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Abstract

This paper presents a new family of linear codes, namely the expanded Gabidulin codes.
Exploiting the existing fast decoder of Gabidulin codes, we propose an efficient algorithm to
decode these new codes when the noise vector satisfies a certain condition. Further more, these
new codes enjoy an excellent error-correcting capability because of the optimality of their parent
Gabidulin codes. Based on different masking techniques, we give two encryption schemes by
using expanded Gabidulin codes in the McEliece setting. According to our analysis, both of
these two cryptosystems can resist the existing structural attacks. Compared to some other
code-based cryptosystems, our proposals have obvious advantage in public-key representation
without using the cyclic or quasi-cyclic structure.

1 Introduction
Over the past decades, cryptosystems based on coding theory have been drawing more and more
attention due to the rapid development of quantum computers. The first code-based cryptosystem,
known as theMcEliece cryptosystem [1] based onGoppa codes, was proposed byMcEliece in 1978.
The principle forMcEliece’s proposal is to first encode the plaintext with a random generator matrix
of the underlying Goppa code and then add some random errors. Since then various studies [2–6]
have been made to investigate the security of the McEliece cryptosystem. Apart from some weak
keys, the McEliece cryptosystem still remains secure in general cases.

In addition to potential resistance against quantum computer attacks, McEliece system has pretty
fast encryption and decryption procedures. However, this system has never been used in practice
due to its large public key size. To overcome this problem, some variants were proposed one after
another. For instance, the authors in [7] proposed to use the automorphism groups of Goppa codes to
build decodable error patterns of larger weight, which greatly enhances the system against decoding
attacks. By doing this, smaller codes are allowed in the design of encryption schemes to reduce the
public-key size. Unfortunately, this variant was shown to be vulnerable against the CPAs proposed
in [8]. In [9], the authors proposed the family of quasi-dyadic Goppa codes, which admit a very
compact representation of parity-check or generator matrix, for efficiently designing syndrome-
based cryptosystems. However, the authors in [10] mounted an efficient key-recovery attack against
this variant for almost all the proposed parameters.
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Besides endowing Goppa codes with some special structures, replacing Goppa codes with other
families of codes is another approach to shorten the public keys. For instance, Niederreiter [11] in-
troduced a knapsack-type cryptosystem based on GRS codes. In Niederreiter’s proposal, the mes-
sage sender first converts the plaintext into a vector of fixed weight and then multiplys it with a
parity-check matrix of the public code. The advantage of GRS codes lies in their optimal error-
correcting capability, which enables us to reduce the public-key size by exploiting codes with
smaller parameters. However, this variant was proved to be insecure by Sidelnikov and Shes-
takov in [12] for the reason that GRS codes are highly structured. But if we use Goppa codes in the
Niederreiter setting, it was proved to be equivalent to the McEliece system in terms of security [13].

To strengthen resistance against structural attacks, the authors in [14] performed a column-
mixing transformation instead of a simple permutation to the underlying GRS code. According
to their analysis, this variant could prevent some well-known attacks, such as the Sidelnikov-
Shestakov attack [12] and Wieschebrink’s attack [15]. However, in [16] the authors presented a
polynomial key-recovery attack in some cases. Although one can adjust the parameters to prevent
such an attack, it would introduce some other problems such as the decryption complexity increas-
ing dramatically and a higher request of error-correcting capability for the underlying code.

In [18] Gabiduin introduced a new family of rank metric codes, namely the Gabidulin codes,
which can be seen as an analogue of GRS codes but endowed with the rank metric. The particular
appeal of the rank metric is that the general decoding problem is much more difficult than that in
the Hamming metric [19,20]. This inspires us to obtain much smaller public-key sizes by building
cryptosystems in the rank metric. In [21] the authors proposed the GPT cryptosystem by using
Gabidulin codes in the McEliece setting, which requires only a few thousands bits for a security
of 100 bits. Just like GRS codes based schemes, the GPT cryptosystem and some of its variants
[22–25] have been subjected to many structural attacks [26–29] because of Gabidulin codes being
highly structured. Faure and Loidreau proposed another rank metric code based cryptosystem [30]
that is quite different from the GPT proposal. The security of this scheme can be reduced to the
intractability of the problem of reconstructing linearized polynomials. Until the work in [31], the
Faure-Loidreau scheme had never been severely attacked.

In [32] Loidreau designed a rank code based cryptosystem in the McEliece setting, in which the
author imposed a column-mixing transformation to the secret code with the inverse of an invertible
matrix whose entries are taken from an Fq-subspace of Fqm of dimension λ. Loidreau claimed that
his proposal could prevent all the existing structural attacks. However, this claim was proved to be
invalidated by the authors in [33] for the case of λ = 2 and the code rate being greater than 1/2.
Not long after this, the author in [34] generalized this attack to the case where λ > 2 and the code
rate is greater than 1− 1

λ
.

In [17], the authors introduced the concept of expanded GRS codes and designed an encryption
scheme by using these codes in the Niederreiter setting. Our work in the present paper is inspired by
this variant but uses the so-called expanded Gabidulin codes as the underlying codes. Benefitting
from the optimality of their parent Gabidulin codes, these new codes have excellent capability of
correcting Hamming errors. This enables us to make a reduction in public-key sizes by exploit-
ing smaller codes. Meanwhile, our proposals could resist the existing structural attacks such as
Overbeck’s attack, and some potential attack according to our analysis.

The remaining part of this paper is arranged as follows. In Section 2, notations and some ba-
sic concepts about rank metric codes will be given. In Section 3, we will introduce the so-called
expanded Gabidulin codes, make a research on some of their algebraic properties, and propose an
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efficient decoding algorithm for these new codes. Section 4 is devoted to the descripton of our two
proposals. In Section 5 we present the security analysis of our proposals, including structural attacks
and generic attacks. In Section 6, we give some suggested parameters for different security levels
and make a comparison on public-key sizes with some other code-based cryptosystems. Following
this, we will make a few concluding remarks in Section 7.

2 Preliminaries

2.1 Notations
Let q be a prime power. Denote by Fq a finite field with q elements, and by Fqm an extension field
of Fq of degree m. For two positive integers k and n, let Mk,n(Fq) denote the space of all k × n
matrices over Fq, and GLn(Fq) denote the general linear group formed by all invertible matrices in
Mn,n(Fq). For a matrix M ∈ Mk,n(Fqm), let ⟨M⟩Fqm

be the vector space spanned by rows of M
over Fqm .

A linear code C of length n and dimension k over Fqm is a k-dimensional subspace of Fn
qm . The

dual code of C, denoted by C⊥, is the orthogonal space of C under the usual inner product over
Fqm . A full-rank matrix G is called a generator matrix of C if its row vectors form a basis of C.
A generator matrix H of the dual code C⊥ is called a parity-check matrix of C. For a codeword
c ∈ C, the Hamming weight of c, denoted by wH(c), is the number of nonzero coordinates of c.
The minimum Hamming distance of C is defined as the minimum Hamming weight of nonzero
codewords in C.

2.2 Rank metric codes
Now we recall some basic concepts about rank metric codes.
Definition 1. Let x = (x1, x2, · · · , xn) ∈ Fn

qm , the rank support of x, denoted by SuppR(x), is
defined to be the linear space spanned by coordinates of x over Fq. Formally we have

SuppR(x) =

{
n∑

i=1

λixi : λi ∈ Fq, 1 ⩽ i ⩽ n

}
.

Definition 2. For a vector x ∈ Fn
qm , the rank weight of x, denoted by wR(x), is defined to be the

dimension of SuppR(x) over Fq. Formally we have

wR(x) = dimq

(
SuppR(x)

)
.

Definition 3. For two vectors x,y ∈ Fn
qm , the rank distance between x and y, denoted by dR(x,y),

is defined to be the rank weight of x− y. Formally we have

dR(x,y) = wR(x− y).

Definition 4. For a linear code C ⊆ Fn
qm , the minimum rank distance of C, denoted by d(C), is

defined to be the minimum rank weight of nonzero codewords in C. Formally we have

d(C) = min{wR(c) : c ∈ C and c ̸= 0}.
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A linear code endowed with the rank metric is call a rank metric code. Similar to Hamming
metric codes, the minimum rank distance of a rank metric code is bounded from above by the
Singleton-type bound defined as follows.
Definition 5 (Singleton-type bound). For an [n, k] rank metric code C ⊆ Fn

qm , the minimum rank
distance of C with respect to Fq satisfies the following inequality

d(C) ⩽ n− k + 1.

Remark 1. A rank metric code attaining the Singleton-type bound is called a Maximum Rank Dis-
tance (MRD) code. Suppose C ⊆ Fn

qm is an [n, k]MRD code, and let c ∈ C be a codeword having
the minimum Hamming weight. It is easy to see that n − k + 1 ⩽ wR(c) ⩽ wH(c) ⩽ n − k + 1.
Hence we have wH(c) = n − k + 1, which enables us to conclude that an MRD code is MDS in
the Hamming metric.

2.3 Gabidulin codes
Before giving the definition of Gabidulin codes, we shall introduce the concept of linearized poly-
nomials. A linearized polynomial f(x) ∈ Fqm [x] is a polynomial of the form

f(x) =
s∑

i=0

pix
qi , where pi ∈ Fqm .

The q-degree of f(x), denoted by degq(f), is the largest i such that pi ̸= 0.
Let L be the set of all linearized polynomials over Fqm . For a positive integer s, let L<s be the

set of linearized polynomials of q-degree less than s, namely we have
L<s = {f(x) ∈ L : degq(f) < s}.

Definition 6 (Gabidulin codes). For positive integers k ⩽ n ⩽ m and a vector g = (g1, · · · , gn) ∈
Fn
qm with wR(g) = n, the Gabidulin code Gabn,k(g) generated by g with length n and dimension k

is defined to be
Gabn,k(g) = {(f(g1), · · · , f(gn)) : f(x) ∈ L<k}.

Equivalently, the Gabidulin code Gabn,k(g) is defined to be a linear code having a generator matrix
of the form

G =


g1 g2 · · · gn
gq1 gq2 · · · gqn
... ... ...

gq
k−1

1 gq
k−1

2 · · · gq
k−1

n

 .

Similar to GRS codes in the Hamming metric, Gabidulin codes admit excellent error-correcting
capability and simple algebraic structure. The following two theorems describe some properties of
Gabidulin codes.
Theorem 7. [35] A Gabidulin code is an MRD code. In other words, the minimum rank weight of
Gabn,k(g) attains the Singleton-type bound for rank metric codes.

This implies that the Gabidulin code Gabn,k(g) can correct up to ⌊n−k
2
⌋ rank errors, which is an

important reason for Gabidulin codes being widely used in the design of cryptosystems.
Theorem 8. [31] The dual of a Gabidulin code is also a Gabidulin code. Particularly, we have
Gabn,k(g)⊥ = Gabn,n−k(h

q−(n−k−1)
) for some h ∈ Gabn,n−1(g)

⊥ with wR(h) = n.
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3 Expanded Gabidulin codes

3.1 Introducing expanded Gabidulin codes
Note thatFqm can be regarded as anFq-linear space of dimensionm. Suppose thatB = {α1, α2, · · · , αm} ⊂
Fqm forms a basis of Fqm over Fq. For any α ∈ Fqm , there exists (a1, a2, · · · , am) ∈ Fm

q such that
α =

∑m
i=1 aiαi. Based on this observation, we define an Fq-linear isomorphism from Fqm to Fm

q

with respect to B as follows
ϕB : Fqm 7→ Fm

q ,
ϕB(α) = (a1, a2, · · · , am).

As for a vector v = (v1, v2, · · · , vn) ∈ Fn
qm , we define ϕB(v) to be the vector formed by performing

the map ϕB to each coordinate of v, namely we have

ϕB(v) = (ϕB(v1), ϕB(v2), · · · , ϕB(vn)) ∈ Fmn
q .

Theoretically we can always compute ϕB(α) for any α ∈ Fqm , but the authors in [17] did not
specify how to do this in practice. Now we give an effective method of performing this operation,
which is based on the following theorem.

Theorem9. LetB = {α1, · · · , αm} be a basis ofFqm overFq, then there existsB∗ = {α∗
1, · · · , α∗

m} ⊂
Fqm such that for 1 ⩽ i, j ⩽ m we have

Tr(αiα
∗
j ) =

{
1 for i = j,

0 for i ̸= j,
(1)

where Tr(·) denotes the trace function Tr(x) =
∑m−1

i=0 xqi . Further more, the set B∗ forms a basis
of Fqm over Fq.

Proof. Assume that α∗
i =

∑m
j=1 aijαj where aij ∈ Fq for 1 ⩽ i ⩽ m, then we have

Tr(α1α
∗
i ) =

∑m
j=1 aijTr(α1αj) = 0,
...

Tr(αiα
∗
i ) =

∑m
j=1 aijTr(αiαj) = 1,
...

Tr(αmα
∗
i ) =

∑m
j=1 aijTr(αmαj) = 0.

(2)

Let Q be the coefficient matrix of (2), namely

Q =


Tr(α1α1) Tr(α1α2) · · · Tr(α1αm)
Tr(α2α1) Tr(α2α2) · · · Tr(α2αm)

... ... ...
Tr(αmα1) Tr(αmα2) · · · Tr(αmαm)

 .

It is easy to see that Q ∈ Mn,n(Fq). Now we prove the invertibility of Q by contradiction.
Assume that Q is singular, then there exists λ = (λ1, · · · , λm) ∈ Fm

q \{0} such that λQ = 0. This
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yields the following equations

Tr(α1

m∑
i=1

λiαi) = · · · = Tr(αm

m∑
i=1

λiαi) = 0.

Let βj = αj

∑m
i=1 λiαi (1 ⩽ j ⩽ m), then apparently β1, · · · , βm form a basis of Fqm over Fq

because of
∑m

i=1 λiαi ̸= 0. For any α ∈ Fqm , there exist a1, · · · , am ∈ Fq such that α =
∑m

j=1 ajβj .
Further more, we have

Tr(α) =
m∑
j=1

ajTr(βj) = 0.

This enables us to obtain qm roots of Tr(·) = 0, which contradicts the fact that Tr(·) is a ploynomial
of degree qm−1. Hence the assumption does not hold and Q is invertible.

Let a = (α1, · · · , αm) andQi be the i-th column ofQ−1, then we have α∗
i = aQi (1 ⩽ i ⩽ m).

Therefore we can obtain B∗ by computing aQ−1, and apparently B∗ forms a basis of Fqm over Fq.
This concludes the proof.

Remark 2. A set B∗ that satisfies the condition (1) is called a dual basis of B. Further more, it is
easy to see that B∗ is uniquely determined by B. For any α ∈ Fqm , assume that a1, · · · , am ∈ Fq

satisfy α =
∑m

i=1 aiαi. Then we can obtain aj (1 ⩽ j ⩽ m) by computing Tr(αα∗
j ) since

Tr(αα∗
j ) = Tr(

m∑
i=1

aiαiα
∗
j )

=
m∑
i=1

aiTr(αiα
∗
j )

= aj.

Finally we have ϕB(α) = (Tr(αα∗
1), · · · ,Tr(αα∗

m)).
Now we formally introduce the concept of expanded Gabidulin codes.

Definition 10 (Expanded Gabidulin codes). Let G be an [n, k] Gabidulin code over Fqm . For a basis
B of Fqm over Fq, let ϕB be the Fq-linear isomorphism from Fqm to Fm

q induced by B. The expanded
code of G with respect to ϕB is defined as

Ḡ = {ϕB(c) : c ∈ G}.

We call G the parent Gabidulin code of Ḡ.
The following theorem gives a method of constructing a generator (parity-check) matrix of an

expanded Gabidulin code when we already know a generator (parity-check) matrix of its parent
Gabidulin code.

Theorem 11. Let G ⊆ Fn
qm be an [n, k] Gabidulin code and B = {α1, · · · , αm} be a basis of Fqm

over Fq. The expanded code Ḡ of G with respect to ϕB is a linear code of lengthmn and dimension
mk. Further more, we have the following two conclusions.
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(1) Suppose G =
[
g1, · · · , gk

]T is a generator matrix of G, then Ḡ has an mk ×mn generator
matrix of the form

Ḡ =
[
ϕB(α1g1), · · · , ϕB(αmg1), · · · , ϕB(α1gk), · · · , ϕB(αmgk)

]T
.

(2) Let H =
[
hT

1 ,h
T
2 , · · · ,hT

n

]
be a parity-check matrix of G, then

H̄ =
[
ϕB(α1h1)

T , · · · , ϕB(αmh1)
T , · · · , ϕB(α1hn)

T , · · · , ϕB(αmhn)
T
]

(3)

forms a parity-check matrix of Ḡ.
Proof. (1) Firstly, it is easy to verify that Ḡ forms a linear code over Fq. Together with |Ḡ| = |G| =
qmk, we have dimq(Ḡ) = logq(|Ḡ|) = mk. Apparently each row vector ϕB(αigj) of Ḡ (1 ⩽ i ⩽
m, 1 ⩽ j ⩽ k) is contained in Ḡ. In the remaining part, it suffices to prove that Ḡ is of full rank.

Suppose that there exists a vector

x = (x11, · · · , xm1, · · · , x1k, · · · , xmk) ∈ Fmk
q

such that xḠ = 0, then we have

xḠ =
k∑

j=1

m∑
i=1

xijϕB(αigj)

= ϕB(
k∑

j=1

m∑
i=1

xijαigj)

= ϕB(
k∑

j=1

βjgj)

= 0,

where βj =
∑m

i=1 xijαi (1 ⩽ j ⩽ k).
By performing the inverse of ϕB to both sides of the last equation, we can obtain

∑k
j=1 βjgj =

(β1, · · · , βk)G = 0. This implies that βj = 0 for 1 ⩽ j ⩽ k. Further more, for 1 ⩽ j ⩽ k we have
xij = 0 (1 ⩽ i ⩽ m) because of α1, · · · , αm being a basis of Fqm over Fq. Finally, we come to the
conclusion that xḠ = 0 holds if and only if x = 0, which means that Ḡ is of full rank.

(2) We first show that each row vector of H̄ is contained in the dual code of Ḡ. For any c̄ =
(c11, · · · , cm1, · · · , c1n, · · · , cmn) ∈ Ḡ, there exists c = (c1, · · · , cn) ∈ G such that c̄ = ϕB(c). By
cHT = 0, we have

c̄H̄T =
n∑

j=1

m∑
i=1

cijϕB(αihj)

= ϕB(
n∑

j=1

m∑
i=1

cijαihj)

= ϕB(
n∑

j=1

cjhj)

= ϕB(cH
T )

= 0.
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This implies that each row vector of H̄ is contained in Ḡ⊥.
It remains to prove that H̄ is of full rank. To do this, it suffices to prove that there existm(n−k)

columns of H̄ linearly independent over Fq. Without loss of generality, we consider the firstm(n−
k) columns of H̄ and let H̄s be a submatrix of H̄ formed by these columns. Suppose that

x = (x11, · · · , xm1, · · · , x1r, · · · , xmr) ∈ Fmr
q

satisfies xH̄T
s = 0 where r = n− k, then we have

xH̄T
s =

r∑
j=1

m∑
i=1

xijϕB(αihj)

= ϕB(
r∑

j=1

m∑
i=1

xijαihj)

= ϕB(
r∑

j=1

βjhj)

= 0,

where βj =
∑m

i=1 xijαi (1 ⩽ j ⩽ r).
By performing the inverse of ϕB to both sides of the last equation, we can obtain

∑r
j=1 βjhj =

(β1, · · · , βr)H
T
s = 0, whereHs is the first r columns ofH . Since Gabidulin codes are MDS in the

Hammingmetric, any r columns ofH are linearly independent overFqm . Hence βj = 0 (1 ⩽ j ⩽ r)
and furthermore we have x = 0 because of α1, · · · , αm being linearly independent over Fq. This
implies that H̄s is of full rank and hence the conclusion is proved.

We already know that Gabidulin codes are optimal in both Hamming metric and rank metric.
However, expanded Gabidulin codes are far from optimal in the Hamming metric according to our
analysis. Specially, we have the following theorem.

Theorem12. LetG be an [n, k]Gabidulin code overFqm . For a given basisB ofFqm overFq, denote
by Ḡ the expanded code of G under the Fq-linear isomorphism ϕB. Then the minimum Hamming
distance of Ḡ satisfies the following inequality

n− k + 1 ⩽ d(Ḡ) ⩽ m(n− k) + 1.

In particular, with a proper choice ofB, the minimumHamming distance of Ḡ can reach to n−k+1.

Proof. For any ū ∈ Ḡ, there exists u = (u1, · · · , un) ∈ G such that ū = ϕB(u). Since G is MDS
in the Hamming metric, there must be wH(u) ⩾ n − k + 1. Let I = {1 ⩽ i ⩽ n : ui ̸= 0}, then
|I| ⩾ n− k+1. Apparently wH(ū) =

∑
i∈I wH(ϕB(ui)) ⩾ n− k+1 because of wH(ϕB(α)) ⩾ 1

for any α ∈ F∗
qm . Hence we have d(Ḡ) ⩾ n− k+1. On the other hand, by the Singleton bound for

Hamming metric codes, it is easy to see that d(Ḡ) ⩽ m(n− k) + 1.
Let v = (v1, · · · , vn) ∈ G with wH(v) = n − k + 1, and let S = {vi ̸= 0 : 1 ⩽ i ⩽ n}. If

S ⊂ B, then wH(ϕB(v)) =
∑

i∈I wH(ϕB(vi)) = n − k + 1 because of wH(ϕB(α)) = 1 for any
α ∈ B. This implies that d(Ḡ) = n− k + 1.

8



3.2 Decoding expanded Gabidulin codes
As for Gabidulin codes, several efficient decoding algorithms already exist [18, 36, 37]. In this
part, we mainly study the decoding problem of expanded Gabidulin codes. Our analysis shows that
when the noise vector satisfies a certain condition, the original decoding problem can be reduced to
decoding the parent Gabidulin codes.

Let G ⊆ Fn
qm be an [n, k] Gabidulin code having H as a parity-check matrix. Denote by Ḡ an

expanded code of G induced by some Fq-linear isomorphism ϕB. Suppose y = c+e is the received
word, where c ∈ Ḡ and e = (e1, · · · , en) ∈ Fmn

q is the noise vector with ej = (e1j, · · · , emj) ∈
Fm
q (1 ⩽ j ⩽ n). Let E be an n × m matrix over Fq, of which the j-th row vector is ej . If

Rank(E) ⩽ ⌊n−k
2
⌋, then we can design a fast decoder DḠ for Ḡ to decode y by exploiting the

syndrome decoding procedure of G.
Denote by H̄ a parity-check matrix of Ḡ. It is easy to see that

yH̄T = eH̄T

=
n∑

j=1

m∑
i=1

eijϕB(αihj)

= ϕB(
n∑

j=1

m∑
i=1

eijαihj)

= ϕB(
n∑

j=1

e∗jhj)

= ϕB(e
∗HT ),

where e∗ = (e∗1, · · · , e∗n) with e∗j =
∑m

i=1 eijαi (1 ⩽ j ⩽ n). Since wR(e
∗) = Rank(E) ⩽ ⌊n−k

2
⌋,

applying the decoding procedure of G to ϕ−1
B (yH̄T ) = e∗HT will lead to e∗. Hence we can recover

e by computing ϕB(e
∗) and then the codeword c can be computed as y − e.

Apparently four steps are needed to decode expandedGabidulin codes. Firstly, we shall compute
the syndrome of the received word y, which requires an operation of multiplying y and H̄T together
with a complexity ofO(m2n(n− k)) in Fq. Secondly, we shall perform the inverse transformation
of ϕB to the syndrome obtained in the first step, requiring a complexity of O(mn) in Fqm . The
third step shall call the fast decoder of the parent Gabidulin code to obtain an error vector e∗ with
wR(e

∗) ⩽ ⌊n−k
2
⌋, which requires a complexity of O(5

2
n2 − 3

2
k2) in Fqm [36]. In the last step, we

shall compute ϕB(e
∗) through the method described in Remark 2 with a complexity of O(((m −

1)(q − 1) + 1)mn) in Fqm . Finally the total complexity of decoding expanded Gabidulin codes is
O(m2n(q − 1) +mn(3− q) + 5

2
n2 − 3

2
k2) in Fqm plus O(m2n(n− k)) in Fq.

4 Description of our proposals

4.1 Proposal I
Let G ⊆ Fn

qm be an [n, k] Gabidulin code, correcting up to t = ⌊n−k
2
⌋ rank errors. Given a basis

B = {α1, · · · , αm} of Fqm over Fq, let ϕB be the Fq-linear isomorphism induced by B. Let Ḡ be the
expanded code of G with respect to ϕB. Denote by H̄ a parity-check matrix of Ḡ of the form (3).
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For a positive integer n− k < λ < m, define Ij = {mj + 1, · · · ,mj + λ} for 0 ⩽ j ⩽ n− 1.
Let S = ∪n−1

j=0 Ij and denote by H̄S the submatrix of H̄ being restricted to S. Let ḠS be the code
that has H̄S as a parity-check matrix and denote by ḠS a generator matrix of ḠS . It is easy to see
that ḠS has length N = λn and dimensionK = λn−m(n− k).

• Key generation
Randomly choose a matrix A ∈ GLλ(Fq). Denote by In the identity matrix of order n and
set T = In⊗A. Randomly choose a matrixM ∈ GLK(Fq) such thatGpub = MḠST

−1 is of
systematic form. We publish (Gpub, t) as the public key, and keep (H̄S, A,DḠ) as the secret
key.

• Encryption
For a plaintext x ∈ FK

q , randomly choose a matrix E ∈ Mn,λ(Fq) with Rank(E) = t. Let
e = (e1, · · · , en) ∈ FN

q , where ei is the i-th row vector of E (1 ⩽ i ⩽ n). The ciphertext
corresponding to x is computed as y = xGpub + e.

• Decryption
For a ciphertext y ∈ FN

q , let e′ = eT and compute

s = yTH̄T
S = xMḠST

−1TH̄T
S + eTH̄T

S = e′H̄T
S .

Applying the fast decoderDḠ of Ḡ to swill lead to a vector e′′ ∈ Fmn
q . The restriction of e′′ to

S will be e′, then we can recover e by computing e′T−1. The plaintext will be the restriction
of y − e to the firstK coordinates.

Correctness of Decryption. Let e′ = (e′
1, · · · , e′

n), where e′
i = eiA. Define E ′ ∈ Mn,λ(Fq) to

be the matrix whose i-th row vector is e′
i. Let e′′ = (e′′

1, · · · , e′′
n) where e′′

i = (e′
i,0) and 0 denotes

the zero vector of lengthm− λ. Define E ′′ ∈ Mn,m(Fq) to be the matrix whose i-th row vector is
e′′
i . It is easy to see that

E ′′ = [E ′|O] = [EA|O],

where O denotes the n× (m− λ) zero matrix. Apparently we have

Rank(E ′′) = Rank(E ′) = Rank(E) = t,

which implies that e′′ satisfies the decodable condition given in Section 3.2. Then applying the fast
decoder of Ḡ to s = e′H̄T

S = e′′H̄T will lead to e′′. The restriction of e′′ to S will be e′.

4.2 Proposal II
Let G ⊆ Fn

qm be an [n, k] Gabidulin code, correcting up to ⌊n−k
2
⌋ rank errors. For an Fq-linear

isomorphism ϕB from Fqm to Fm
q , let Ḡ denote the expanded code of G induced by ϕB. According

to Theorem 11, Ḡ is a linear code of length N = mn and dimension K = mk. Denote by H̄ a
parity-check matrix of Ḡ, and by Ḡ a generator matrix respectively. For a positive integer λ ≪ n,
let uf = ⌊n

λ
⌋, uc = ⌈n

λ
⌉ and v = n− λuf .
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• Key generation
Randomly choose an invertible matrixA ∈ GLmλ(Fq) such that themv×mv submatrixAsub

in the top left corner of A is also invertible. Set

T =

(
Aten

Asub

)
∈ GLN(Fq),

where Aten is the tensor product Iuf
⊗ A. Randomly choose an invertible matrix M ∈

GLK(Fq) such that Gpub = MḠT−1 is of systematic form. Then we publish (Gpub, t) as
the public key where t = ⌊n−k

2λ
⌋, and keep (H̄, A,DḠ) as the secret key.

• Encryption
For a plaintext x ∈ FK

q , randomly choose a matrix E ∈ Muc,mλ(Fq) of the form

E =


e1 · · · · · · eλ−1 eλ

e1+λ · · · · · · e2λ−1 e2λ
... ... ...

e1+(uc−1)λ · · · en · · · 0

 (4)

with Rank(E) = t, where ei ∈ Fm
q (1 ⩽ i ⩽ n). Let e = (e1, · · · , en) ∈ FN

q , then the
ciphertext corresponding to x is computed as y = xGpub + e.

• Decryption
For a ciphertext y ∈ FN

q , compute s = yTH̄T = eTH̄T . Applying the syndrome decoding
procedure DḠ of Ḡ to s will lead to e′ = eT , then we can recover e by computing e′T−1.
The restriction of y − e to the firstK coordinates will be the plaintext.

Correctness of Decryption. Before proving the correctness, we first introduce the following propo-
sition.

Proposition 1. Given λ matrices M1,M2, · · · ,Mλ ∈ Mu,v(Fq), let

M = [M1,M2, · · · ,Mλ] andM ′ =


M1

M2
...

Mλ

 .

Suppose Rank(M) = t, then there must be Rank(M ′) ⩽ λt.

Proof. Since Rank(M) = t, there must be Rank(Mi) ⩽ t for 1 ⩽ i ⩽ λ. Hence we have
Rank(M ′) ⩽

∑λ
i=1 Rank(Mi) ⩽ λt.

Now we return to the proof. From the decrypting process of Proposal II, we just need to prove
that e′ satisfy the decodable condition given in Section 3.2. Let e′ = (e′

1, e
′
2, · · · , e′

n) where e′
i ∈

Fm
q (1 ⩽ i ⩽ n), then there exist e′

n+1, · · · , e′
ucλ

∈ Fm
q such that

E ′ =


e′
1 · · · · · · e′

λ−1 e′
λ

e′
1+λ · · · · · · e′

2λ−1 e′
2λ

... ... ...
e′
1+(uc−1)λ · · · e′

n · · · e′
ucλ

 = EA = [E ′
1 E

′
2 · · · E ′

λ],

11



where E ′
i ∈ Muc,m(Fq) (1 ⩽ i ⩽ λ). Clearly we have Rank(E ′) = Rank(E) = t. Let

F =


e′
1

e′
2
...
e′
n

 and F ′ =


E ′

1

E ′
2
...
E ′

λ

 ,

then Rank(F ) ⩽ Rank(F ′) ⩽ λt ⩽ ⌊n−k
2
⌋ because of Proposition 1.

Remark 3. The cryptosystem presented above aims at the general situation where λ does not divide
n, or equivalently uf ̸= uc. As for the case of uf = uc, just a few changes are needed in the
key generation procedure. To generate the column scrambling matrix T−1, any non-singular matrix
A ∈ GLmλ(Fq) is feasible for computing T = Iuf

⊗ A.

5 Security analysis

5.1 The distinguisher for Gabidulin codes
Before giving the analysis, we introduce the so-called Frobenius transformation and some alge-
braic properties of Gabidulin codes under this transformation that will be useful to explain why our
proposals can prevent the related structural attacks.

For a non-negative integer i, denote by [i] the i-th Frobenius power qi, namely [i] = qi. Under
this notation, the quantity αqi can be simply written as α[i] for any α ∈ Fqm . Generalizing this
transformation to a vector v = (v1, · · · , vn) ∈ Fn

qm , there will be v[i] = (v
[i]
1 , · · · , v[i]n ). As for a

linear code C ⊆ Fn
qm , the i-th Frobenius power of C is defined as C[i] = {c[i] : c ∈ C}.

Now we introduce the following propositions without proving. These propositions provide us
with a method of distinguishing Gabidulin codes from general ones.

Proposition 2. Let G ⊆ Fn
qm be an [n, k] Gabidulin code. In terms of the intersection of G and its

Frobenius power G [1], we have

dim(G ∩ G [1]) = k − 1.

Proposition 3. Let G ⊆ Fn
qm be an [n, k] Gabidulin code. For any positive integer i, the following

equality holds

dim(G + G [1] + · · ·+ G [i]) = min{n, k + i}.

Proposition 4. [31] Let C ⊆ Fn
qm be an [n, k] random linear code. For any positive integer i, the

following equality holds with high probability

dim(C + C[1] + · · ·+ C[i]) = min{n, k(i+ 1)}.

12



5.2 Structural attacks
Existing attacks. Most cryptosystems based on Gabidulin codes have been proved to be insecure
due to their vulnerability against structural attacks, such as Overbeck’s attack [27], Coggia-Couvreu
attack [33] and the attack proposed in [31]. Although these attacks were designed to cryptanalyze
different variants, most of them rely on the fact that one can distinguish Gabidulin codes from
general ones by observing how their dimensions behave under the Frobenius mapping according
to Propositions 2, 3 and 4. However, this observation is no longer valid when considering our
proposals. Since our proposals are built over the base field Fq, apparently we have Ḡ [i] = Ḡ for any
positive integer i. In this situation, Gabidulin codes will behave the same as general linear codes in
terms of dimensions. Hence it is reasonable to conclude that all these attacks do not work on our
proposals.

Potential attack. Let B = {α1, · · · , αm} ⊂ Fqm be a basis of Fqm over Fq. Denote by ϕB the
Fq-linear isomorphism from Fqm to Fm

q with respect to B. For an [n, k] Gabidulin code G over Fqm ,
denote by Ḡ the expanded code of G induced by ϕB.

Let B∗ = {α∗
1, · · · , α∗

m} ⊂ Fqm be another basis of Fqm over Fq. Define ϕ̂B∗ to be an Fq-linear
isomorphism from Fm

q to Fqm such that for a = (a1, · · · , am) ∈ Fm
q ,

ϕ̂B∗(a) =
m∑
i=1

aiα
∗
i .

For a vectorv = (a1, · · · ,an) ∈ Fmn
q whereai ∈ Fm

q (1 ⩽ i ⩽ n), define ϕ̂B∗(v) = (ϕ̂B∗(a1), · · · , ϕ̂B∗(an)).
For the expanded Gabidulin code Ḡ, we define

ϕ̂B∗(Ḡ) = {ϕ̂B∗(c) : c ∈ Ḡ}.

It is easy to verify that ϕ̂B∗(Ḡ) ⊆ Fn
qm forms an Fq-linear space of dimensionmk.

A potential adversary may randomly choose such a basis B∗ and generate an Fq-linear code by
computing ϕ̂B∗(Ḡ). Theoretically ϕ̂B∗(Ḡ) could be the parent Gabidulin code of Ḡ or some of its
equivalent codes. If such an extreme case happens, then the encryption system will be completely
broken. According to our analysis, however, this is merely a small probability event.

Let Φ = ϕ̂B∗ ◦ ϕB be a composite mapping. It is easy to verify that Φ forms an Fq-linear au-
tomorphism over Fqm . If Φ is a stretching transformation, namely there exists γ ∈ F∗

qm such that
Φ(α) = γα for any α ∈ Fqm , then there must be Φ(G) = G. For any γ ∈ F∗

qm , there exists a stretch-
ing transformation Φ induced by γ. Therefore, there are at least qm− 1 Fq-linear automorphisms Φ
such that Φ(G) is also a Gabidulin code. In general case, however, Φ(G) is no longer a Gabidulin
code, not even an Fqm-linear code. We will illustrate this point by Example 1.

On the other hand, the total number of Fq-linear automorphisms over Fqm can computed as∏m−1
i=0 (qm − qi). Among all these automorphisms, transformations that behave like a stretching

transformation take a small proportion according to our experiments on Magma. For instance,
we construct a [15, 7] Gabidulin code over F330 and then perform one million random F3-linear
automorphisms to this code, but none of these converted codes are F330-linear.

According to the analysis above, we believe that this potential attack against expandedGabidulin
codes is infeasible. Similar to the masking techniques exploited in [17], in Proposal I we first divide
the underlying expanded Gabidulin code into n blocks, and then perform a mixcolumn transforma-
tion to each of these blocks by multiplying the punctured generator matrix with an invertible block
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diagonal matrix. In Proposal II, we disguise the underlying code by mixing λ adjacent blocks in-
stead of mixing columns inside each block. We believe that all these techniques further strengthen
our two proposals against structural attacks.
Example 1. Let f(x) = x3+x+1 be an irreducible polynomial over F2. Denote by F8 the extension
field of F2 derived from f(x). Let α ∈ F∗

8 such that f(α) = 0, then 1, α, α2 form a basis of F8 over
F2. We define an F2-linear automorphism Φ over F8 as follows

Φ(1) = α4,Φ(α) = α2,Φ(α2) = α3.

Let g = (α, α2, α3) ∈ F3
8 and define a [3, 2] Gabidulin code G ⊆ F3

8 generated by g. It is easy to
verify that G has a generator matrix of the form

G =

(
1 0 α3

0 1 α4

)
.

If there exists a word of ⟨Φ(g),Φ(g2)⟩F8 that is not contained in Φ(G), we conclude that Φ(G) is
not F8-linear. Let a = αΦ(g), then a /∈ Φ(G) holds if and only if Φ−1(a) /∈ G. Since Φ−1(a) =
(α2, 1, α), apparently we have Φ−1(a) /∈ G. Hence the previous claim is true.

5.3 Generic attacks
Note that in Hamming metric code-based cryptography, the best known generic attack is the in-
formation set decoding (ISD) attack [38]. Since expanded Gabidulin codes are far from optimal
according to Theorem 12, the Hamming weight of the intended error vector in the encryption pro-
cedure is much greater than the error-correcting capability of the public code with high probability.
Hence the ISD attack is not applicable for our cases.

In what follows, we introduce two hard problems closely related to the security of our proposals,
namely the rank syndrome decoding (RSD) problem and MinRank problem. Generally speaking,
approaches to solve these two problems are mainly divided into two categories, namely the com-
binatorial approach and algebraic approach. In this paper, we consider the combinatorial attack on
the RSD problem and the algebraic attack on the MinRank problem to evaluate the security level
of our proposals.

5.3.1 Combinatorial attacks

Definition 13 (RSD problem). LetH be an (n− k)×nmatrix over Fqm of full rank, s ∈ Fn−k
qm and

t be a positive integer. An RSD instanceR(q,m, n, k, t) is to solve s = eHT for e ∈ Fn
qm such that

wR(e) ⩽ t.
The RSD problem plays a crucial role in rank-based cryptography. Although this problem is not

known to be NP-complete, it is believed to be hard by the community. In the paper [39], the authors
proved that if there were a probabilistic polynomial-time algorithm for solving the RSD problem,
then a probabilistic polynomial-time algorithm can be obtained to solve the syndrome decoding
problem in the Hamming metric, which has been proved to be NP-complete in [40]. Generally
speaking, attacks on the RSD problem can be divided into two categories, namely the combinatorial
attack and algebraic attack. Up to now, the best known combinatorial attacks can be found in
[19, 41–43].
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Now we recall the principle of the combinatorial attack proposed in [42]. Although there are
some improvements [43] for this attack, they are not applicable for our cases. For an RSD instance
R(q,m, n, k, t), we consider the following two cases to solve the problem.

Case 1: n ⩾ m. Let V be an Fq-subspace of Fqm of dimension t′ ⩾ t. If SuppR(e) ⊆ V ,
then each coordinate of e can be expressed as an Fq-linear combination of a basis of V . Computing
s = eHT will result in a linear system ofn−k equationswithnt′ variables inFq. By expressing each
monomial of these parity-check equations as a vector in Fm

q under a given basis of Fqm over Fq, we
eventually obtain a system ofm(n−k) equations over Fq with nt′ variables. Apparently this system
has at least one solution when the condition SuppR(e) ⊆ V is satisfied. To have only one solution
with overwhelming probability, we should make sure thatm(n−k) ⩾ nt′ and then t′ ⩽ m−

⌈
km
n

⌉
.

By solving this system, we can finally recover the error vector e. The total complexity of this
algorithm is O (m3(n− k)3/p), where m3(n − k)3 represents the average operations required for
solving the linear system and p is the probability that a random Fq-subspace of Fqm of dimension t′
happens to contain SuppR(e). By the Gaussian binomial coefficient, we have

p =

[
m− t
t′ − t

]
q

/[
m
t′

]
q

=
t′−t−1∏
i=0

qm−t − qi

qt′−t − qi

/ t′−1∏
i=0

qm − qi

qt′ − qi
≈ 1

qt(m−t′)
.

By taking t′ = m−
⌈
km
n

⌉
, we get a complexity of O

(
m3(n− k)3qt⌈

km
n ⌉
)
.

Case 2: n < m. For a given basis of Fqm over Fq, elements of Fqm are in a one-to-one corre-
spondence to Fm

q under this basis. By replacing each coordinate of ewith the corresponding column
vector, we obtain anm× n matrix E over Fq. Let E be the linear space spanned by rows of E over
Fq. If we can find a linear space V ⊆ Fn

q of dimension t′ such that E ⊆ V , then each row of E can
be expressed as an Fq-linear combination of a basis of V . With a same analysis as Case 1, we even-
tually get a linear system ofm(n− k) equations over Fq withmt′ variables. Letmt′ ⩽ m(n− k),
then t′ ⩽ n − k. On the other hand, the probability that a random subspace of Fn

q of dimension t′

happens to contain E can be evaluated as

p =

[
n− t
t′ − t

]
q

/[
n
t′

]
q

=
t′−t−1∏
i=0

qn−t − qi

qt′−t − qi

/ t′−1∏
i=0

qn − qi

qt′ − qi
≈ 1

qt(n−t′)
.

By taking t′ = n− k, we get a complexity of O
(
m3(n− k)3qtk

)
.

Having introduced the general idea of the combinatorial attack on the RSD problem, we now
apply it to the case of our two proposals.

Proposal I. In the case of λ ⩾ n, let E be the linear space spanned by columns ofE of dimension
t. Let V be a random subspace of Fn

q of dimension t′ ⩾ t. If E ⊆ V , then each column of E can be
expressed as a linear combination of a basis of V with t′ undetermined coefficients in Fq. With such
a matrixE of this form, we can construct the error vector e. LetHpub be a parity-check matrix of the
public code, and y = xGpub + e be the received ciphertext. Then computing yHT

pub = eHT
pub will

result in a linear system ofm(n− k) equations with λt′ variables in Fq. To have only one solution,
there should be m(n − k) ⩾ λt′ and hence we have t′ ⩽

⌊
m(n−k)

λ

⌋
. With a same analysis as Case

2, the probability that a randomly chosen V happens to contain E can be evaluated as p ≈ q−t(n−t′).
By taking t′ =

⌊
m(n−k)

λ

⌋
, we get a complexity of O

(
m3(n− k)3qt(n−⌊

m(n−k)
λ ⌋)

)
.
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In the case of n > λ, let E be the linear space spanned by rows of E of dimension t. Let V be a
random subspace of Fλ

q of dimension t′ ⩾ t such that E ⊆ V . With a similar analysis as above, we
can obtain a linear system ofm(n−k) equations with nt′ variables in Fq. Letm(n−k) ⩾ nt′, then
t′ ⩽ m−⌈km

n
⌉. The probability that a randomly chosen V happens to contain E can be evaluated as

p ≈ q−t(λ−t′). By taking t′ = m−
⌈
km
n

⌉
, we get a complexity of O

(
m3(n− k)3qt(λ−m+⌈ km

n ⌉)
)
.

Proposal II. On the one hand. According to the description of Proposal II, the linear space
E = ⟨e1, · · · , en⟩Fq has dimension at most λt. With a same analysis as Case 1, we get a complexity
of O

(
m3(n− k)3qλt⌈

km
n ⌉
)
for n ⩾ m. With a same analysis as Case 2, we get a complexity of

O
(
m3(n− k)3qλtk

)
for n < m.

On the other hand. These blocks e1, · · · , en of e are obtained from a matrix E ∈ Muc,mλ(Fq)
with Rank(E) = t. With a nontrivial λ ⩾ 2, apparently we have uc = ⌈n

λ
⌉ < n < mλ. Denote by E

the linear space spanned by columns ofE over Fq. Let V be a random subspace of Fuc
q of dimension

t′ ⩾ t. If E ⊆ V , then each column of E can be expressed as a linear combination of a basis of V .
With such a matrix E of this form, we can represent the error vector e with mλt′ variables in Fq.
Letm(n− k) ⩾ mλt′, then t′ ⩽ ⌊n−k

λ
⌋. The probability that a random t′-dimensional subspace of

Fuc
q happens to contain E can be evaluated as

p =

[
uc − t
t′ − t

]/[
uc

t′

]
≈ 1

qt(uc−t′)
.

By taking t′ = ⌊n−k
λ
⌋, we get a complexity of O

(
m3(n− k)3qt(uc−⌊n−k

λ
⌋)
)
.

5.3.2 Algebraic attacks

Definition 14 (MinRank problem). For given positive integersn1, n2,m and t, letM1,M2, · · · ,Mm ∈
Mn1,n2(Fq). A MinRank instance of parameter (q, n1, n2,m, t) is to search for m coefficients
x1, x2, · · · , xm ∈ Fq such that Rank(

∑m
i=1 xiMi) ⩽ t.

The MinRank problem was originally proposed by Buss et al. [44] as a natural question in
linear algebra and proved to be NP-complete. This problem plays a central role in both multivariate
cryptography [46] and rank-based cryptography [42]. The rank decoding (RD) problem, the dual
of an RSD problemR(q,m, n, k, t), can be reduced to a structured MinRank instance of parameter
(q,m, n,mk+1, t) [47]. There are mainly three approaches to solve the MinRank problem, namely
the Kipnis-Shamir (KS) modeling [48], minors modeling [49] and linear algebra search [50].

The authors in [49,51] investigated the “square” case of n1 = n2 = n, and gave an upper bound
for the complexity of solving the MinRank problem in this situation. For a MinRank instance of
parameter (q, n, n,m, t), the complexity is

O
((

m+ t(n− t) +min{m, t(n− t)}+ 1

min{m, t(n− t)}+ 1

)ω)
,

where ω = 2.8 represents the linear algebra constant. In the paper [47], Faugère et al. managed to
solve the MinRank instance of parameter (q, n, n,m, t) with a complexity of O

(
log(q)n3(n−t)2

)
when the conditionm = (n− t)2 + 1 is satisfied.
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For the “nonsquare” case, Bardet et al. [45] proposed to solve theMinRank instance of parameter
(q, n1, n2,m, t) with a complexity of

O

(
m(t+ 1)

(
n2

t

)2(
m+ b− 1

b

)2
)
,

where b is the smallest positive integer such that b < min{q, t+2} satisfying the following condition(
n2

t

)(
m+ b− 1

b

)
− 1 ⩽

b∑
i=1

(−1)i+1

(
n2

t+ i

)(
n1 + i− 1

i

)(
m+ b− i− 1

b− i

)
.

In what follows, our analysis shows that decrypting any valid ciphertext in our proposals can
be reduced to solving a MinRank instance. For the convenience of our statement, we first define
an Fq-linear isomorphism σ from Fns

q to Mn,s(Fq) for some positive integer s. For a vector x =
(x1, · · · ,xn) ∈ Fns

q with xi ∈ Fs
q (1 ⩽ i ⩽ n), we define σ(x) as follows

σ(x) =
[
x1,x2, · · · ,xn

]T ∈ Mn,s(Fq).

Generalizing this definition to a set X ⊆ Fns
q , we have σ(X ) = {σ(x) : x ∈ X}. For any x ∈ Fns

q ,
by wR(x) we mean the rank of σ(x) hereafter when no ambiguity arises.

Proposal I. With the concept above, we now introduce the following proposition with respect
to our first proposal.

Proposition 5. Denote by mi the i-th row vector of the public matrix Gpub (1 ⩽ i ⩽ K), and Gpub

the public code generated byGpub. Let y = c+e be the received word, where c ∈ Gpub and e ∈ FN
q

with wR(e) = t. If there exist a0, a1, · · · , aK ∈ Fq such that 0 < wR(a0y +
∑K

i=1 aimi) ⩽ t, then
there must be a0y +

∑K
i=1 aimi = a0e and hence e = 1

a0
(a0y +

∑K
i=1 aimi).

Proof. It is easy to see that ḠS is obtained by shortening Ḡ at S, then there must be

d(ḠS) ⩾ d(Ḡ) ⩾ n− k + 1 ⩾ 2t+ 1.

On the other hand, apparently we have Gpub = ⟨ḠST
−1⟩Fq = ḠST

−1. For any u ∈ Gpub, there
exists v ∈ ḠS such that u = vT−1. Following this we have σ(u) = σ(v)A−1 and then

wR(u) = Rank(σ(u)) = Rank(σ(v)) = wR(v) ⩾ 2t+ 1,

which implies that d(Gpub) ⩾ 2t+ 1. Hence if a0y +
∑K

i=1 aimi = (a0c+
∑K

i=1 aimi) + a0e has
rank weight of at most t, then there must be a0c +

∑K
i=1 aimi = 0 and a0 ̸= 0. Otherwise, there

will be wR(a0y +
∑K

i=1 aimi) ⩾ t+ 1. This completes the proof.

Based on the analysis above, decrypting a valid ciphertext in Proposal I can be reduced to solv-
ing a MinRank instance of parameter (q, n, λ,K + 1, t). Formally, we introduce the following
proposition without proving.

Proposition 6. Suppose y = c+ e is a valid ciphertext in Proposal I, where c ∈ Gpub and e ∈ FN
q

with wR(e) = t. Let M0 = σ(y) and Mi = σ(mi) for 1 ⩽ i ⩽ K. Then recovering e can be
reduced to a MinRank instance of searching for a0, a1, · · · , aK ∈ Fq such that Rank(

∑K
i=0 aiMi) ⩽

t.
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Proposal II. Similar to Proposition 6, Proposal II can be reduced to a MinRank instance of
parameter (q, n,m,K + 1, λt). Formally, we introduce the following proposition without proving.

Proposition 7. Suppose y = c + e is a valid ciphertext in Proposal II, where c ∈ Gpub and
e ∈ FN

q is the intended error vector. Let M0 = σ(y) and Mi = σ(mi) for 1 ⩽ i ⩽ K. Then
recovering e can be reduced to a MinRank instance of searching for a0, a1, · · · , aK ∈ Fq such that
Rank(

∑K
i=0 aiMi) ⩽ λt.

Apparently there exists at least one solution for this reduced MinRank instance. For a nontrivial
λ ⩾ 2, the right column scrambler T−1 does not preserve the rank metric in general, thus we cannot
decide as in Proposition 5 whether or not a solution reveals the intended error vector e or some of its
multiples. But we can still give an answer to this question according to the following proposition.

Proposition 8. Suppose a0, a1, · · · , aK ∈ Fq form a solution of the MinRank instance described in
Proposition 7, then let e′ = σ−1(

∑K
i=0 aiMi) = (e′

1, · · · , e′
n) with e′

i ∈ Fm
q for 1 ⩽ i ⩽ n. Define

E ′ ∈ Muc,mλ(Fq) to be the associated matrix of e′ of the form (4). If Rank(E ′) ⩽ t, then there
must be e′ = a0e.

Proof. Apparently e′ = σ−1(
∑K

i=0 aiMi) = a0y +
∑K

i=1 aimi = a0e + (a0c +
∑K

i=1 aimi). On
the one hand, e′ can be viewed as a valid ciphertext obtained by encrypting 0 ∈ FK

q because of
Rank(E ′) ⩽ t. Hence decrypting e′ will lead to e′ itself. On the other hand, e′ can also be viewed
as a valid ciphertext that has a0e as the intended error vector because of a0c+

∑K
i=1 aimi ∈ Gpub.

Then decrypting e′ will lead to a0e. By the uniqueness of decryption, there must be e′ = a0e. This
completes the proof.

6 Parameter choice and public-key size
In this section, we compute the public-key sizes and information rates of the proposed cryptosystems
for security of 128 bits, 192 bits and 256 bits against the generic attacks described in Section 5.3.
After that we will make a comparison with some other code-based cryptosystems on public-key
sizes for different security levels.

In Proposal I, the public key is a systematic generator matrix of the public code with length nλ
and dimension nλ−mr where r = n− k, resulting in a public-key size ofmr(nλ−mr) · log2(q)
bits. In Proposal II, the public key is a systematic generator matrix of the public code with length
mn and dimensionmk, resulting in a public-key size of rkm2 · log2(q) bits. As for the information
rates, this value is evaluated as (nλ−mr)/nλ for Proposal I, and k/n for Proposal II respectively.

In Table 1 we consider the case of q = 3, in Table 2 we consider the case of q = 7, and in Table
3 we consider q = 13. By comparison of the calculation results in these three cases, it is easy to see
that the greater the base field is, the smaller public-key sizes our two proposals will have.

For Proposal I, we suggest the parameter set (q = 13,m = 17, n = 17, k = 11, λ = 16) for
security of 128 bits, the parameter set (q = 13,m = 22, n = 22, k = 16, λ = 21) for security of
192 bits, and the parameter set (q = 13,m = 25, n = 25, k = 17, λ = 24) for security of 256 bits.

For Proposal II, we suggest the parameter set (q = 13,m = 29, n = 29, k = 17, λ = 2) for
security of 128 bits, the parameter set (q = 13,m = 37, n = 37, k = 21, λ = 2) for security of 192
bits, and the parameter set (q = 13,m = 43, n = 43, k = 23, λ = 2) for security of 256 bits.
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Instance Parameters Key Size Rate Security
m=25, n=25, k=17, λ=24 15,850 0.67 128

Proposal I m=32, n=32, k=22, λ=31 42,604 0.68 192
m=37, n=37, k=25, λ=36 78,114 0.67 256
m=43, n=43, k=19, λ=2 167,044 0.44 128

Proposal II m=57, n=57, k=33, λ=2 509,805 0.58 192
m=67, n=67, k=39, λ=2 971,184 0.58 256

Table 1: Public-key sizes and information rates of the proposed cryptosystems in the case of q = 3
(in bytes).

Instance Parameters Key Size Rate Security
m=20, n=20, k=14, λ=19 10,949 0.68 128

Proposal I m=24, n=24, k=16, λ=23 24,256 0.65 192
m=28, n=28, k=18, λ=27 46,771 0.63 256
m=35, n=35, k=23, λ=2 118,646 0.66 128

Proposal II m=45, n=45, k=29, λ=2 329,724 0.64 192
m=51, n=51, k=31, λ=2 565,900 0.61 256

Table 2: Public-key sizes and information rates of the proposed cryptosystems in the case of q = 7
(in bytes).

Instance Parameters Key Size Rate Security
m=17, n=17, k=11, λ=16 8,021 0.63 128

Proposal I m=22, n=22, k=16, λ=21 20,149 0.71 192
m=25, n=25, k=17, λ=24 37,005 0.67 256
m=29, n=29, k=17, λ=2 79,358 0.59 128

Proposal II m=37, n=37, k=21, λ=2 212,768 0.57 192
m=43, n=43, k=23, λ=2 393,422 0.53 256

Table 3: Public-key sizes and information rates of the proposed cryptosystems in the case of
q = 13 (in bytes).

Instance 128 bits 192 bits 256 bits
HQC 2,249 4,522 7,245
BIKE 1,540 3,082 5,121

Classic McEliece 261,120 524,160 1,044,992
NTS-KEM 319,488 929,760 1,419,704
KRW system 578,025
Proposal I 8,021 20,149 37,005
Proposal II 79,358 212,768 393,422

Table 4: Comparison on public-key sizes with some other cryptosystems (in bytes).

In Table 4, we make a comparison on public-key sizes with some other code-based cryptosys-
tems. The first four instances, namely HQC [52], BIKE [53], NTS-KEM [54] and Classic McEliece
[55], have been selected to move on to the third round of the NIST PQC Standardization Process.
Note that the Classic McEliece published by the NIST PQC team is a merged version of NTS-KEM
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and the original Classic McEliece for their specifications being very similar. The KRW system
proposed in [17] is based on expanded GRS codes, which inspires us to exploit expanded Gabidulin
codes in the design of encryption schemes. Compared to the KRW system, our proposals admit a
more compact representation of public keys for the reason that the general decoding problem in the
rank metric is much more difficult than that in the Hamming metric.

7 Conclusion
In this paper, we first introduce the concept of expanded Gabidulin codes and then build two cryp-
tosystems by using these new codes in the McEliece setting. In our proposals the underlying code
is divided into n blocks, with each block having size m. By the definition of expanded Gabidulin
codes, each of these blocks corresponds to one coordinate of the parent Gabidulin code. To weaken
this correspondence, in Proposal I we first shorten the expanded Gabidulin code and then perform
a column-mixing transformation to each of these blocks. In Proposal II, we adopt a rather dif-
ferent column transformation to the expanded Gabidulin code by mixing λ neighbouring blocks.
According to our analysis in Section 5.2, both of these two variants can resist the existing structural
attacks. Compared to some other cryptosystems, our proposals have great advantage in public-key
sizes without using the cyclic or quasi-cyclic structure. For instance, we have made a reduction in
public-key sizes by 96% compared to Classic McEliece for the same security levels.
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