
Homomorphic decryption in blockchains via
compressed discrete-log lookup tables

Panagiotis Chatzigiannis1, Konstantinos Chalkias2, and Valeria Nikolaenko2

1 Novi / Facebook / George Mason University, USA pchatzig@gmu.edu
2 Novi / Facebook, USA {kostascrypto, valerini}@fb.com

Abstract. Many privacy preserving blockchain and e-voting systems
are based on the modified ElGamal scheme that supports homomorphic
addition of encrypted values. For practicality reasons though, decryption
requires the use of precomputed discrete-log (dlog) lookup tables along
with algorithms like Shanks’s baby-step giant-step and Pollard’s kanga-
roo. We extend the Shanks approach as it is the most commonly used
method in practice due to its determinism and simplicity, by propos-
ing a truncated lookup table strategy to speed up decryption and reduce
memory requirements. While there is significant overhead at the precom-
putation phase, these costs can be parallelized and only paid once and
for all. As a starting point, we evaluated our solution against the widely-
used secp family of elliptic curves and show that we can achieve storage
reduction by 7x-14x, depending on the group size. Our algorithm can
be immediately imported to existing works, especially when the range of
encrypted values is known, such as in Zether, PGC and Solidus protocols.

Keywords: discrete log, ElGamal, homomorphic encryption, precomputation

1 Introduction

Over the last few years, we have witnessed an increasing number of decentralized
payment systems that use the additively homomorphic ElGamal scheme to offer
non-interactive confidential amounts [2,6,8,10,11]. However, for efficiency pur-
poses, this ElGamal variant requires a precomputed discrete-log lookup table.
The latter is because the ciphertext carries the message in the exponent of the
group’s base point, and without caching, it’s only decryptable via bruteforcing.

Typically, for most financial applications, the max transaction amount ranges
from 232 to 264, as this is usually enough to encode even the largest reasonable
balance. Generating and loading a table for billions and trillions of elements is
impractical though, especially for constrained devices such as mobile phones,
IoT devices and light clients in general. For instance, when using the 256-bit
secp256k1 elliptic curve where a group point is serialized in 33 bytes (in com-
pressed form), 132 GB are required to store 232 elements in binary format.

While solutions exist that trade storage space for less computations, they
increase the overall storage costs by several orders of magnitude or they are
not deterministic. In this paper we propose an extra layer of compression that

is compatible with Shanks algorithm (also known as baby-step giant-step), that
reduces the lookup table size by a constant factor without any additional de-
cryption cost. Our methods only require a precomputation phase and produce
collision-free tables3 with size independent of the elliptic curve field size; the
larger the size, the better the compression rate. We also leverage the fact that
some blockchain systems’ encrypted content (e.g., Zether [6]) is accompanied by
range proofs, and we use this information to slightly speed up decryption.

In the implementation section, we present a few strategies for precompu-
tations and actually provide complete compressed lookup tables for NIST’s
secp256r1 curve as a starting point. Protocol designers can follow our recom-
mendations to also create tables for curves of their choice, which will eventually
result in a template repository for the most popular curves that will help the
adoption and efficiency of additively homomorphic encryption schemes in gen-
eral.

2 Background

Here we provide background on small dlog lookups. We first describe how modi-
fied ElGamal encryption works as a common use-case, then review related works
in improving lookup table efficiency for recent blockchain-based systems requir-
ing such tables, which can benefit from our work.

2.1 Additively homomorphic ElGamal encryption

Modified ElGamal encryption [19] consists of the following algorithms:

– pp← Setup(1λ): On input of security parameter λ, outputs public parameters
pp = (G, g, p) where g is generator of cyclic group G of prime order p. We
consider these parameters as a default input to all following algorithms and
we omit them for simplicity.

– (pk , sk)← Gen(): Outputs a secret-public key pair as sk ← Zp, pk = gsk .
– (c1, c2) ← Enc(pk , x): Samples r ← Zp, computes c1 = gr, c2 = gx · pkr and

outputs ciphertext C = (c1, c2).

– x ← Dec(sk , (c1, c2)): Compute gx = c2/c
sk
1 . While x cannot be directly

computed from gx, it can be recovered through a pre-computed lookup table,
assuming that the message space is relatively small, i.e., up to 232.

The scheme is additively homomorphic because it holds that EncA(pk , x1) ·
EncB(pk , x2) = (c1A · c1B , c2A · c2B) = Enc(pk , x1 + x2).

Also, note that the message space is in Zp, and thus 0 is not included. There
are various methods to support encryption of 0, for instance by mapping the
message space {0, ..., p− 2} to {1, ..., p− 1} at the application layer.

3 Similar compression techniques are also discussed in [3], but our work focuses on
collision-free tables per group to completely avoid false positives.

2

2.2 Improving efficiency of discrete log lookup operations

A naive approach for lookup tables would require precomputing all (x, gx) tuples
up to a maximum value and storing them in a file, where x ∈ [1, N]; N is usually
a power of 2, thus N = 2n. Typically, generating this file requires resource-
intensive bruteforcing and O(N) storage, but the lookup cost is amortized to
O(1).

Shanks algorithm [18] enables a space-time tradeoff for the naive solution. It
defines a baby-step with stores (x, gx) for all x ∈ [1, 2α] in a lookup table M ,
and up to 2β giant-steps, with α+ β = n. To recover the discrete log of c = gx,
it computes the giant step as g2

α

, initializes counter i→ 0, and checks if c/gi2
α

exists in M . If the lookup is successful: return x + i · 2α, else increment i and
repeat lookup. This algorithm has O(2α) storage and requires 2β multiplications
(elliptic curve point additions) in the worst case, which can be amortized per
application. There are also followup works that improve on the average expected
computation costs by a constant factor [4,17].

Existing practical approaches for finding dlog in a small interval build on
top of Pollard’s rho and kangaroo methods [1,3,12,13,16], mainly focusing on
improving the average-case complexity. In contrast, we mainly focus on Shanks
method, because its practical average-case complexity is within a constant factor
of its worst-case complexity, thus giving an algorithm that will perform well in
practice for all instances (even for adversarially chosen ones).

2.3 Related blockchain works that require precomputed tables

Solidus [8] is a permissioned, distributed payment system that associates user
accounts with Banks, which in turn maintain a private data structure containing
their user account public keys and the respective balances. Solidus utilizes mod-
ified ElGamal encryption to achieve its needed additive homomorphism, with
balances represented in the exponent. The authors apply Shanks algorithm in
their implementation to represent up to 232 values.

Zether [6] is a distributed confidential payment system implemented on top
of an Ethereum smart contract by converting Ethereum coins to native Zether
tokens. These tokens are represented in encrypted form within the contract in-
ternal state using the additively homomorphic version of ElGamal encryption
scheme, and are accompanied by range proofs. Original Zether’s implementation
considers a range of 232, but supporting 64 bits is possible by splitting into 2
amounts of 32 bits each (most and least significant bits, respectively); then en-
crypt each one of them separately. Interestingly, the authors refer to decryption
via bruteforcing without references to optimized solutions or precomputed tables.
As they claim, this is not considered an issue because a) decryption is happen-
ing off-chain b) bruteforcing would occur only rarely, i.e., when the amount is
unknown.

PGC [10] is another distributed, confidential payment system, which uses a
customized ElGamal encryption variant with an extra generator h in its public
parameters that enables proving relations between ciphertexts encrypted under

3

different public keys. PGC is one of the few works that recognizes the problem
of efficient small dlog lookup tables, and while it highlights the greater efficiency
of heuristic approaches like kangaroo, it still opts for Shanks to enable easy
amortization for the time-space tradeoff and parallelization. In their proof of
concept implementation [2], the authors assume up to 232 values and utilize
a 264MB lookup table by precomputing 223 33-byte secp256k1 elements; then
requiring at most 29 = 512 giant Shanks steps during decryption.

Quisquis cryptocurrency [11] has a unique account balance representation,
combining public keys and additively homomorphic commitment scheme tuples
with balances represented in an exponent within the commitment. The system
considers ranges up to 232 without specifying any time-space tradeoff algorithm.

Although blockchains is our primary focus, other areas that use homomorphic
encryption would also benefit from our construction, e.g. e-voting schemes [15].

3 Methodology

Our goal is to compute a lookup table for gx ∀x ∈ [1, 2n]. Assuming an elliptic
curve (EC) over a finite field Fq for a security parameter λ, the uncompressed
serialized representation of an EC point is 2logq bits. Typically however, a
compressed format of q′ = logq + 1 bits is selected, where only one coordinate
and additional sign bit are enough to reconstruct the EC point. We define our
initial table construction algorithm ComputeTable() with output to file f : Pick
some τ < q′, append gx = b1b2...bτ to f where bi ∈ (0, 1).

Then our second important optimization relies on picking a “truncation”
parameter τ . As it involves the birthday paradox, τ needs to be carefully con-
sidered. Picking a τ too small (meaning that the “chopped” portion of gx is
large), many collisions among the whole table will occur, which might result in
ambiguities during lookup operations (e.g. on ElGamal decryption).

Therefore at this stage we elect a conservative approach similarly to [14].
Note that an approximation of collision probability4 via Taylor series expansion

is Pr[n, τ] ≈ 1 − 1/e2
(2n−τ−1)

. One can safely pick τ = 80 for a table with
232 elements, because Pr[∃ collision] ≈ 1/132, 000. ComputeTable() provides an
immediate benefit for memory and computation requirements, bringing down
storage from q′2n to τ2n.

3.1 Ideal truncation

The first precomputation phase ComputeTable() was a warm-up and required to
minimize memory and storage requirements; essentially all our methods for com-
pressing lookup tables rely on truncating (or omitting) redundant information
from small dlog lookup tables. We describe our generic approach as follows:

Given the precomputed table in f (which is already less than half the size of
the naively-precomputed full table), there exists an ideal encoding where each

4 While we assume the binary representation of gx is random, we can employ a hash
function if g has some special property.

4

value can be uniquely represented with n bits of information, thus bringing the
total size of the table to n2n bits. We denote this ideal encoding as Fideal(g

x)→ g̃x

where |g̃x| = n. Note that this ideal encoding does not depend on q′. For de-
crypting gx, we would need to sequentially parse the table until its encoding g̃x

is found, and return its position in the file as x. Essentially, this ideal encod-
ing Fideal is a compression technique that provides great savings in storage; in

particular, the end compression ratio is q′

n and the space cost savings are sig-
nificant in typical implementation scenarios where n << q′. Note that after the
compressed table has been computed, there are no additional computation costs
during decryption, as the lookup costs remain amortized O(1).

The above technique is compatible with existing algorithms with time-space
tradeoffs, as discussed in Section 2.2. For instance, one could implement Shanks
algorithm with an even smaller baby-step lookup table. In this case however,
uniqueness must still be ensured not just for the values in the baby-step lookup
table, but for all possible values generated by the giant steps, else any ambiguity
would still make a ciphertext decryption possible into different values. Therefore,
the baby-step lookup table would be n2α bits in size using the ideal encoding
Fideal. As an example, Zether with the NIST-P256 curve, 232 − 1 max value and
Shanks parameters α = 24, β = 8, would normally have a lookup table of size
264 · 224 bits or about 528MB. Using an ideal encoding Fideal, its size would only
be 32 · 224 bits or about 64MB (decreased by a factor of 8.25), which is the best
possible compression that can be achieved while ensuring unique representation
of all elements.

3.2 Variable-length truncation

In the previous paragraph we described an ideal encoding function Fideal which
maps values gx of length q′ to short, unique bit strings a of length n. However,
assuming all gx values have a uniform distribution, constructing such an ideal
function that ensures uniqueness among all strings is challenging and potentially
impractical to find. Therefore to approximate this ideal encoding as much as
possible, we define VarTruncate(), shown in Algorithm 1.

In a nutshell, this algorithm works as follows. Similarly to Shanks scheme, we
pick the baby-step giant-step parameters α and β respectively. We also choose
truncation parameters τstart and τstop (where τstart > τstop), which respectively
direct the algorithm on how many bits should start the binary representation
for each element with, and how many bits should try to represent the elements
in an unambiguous way. The algorithm also needs as input data a set of un-
compressed precomputed tables A1, ...,Ap, which are partitioned to lower RAM
requirements. Then the algorithm, after initializing a variable truncation index
table C, it starts from the “conservative” truncation parameter τstart and checks
uniqueness of truncated elements for a baby-step table A2 against all truncated
elements of a (precomputed) full table A1. If a collision is found, we update the
respective index in C with the previous collision-free truncation parameter τ .
This process is repeated by decrementing that parameter (i.e. truncating more

5

Input : Generator g, Shanks parameters α, β, truncation start-stop
τstart,τstop, p = # of partitions

Data : Precomputed tables for [1, 2α+β]: A1, ...,Ap

Output : List C that stores where collisions found per index
B ← [] , C ← [0]2

α

;
for i = 1, i = 2α, i+ + do

B.append(gi)
end

\\ Check for collisions between elements of B and those from 2α + 1 to g2
α+β

for τ = τstart; τ ≥ τstop; τ - - do
for i = 1, i ≤ p, i+ + do

Aτ ← set();
for elem in Ai do
\\ we skip the first 2a elements in A1 only
if i 6= 1 ∨ elem.index > 2α then
\\ elem[τ] = truncated-elem to τ
Aτ .add(elem[τ])

end

end
for elem in B do

if C[elem.index] == 0 then
if elem[τ] ∈ Aτ then

C[elem.index] = τ
end

end

end

end

end
\\ Check for “self”-collisions among elements of B
for τ = τstart; τ ≥ τstop; τ - - do

Bτ ← map(key : elem[τ], value : boolean); \\ stores (key, value) pairs
\\ 1st pass to track collisions
for elem in B do

if elem[τ] /∈ Bτ then
Bτ .add(elem[τ], false)

end
else

Bτ .set(elem[τ], true)
end

end
\\ 2nd pass to update C
for elem in B do

if Bτ .getV alue(elem[τ]) == true ∧ C[elem.index] < τ then
C[elem.index] = τ

end

end

end

Algorithm 1: Variable truncation algorithm VarTruncate()

6

bits). Note this process is done in two separate phases, one for checking for col-
lisions of baby-step elements against all all values in range (2α, 2α+β] (to ensure
that no collisions occur even when doing giant steps) and then for self-collisions
between baby step elements.

Therefore from C we can serialize the respective table for 2α elements by
interleaving (dlog(τstart−τstop)e) bits per element. These bits encode the variable
length and is necessary to make serialized parsing possible. Alternatively, we
can reduce the number of those encoding bits by assigning them into k groups
G1, G2, .., Gk, therefore needing dlogke bits per element. For instance, we can
decrement τ by 2 bits each time instead of 1, and group G1 would represent
lengths of τstart and τstart−1 bits, group G2 would represent lengths of τstart−2
and τstart−3 bits etc. Also, depending on the results, we might have these groups
contain an uneven number of bit representations. For example, truncating with
τstart usually turns out to contain relatively very few elements, and therefore
devoting a group for a very small population won’t be efficient overall. Still each
group G must encode the maximum τ that is included in that group, denoted
by max τG. The total size of the serialized lookup table will then be

k∑
i=1

(max τGi · |Gi|) + dlogke · 2α

where
∑k
i=1 |Gi| = 2α and max τGk = τstart. Note that even though the “group-

ing” approach reduces the factor dlogke · 2α, the granularity of the algorithm is
also reduced, which overall increases the total size. On the other hand, more fine-
grained groups will decrease the overall needed storage of the serialized lookup
table, but will result in slightly increased computation cost in hashmap lookups5.

As a special case of VarTruncate(), we can define FixedTruncate() (equivalently
to [14]) where the algorithm stops when at least one collision is found. This
essentially implies having a single group G1 for all bit truncations we consider.
In this case, no length encoding bits are needed, however the overall space savings
are not optimal.

3.3 Optimizations

Although FixedTruncate() is a great step for decreasing lookup table costs, there
is still room for further compression. In a concrete example with n = 32, the
probability of no-collision for τ = 62 is about 13% so attempting to truncate to a
set with non-colliding elements might not be easy. However we can pick τ random
bit positions instead and make non-collision tests, and keep testing combinations
of those positions until we successfully get a non-colliding set. Then, the resulting
truncated table needs to be accompanied by the subset of those indices that it

5 Note that the cost of a hashmap lookup is insignificant compared to elliptic curve
(EC) point addition (about 40 times in our implementation), while a scalar to EC
point multiplication is around 32 times more expensive than EC point addition using
the double-and-add method for small 32-bit scalars.

7

Input : Generator g, truncation paramenters τstart,τstop and encryption c
Data : Hashmap M for variable-length truncated elements in the range

[1, 2α]
Output : Value x where gx = c
s← g2

α

;
for i← 0; i < 2β ; i+ + do

for ` = τstop, ` = τstart, `+ + do
if c[`] ∈ M then

return M.idx(c[`]) + i2α

end

end
c← c/s;

end
return “Not found”

Algorithm 2: Lookup decryption algorithm

corresponds to, and only these indices would need to be looked up on receipt of
gx. We refer to these bits as the subset. Note that in the above example, for τ = 60
the probability of success becomes very small and given the computationally
intensive process of finding a non-colliding subset makes further compression
using this method practically infeasible. As an alternative and more practical
approach, one can try hashing all points with some salt/counter, then truncate
and check for collisions, instead of looking for optimized subsets [3].

3.4 Relaxed collisions and template distribution

In the algorithms previously discussed, we require zero collisions among trun-
cated elements. However we could tolerate a few collisions among those elements
(say κ collisions), which would reduce the table size even more as discussed in [3].
In case of ambiguity due to collisions in the lookup operations, up to κ exponen-
tiations will be needed (worst case) to resolve this. As that these collisions imply
additional exponentiations during lookup, this approach is essentially a space-
computation tradeoff. For instance, in VarTruncate() group Gk (or even group
Gk−1) typically contain relatively few elements, so one could discard these groups
entirely to save 1 bit per element of encoding overhead, and provide those ele-
ments in a separate list L; then, one exponentiation would be needed in those
(rare) cases.

Note that in some environments (e.g. limited connectivity, expensive cellu-
lar data etc.), downloading lookup tables, even if compressed, might still be
prohibitive. However, one could construct a template using the output C from
VarTruncate() or even simply τ from FixedTruncate(), and distribute these val-
ues only, which can be used as “advice” for the decrypting party to run the
respective sub-algorithms directly with much less heavy computations.

8

4 Implementation

As discussed, the precomputation phase for compressing lookup tables is the
most computationally-intensive process. The lookup table would need to be pre-
computed first using ComputeTable(), then further compress it by VarTruncate()
or FixedTruncate(). However as shown from the existing applications in Section
2.3, a typical table decrypts up to 232 values, and further optimizations are re-
quired to perform this step in a reasonable time with consumer-grade hardware.
First, given that exponentiations are more expensive computationally, instead
of computing gx for all x ∈ [1, n] separately, we can iteratively compute each
gx = gx−1 · g as multiplications are cheaper operations. Also, naively loading a
huge table in memory and checking for collisions might be prohibitive in terms
of computation and RAM. Therefore, we divide the table into parts (similar to
our approach in Algorithm 1), then cross-check for collisions among all of them.

Note that the precomputation phase can be further improved by paralleliza-
tion, e.g. assign threads to different truncation factors and merge the computed
results after. Also, although a hashmap is usually preferred, for variable-length
encoding, a trie structure might also be used for storing the needed compressed
elements in memory, otherwise a few truncate-retries in the hashmap might be
required. Again we stress that this computationally-intensive phase only needs
to be performed once per curve and parameter set.

4.1 Truncation algorithm evaluation

We first implement FixedTruncate() for the secp256r1 and secp256k1 curves. We
truncated from the MSB side by omitting the sign bit and we derived tables
of unique size for 232 with 64 bits per value, which results from 141GB to a
compressed 34GB table in binary format, providing a compression factor over
1:4.

Table 1. Variable length trunca-
tion for the secp256k1 curve with
n = 32, α = 20, β = 12, k = 4.

Bits Bits
+encod-
ing

ele-
ments

Total
Size

32 35 385479 13491765
36 39 599610 23384790
40 43 59450 2556350
44 47 3786 177942
48 51 238 12138
52 55 12 660
56 59 1 59

Size: 4.72MB Compress: 1:6.98

As discussed, the compression factor in-
creases with the security parameter, e.g. for
the secp521r1 curve it would be 1:8.35. As
a starting point, we provide a precomputed
table for the secp256r1 curve and 228 values
[9] of 2GB size. This table can be safely used
in conjunction with Shanks up to 232 values,
as it is part of a 232 truncated table where
we ensure that no collisions exist. Normally,
a final exponentiation would be needed to en-
sure that no value outside this range (or even
a “garbage” value) has been encrypted with
same prefix (or suffix), but we leverage exist-
ing range proofs in many blockchain systems
to ensure this is not a possibility. However, if
no indication about the max value exists, the final exponentiation can be per-
formed by utilizing the faster “windowed” methods, such as w-ary non-adjacent

9

form (wNAF), which require small cache tables to speed up the exponentiation
cost by a large degree [5].

For VarTruncate(), we evaluate our compression factor with the secp256k1
curve for n = 32, α = 20, β = 12 and k = 7. These parameters are consistent with
existing implementations in the blockchain domain as we discussed in Section
2.3, and our results are shown in Table 1. Note this requires dlogke = 3 bits
of length encoding per element, which overall results in about 393KB encoding
overhead. We also performed tests for n = 20, α = 20, β = 0 and k = 7 for the
secp256k1 and secp521r1 curves, where we achieved a compression factor of 1:10
and 1:20 respectively. For k = 4 in the secp256k1 curve shown in Table 1, the
compression factor slightly reduces to 1:6.85.

4.2 Complexity analysis and comparison

For generating a compressed lookup table gx for x ∈ [1, 2n], our algorithm
VarTruncate() includes a computationally intensive overhead in addition to just
generating the table, similar to [14]. Specifically, [14] has an O(2n) computa-
tional overhead, while our algorithm has O(k2n) complexity. However this addi-
tional cost is paid only once for a specific set of parameters, while our algorithm
achieves a) a significant improvement in compression factor and b) collision free
encoding which simplifies used data structures.

For recovering the discrete log of gx, the probabilistic [3] has O(c2n/3) com-
putation and storage complexity on average (for a very small c < 2), while
our decryption computational cost involves O(2β) multiplications and O(k2β)
map lookups in the worst case, where k is the number of utilized truncation
groups. Note that that regular Shanks has a lookup multiplication complexity
of O(2β2), for β2 > β (typically, for 256-bit curves β2 ≈ β + 3), when using the
same precomputed table size with our scheme.

5 Conclusion

We presented and implemented several methods for dlog table compression by
wisely truncating the serialized bytes of elliptic curve points, while guarantee-
ing no collisions. The proposed deterministic algorithm results in faster table
lookups in addition to reduced storage and memory requirements. Although our
technique relies on a potentially expensive precomputation phase, it is performed
once per curve group and desired table size. Concretely, we show how we com-
press such tables for small ranges by up to a factor of 7 to 14 for 256 and 521-bit
curves, respectively. For instance, the PGC [10] protocol currently implements a
precomputed table of 264MB table size (using α = 23 and β = 9) for a 256-bit
curve and 232 max amount range [2]. With our algorithm, that could be im-
proved by requiring a variable-length table of roughly 38MB, which would make
it applicable to mobile wallets and blockchain IoT devices.

Our work has additional advantages when encrypted content is accompanied
by range proofs [7] or when faster windowed exponentiations are applied [5].

10

We also pave the way for the cryptography and blockchain community to cre-
ate publicly-available compressed tables for commonly-used elliptic curves, by
providing the first compressed 232 lookup table for the secp256r1 curve [9]. Fi-
nally, we introduce the concept of optimized compression templates per curve,
which will help developers and apps to recompute and verify such tables faster,
especially when downloading is expensive or if bigger ranges (i.e. up to 240) are
required.

References

1. Cube-root discrete-logarithm algorithms for secure groups, http://cr.yp.to/

dlog/cuberoot.html

2. libpgc: a c++ library for pretty good confidential transaction system, https://
github.com/yuchen1024/libPGC/tree/master/PGC_openssl/PGC

3. Bernstein, D.J., Lange, T.: Computing small discrete logarithms faster. In: IN-
DOCRYPT 2012. LNCS, vol. 7668, pp. 317–338. Springer, Heidelberg (Dec 2012)

4. Bernstein, D.J., Lange, T.: Two grumpy giants and a baby. Cryptology ePrint
Archive, Report 2012/294 (2012), http://eprint.iacr.org/2012/294

5. Blake, I.F., Murty, V.K., Xu, G.: A note on window τ -naf algorithm. Information
Processing Letters 95(5), 496–502 (2005)

6. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a smart
contract world. In: FC 2020. LNCS, vol. 12059, pp. 423–443 (Feb 2020)

7. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: IEEE S&P (2018)

8. Cecchetti, E., Zhang, F., Ji, Y., Kosba, A.E., Juels, A., Shi, E.: Solidus: Confiden-
tial distributed ledger transactions via PVORM. In: ACM CCS 2017 (2017)

9. Chatzigiannis, P.: Compressed small discrete-log table python code and
secp256r1 precomputed table, https://www.dropbox.com/sh/8x8dvy3fv1cg83z/

AABg7xChPRgVcQ3ApH1MC3vra

10. Chen, Y., Ma, X., Tang, C., Au, M.H.: PGC: Decentralized confidential payment
system with auditability. In: ESORICS 2020, Part I. vol. 12308 (Sep 2020)

11. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: A new design for
anonymous cryptocurrencies. In: ASIACRYPT 2019, Part I. pp. 649–678 (2019)

12. Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve discrete logarithm
problem. Cryptology ePrint Archive, Report 2015/1022 (2015)

13. Galbraith, S.D., Wang, P., Zhang, F.: Computing elliptic curve discrete logarithms
with improved baby-step giant-step algorithm. Cryptology ePrint Archive, Report
2015/605 (2015), http://eprint.iacr.org/2015/605

14. Mavroudis, V.: Computing small discrete logarithms using optimized lookup tables
(2015), USCB, Koç Lab

15. Peng, K., Aditya, R., Boyd, C., Dawson, E., Lee, B.: Multiplicative homomorphic
e-voting. In: INDOCRYPT 2004. LNCS, vol. 3348, pp. 61–72 (Dec 2004)

16. Pollard, J.M.: Monte Carlo methods for index computation mod p. Mathematics
of Computation 32, 918–924 (1978)

17. Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. Journal of Cryptol-
ogy 13(4), 437–447 (Sep 2000). https://doi.org/10.1007/s001450010010

18. Shanks, D.: Five number-theoretic algorithms (1973)
19. Ugus, O., Hessler, A., Westhoff, D.: Performance of additive homomorphic ec-

elgamal encryption for tinypeds. 6. Fachgespräch Sensornetzwerke (2007)

11

http://cr.yp.to/dlog/cuberoot.html
http://cr.yp.to/dlog/cuberoot.html
https://github.com/yuchen1024/libPGC/tree/master/PGC_openssl/PGC
https://github.com/yuchen1024/libPGC/tree/master/PGC_openssl/PGC
http://eprint.iacr.org/2012/294
https://www.dropbox.com/sh/8x8dvy3fv1cg83z/AABg7xChPRgVcQ3ApH1MC3vra
https://www.dropbox.com/sh/8x8dvy3fv1cg83z/AABg7xChPRgVcQ3ApH1MC3vra
http://eprint.iacr.org/2015/605
https://doi.org/10.1007/s001450010010

	Homomorphic decryption in blockchains via compressed discrete-log lookup tables

