s keys, (⊥,⊥,⊥,⊥,m) and (Q, σQ,⊥,⊥,m) decrypt correctly, so
encryptions of these values are indistinguishable. p(Q) > 1/2 + ε − δ follows by the goodness of
D. On the other hand, (∅, σ∅,⊥,⊥,m) will always fail to decrypt, so p(∅) < 1/2 + δ except with
negligible probability.

Claim 2. Except with negligible probability, there exists an S∗ ⊆ Q such that, for all i ∈ S∗,
p(S∗ \ {i}) ≤ p(S∗)− 8δ.

29

Proof. Assume p(Q) > 1/2 + ε − δ and p(∅) < 1/2 + δ. Suppose toward contradiction that, for
each set S ⊆ Q, there exists an iS such that p(S \ {iS}) > p(S) − 8δ. Then setting S0 = Q
and Sj = Sj−1 \ {iSj−1}, we get that p(Sj) > p(Sj−1) − 8δ and S|Q| = ∅. But this means that
p(∅) > p(Q)− 8δ|Q|, a contradiction.

Claim 3. Except with negligible probability, |p(S∗ \ {j})− p(S∗, j)| < δ for any i ∈ S∗.

Proof. For any i ∈ S∗ and any secret key under the adversary’s control, (S∗ \ i, σS∗\i,⊥,⊥,m) and
(S∗, σS∗ , i,⊥,m) decrypt identically. Therefore, their encryptions are indistinguishable.

By the above claims, p(S∗, i) < p(S∗)− 8δ for each i ∈ S∗, except with negligible probability.
But then p̃(S∗, i) < p̃(S∗)− 6δ except with negligible probability. When we homomorphically run
FindTagsD

0 (pk,m0,m1, 1c, 11/ε, S∗, σ∗), no abort will happen and the result will be (an encryption
of) aux.

Claim 4. For any i ∈ S∗ and x, if fid,i(S∗, x) = 0 then |q(S∗, i, x) − p(S∗, i))| < δ except with
negligible probability. If fid,i(S∗, x) = 1, then |q(S∗, i, x)− p(S∗))| < δ.

Proof. If fid,i(S∗, x) = 0, then the secret key for user i rejects encryptions of (S∗, σS∗ , i, x,m),
while all other users in S∗ decrypt and users outside S∗ reject. This is the same functionality as
(S∗, σS∗ , i,⊥,m). On the other hand, if fid,i(S∗, x) = 1, then the secret key for user i correctly
decrypts (S∗, σS∗ , i, x,m), corresponding to the same functionality as (S∗, σS∗ ,⊥,⊥,m). The claim
follows by functional encryption security.

Claim 5. For any i ∈ S∗ and any input x, EvalD0 (pk,m0,m1, 1c, 11/ε, aux, S∗, σS∗ , i, x) outputs
fid,i(S∗, x), except with negligible probability.

Proof. If fid,i(S∗, x) = 0, then |q̃(S∗, i, x)− p̃(S∗, i)| < 3δ. But since |p̃(S∗)− p̃(S∗, i)| > 6δ, we must
have |q̃(S∗, i, x)− p̃(S∗)| > 3δ. As such, q̃(S∗, i, x) is closer to p̃(S∗, i) than p̃(S∗), and Eval0 therefore
outputs 0 on input x. Analogously, Eval0 outputs 1 on inputs x such that fid,i(S∗, x) = 1.

Therefore, the circuit CS∗(σS∗) will correctly evaluate βS∗,i = F(ki, S∗), and therefore correctly
output βS∗ with overwhelming probability.

References
[AAB+13] Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek Kumarasub-

ramanian, Manoj Prabhakaran, and Amit Sahai. Functional encryption and property
preserving encryption: New definitions and positive results. Cryptology ePrint Archive,
Report 2013/744, 2013. http://eprint.iacr.org/2013/744.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 657–677.
Springer, Heidelberg, August 2015.

30

http://eprint.iacr.org/2013/744

[ADVW13] Shweta Agrawal, Yevgeniy Dodis, Vinod Vaikuntanathan, and Daniel Wichs. On
continual leakage of discrete log representations. In Kazue Sako and Palash Sarkar,
editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 401–420. Springer,
Heidelberg, December 2013.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda
Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 52–73. Springer, Heidelberg,
February 2014.

[BF99] Dan Boneh and Matthew K. Franklin. An efficient public key traitor tracing scheme. In
Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 338–353. Springer,
Heidelberg, August 1999.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg, August
2001.

[BN08] Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext. In Peng Ning,
Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 501–510. ACM
Press, October 2008.

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate obfuscation and
applications to resettable cryptography. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 241–250. ACM Press, June 2013.

[BS15] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key
setting. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume
9015 of LNCS, pages 306–324. Springer, Heidelberg, March 2015.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing
with short ciphertexts and private keys. In Serge Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 573–592. Springer, Heidelberg, May / June 2006.

[BSW10] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. Cryptology ePrint Archive, Report 2010/543, 2010. http://eprint.iacr.
org/2010/543.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In Juan A. Garay and Rosario Gennaro, edi-
tors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 480–499. Springer, Heidelberg,
August 2014.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo Desmedt, editor,
CRYPTO’94, volume 839 of LNCS, pages 257–270. Springer, Heidelberg, August 1994.

[CGZ20] Ran Cohen, Juan A. Garay, and Vassilis Zikas. Broadcast-optimal two-round MPC. In
Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of
LNCS, pages 828–858. Springer, Heidelberg, May 2020.

31

http://eprint.iacr.org/2010/543
http://eprint.iacr.org/2010/543

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. In Daniel Wichs and Yishay Mansour,
editors, 48th ACM STOC, pages 1115–1127. ACM Press, June 2016.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of
probabilistic circuits and applications. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015, Part II, volume 9015 of LNCS, pages 468–497. Springer, Heidelberg,
March 2015.

[DF03] Yevgeniy Dodis and Nelly Fazio. Public key trace and revoke scheme secure against
adaptive chosen ciphertext attack. In Yvo Desmedt, editor, PKC 2003, volume 2567 of
LNCS, pages 100–115. Springer, Heidelberg, January 2003.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

[GKRW18] Rishab Goyal, Venkata Koppula, Andrew Russell, and Brent Waters. Risky traitor
tracing and new differential privacy negative results. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 467–497.
Springer, Heidelberg, August 2018.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris
Umans, editor, 58th FOCS, pages 612–621. IEEE Computer Society Press, October
2017.

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor tracing
from learning with errors. In Ilias Diakonikolas, David Kempe, and Monika Henzinger,
editors, 50th ACM STOC, pages 660–670. ACM Press, June 2018.

[GKW19] Rishab Goyal, Venkata Koppula, and Brent Waters. New approaches to traitor tracing
with embedded identities. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019,
Part II, volume 11892 of LNCS, pages 149–179. Springer, Heidelberg, December 2019.

[GNPT13] Philippe Guillot, Abdelkrim Nimour, Duong Hieu Phan, and Viet Cuong Trinh. Optimal
public key traitor tracing scheme in non-black box model. In Amr Youssef, Abderrah-
mane Nitaj, and Aboul Ella Hassanien, editors, AFRICACRYPT 13, volume 7918 of
LNCS, pages 140–155. Springer, Heidelberg, June 2013.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 75–92. Springer, Heidelberg, August 2013.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179. Springer,
Heidelberg, August 2012.

32

[JKL09] Pascal Junod, Alexandre Karlov, and Arjen K. Lenstra. Improving the Boneh-Franklin
traitor tracing scheme. In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009,
volume 5443 of LNCS, pages 88–104. Springer, Heidelberg, March 2009.

[KD98] Kaoru Kurosawa and Yvo Desmedt. Optimum traitor tracing and asymmetric schemes.
In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 145–157.
Springer, Heidelberg, May / June 1998.

[KY03] Aggelos Kiayias and Moti Yung. Breaking and repairing asymmetric public-key traitor
tracing. In Joan Feigenbaum, editor, Digital Rights Management, pages 32–50, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

[NDC+15] J. Ning, X. Dong, Z. Cao, L. Wei, and X. Lin. White-box traceable ciphertext-
policy attribute-based encryption supporting flexible attributes. IEEE Transactions on
Information Forensics and Security, 10(6):1274–1288, 2015.

[NP01] Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In Yair Frankel,
editor, FC 2000, volume 1962 of LNCS, pages 1–20. Springer, Heidelberg, February
2001.

[NWZ16] Ryo Nishimaki, Daniel Wichs, and Mark Zhandry. Anonymous traitor tracing: How
to embed arbitrary information in a key. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 388–419. Springer,
Heidelberg, May 2016.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010. http://eprint.iacr.org/2010/556.

[Pfi96] Birgit Pfitzmann. Trials of traced traitors. In Ross Anderson, editor, Information
Hiding, pages 49–64, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[TS06] Dongvu Tonien and Reihaneh Safavi-Naini. An efficient single-key pirates tracing scheme
using cover-free families. In Jianying Zhou, Moti Yung, and Feng Bao, editors, ACNS
06, volume 3989 of LNCS, pages 82–97. Springer, Heidelberg, June 2006.

[Wat14] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. Cryptology ePrint Archive, Report 2014/588, 2014. http://eprint.iacr.
org/2014/588.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under
LWE. In Chris Umans, editor, 58th FOCS, pages 600–611. IEEE Computer Society
Press, October 2017.

[Zha20] Mark Zhandry. New techniques for traitor tracing: Size N1/3 and more from pairings.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume
12170 of LNCS, pages 652–682. Springer, Heidelberg, August 2020.

33

http://eprint.iacr.org/2010/556
http://eprint.iacr.org/2014/588
http://eprint.iacr.org/2014/588

	Introduction
	Motivation
	Overview of Our Results
	Future Directions

	Our Techniques
	Part 1: Private Traitor Tracing
	Part 2: Toward Consistent Traitor Tracing

	Traitor Tracing Definitions
	Basic Tracing Definition
	Private Traitor Tracing
	Consistent Traitor Tracing

	Functional Encryption and Black Box Privacy
	Black Box Function Privacy
	Upgrading to Black Box Function Privacy

	Constructing Private Traitor Tracing
	Function-Embedded Traitor Tracing (FETT)
	From BB Private FE to FETTs
	The Oracle Jump-Finding Problem
	The Conversion

	Un-Obfuscatable Functions (UOFs)
	Barak et al.'s Construction

	Our Private Traitor Tracing Scheme

	Toward Consistent Traitor Tracing
	The Construction
	Tracing
	Security

