
DEMO: AirCollect: Efficiently Recovering
Hashed Phone Numbers Leaked via Apple AirDrop

(Full Version)∗

Alexander Heinrich

TU Darmstadt, Germany

aheinrich@seemoo.de

Matthias Hollick

TU Darmstadt, Germany

mhollick@seemoo.de

Thomas Schneider

TU Darmstadt, Germany

schneider@encrypto.cs.tu-

darmstadt.de

Milan Stute

TU Darmstadt, Germany

mstute@seemoo.de

Christian Weinert

TU Darmstadt, Germany

weinert@encrypto.cs.tu-

darmstadt.de

ABSTRACT
Apple’s file-sharing service AirDrop leaks phone numbers and

email addresses by exchanging vulnerable hash values of the user’s

own contact identifiers during the authentication handshake with

nearby devices. In a paper presented at USENIX Security’21, we the-

oretically describe two attacks to exploit these vulnerabilities and

propose “PrivateDrop” as a privacy-preserving drop-in replacement

for Apple’s AirDrop protocol based on private set intersection.

In this demo, we show how these vulnerabilities are efficiently

exploitable via Wi-Fi and physical proximity to a target. Privacy

and security implications include the possibility of conducting ad-

vanced spear phishing attacks or deploying multiple “collector”

devices in order to build databases that map contact identifiers to

specific locations. For our proof-of-concept, we leverage a custom

rainbow table construction to reverse SHA-256 hashes of phone

numbers in a matter of milliseconds. We discuss the trade-off be-

tween success rate and storage requirements of the rainbow table

and, after following responsible disclosure with Apple, we publish

our proof-of-concept implementation as “AirCollect” on GitHub.

KEYWORDS
privacy, personal information, hashing, rainbow table, iOS, macOS

1 INTRODUCTION
Apple AirDrop is a file-sharing service that allows users to send

photos and other media over a directWi-Fi connection from one Ap-

ple device to another. As people typically want to share sensitive

data exclusively with people they know, AirDrop only shows re-

ceiver devices from address book contacts by default. To determine

whether the other party is a contact, AirDrop uses a mutual au-

thentication mechanism that compares a user’s phone number and

email address with entries in the other user’s address book [10].

2 VULNERABILITIES
In our paper [6], we discovered two severe privacy leaks in this

authentication mechanism. In particular, we showed that it is pos-

sible to learn the phone numbers and email addresses of AirDrop

*
Please cite the conference version of this demo paper published at ACMWiSec’21 [5].

users—even as a complete stranger. An attacker only requires a

Wi-Fi-capable device
1
and physical proximity to a target.

The discovered problems are rooted in Apple’s use of hash func-

tions for “obfuscating” the exchanged contact identifiers, i.e., phone

numbers and email addresses, during the discovery process. It is

well-known in industry and academia that hashing fails to provide

privacy-preserving contact discovery since hash values of phone

numbers can be quickly reversed using simple techniques such as

brute-force attacks or database lookups [4].

2.1 Sender Leakage
During the AirDrop authentication handshake, the sender always

discloses their own hashed contact identifiers as part of an ini-

tial discover message. A malicious receiver can therefore learn all

hashed contact identifiers of the sender without requiring any prior

knowledge of their target.

To obtain these identifiers, an attacker simply can wait (e. g., at a

public hot spot) until a target device scans for AirDrop receivers, i. e.,

the user opens the sharing pane. After collecting the hashed con-

tact identifiers, the attacker can recover phone numbers and email

addresses offline. As shown in prior work [4], recovering phone

numbers is possible in the order of milliseconds. Recovering email

addresses is less trivial but possible via dictionary attacks that check

common email formats such as first.lastname@{gmail.com, ya-

hoo.com, . . . }. Alternatively, an attacker could utilize data breaches

or use an online lookup service for hashed email addresses [2].

This vulnerability was also independently discovered and pub-

lished by the Apple Bleee project in July 2019 [1], shortly after our

initial responsible disclosure to Apple in May 2019.

2.2 Receiver Leakage
AirDrop receivers present their hashed contact identifiers in re-

sponse to the discover message if they know any of the sender’s

contact identifiers (e. g., if the receiver has stored the sender’s email

address). Amalicious sender can thus learn all contact identifiers (in-

cluding the receiver’s phone number) without requiring any prior

knowledge of the receiver—if the receiver knows the sender.

1
AirDrop relies on a proprietary Wi-Fi-based link-layer protocol called Apple Wireless

Direct Link (AWDL) [9].



Alexander Heinrich, Matthias Hollick, Thomas Schneider, Milan Stute, and Christian Weinert

Table 1: Structure of the validation record certificate ex-
changed during the AirDrop authentication handshake.
Problematic fields are highlighted in bold.

Field name Content

Version 2

altDsID UUID of Apple account

encDsID UUID of Apple account

SuggestValidDuration 2592000 seconds (= 30 days)

ValidAsOf date and time

ValidatedEmailHashes array of SHA-256 hashes

ValidatedPhoneHashes array of SHA-256 hashes

Importantly, the malicious sender does not have to know the

receiver: A popular person within a certain context (e. g., the man-

ager of a company) can exploit this design flaw to learn all (private)

contact identifiers of other people who have the popular person in

their address book (e. g., employees of the company).

3 PROOF-OF-CONCEPT ATTACKS
We demonstrate two attacks exploiting the vulnerabilities with a

proof-of-concept implementation called “AirCollect” that is publicly

available on GitHub (cf. §5). It combines the efforts of OpenDrop [8],

an open-source AirDrop implementation, with RainbowPhones [3],

an open-source rainbow table implementation that is optimized for

non-uniform input domains such as mobile phone numbers.

Extracting Phone Number Hashes from Certificates. We

extend the OpenDrop [8] implementation with a module that parses

the validation record certificates exchanged during the authenti-

cation handshake. We depict the structure of validation record

certificate in Table 1, which is identical for both sender and receiver

devices. Our proof-of-concept code parses the array of phone hashes

and passes them to the RainbowPhones tool for lookup.

Rainbow Table: Success Rate vs. Storage. We use the open-

source tool RainbowPhones [3] to efficiently find the preimage to

a given hashed phone number. Compared to a conventional rain-

bow table implementation, RainbowPhones features a specialized

reduction function that considers the non-uniform input domain of

phone numbers [4]. To make RainbowPhones usable for recovering

hashes exchanged in the AirDrop protocol, we added support for

the SHA-256 hash algorithm.

For this demo, we compute a total 5 tables (each 15.3MB in size)

for German mobile phone numbers that together achieve a suc-

cess rate of 99.8 % (measured by reversing 10 k hashes of randomly

chosen German mobile phone numbers). In our published proof-of-

concept implementation, we omit these precomputed tables that

would allow attackers to reverse almost any given phone number

hash in a matter of milliseconds. In Fig. 1, we analyze the trade-off

between success rate and storage requirements, finding that even

only a single table already achieves 71 % success rate, making the

approach attractive for small embedded devices. The figure also in-

cludes similar measurements for 5 tables precomputed for all phone

numbers in the US that with a total size of 765MB achieve 100 %

success rate (again measured over 10 k randomly chosen samples).

1 2 3 4 5
Number of Tables

0

20

40

60

80

100

Su
cc

es
s

R
at

e
[%

]

German Mobile Phone Numbers

US Phone Numbers

Figure 1: Analysis of success rate for SHA-256 hash rever-
sal with RainbowPhone [3] when combining an increas-
ing number of equally-sized precomputed rainbow tables
for German mobile and all US phone numbers.

Exploiting Sender Leakage in Practice. Finally, we can exe-

cute an attack to exploit sender leakage via a single command-line

call on a MacBook.
2
The OpenDrop program starts listening for

active AirDrop senders, e. g., iPhones with an open sharing pane,

and immediately logs discovered phone numbers to the standard

output of the console. An example output would look as follows:

$ python3 -m opendrop receive

Announcing service: host opendrop , address fe80::

c8b9:fbff:fee9:d544 , port 8771

Starting HTTPS server

Nearby phone number: +49<...>

Our test setup is depicted in Fig. 2.

2
Alternatively, we can also use a Linux-based machine such as a Raspberry Pi, but the

setup then also requires running an open version of the AWDL protocol [10].

Figure 2: Test setup for demonstrating sender leakage.
The iPhone user (right) opens the sharing pane on the de-
vice to share a document with the person in the background.
The attacker (left) running “AirCollect” on a MacBook im-
mediately sees the sender’s phone number.



DEMO: AirCollect: Efficiently Recovering Hashed Phone Numbers Leaked via Apple AirDrop

Exploiting Receiver Leakage in Practice. Similarly, we de-

monstrate how to exploit receiver leakage, which does not require

any interaction with the target. However, wemust be able to present

a valid AirDrop certificate containing contact identifiers known

to the target. For this, we leverage a tool to extract valid AirDrop

certificates to be used with AirCollect [7]. An example output after

executing the attack looks as follows:

$ python3 -m opendrop find

Looking for receivers. Press Ctrl+C to stop ...

Nearby phone number: +49<...>

Found index 0 ID a019 <...> name John 's iPhone

4 RELATEDWORK
The “Apple Bleee” project [1] independently discovered the issue

of sender leakage and published their findings including a proof-of-

concept implementation—two months after our initial disclosure to

Apple in May 2019. Their implementation is also based on Open-

Drop [8] and uses database lookups to reverse hashes. In contrast,

we rely on a custom rainbow table construction that represents

an interesting computation/storage trade-off and makes on-the-fly

recovery even feasible for small embedded devices. Furthermore, in

our demo, we practically show that the recently discovered receiver
leakage vulnerability can be exploited as well.

5 CONCLUSION
We demonstrated how easy and with how little resources an at-

tacker can learn private information (especially phone numbers)

of AirDrop users in proximity. We leave the extension of our proto-

type to incorporate efficient reversal of email addresses as future

work (e. g., by including calls to existing online services [2]).

We responsibly disclosed the issue to Apple in May 2019 as well

as a practical solution [6] in October 2020. As of May 2021, Apple

has not indicated if they are working on mitigating this issue. This

means that Apple users are still vulnerable to the described attacks.

AVAILABILITY
Our proof-of-concept implementation “AirCollect” is available on-

line at https://privatedrop.github.io.

ACKNOWLEDGMENTS
We thank Ann-Kathrin Braun and Daniela Fleckenstein for pro-

viding the photograph of our proof-of-concept setup. Also, we

thank Christoph Hagen and Christoph Sendner for answering ques-

tions about RainbowPhones.

This project has received funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research

and innovation program (grant agreement No. 850990 PSOTI). It

was co-funded by the Deutsche Forschungsgemeinschaft (DFG) –

SFB 1119 CROSSING/236615297 and GRK 2050 Privacy &

Trust/251805230, by the LOEWE initiative (Hesse, Germany) within

the emergenCITY center, by the German Federal Ministry of Ed-

ucation and Research and the Hessian State Ministry for Higher

Education, Research and the Arts within ATHENE.

REFERENCES
[1] Dmitry Chastuhin. Apple Bleee: Everyone Knows What Happens on

Your iPhone. July 25, 2019. url: https://hexway.io/research/apple-

bleee/ (visited on 10/15/2020).

[2] Datafinder. Recover Encrypted Email Addresses. 2020. url: https :
//web.archive.org/web/20191211152224/https://datafinder.com/

products/email-recovery (visited on 10/15/2020).

[3] Christoph Hagen and Sebastian Schindler. RainbowPhones. 2021. url:
https://github.com/contact-discovery/rt_phone_numbers.

[4] Christoph Hagen, Christian Weinert, Christoph Sendner, Alexandra

Dmitrienko, and Thomas Schneider. “All the Numbers are US: Large-

scale Abuse of Contact Discovery in Mobile Messengers”. In: NDSS.
2021. url: https://www.ndss-symposium.org/wp-content/uploads/

ndss2021_1C-3_23159_paper.pdf.

[5] Alexander Heinrich, Matthias Hollick, Thomas Schneider, Milan

Stute, and Christian Weinert. “DEMO: AirCollect: Efficiently Recov-

ering Hashed Phone Numbers Leaked via Apple AirDrop”. In:WiSec.
ACM, 2021. doi: 10.1145/3448300.3468252.

[6] Alexander Heinrich, Matthias Hollick, Thomas Schneider, Milan

Stute, and ChristianWeinert. “PrivateDrop: Practical Privacy-Preserv-

ing Authentication for Apple AirDrop”. In: USENIX Security Sympo-
sium. 2021.url: https://www.usenix.org/conference/usenixsecurity21/

presentation/heinrich.

[7] Milan Stute. Extracting Apple ID Validation Record, Certificate, and
Key for AirDrop. 2020. url: https://github.com/seemoo-lab/airdrop-

keychain-extractor.

[8] Milan Stute and Alexander Heinrich. OpenDrop: An Open Source
AirDrop Implementation. 2019. url: https://github.com/seemoo-

lab/opendrop.

[9] Milan Stute, David Kreitschmann, and Matthias Hollick. “One Billion

Apples’ Secret Sauce: Recipe for the Apple Wireless Direct Link Ad

hoc Protocol”. In: International Conference on Mobile Computing and
Networking. ACM, 2018. doi: 10.1145/3241539.3241566.

[10] Milan Stute, Sashank Narain, Alex Mariotto, Alexander Heinrich,

David Kreitschmann, Guevara Noubir, and Matthias Hollick. “A Bil-

lion Open Interfaces for Eve and Mallory: MitM, DoS, and Tracking

Attacks on iOS and macOS Through Apple Wireless Direct Link”.

In: USENIX Security Symposium. 2019. url: https://www.usenix.org/

conference/usenixsecurity19/presentation/stute.

https://privatedrop.github.io
https://hexway.io/research/apple-bleee/
https://hexway.io/research/apple-bleee/
https://web.archive.org/web/20191211152224/https://datafinder.com/products/email-recovery
https://web.archive.org/web/20191211152224/https://datafinder.com/products/email-recovery
https://web.archive.org/web/20191211152224/https://datafinder.com/products/email-recovery
https://github.com/contact-discovery/rt_phone_numbers
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_1C-3_23159_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_1C-3_23159_paper.pdf
https://doi.org/10.1145/3448300.3468252
https://www.usenix.org/conference/usenixsecurity21/presentation/heinrich
https://www.usenix.org/conference/usenixsecurity21/presentation/heinrich
https://github.com/seemoo-lab/airdrop-keychain-extractor
https://github.com/seemoo-lab/airdrop-keychain-extractor
https://github.com/seemoo-lab/opendrop
https://github.com/seemoo-lab/opendrop
https://doi.org/10.1145/3241539.3241566
https://www.usenix.org/conference/usenixsecurity19/presentation/stute
https://www.usenix.org/conference/usenixsecurity19/presentation/stute

	Abstract
	1 Introduction
	2 Vulnerabilities
	2.1 Sender Leakage
	2.2 Receiver Leakage

	3 Proof-of-Concept Attacks
	4 Related Work
	5 Conclusion
	Acknowledgments

