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Abstract. Symmetric Searchable Encryption (SSE) allows users to out-
source encrypted data to a possibly untrusted remote location while si-
multaneously being able to perform keyword search directly through the
stored ciphertexts. An ideal SSE scheme should reveal no information
about the content of the encrypted information nor about the searched
keywords and their mapping to the stored �les. However, most of the ex-
isting SSE schemes fail to ful�l this property since in every search query,
some information potentially valuable to a malicious adversary is leaked.
The leakage becomes even bigger if the underlying SSE scheme is dy-
namic. In this paper, we minimize the leaked information by proposing a
forward and backward private SSE scheme in a multi-client setting. Our
construction achieves optimal search and update costs. In contrast to
many recent works, each search query only requires one round of inter-
action between a user and the cloud service provider. In order to guaran-
tee the security and privacy of the scheme and support the multi-client
model (i.e. synchronization between users), we exploit the functionality
o�ered by AMD's Secure Encrypted Virtualization (SEV).

Keywords: Backward Privacy · Cloud Security · Forward Privacy ·

Multi-Client · Symmetric Searchable Encryption

1 Introduction

Symmetric Searchable Encryption (SSE) is an encryption technique with re-
markable capabilities. More precisely, using an SSE scheme users can encrypt
their data in such a way that the encrypted data can still be searched. The most
straight-forward application of an SSE scheme is the design of secure cloud stor-
age services, as this encryption method helps users protecting their data from
both external and internal attacks (e.g. a malicious administrator). In particu-
lar, in an SSE scheme the encryption algorithm takes as input a sequence of �les
and outputs a sequence of ciphertexts and an encrypted index. At a later point,
a user can generate a search token for a speci�c keyword w. Given the search
token, the encrypted index and the collection of ciphertexts, the CSP can then
locate all �les that contain the requested keyword. What is fascinating about
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SSE schemes, is that the CSP can do so without knowing neither the underlying
keyword, nor the content of the �les.

An ideal SSE scheme should reveal no information about the content of the
encrypted information nor about the searched keywords and their mapping to the
stored �les. However, most SSE schemes fail to ful�ll this property since in every
search or update query, some information potentially valuable to a malicious ad-
versary is leaked. In the early years of SSE, researchers utilized techniques such
as oblivious RAM (ORAM). However, according to [24], adopting such a tech-
nique is even less e�cient than downloading and decrypting the entire database
locally. As a result, researchers have come to a silent agreement that �nothing
should be revealed beyond some well de�ned and �reasonable" leakage" [4].

Leaked information in SSE schemes has become a problem of paramount im-
portance since it is the main factor in de�ning the overall level of security. In
works such as [12] and [18] it is pointed out that even a small leakage can lead
to several privacy attacks. These works were further extended in [28] where the
authors assumed that an active adversary can perform �le-injection attacks and
record the output. This �new" ability allowed the adversary to recover informa-
tion about past queries only after ten �le insertions. This result led researchers
to design forward private SSE schemes [7, 9, 15]. Forward privacy is a notion
introduced in [26] and guarantees that that newly added �les cannot be re-
lated to past search queries. While forward privacy is a very important property,
unfortunately it has been shown to also be vulnerable to certain �le-injection
attacks [28].

While forward privacy secures the content of a past query, its binary property,
backward privacy, ensures the privacy of future queries. Backward privacy was
formalized in [10] where three di�erent �avors were de�ned. A backward private
SSE scheme ensures that queries do not reveal their association with deleted
documents. To the best of our knowledge, there are only a handful of backward
private schemes per �avor where none of them supports the multi-client model.

Our Contribution: We extend the work proposed in [15] by constructing a
forward and backward private Dynamic SSE scheme that supports a multi-client
model. We deal with the problem of synchronization between multiple clients
by utilizing the functionality o�ered by AMD's SEV [2]. In contrast to many
works in the area, we assume that the database consists of �les with multiple
keywords and not entries of the form {id(fi), wj}. Naturally, this results in higher
computational cost whenever a new �le is added to the database, but it simulates
a more realistic scenario. In particular, our construction:

� Provides Forward Privacy: The CSP stores a dictionary Dict that con-
tains mappings between keywords and �lenames (id(f)). Each address in
the dictionary is computed using a keyword key Kw for a keyword w that
is deleted after every search for that speci�c address. As a result, in every
round, we are required to compute new addresses for each a�ected row of
the dictionary. This is achieved with the generation of a new keyword key
K′w. By doing so, we minimize the information the CSP gains during new �le
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additions, as the CSP will not be able to tell if a newly added �le contains
a keyword w that was searched for in the past.

� Provides Backward Privacy: To delete a �le fi, a user sends the a dele-
tion request to an SEV trusted Virtual Machine. Later, and when a search
query for a keyword wj ∈ fi is executed, the result is �ltered through the
SEV-enabled VM (SVM). In particular, the SVM decrypts the result, which
consists of encryptions of �le identi�ers, removes the ones that have been
marked as deleted from the previous round, re-encrypts the rest and up-
dates Dict accordingly. Hence, even if the nature of the operation is leaked,
the CSP cannot know which entries have been deleted. Thus, the scheme
satis�es the property of backward privacy.

� Is Asymptotically Optimal: The update cost is O(m) and the search
time is O(`), where m is the number of unique keywords in a �le and ` is
the number of the resulted �les. To delete an entry from Dict, the update
cost is O(1) since deletion is executed for each unique keyword separately,
whenever a keyword is searched for.

� Is Parallelizable: The CSP maintains encryptions of the �le names in a
dictionary. The address of each cid(fi) is calculated by the data owner, before
inserting the �les, and is then hashed. This results to O(`) independent
hashes for each search. Hence, if the load is distributed to p processors, we
achieve optimal search cost O(`/p). Similarly, the update cost is O(m/p).

2 Related Work

Our work is based on [15] where the authors presented a Symmetric Searchable
Encryption scheme with Forward Privacy, a notion �rst introduced in [26]. Their
construction however is only forward private and limited to a single client model.
In this work, we make use of the functionality o�ered by AMD's SEV VMs to
both extend the original scheme to be backward private and to support the
multi-client setting.

Another single-client forward private SSE scheme is presented in [9], where
the authors designed Sophos. While Sophos achieves asymptotically optimal
search and update costs, O(`) and O(m) respectively, a �le addition requires
O(m) asymmetric cryptographic operations on the user's side. An improvement
in the search time of Sophos is presented in [19]. Authors of [9] extended their
work in [10] by designing a number of SSE schemes that are both forward and
backward private. Out of those schemes, Dianadel and Janus are the most e�-
cient but at the same time they satisfy the weakest notion of backward privacy.
In particular, Janus achieves its security by using public puncturable encryption.
Fides is among the �rst e�cient backward private SSE schemes with stronger
security guarantees. However, it only satis�es the single-client model. Moreover,
the search operation requires two rounds of interaction while our scheme only
requires one. An improvement of Janus is presented in [27] where authors de-
sign Janus++. While Janus++ is more e�cient than Janus as it is based on
symmetric puncturable encryption, Janus++ can only achieve the same security
level as Janus.
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An SGX-based forward/backward private scheme called Bunker-B is pre-
sented in [4]. Our construction is similar to that in the sense that we use a
trusted execution environment (TEE) to reduce the number of required rounds
to one. However, as in the case of Sophos and Fides, Bunker-B only supports
the single-client model. Moreover, we believe that SGX in not a suitable TEE
for a cloud-based service due to its limitations.

Comparison

Scheme MC FP BP Search Time Update Time Client Stor-
age

Etemad et al. [15] 7 3 7 O(`/p) O(m/p) O(m+ n)

HardIDX 7 7 7 O(log k) - None

Sophos 7 3 7 O(`) O(m) O(m)

Kim et al. [19] 7 3 7 O(aw) O(m) O(m)

Bunker-B 7 3 Type-II O(`) O(1) O(mlogn)

Fides 7 3 Type-II O(`) O(1) O(mlogn)

Dianadel 7 3 Type-III O(`) O(logN) O(mlogn)

Janus 7 3 Type-III O(`d)tPE.Dec O(`)(tPE.Enc ∨ tPE.Dec) O(mlogn)

Janus++ 7 3 Type-III O(`d)tSPE.Dec O(`)(tSPE.Enc∨ tSPE.Dec) O(mlogn)

Moneta 7 3 Type-I Õ(aw logN + log3N) Õ(log2N) O(1)

Orion 7 3 Type-I O(` logN2) O(logN2) O(1)

Ours 3 3 Type-II O(`/p) O(m/p) None

Table 1: N : number of (w, id) pairs, n: total number of �les, m: total number of keywords, p:
number of processors, k: number of keys, aw: number of updates matching w, dw: number of deleted
entries matching w, `: result size (` = aw − dw), (tPE.Enc, tPE.Dec): encryption and decryption
times for a public pancturable encryption scheme, (tSPE.Enc, tSPE.Dec): encryption and decryption
times for a symmetric pancturable encryption scheme MC: Multi-Client, FP: Forward Privacy, BP:

Backward Privacy. Õ notation hides polylogarithmic factors.

In [11] authors presented HardIDX, a scheme that also supports range queries
with the use of SGX [13] based on B+ trees. HardIDX minimizes the leakage
by hiding the search pattern but at the same time, their construction is static.
As a result, it does not support �le insertions after the generation of the initial
index. Therefore, even though the scheme achieves logarithmic search cost, a
direct comparison to our scheme is not possible.

ORAM-based approaches: The �rst forward private SSE scheme was proposed
in [26], where the authors presented an ORAM-based construction. More re-
cently, in [10], authors proposed Moneta, an SSE scheme that achieves the
strongest level of backward privacy, but at the cost of e�ciency. Moneta is
based on the TWORAM construction presented in [16]. However, as argued
in [17], the use of TWORAM renders Moneta impractical for realistic scenar-
ios and the scheme can serve mostly as a theoretical result for the feasibility of
stronger backward private schemes schemes. Finally, in [17], another ORAM-bsed
scheme, Orion, is proposed. While Orion outperforms Moneta, the number of
interactions between the user and the CSP depends on the size of the encrypted
database.
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In table 1 we see a comparison of the aforementioned schemes to our con-
struction.

3 Background

In this section, we introduce our notation, and we provide a formal de�nition of
a dynamic SSE scheme along with the necessary security de�nitions.

Notation Let X be a set. We use x← X if x is sampled uniformly from X and

x
$←− X , if x is chosen uniformly at random. If X and Y are two sets, we denote

by [X ,Y] all the functions from X to Y and by [X ,Y] all the injective functions
from X to Y. R(·) is a truly random function and R−1(·) its inverse. A function
negl(·) is called negligible, i� ∀c ∈ N,∃n0 ∈ N : ∀n ≥ n0, negl(n) < n−c. If s(n)
is a string of length n, we denote by s(l) its pre�x of length l and by s(l), its su�x
of length l, where l < n. A �le collection is represented as f = (f1, . . . , fz) while
the corresponding collection of ciphertexts is c = (cf1 , . . . , cfz ). The universe of
keywords is W = (w1, . . . , wk) and the distinct keywords in a �le fi are wi =
(wi1 , . . . , wi`). An invertible pseudorandom function [8] is de�ned as follows:

De�nition 1 (Invertible Pseudorandom Function (IPRF)). An IRPF
with key-space K, domain of de�nition X and range Y consists of two functions
G : (K×X )→ Y and G−1 : (K×Y)→ X ∪{⊥}. Moreover, let G.Gen(1λ) be an
algorithm that given the security parameter λ, outputs k ∈ K. The functions G
and G−1 satisfy the following properties:

1. G−1(k,G(k, x)) = x, ∀x ∈ X .
2. G−1(k, y) =⊥ if y is not an image of G.
3. G and G−1 can be e�ciently computed by deterministic polynomial algo-

rithms.
4. G(k, ·) ∈ [X ,Y], G−1(k, ·) ∈ [Y,X ]

The function G : (K ×X )→ Y is an IPRF if ∀ PPT adversary A:

(1 )|Pr[k ← G.Gen(1λ) : AG(k,·),G−1(k,·)(1λ) = 1]−

Pr[k′
$←− [X ,Y] : AR(·),R−1(·)(1λ) = 1| = negl(λ)

De�nition 2 (DSSE Scheme). A Dynamic Symmetric Searchable Encryption
(DSSE) scheme consists of the following PPT algorithms:

� (InCSP, c)(InTA)(K) ← Setup(λ, f): The data owners runs this algorithm to
generate the key K as well as the CSP index InCSP and a collection of ci-
phertexts c that will be sent to the CSP. Additionally, the index InTA that is
stored on a remote location is generated.

� (In′CSP, Rwij
)(In′TA)← Search(K, wij , InTA)(InCSP, c). This algorithm is executed

by a user in order to search for all �les fi containing a speci�c keyword wij .
The indexes are updated and the CSP also returns to the user the ciphertexts
of the �les that contain wij .
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� (In′CSP, c
′)(In′TA)← Update(K, fi, InTA)(InCSP, c, op), op ∈ {add,delete}: A user

is running this algorithm to update the collection of ciphertexts c. Based on
the value of op, a new �le is either added to the collection or an existing one
is deleted.

The Setup algorithms do not require any interaction. However, the rest of
the algorithms require synchronization between the di�erent entities.

Security De�nitions To capture the notion of security in a searchable en-
cryption scheme we make use of the real experiment against ideal experiment
formalization. In particular, in the real experiment the adversary ADV observes
the algorithms being executed honestly, while in the ideal experiment a simulator
S simulates all the functionalities of the SSE scheme based on explicit leakage.
The leakage is formalized by a function L such that L = (Lstp,Lsearch,Lupdate)
where each component corresponds to the leakage associated with the setup,
search and update operations. The idea is the following: ADV has full control of
the client. Thus, she can trigger any operation. ADV issues a polynomial number
of queries, and for each query she records the output. The scheme is said to be
L-adaptively secure if ADV cannot distinguish between the real and the ideal
experiments.

De�nition 3. (L-Adaptive Security of DSSE) Let DSSE = (Setup, Search,Update)
be a dynamic symmetric searchable encryption scheme and L = (Lstp,Lsearch,Lupdate)
be the leakage function of the DSSE scheme. We consider the following experi-
ments between an adversary ADV and a challenger C:
RealADV(λ)

ADV outputs a set of �les f . C generates a key K, and runs Setup. ADV
then makes a polynomial number of adaptive queries q = {w, f1, f2} such
that f1 /∈ f and f2 ∈ f . For each q, she receives back either a search token
for w, τs(w), an add token, τα, and a ciphertext for f1 or a delete token
τd for {w, f2}. Finally, ADV outputs a bit b.

IdealADV,S(λ)

ADV outputs a set of �les f . S gets Lsetup(f) to simulate Setup. ADV then
makes a polynomial number of adaptive queries q = {w, f1, f2} such that
f1 /∈ f and f2 ∈ f . For each q, S is given either LSearch(w) or Lupdate(fi),
i ∈ {1, 2}. S then simulates the tokens and, in the case of addition, a
ciphertext. Finally, ADV outputs a bit b.

We say that the DSSE scheme is secure if ∀ PPT adversary ADV, ∃ S such
that:

(2 )|Pr[(RealADV) = 1]− Pr[(IdealADV,S) = 1]|≤ negl(λ)

Correctness The DSSE scheme is correct i� the search protocol returns the
correct result for every search query, except with negligible probability.
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A DSSE scheme is said to be forward private if for all �le insertions that
take place after the successful execution of the Setup algorithm, the leakage is
limited to the size of the �le, and the number of unique keywords contained in it.
On the other hand, a DSSE scheme is said to be backward private if whenever a
keyword/document pair (w, id(f)) is added into the database and then deleted,
subsequent search queries for w do not reveal id(f). More formally:

De�nition 4 (Forward Privacy). An L-adaptively SSE scheme is forward
private i� the leakage function LUpdate can be written as:

Lupdate(op, id(f)) = L′(op,#w ∈ f) (3)

Where L′ is a stateless function.

De�nition 5 (Backward Privacy). There are three di�erent �avors of back-
ward privacy (listed in decreasing strength):

� Type-I: Backward Privacy with insertion pattern leaks the documents cur-
rently matching w and when they were inserted i.e. their timestamps TimeDB(w).

� Type-II: Backward Privacy with update pattern leaks the documents currently
matching w, TimeDB(w) and a list of timestamps Updates(w) denoting
when the updates on w happened.

� Type-III: Weak Backward Privacy leaks the documents currently matching
they keyword w, TimeDB(w) and DelHist(w), where DelHist(w) reveals
the timestamps of the delete updates on w together with the corresponding
entries that they remove.

Our construction satis�es Type-II backward privacy. In particular:

De�nition 6. An L-adaptively SSE scheme is update pattern revealing backward
private i� the search and update leakage functions Lsearch,Lupdate can be written
as:

Lsearch(w) = L′(TimeDB(w),Updates(w))

Lupdate(op, w, id) = L′′(op, wi)
(4)

Where the functions L′ and L′′ are stateless.

Finally, the leakage function Lstp associated with the setup operation is for-
malised as follows:

Lstp = (N,n, cid(fi)),∀fi ∈ f (5)

Where N is the total size of all the (keyword/�lename) pairs, and n is the total
number of �les in the collection f

Threat Model Our threat model is similar to the one described in [25] which
is based on the Dolev-Yao adversarial model [14]. Furthermore, we assume that
the adversary ADV is allowed to provide SVMs with inputs of her choice and
record the output. This assumption signi�cantly strengthens ADV since we need
to ensure that only honest attested programs with correct inputs will run in the
SVMs.



8 A. Bakas and A. Michalas

4 Architecture

In this section, we introduce the system model by describing the entities partic-
ipating in our construction.

Users The users in our system model are mainly classi�ed into two categories:
data owners and simple registered users that they have not yet upload any data
to the CSP. A data owner �rst needs to locally parse all the data that wishes to
upload to the CSP. During this process, she generates three di�erent indexes:

1. No.Files[w] which contains a hash of each keyword w along with the number
of �les that w can be found at

2. No.Search[w], which contains the number of times a keyword w has been
searched by a user.

3. Dict a dictionary that maintains a mapping between keywords and encrypted
�lenames.

Both No.Files[w] and No.Search[w] are of size O(m), where m is the total number
of keywords while the size of Dict is O(N) = O(nm), where n is the total number
of �les. To allow the rest of the users to search over her data, the data owner
sends both No.Files[w] and No.Search[w] while Dict is outsourced to a CSP.

Cloud Service Provider (CSP) The CSP is responsible for storing:

1. The ciphertexts

2. A dictionary Dict generated by a data owner. Each address on the dictio-
nary is computed using a di�erent key Kw. Hence, given this key and the
No.Files[w] for a keyword w, the CSP can locate all the �les that contain w.

Trusted Authority (TA) TA is mainly responsible for storing the No.Files[w]
and No.Search[w] indexes generated by the data owner. For a registered user to
create a consistent search token for a keyword w, she must �rst contact TA in
order to get access to the corresponding No.Files[w] and No.Search[w] values. TA
is alsi SEV-enabled.

Deletion Authority (DelAuth) DelAuth is responsible for the deletion of �les.
Every time a user performs a search operation, the CSP forwards the result R
to DelAuth. DelAuth decrypts the result, removes the Dict entries to be deleted
and then re-encrypts the remaining �lenames and sends them back to the CSP.
Like the CSP and TA, DelAuth is also SEV enabled.

TA and DelAuth can be individual entities. For simplicity, we will assume
that they are part of the same host.
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SEV . We provide a brief description of the main SEV functionalities. More
details can be found in [2].
Isolation: SEV is a security feature that mainly addresses software attacks by
isolating VMs from the hypervisor or other VMs on the same platform. It uses
AES128 to encrypts the VM's memory space with an encryption key that is
unique for each VM. The encryption keys are handled by the AMD secure pro-
cessor which lies on the System on a Chip (SoC). SEV is particularly applicable
to cloud services where VMs should not trust the hypervisor and administrator
of their host system.
Attestation: Once the VM save area is encrypted, the hypervisor issues a
LAUNCH_MEASURE command to produce a measurement of the data en-
crypted by the launch �ow. This measurement is sent back to the guest owner (a
user or another VM) as a receipt. Upon reception of the receipt, the guest owner
can start providing the VM with con�dential information. Since the guest owner
knows the initial contents of the VM at boot, the attestation measurement can
be veri�ed by comparing it to what the guest owner expects.
Why SEV? The main advantages of SEV in comparison to its main competitor
-Intel SGX- are (1) memory size, (2) e�ciency and (3) No SDK or code refac-
toring are required. In particular, SGX allocates only 128MB of memory for
software and applications and thus, making it a good candidate for microtran-
scations and login services. However, SEV's memory is up to the available RAM
and hence, making it a perfect �t for securing complex applications. Moreover, in
situations where many calls are required, like in the case of a multi-client cloud
service, SEV is known to be much faster and e�cient than SGX. The above are
summarized in Table 2. More information can be found in [23].

TEE Memory Size SDK Attestation Code Refactoring

SEV
Up to Available
System Ram

Not Required
Through AMD
Secure Processor

Not Required

SGX Up to 128MB Required
Through Intel
Remote Attesta-
tion Protocol

Major Refactoring
Required

Table 2: SEV-SGX Comparison

The main drawback of SEV is that it is known for not o�ering memory
integrity, which can lead to replay attacks by a malicious hypervisor. However,
as of January 2020 AMD has launched an updated version of SEV, called SEV-
SNP, which further strengthens VM's isolation with memory integrity [3].

5 Nowhere to Leak

Before we proceed to the formal description of our scheme, we present a high-
level overview.
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Work�ow:We assume that a data owner ui has encrypted a collection of �les f
under an SSE key KSKE and stored them on the CSP. Additionally, ui allows an-
other user uk to access her �les in f by sharing KSKE

1. Now, uk can search directly
on ui's encrypted data. To do so, uk �rst hashes the keyword w that wishes to
search for and sends h(w) to TA. Upon reception, TA retrieves No.Files[w] and
No.Search[w] based on which, it can create the search token τs(w). The search
token is then forwarded to the CSP, who uses it to �nd all the Dict entries as-
sociated with w. The output is stored in a list Rw. This list is then sent to uk
through DelAuth. The reason for sending this through DelAuth is to provide our
scheme with backward privacy. More precisely, if an authorized user wishes to
delete a document fn, she sends id(fn) to DelAuth where it will be stored in a
deletion list. On a later round, if id(fn) appears in a search result, DelAuth will
delete the corresponding entry, re-encrypt the rest of the elements in the result
list, and re-insert them in Dict.

Formal Construction: Our construction constitutes of three di�erent algo-
rithms, namely Setup,Search and Update. Let G : {0, 1}λ × {0, 1}∗ → {0, 1}∗ be
an IPRF. Moreover, let SKE = (Gen,Enc,Dec) be an IND-CPA secure symmetric
key cryptosystem and h = {0, 1}∗ → {0, 1}λ be a cryptographic hash function.

Setup A data owner ui generates the secret key K required for our construction.
Then, to execute the Setup algorithm, she internally runs the Update algorithm
(Algorithm 3) with op = add for every �le in her collection f . By doing this
she processes all of her �les fi ∈ f , extracts each unique keyword wij ∈ fi and
computes Kwij

= G(KG, h(wij )||No.Search[wij ]). Using this key, she computes the

addresses for Dict as addrwij
= h(Kwij

,No.Files[wij ]) and using KSKE she computes

the values valwij
= Enc(KSKE, id(fi)||No.Files[wij ]). Each {addrwij

, valwij
} pair is

stored in a list Mapi. Finally, ui encrypts fi with KSKE and stores cfi and Mapi
into a list AllMap that will be sent to the CSP who stores it in Dict.

1 The key sharing protocol is out of the scope of this paper. Some constructions that
squarely �t our scheme are presented in [5, 6, 20,22]
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Algorithm 1 Setup

1: KG ← GenIPRF(1λ) . For the IPRF G
2: KSKE ← SKE.Gen(1λ)
3: return K = (KG,KSKE)
4: Send KG to the TA and K to DelAuth
5: c = {}
6: AllMap = {}
7: for all fi do
8: Run Update (Algorithm 3) with op = add to generate cfi and Mapi . Results

are NOT sent to the CSP
9: c = c ∪ cfi
10: AllMap = [{AllMap ∪ Mapi}, cid(fi)]

11: Send (AllMap, c) to the CSP
12: Send InTA = {No.Files,No.Search} to the TA
13: CSP stores AllMap in InCSP = Dict

Search After the successful execution of the Setup algorithm and the generation
of all the required indexes, ui shares her secret key KSKE with all users she
wishes to share her �les with. Assume that a user uk wishes to search over ui's
stored ciphertexts. To do so, she hashes the keyword wj that she is looking
for and sends it to the TA. Upon reception, TA retrieves the No.Search[wj] and
No.Files[wj] values and calculates both the unique key Kwj for wj as well as
the addresses on Dict. As a next step, TA increments No.Search[wj] by one and
calculates the new addressees. The addresses are stored in a list Lup. Finally, TA
outsources the search token τs(wj) = (Kwj ,No.Files[wj ], Lup) to the CSP (lines 2-
12 of Algorithm 2). Upon reception, the CSP locates all the encrypted �lenames
of the �les that contain wj and stores them in a result list Rwj which is sent
to uk through DelAuth. Apart from that, the CSP sends τs(wj) to the DelAuth
as well2. Finally, DelAuth authorizes the CSP to delete all the Dict addresses
associated with wj and inserts the ones contained in Lup.

2 The reason for forwarding τs(wj) to DelAuth, as we will see in Algorithm 3, is to
provide our scheme with backward privacy.
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Algorithm 2 Search

1: User sends h(wj) to the TA
TA:

2: Kwj = G(KG, h(wj)||No.Search[wj])
3: Lup = {}
4: No.Search[wj] + +
5: K′

wj
= G(KG, h(wj)||No.Search[wj])

6: for i = 1 to i = No.Files[wj] do
7: addr′wj

= h(Kw
′, i)

8: Lup = Lup ∪ {addrwj}
9: Send τs(wj) = (Kwj ,No.Files[wj], Lup) to the CSP
CSP:

10: Rwj = {}
11: for i = 1 to i = No.Files[wj] do
12: valwj = Dict[h(Kwj), i]
13: Rwj = Rwj ∪ {valwj}
14: Forward Rwj and Kwj

′ to the DelAuth

15: DelAuth:
16: Send Rwj to the user and an acknowledgement to the CSP.

CSP:

17: Delete all Dict entries associated with wj and insert the addresses contained in Lup

Update Users that hold KSKE can also update the data owner's encrypted
database by either adding new �les or deleting existing ones. To add a new
�le (fi) to the existing collection of ciphertexts, uk executes the same steps as
in Algorithm 1 but only for the �le she wishes to add. Moreover, for each �le
added, an acknowledgment needs to be sent to the TA to update the No.Files[w]
index accordingly.

While adding a �le is a relatively easy process, deleting a �le is considered
as a more demanding procedure. This is because since we had to follow certain
steps to ensure that our scheme preserves the crucial notion of backward pri-
vacy. Assume uk wishes to delete a �le f`. To do so, she sends id(f`) to DelAuth
where it will be stored in a list LTBD. Later, when a user un ∈ U searches for
a keyword w`m , cid(f`) will be naturally contained in the result list R. After the
CSP forwards R and Kw`m

to DelAuth, DelAuth decrypts every element in R and
checks whether id(f`) ∈ R. If id(f`) /∈ R, DelAuth simply sends an acknowledge-
ment to the CSP. However, if id(f`) ∈ R, DelAuth inverts the IPRF G (Recall
that Kw = G(KG, h(w)||No.Search[w])), retrieves h(w`m) and No.Searh[w`m ] and
requests the No.Files[w`m ] value from the TA. Upon reception of No.Files[w`m ],
DelAuth decreases it by one and re-encrypts every id(fi) ∈ R except for id(f`).
Apart from that, it also computes the new addresses and sends them to the
CSP in a list Ldel (lines 11-25 of Algorithm 3). The CSP deletes the Dict row
associated with {w`m , id(f`)} and inserts the new ones contained in Ldel.
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Algorithm 3 Update

1: if op = add then
2: Map = {}
3: for all wij ∈ fi do
4: No.Files[wij ] + +
5: Kwij

= G(KG, h(wij )||No.Search[wij ])

6: addrwij
= h(Kwij

,No.Files[wij ])

7: valwij
= Enc(KSKE, id(fi)||No.Files[wij ])

8: Map = {addrwij
, valwij

}
9: cfi ← Enc(KSKE, fi)
10: Send τα(fi) = (cfi ,Map) to the CSP

11: else . op = delete
12: Initiate the Search protocol for a keyword wj

After DelAuth forwards R to the user: . Line 9 of Algorithm 2
13: for all cid(fj) ∈ R do

14: Dec(KSKE, cid(fj))→ id(fj)

15: if ∃` : id(f`) ∈ LTBD then

16: Ldel = {}
17: Compute No.Search[wj] from Kwj

18: No.Files[wj]−−
19: No.Search[wj] + +
20: Kwj = G(KG, h(wj)||No.Search[wj ])
21: for i = 1 to i = No.Files[wj]− 1 do
22: new_addr = h(Kwj ||i)
23: new_value = Enc(KSKE, id(fi)||No.Files[wj ])
24: Ldel = {(new_addr, new_value)}
25: else

26: Send τd(f`) = Lup to the CSP . The list from TA

CSP:

27: Delete all Dict entries associated with wj and insert the addresses contained in
Ldel
User:

28: Update the local indexes in send an acknowledgement to the TA to update its
indexes as well

6 Security Analysis

In this Section, we prove that our construction is secure against the threat model
de�ned in Section 3. More precisely, we prove the existence of a simulator S that
can simulate the SSE functionality, in such a way that any PPT adversary ADV
will be able to distinguish between the real and ideal experiments with only
negligible probability.

Theorem 1. Let SKE = (Gen,Enc,Dec) be a CPA-secure symmetric key encryp-
tion scheme. Moreover, let G be an IPRF and h a cryptographic hash function.
Then our construction is L-adaptively secure according to de�nition 3.
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Proof. We design a simulator S that simulates the real algorithms in a way that
no PPT adversary ADV can distinguish between the real and ideal experiments.
To prove the security of our construction, we rely on a hybrid argument in which
S gets as input the leakage function L = (Lstp,Lsearch,Lupdate) and simulates
the SSE functionalities.
Hybrid 0: This is the real experiment.
Hybrid 1: Like Hybrid 0, but instead of the Setup Algorithm, S is given Lstp =
(N,n, |fi|),∀fi ∈ f and proceeds as follows:

Algorithm 4 Setup Simulation

1: KEXP ← SKE.Gen(1λ)
2: for i = 1 to i = N do

3: Simulate (ai, vi) pairs
4: Store all (ai, vi) pairs in a dictionary Dict

5: for all fi ∈ f do
6: ci ← SKE.Enc(KEXP, 0

|fi|)

7: Create a dictionary KeyStore to store the last Kw of each keyword.
8: Create a dictionary Oracle to reply to the random oracle queries.

The (ai, vi) pairs simulate the real addresses and encrypted �lenames respec-
tively. The two dictionaries have exactly the same format and size and hence,
ADV cannot distinguish between the two. Apart from that, since we have as-
sumed that SKE is CPA-secure, ADV can only distinguish between encryptions
of �lenames and encryptions of strings of zeroes, with negligible probability.
Thus, we conclude that:

(6)|Pr[(Hybrid 0) = 1]− Pr[(Hybrid 1) = 1]|≤ negl(λ)

Hybrid 2: Like Hybrid 1, but S is now given Lsearch = L′(TimeDB(w),Updates(w))
and proceeds as shown in Algorithm 5.

In particular, the KeyStore[w] dictionary stores the last key Kwj
used for each

keyword wj . Moreover, Oracle[Kw][j][i] is used to reply consistently to queries
issued by ADV. For example, Oracle[Kw][0][i] refers the address of a Dict entry
that corresponds the i − th �le in the �le collection. Similarly, Oracle[Kw][1][i]
refers to the masked value required to recover the �lename. From the design
of the simulator, we observe that the simulated token has the same size and
format as the real one. Hence, no PPT adversary can distinguish between them
with probability greater than negligible. Apart from that, ADV cannot tamper
with the measurement of the SVM's during the execution of the attestation
protocols. This is because tampering with this measurement would produce a
di�erent receipt than the expected one (see Section 4) and thus the protocol
would abort. Hence, we conclude that:

(7)|Pr[(Hybrid 1) = 1]− Pr[(Hybrid 2) = 1]|≤ negl(λ)
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Algorithm 5 Search Token Simulation

1: d = |fwj | . Number of �les containing wj
2: if KeyStore[wj ] = Null then . First search for wj
3: KeyStore[wj ]← {0, 1}λ
4: Kw = KeyStore[w]

5: for i = 1 to i = d do
6: if Oracle[Kwj ][0][i] is Null then
7: if fi is added after the Setup Algorithm then

8: Pick a (cid(fi), {ai, vi}) pair
9: else

10: Pick an unused {ai, vi} at random
11: Oracle[Kwj ][0][i] = ai
12: Oracle[Kwj ][1][i] = vi||cid(fi) . vi is resized so that
|vi||cid(fi)|= |cid(fi)||No.Files[wj ]|

13: else

14: ai = Oracle[Kw][0][i]
15: vi = Oracle[Kw][1][i](|Oracle[Kw][1][i]|−|cid(fi)|) . Pre�x of the string

16: Remove ai from the dictionary but keep vi

17: UpdatedV al = {} . Generate new pairs
18: K′

wj
← {0, 1}λ

19: KeyStore[wj ] = K′
wj

20: for i = 1 to i = d do
21: Generate new ai and match it with vi from step 16
22: Add (cid(fi), {ai, vi}) to the dictionary
23: UpdatedV al = UpdatedV al ∪ {cid(fi), ai}
24: Oracle[K′

wj
][0][i] = ai

25: Oracle[K′
wj

][1][i] = vi||cid(fi)
26: τs(w) = (Kw, d, UpdatedV al)

Hybrid 3: Like Hybrid 2. but S gets as input LUpdate(op, w, id) = L′′(op, wi).
Moreover, S maintains a list L where it stores deletion requests (encrypted
�lenames). S proceeds as shown in Algorithm 6.
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Algorithm 6 Update Token Simulation

1: if op = add then
2: Ladd = {}
3: for i = 1 to i = #wi do
4: Simulate {ai, vi} pairs
5: Add (cid(f), {ai, vi}) in Dict
6: Ladd = Ladd ∪ {ai, vi}
7: c← SKE.Enc(KEXP, 0

|f|)
8: τα(f) = (cid(f), c,Ladd)
9: else . op = delete for a �le f`
10: if cid(f`) ∈ L then

11: Ldel = {}
12: for all cid(fi) /∈ L do

13: Simulate a fake address ai
14: vi ← SKE.Enc(KEXP, 0

|f|)
15: Ldel = Ldel ∪ {(ai, vi)}
16: τd = (Ldel)

The simulated addition token, allows the simulator to keep its dictionary
consistent as ADV inserts new �les. It can be seen, that both the simulated and
real tokens have the same format and size and hence we can conclude that they
are indistinguishable from ADV's point of view. Furthermore, since SKE satis�es
the CPA-security property, ADV can only distinguish between encryptions of
�les and zeroes with negligible probability. Apart from that, just like the addition
token, the simulated deletion token also has the same format and size with the
real deletion token and hence, they are also indistinguishable. Similarly to the
simulation of the search token, ADV cannot tamper with the receipts generated
by the SEV-enabled VMs, as this would imply that ADV can forge a valid SVM's
measurement, which can only happen with negligible probability. As a result:

(8)|Pr[(Hybrid 2) = 1]− Pr[(Hybrid 3) = 1]|≤ negl(λ)

By combining inequalities 6,7 and 8 we get:

(9)|Pr[(Hybrid 0) = 1]− Pr[(Hybrid 3) = 1]|≤ negl(λ)

Which is equivalent to:

(10)|Pr[(RealADV) = 1]− Pr[(IdealADV,S) = 1]|≤ negl(λ)

And thus, our proof is complete.

Finally, it is important to note that since we managed to simulate consistent
update tokens given only Lupdate, we proved that our scheme satis�es the notions
of forward and backward privacy.

ut
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Side-Channel Attacks Encryption and Decryption using the AES-NI hard-
ware instruction, ensures there is no leakage of the key during search and update.
This is because AES encryption/decryption with these instructions have data-
independent timing and involve only data-independent memory access.

6.1 Does the Removal of TEE A�ects the Security of the Scheme?

While the use of a TEE can be seen as a subterfuge to improve the security
of a scheme this is not true in our case. More precisely, the security of our
construction is not a�ected by removing the TEE and the crucial notions of
froward and backward privacy are still preserved. However, the e�ciency of the
scheme it will be in�uenced since an extra round of communication will be
required. More precisely, by removing the TEE, the trust that is now given to
the TEE, will have to be distributed to the users. In particular, the role of the
Deletion Authority can be played by any arbitrary user that performs a search
operation. When a user performs a search operation, after she recieves the results
from the CSP, she can �lter out the entries to be deleted, re-encrypt the rest and
send them back to the CSP. Hence, assuming that users are trusted, we achieve
the same level of security by adding one more round of communication between
the users and the CSP. In our work, the main reason for the use of the TEE, is
to support the multi-client model. As a result, while removing the TEE does not
a�ect the overall security of the scheme, it will result to a single-client model.

7 Experimental Results

We implemented our scheme in Python 2.7 using the PyCrypto library [1]. To
test the overall performance, we used �les of di�erent sizes and structures. More
precisely, we used a collection of �ve datasets provided in [21]. Table 4 shows
the datasets used in our experiments as well as the total number of unique key-
words extracted from each set. Our experiments focused on two main aspects:
(1) Indexing and (2) Searching for a speci�c keyword. Deletion cannot be real-
istically measured since to completely delete all entries corresponding to a �le,
we �rst need to search for all the keywords contained in the �le. Additionally,
our dictionaries were implemented as tables in a MySQL database. In contrast
to other similar works, we did not rely on the use of data structures such as ar-
rays, maps, sets, lists, trees, graphs, etc. and we decided to build a more durable
implementation with an actual database that properly represents a persistent
storage. While the use of a database system decreases the overall performance
of the scheme it is considered as more durable and close to a production level.
Conducting our experiments by solely relying on data structures would give us
better results. However, this performance would not give us any valuable insights
about how the scheme would perform outside of a lab. Hence, we would not be
able to argue about the actual practicality of our scheme in a proper cloud-based
service. Additionally, storing the database in RAM raises several concerns. For
example a power loss or system failure could lead to data loss (because RAM is
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volatile memory). Further to the above mentioned, since we wanted to evaluate
the performance under realistic conditions, we decided to use di�erent machines.
To this end, we ran our experiments in the following two di�erent machines:

� AMD Ryzen� 7 PRO 1700 Processor at 3.0GHz (8 cores), 32GB of RAM
running Windows 10 64-bit with AMD SEV Support;

� Microsoft Surface Book laptop with a 4.2GHz Intel Core i7 processor (4 cores)
and 16GB RAM running Windows 10 64-bit;

As can be seen, apart from the �rst test-bed where we used a powerful ma-
chine with a lot of computational power and resources, the other machine is a
commodity laptop that a typical user can own. The reason for measuring the
performance on such machines and not only in a powerful desktop � like other
similar works � is that in a practical scenario, the most demanding processes of
any SSE scheme (e.g. the creation of the dictionary) would take place on a user's
machine. Hence, conducting the experiments only on a powerful machine would
result in a set of non-realistic measurements.
Indexing & Encryption: In our experiments, we measured the total setup
time for each one of the datasets shown in table 4. Each process was run ten
times on the commodity laptop and the average time for the completion of the
entire process was measured. As can be seen from table 5, the setup time can be
considered as practical and can even run in typical users' devices. In �gure 1, we
compare the setup times for the commodity laptop and the powerful desktop.
Based on the fact that this phase is the most demanding one in an SSE scheme
the time needed to index and encrypt such a large number of �les is considered
as acceptable not only based on the size of the selected dataset but also based
on the results of other schemes that do not even o�er forward privacy as well
as on the fact that we ran our experiments on commodity machines and not on
a powerful server. This is an encouraging result and we hope that will motivate
researchers to design and implement even better and more e�cient SSE schemes
but most importantly we hope that will inspire key industrial players in the �eld
of cloud computing to create and launch modern cloud-services based on the
promising concept of Symmetric Searchable Encryption.

Table 3: Dataset Sizes and Setup Times
No of TXT Files Dataset Size Unique Keywords (w, id) pairs

425 184MB 1,370,023 5,387,216

815 357MB 1,999,520 10,036,252

1,694 670MB 2,688,552 19,258,625

1,883 1GB 7,453,612 28,781,567

2,808 1.7GB 12,124,904 39,747,904

Table 4: Size of Datasets and Unique Keywords
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XXXXXXXXXDataset

Testbed Laptop Desktop

184MB 22.48m 8.49m

357MB 40.00m 13.51m

670 86.43m 29.51m

1GB 141.60m 48.99m

1.7GB 203.28m 68.44m

Table 5: Setup time (in minutes)

Search: In this part of the experiments we measured the time needed to com-
plete a search over encrypted data. In our implementation, the search time is
calculated as the sum of the time needed to generate a search token and the time
required to �nd the corresponding matches at the database. It is worth mention-
ing that the main part of this process will be running on the CSP (i.e. a machine
with a large pool of resources and computational power). To this end, the time
to generate the search token was measured on the laptop while the actual search
time was measured using the desktop machine described earlier. On average, the
time needed to generate the search token on the Surface Book laptop was 9µs.
Regarding the actual search time, searching for a speci�c keyword over a set
of 12,124,904 distinct keywords and 39,747,904 addresses required 1.328sec on
average while searching for a speci�c keyword over a set of 1,999,520 distinct
keywords and 10,036,252 addresses took 0.131sec.
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Fig. 1: Indexing and Encrypting Files

8 Conclusion

In this paper, we presented a forward/backward private SSE scheme in the multi-
client setting based on the work proposed in [15]. The forward and backward
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privacy properties of our scheme have been demonstrated by showing that con-
sistent simulated tokens can be constructed by a simulator that only has access
to the corresponding leakage functions as they were formalized in [10]. Addition-
ally, to the best of our knowledge, our construction, along with the one presented
in [4] are the only ones that satisfy Type-II backward privacy and require only
one round of interaction per search query. Finally, our scheme is currently the
only approach that achieves this level of security in the multi-client setting � a
clear vantage point over the rest of the existing approaches.
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