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Abstract

In the recent ePrint report 2021/583 titled ”Entropoid-based cryptography is group exponentiation in
disguise” Lorenz Panny gave a cryptanalysis of the entropoid based instances proposed in our eprint report
2021/469. We acknowledge the correctness of his claims for the concrete instances described in our original
report 2021/469.

However, we find that claims for the general applicability of his attack on the general Entropoid frame-
work are misleading. Namely, based on the Theorem 1 in his report, which claims that for every entropic
quasigroup (G, #), there exists an Abelian group (G, -), commuting automorphisms o, 7 of (G,-), and an
element ¢ € G, such that x *y = o(x) - 7(y) - ¢ the author infers that ”all instantiations of the entropoid
framework should be breakable in polynomial time on a quantum computer.”

There are two misleading parts in these claim: 1. It is implicitly assumed that all instantiations of
the entropoid framework would define entropic quasigroups - thus fall within the range of algebraic objects
addressed by Theorem 1. We will show a construction of entropic groupoids that are not quasigroups; 2. It is
implicitly assumed that finding the group (G, -), the commuting automorphisms ¢ and 7 and the constant ¢
would be easy for every given entropic operation * and its underlying groupoid (G, *). However, the provable
existence of a mathematical object does not guarantee an easy finding of that object.

Treating the original entropic operation % := %; as a one-dimensional entropic operation, we construct
multidimensional entropic operations * := #,,, for m > 2 and we show that newly constructed operations
do not have the properties of * = #; that led to the recovery of the automorphism o, the commutative
operation - and the linear isomorphism ¢ and its inverse .

We give proof-of-concept implementations in SageMath 9.2 for the new multidimensional entropic op-
erations % := %, defined over several basic operations # := #; and we show how the non-associative and
non-commutative exponentiation works for the key exchange and digital signature schemes originally pro-
posed in report 2021/469.

1 Introduction

We would like to start this rebuttal by giving credits to Lorenz Panny for his ePrint report [7], where he showed
how the instances proposed in our ePrint report [2] can be reduced to a polynomial number of discrete logarithm
problems in Abelian groups - thus solvable efficiently on quantum computers. We give credit to his openness
to discuss his findings and informing us before he published his result on ePrint. Actually, this rebuttal is the
second version (where the first version had to be updated thanks to Lorenz Panny given feedback).

We would also like to give credit to Daniel Nager [5] who first mentioned the possibility to work with
entropic groupoids (magmas) that are not quasigroups (only left quasigroups). In this rebuttal we propose
concrete construction of such groupoids.

The entropic quasigroups in [2] are defined over the set E := F(,_;)> with the operation :

az(agby — b7) agbay1
82 T 4 agw +
asbn 3T

by(ag — asbr)  asbrys
- +
agby ag

+ agrayi,

(z1,22) * (y1,92) = (

+ boxy + b7$1y2>, (1)

where as, ag, ba, b7y € Fp, ag # 0 and b7 # 0, and the operations — and / are the operations of subtraction and
division in F,,.

The core success of the Lorenz’ attack described in the first part of Section 2 of [7] relies on the following
properties of the instances of the entropic quasigroups proposed in [2]:
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1. The algebraic degree of operation * is 2;

2. The entropic operation * is quasigroup;
3. There exists an element 1 = ( —————— ) which is a multiplicative left unit for the groupoid (E, *);

4. Due to Theorem 1 and Theorem 2 from [9], it is easy to find an automorpism ¢ : E - E, o(z) =z =+ 1
such that x * y = o(z) - y, where - is a commutative operation

a3b7 n a3b7 a§b7 — asas

. = (b
(z1,22) - (Y1, 2) (73011/1 + as T as Y1+ a% ,

a8b2 (lgbg agb% — b2b7
b7 To + b7 Y2 + b% )

(2)

agx2y2 +

i.e. the algebraic structure (E,-) is an Abelian group;

5. Instead of being represented in the most general form by two commuting automorphisms o, 7 of (G,-),
and an element ¢ € G, such that z +y = o(z) - 7(y) - ¢, the instances of the operation * are represented in
a simpler way as z *y = o(x) - y;

6. The group (E,-) can be seen as a direct product of two affine algebraic groups (there is no mix of compo-
nents 1 and yo and of components z2 and y; );

7. Tt is easy to find a linear isomorphism between (E, -) and (F))?, ¢ : E — (F)? (and its inverse :~') where

asbr agbs
vz, x2) = (brxy + —,agxs + —).
asg by

Then the attack on the instances proposed in [2] uses the isomorphism ¢ to map g, o(g) and g? into (IE‘;)27
solve 6 discrete logarithm problems in F,, and one 2 x 2 linear system in Z?2, and use that solution to construct
an equivalent private key that computes z® for any x € E.

Thus, we praise the author for constructing very efficient attack on this specific instance of the Entropic
Based Cryptography.

What about the general case? Do all instances of the entropoid-based cryptography framework produce

algebraic structures that are quasigroups with the properties 1 - 7 discussed above?

2 Rebuttal to the claims in the General attack

In the subsection 2.1 of [7], there is a proposal for a generic attack on every instance of the entropoid framework.
The attack relies on a proposed theorem that the author composed from three related works by Murdoch [4],
Toyoda [9] and Bruck [I]. We give here the original theorem as it is given in [7] (with a slight notation change
- instead of notation x? and y” we use the notation o(z) and 7(y)):

Theorem 1 (Theorem 1 in [7]) For every entropic quasigroup (G,#), there exists an abelian group (G,-),
commuting automorphisms o, T of (G,-), and an element ¢ € G, such that

xxy=o(x) 7(y)-c

Based on this theorem the author of [7] infers that ”all instantiations of the entropoid framework should be
breakable in polynomial time on a quantum computer.”
Rebuttal arguments

1. The author of [7] implicitly infers that all instantiations of the entropoid framework will operate with the
algebraic structures that are quasigroups, and thus are addressable by the works of Murdoch, Toyoda and
Bruck. That is not necessary true. In what follows we give a construction of multidimensional entropic
operations based on previously defined simpler entropic operations, that are not quasigroup operations.
They are groupoids (magmas) with only a left cancellation property (left quasigroups).

2. The author of [7] implicitly infers that finding the commuting automorphisms o, 7 of (G,-) as well as
the operation - would be easy for every given entropic quasigroup (G, #). Ignoring for a moment the fact
that we do not have a constructive proof of that theorem by which we can measure the complexity of the
proposed attack, we can only point to the fact that a provable existence of a mathematical object does
not guarantee an easy finding of that object. One simple example of this universal principle comes from
the design of cryptographic hash functions: it is easy to prove that there exist infinitely many colliding
pairs of inputs, but for a carefully designed cryptographic hash function, finding a single colliding pair is
hard.



2.1 Construction of entropic operations that are not quasigroups

Let us first update the notation about the operation # used in equation and in [2]. Since it is designed for
a "one-dimensional” E we will denote that operation as #1:

asz(agbs — b agh
(w1, 22) *1 (Y1,92) = M + aszxe + 28201 + agxa21,
agbr b7

_ ba(as — asbr) , Usbrye

b b 3
asbr a5 + b2 + 7x1y2>, (3)

Next, to give a definition of an entropic operation * := x,, over E™ = ((F, )2)™ we will adapt the ideas for
building multidimensional entropic operations from simpler entropic operations given in a recent ePrint report
2021/444 [6] by Nager and Jianfang, but with the style of D-transformations as defined in [3].

Definition 1 Let x,y € E™, i.e., x = (xg...,Tm-1) and y = (Yo,---,Ym—1)- A component-wise product II of
x and y is defined as:

z =1(z,y) = (20, -, 2m—-1), (4)
where z; = x; %1 y; for i € Lny,.
Definition 2 Letz € E™, i.e., x = (2g...,Tm—_1) and let | € E* is a nonzero element of E. A D-transformation
D of © with the respect of the leader element [ is defined as:

ZZDZ(JC) = (Z(),...,Zm_l), (5)
where zg =l xo, and z; = ;-1 #1 x; forie {l,...,m —1}.

Let we denote by A,, a derangement permutation (a permutation without a fixed element) on indices
Z, = {0,1,...,m—1}. In other words A,,(0,1,...,m—1) = (§(0),...,5(m—1)), where 6(i) # i for all i € Z,,.

By overloading the notation, let us denote the permutation of elements of z = (xg...,2;,—1) with the
derangement A, as Ay, (7) = Ap(T0 -+, Tm—1) = (T5(0), - - - T5(m—1)) -

Definition 3 A one round generalized Feistel transformation Fy,; : E™ — E™ of an element x € E" with the
respect of a leader [ is defined as:
Fmi(w) 1= Ap(Di(z)), (6)

and a Rounds generalized Feistel transformation FlRounds) . pm _ gm yith the respect of a list of leaders
L= {117 lQa ceey lRounds} 18 deﬁned as:

FEO) () = Frntmonas (@) 0 - © Fgy (@), (7)

Definition 4 Let m > 2, Rounds > 1, and let x,y € E™. The operation * := %, Rounds S defined as:

ooy =15 7 W) ). 0
Proposition 1 Operation * is entropic operation i.e. Va,y, z,w € E™,

(xxy)* (zxw) = (2% 2) % (y *w).

We can easily check that this multidimensional entropic operation * does not have the properties that were
crucial for easily finding the automorphism o, the abelian operation -, the linear isomorphism ¢ and its inverse
t~%in [7]. Even for the smallest dimension beyond 1, i.e. for the dimension m = 2, the degree of the multivariate
polynomials grows with the pace of the Fibonacci sequence (thus exponentially with the number of Rounds).

Proposition 2 For m = 2, the minimal degree of the multivariate polynomial describing the operation #,
internally having Rounds Feistel rounds, is a(Rounds + 3); the mazimal degree is a(Rounds + 4), where

a(n) = 2 Fibonacci(n) + 1, ©))
and where Fibonacci(n) is the n-th Fibonacci number.

With higher dimensions, the degree of the multivariate polynomials that describe the operation * grows even
faster. So, having analytical expressions that could help finding the commuting automorphisms o, 7 of (G, )
as well as the commutative group operation - becomes infeasible even with m = 2 and with number of rounds
Rounds > 16.

Another observation is that for the dimension m = 2 and even with the the smallest number of rounds
Rounds = 1, it is easy to prove (it is just a simple polynomial algebra) that there are neither left nor right unit
elements in E2.



Proposition 3 Form = 2 and Rounds = 1, there are leader values [, such that operation * 1= %, Rounds ‘= *2,1
has neither left nor right unit elements, i.e., there is no element e € E? such that Yx € E? it holds that exx = x,
or it holds that x * e = x.

Once having the operation * := #,,, all the principles for raising to the non-associative and non-commutative
powers described in our original paper ”Entropoid Based Cryptography” still hold.

We want to emphasize here that Definition [4) and equation can be used with any entropic operation 1,
not necessarily only the defined operation in equation . The following example illustrates that.

Example 1. Let us use one tiny entropic quasigroup operation #; of size 4 x 4.

#2101 2 3
01 3 0 2
1101 2 3 (10)
2 (3 2 1 0
3120 3 1

If we take m = 2 and the list of leaders to be L = {2,3,1,1,0,1,0,0}, then the operation # obtained by the
equation is described by the following Cayley 16 x 16 table:

=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
09 13 1 5 0 8 4 12 15 7 11 3 6 2 14 10
1{10 8 4 12 6 2 14 10 9 13 1 5 15 7 11 3
21 7 1 3 9 13 1 5 6 2 14 10 0 8 4 12
316 2 14 10 1 7 11 3 0 &8 4 12 9 13 1 5
417 3 15 11 13 5 9 1 2 10 6 14 8 12 0 4
5 (13 5 9 1 8 12 0 4 7 3 15 11 2 10 6 14
612 10 6 14 7 3 15 11 8 12 0 4 13 5 9 1
7|18 12 0 4 2 10 6 14 13 5 9 1 7 3 15 11 (11)
84 0 12 8 14 6 10 2 1 9 5 13 11 1 3 7
9114 6 10 2 11 15 3 v 4 0 12 8 1 9 5 13
(1 9 5 13 4 0 12 8 11 15 3 7 14 6 10 2
11(11 15 3 7 1 9 5 13 14 6 10 2 4 0 12 8
1210 14 2 6 3 11 7 15 12 4 8 O 5 1 13 9
33 11 7 15 5 1 13 9 10 14 2 6 12 4 8 0
14112 4 8 0 100 14 2 6 5 1 13 9 3 11 7 15
(5 1 13 9 12 4 8 O 3 11 7 15 10 14 2 6

Apparently, the operation * in is a quasigroup (the Cayley 16 x 16 table is a Latin Square). It is also an
entropic quasigroup.

However, if we put one more leader element i.e. if we set the list of leaders to be L = {2,3,1,1,0,1,0,0, 1},
then Cayley 16 x 16 table is the following:

=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0(2 13 13 2 1 14 14 1 1 14 14 1 2 13 13 2
112 3 3 12 15 0 0 15 1 0 O 15 12 3 3 12
211 0 0 1 12 3 3 12 12 3 3 12 15 0 0 15
3|1 14 14 1 2 13 13 2 2 13 13 2 1 14 14 1
419 6 6 9 10 5 5 10 10 5 5 10 9 6 6 9
5|7 8 8 7 4 11 11 4 4 11 11 4 7 8 8 7
614 11 11 4 7 8 8 7 7 8 8§ 7 4 11 11 4
7110 5 5 10 9 6 6 9 9 6 6 9 100 5 5 10 (12)
8|5 10 10 5 6 9 9 6 6 9 9 6 5 10 10 5
911 4 4 11 8 7 7 8 8 7 7 8 11 4 4 11
(8 v 7 8 11 4 4 11 11 4 4 1 8 7 7 8
1,6 9 9 6 5 10 10 5 5 10 10 5 6 9 9 6
12714 1 1 14 13 2 2 13 13 2 2 13 14 1 1 14
3(0 15 15 0 3 12 12 3 3 12 12 3 0 15 15 O
413 12 12 3 0 15 15 0 0 15 15 0 3 12 12 3
5713 2 2 13 14 1 1 14 14 1 1 14 13 2 2 13

We see that now we do not have a 16 x 16 quasigroup, but a groupoid that is an entropic left quasigroup.

Let us now carefully analyze the existing techniques given in the works of Toyoda [9], Murdoch [4], and
Bruck [1] for constructing the Abelian group (G, -) with its commuting automorphisms o, 7.



A common assumption in the works of Toyoda, Bruck and Murdoch: A common assumption in the
works of Toyoda, Bruck and Murdoch is that the underlying entropic algebraic structure (G, *) is a quasigroup.
Then, with different techniques commutative groups are constructed, by finding certain automorphisms and
constants. As we showed so far, the constructed entropic operations * = x,, are not necessarily quasigroup
operations.

Toyoda’s paper: In the paper of Toyoda, the entropic operation is given in the field of real numbers. More
concretely, for the conditions of Theorem 1 in Toyoda’s paper, the entropic operation - is constructed as a linear
(affine) function of two variables z and y, i.e. -y = Ax + py + v. In our initial ePrint paper ”Entropoid
Based Cryptography” we constructed initially just a little bit more complex quadratic functions for the entropic
operation. Thus, it not hard to find the corresponding group operation following the steps described in Toyoda’s
paper. Namely, having a simple linear form, Toyoda constructs a new operation + under which (G, +) is an
Abelian group. The operation + is defined as a-b = a - s + r - b. Furthermore, Theorem 1 obtains that the
operation - in G can be expressed as x -y = Ax + By + ¢ for some automorphisms A and B on G and for some
fixed element c € G.

There is no direct algorithmic approach for finding explicitly the Abelian group (and the accompanied
automorphisms) for the newly constructed multidimensional entropic operation # = #,,, that now has an
unknown analytic form of multivariate polynomials with degrees higher than few millions.

Toyoda’s approach to find the corresponding Abelian group, followed in Theorem 2, relies on the existence
of a unit element for the entropic operation, and the existence of such a unit element for the newly defined
multidimensional variant of the operation # := =, is not guaranteed.

Bruck’s paper (viewed as extension of Murdoch’s work): In Section 10 of his work, Bruck shows with
Lemma 13 how to construct an entropic quasigroups (which he calls Abelian quasigroups) with a unique right
or left unit element which is isotopic to any given entropic quasigroup (@, ). For constructing the isotope with
the unique right unit element, first he fixes an element g € @), then he uses the inverse map R;l of the right
mapping R, where Ry(x) = x-g. Then an isotopic quasigroup (Q,o) is constructed as aob = R;*(a) - b.
Now for the operation o the element ¢ is a unique right unit i.e. a o g = a. A similar technique is applied for
obtaining an isotopic operation with a unique left unit with the use of the inverse L;l of the left mapping where
Ly(z)=g-x.

Then, in Theorem 11 Bruck gives the construction of the Abelian group (G, o) isomorphic to the isotopes
of (Q,-) that poses unit elements. The group is G = Q(Rgl,Lfl) i.e. where aob = R;'(a)- L;l(b) for some
fixed elements f and ¢ in G. Finally, in Theorem 12 Bruck shows that every entropic quasigroup (G, -), that is
isotopic to an Abelian group, is isomorphic to some other quasigroup (G, o), where aob = f - S(a) - T(b) where
f € G is a fixed element, and where S and T are commutative automorphisms of G.

Note that the construction of (G, o) in Theorem 11 assumes the knowledge of two inverse mappings R;l and
L;l. Note also that the isomorphism in Theorem 12 is between two quasigroups, and the construction of the
automorphisms S and T of the group G assumes the knowledge of the inverse elements in G’ and the knowledge
of two isomorphisms U and V for the isotopes with unit elements.

3 Conclusions

Being entropic operation * that is not a quasigroup, without having explicit analytical expressions for it, without
having a unit element for that operation, without the knowledge of the hidden corresponding Abelian group
(G,) (if existing at all), without the knowledge of its commuting automorphisms o and 7 and without the
knowledge of the isomorphism ¢ and its inverse ¢:~!, we can say that

Entropid Based Cryptography is cryptography with hidden sub-quasigroup and hidden sub-group exponentiation

As with the initial publication of the paper ”Entropoid Based Cryptography”, we accompany this rebuttal
with proof-of-the-concept Jupyter notebook implementations in Sagemath 9.2 which can be taken from the
following link: http://people.item.ntnu.no/~danilog/EntropoidBasedCryptography/\

For the key exchange the implementation uses a small but convenient prime number: the fourth Fermat
prime number Fy = p = 22" + 1 and defines an operation #; defined over the entropoid E,. To reach the magma
structures with 22°6,23%4 and 25!2 elements, the dmensions defined by m should be m = 8,12,16. We use
Rounds = 14 or Rounds = 21.

The signatures implementation are still with the big prime numbers and the proof-of-concept implementa-
tion is just to show that signing and verification work well with the newly defined multi-dimensional entropic
operations.

Several open research questions are raising with this rebuttal:


http://people.item.ntnu.no/~danilog/EntropoidBasedCryptography/

e What is the size of the underlying entropic sub-quasigroup?

e How the number of rounds and the used derangement permutation are related in respect to the newly
obtained groupoids? What are the guarantees that the structure is (is not) a quasigroup?

e What are the optimal practical parameters?

We hope that the implementation and this rebuttal will inspire further interest and further analysis of the
strengths and weaknesses of the Entropoid Based Cryptography. We also plan soon to update the initial paper
”Entropoid Based Cryptography” with the proposed multi-dimensional entropic operations.
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