
A PCP Theorem for Interactive Proofs

Gal Arnon
gal.arnon@weizmann.ac.il

Weizmann Institute

Alessandro Chiesa
alexch@berkeley.edu

UC Berkeley

Eylon Yogev
eylony@gmail.com
Tel Aviv University

July 6, 2021

Abstract

The celebrated PCP Theorem states that any language in NP can be decided via a verifier that
reads O(1) bits from a polynomially long proof. Interactive oracle proofs (IOP), a generalization
of PCPs, allow the verifier to interact with the prover for multiple rounds while reading a small
number of bits from each prover message. While PCPs are relatively well understood, the power
captured by IOPs (beyond NP) has yet to be fully explored.

We present a generalization of the PCP theorem for interactive languages. We show that
any language decidable by a k(n)-round IP has a k(n)-round public-coin IOP, where the verifier
makes its decision by reading only O(1) bits from each (polynomially long) prover message and
O(1) bits from each of its own (random) messages to the prover. Our proof relies on a new notion
of PCPs that we construct called index-decodable PCPs, which may be of independent interest.

We are then able to bring transformations that previously applied only for IPs into the realm
of IOPs. We show IOP-to-IOP transformations that preserve query complexity and achieve: (i)
private-coins to public-coins; (ii) round reduction; and (iii) imperfect to perfect completeness.

Keywords: interactive proofs; probabilistically checkable proofs; interactive oracle proofs

Contents

1 Introduction 1
1.1 Our results . 2

2 Techniques 5
2.1 The case of a single-round IP . 5
2.2 Local access to randomness . 6
2.3 Index-decodable PCPs . 9
2.4 Local access to prover messages . 10
2.5 Constructing index-decodable PCPs . 12
2.6 Achieving constant query complexity . 14

3 Preliminaries 17
3.1 Relative distance . 17
3.2 Relations . 17
3.3 Interactive oracle proofs . 17
3.4 Round-by-round soundness . 18
3.5 Error correcting codes . 19
3.6 PCPs of proximity for circuit satisfiability . 19
3.7 Extractors . 20

4 Index-decodable PCPs 21

5 Constructing index-decodable PCPs 23
5.1 Building blocks . 23
5.2 The construction . 26

6 Achieving constant query complexity per oracle 30
6.1 Proof composition preserves index-decodability . 30
6.2 Robustification . 33

7 Transforming IPs into IOPs 36
7.1 Local access to randomness . 36
7.2 Local access to prover messages . 40

Acknowledgments 44

References 44

1 Introduction

Probabilistic proofs play a central role in complexity theory and cryptography. In the past decades,
probabilistic proofs have become powerful and versatile tools in these fields, leading to breakthroughs
in zero-knowledge, delegation of computation, hardness of approximation, and other areas.

As an example, interactive proofs (IPs) [GMR89] allow proof-verification to be randomized
and interactive, which seemingly confers them much more power than their deterministic (and
non-interactive) counterparts. In a k-round IP, a probabilistic polynomial-time verifier exchanges
k messages with an all-powerful prover and then accepts or rejects; IP[k] is the class of languages
decidable via a k-round interactive proof. Seminal results characterize the power of IPs (IP[poly(n)] =
PSPACE) [LFKN92; Sha92] and also achieve zero-knowledge [GMR89; GMW91].

The development of IPs, in turn, led to probabilistically checkable proofs (PCPs) [BFLS91;
FGLSS96], where a probabilistic polynomial-time verifier has query access to a proof string. Here
PCP[r, q] denotes the class of languages decidable by a PCP verifier that uses at most r bits of
randomness and queries at most q bits of the proof string. A line of works culminated in the
PCP Theorem [AS98; ALMSS98], which can be stated as NP = PCP[O(log n), O(1)]; that is, every
language in NP can be decided, with constant soundness error, by probabilistically examining only a
constant number of bits in a polynomially long proof.

These advances in probabilistic proofs have reshaped theoretical computer science.
Interactive oracle proofs. More recently, researchers formulated interactive oracle proofs (IOPs)
[BCS16; RRR16], a model of probabilistic proof that combines aspects of the IP and PCP models.
A k-round IOP is a k-round IP where the verifier has PCP-like access to each prover message: the
prover and verifier interact for k rounds, and after the interaction the verifier probabilistically reads
a small number of bits from each prover message and decides to accept or reject based on the
examined locations. The randomness used in the final phase is called decision randomness (which we
distinguish from the random messages that the verifier sends to the prover during the interaction).

Recent work has constructed highly-efficient IOPs [BCGV16; Ben+17; BCGRS17; BBHR18;
BCGGHJ17; BCRSVW19; BCGGRS19; BBHR19; BGKS19; COS20; RR20; BCG20; BCL20; BN21].
While the shortest PCPs known to date have quasi-linear length [BS08; Din07], IOPs can achieve
linear proof length and fast provers. These developments are at the heart of recent constructions of
non-interactive succinct arguments (SNARGs), and have facilitated their deployment in numerous
real-world systems. IOPs are also used to construct IPs for delegating computation [RRR16].
IOPs beyond NP? Most research regarding IOPs has focused on understanding IOPs for languages
in NP (and more generally various forms of non-deterministic computations) while using the additional
rounds of interaction to achieve better efficiency compared to PCPs for those languages.

However, the power of IOPs for languages beyond NP is not well understood. We do know that
IPs can express all languages in PSPACE for sufficiently large round complexity [LFKN92; Sha92];
moreover more rounds lead to more languages because, under plausible complexity assumptions, it
holds that IP[k] 6⊆ IP[o(k)] (while restricting to polynomial communication complexity) [GVW02].
But what can we say about the power of IOPs with small query complexity (over the binary alphabet)?1

Prior works imply certain facts about k-round IOPs for extreme settings of k.

• For non-deterministic languages, the answer is given by the PCP Theorem, which can be viewed
as a “half-round” IOP with query complexity O(1) and decision randomness O(log n).2

1An IP is an IOP where the verifier has large query complexity over the binary alphabet.
2The interaction solely consists of the prover sending a message, so we could write k = 0.5.

1

• For languages that have a public-coin IP with k = 1 round (a verifier message followed by a prover
message), Drucker [Dru11a] proves a hardness of approximation result in the terminology of CSPs,
which can be re-interpreted as an IOP where the verifier randomly checks a single constraint.
That is, any public-coin one-round IP has a corresponding one-round IOP where the verifier sends
a message, the prover sends a message, and the verifier to probabilistically reads O(1) bits from
both messages and decides (using O(log n) bits of decision randomness). However, Drucker’s result
does not extend to arbitrary many rounds.3

• When k can be polynomially large, we observe that constant-query IOPs for PSPACE can be
obtained from [CFLS95; CFLS97],4 which in turn provides such an IOP for every language having
an IP. However, their result does not express the power of IOPs for a given number of rounds
k. Other analogues of PCP have been given (e.g., [HRT07] applies to the polynomial hierarchy,
[Dru11b] is also for PSPACE) but they do not seem to translate to IOPs.

In summary, not much is known about the power of general k-round IOPs, which leads us to ask:

What languages have a k-round IOP where the verifier decides
by reading O(1) bits from each prover message and each verifier message?

1.1 Our results

We answer the above question by showing that (informally) the power of IOPs with k rounds where
the verifier reads O(1) bits from communication round (both prover and verifier messages) is the
same as if the verifier reads the entire protocol transcript (as in an IP). This can be seen as extending
the PCP Theorem to interactive proofs, interpreted as “you can be convinced by a conversation while
barely listening (even to yourself)”.

To achieve this, our main result is a transformation from IPs to IOPs: we transform any IP
into a corresponding IOP where the verifier reads O(1) bits from each communication round and
uses a total of O(log n) bits of decision randomness.5 The round complexity is preserved, and other
parameters are preserved up to polynomial factors. (A round is a verifier message followed by a
prover message; after the interaction, the verifier’s decision is probabilistic.)

Theorem 1 (IP → IOP). Let L be a language with a public-coin IP with k rounds and constant
soundness error. Then L has an IOP with k rounds, constant soundness error, where the verifier
decides by using O(log n) bits of decision randomness and reading O(1) bits from each prover message
and each verifier message. All other parameters are polynomially related.

Comparison with known characterizations. Consider a language L ∈ AM[k] for some (possibly
non-constant) k. By definition, L has a public-coin k-round protocol, where the verifier reads the
entire (polynomially long) transcript. On the other hand, since AM[k] ⊆ NEXP, L has a PCP where
the prover sends a single exponentially-long message from which the (polynomial-time) verifier reads
O(1) bits. But what can we say if we required the prover to send polynomially long messages? Using
Theorem 1, we get the best of both solutions: k rounds and the verifier reads O(1) bits from each
round. See Figure 1 for a summary of this comparison.

3Round reduction [BM88] can reduce the number of rounds from any k to 1 with a blow-up in communication that
is exponential in k. This does not work when k is super constant; see Section 2.2.3 for further discussion.

4Their result shows that PSPACE has what is known as a probabilistically checkable debate system. In their system,
one prover plays a uniform random strategy. Thus one can naturally translate the debate system into an IOP.

5After the interaction, the verifier uses O(logn) random bits to decide which locations to read from all k rounds.

2

complexity model proof alphabet query round
class length complexity complexity

[BGHSV05] NEXP PCP exp(|x|) {0, 1} O(1) 1

[CFLS97] PSPACE IOP poly(|x|) {0, 1} O(1) poly(|x|)

implied by [BGHSV05] AM[k] PCP exp(|x|) {0, 1} O(1) 1

[Bab85; GMR89] AM[k] IP k {0, 1}poly(|x|) 1 per round k

[this work] AM[k] IOP poly(|x|) {0, 1} O(1) per round k

[Dru11b] AM IOP poly(|x|) {0, 1} O(1) 1

[ALMSS98; AS98] NP PCP poly(|x|) {0, 1} O(1) 1

Figure 1: Classes captured by different types of probabilistic proofs (in the regime of constant soundness
error). Here, x denotes the instance whose membership in the language the verifier is deciding. Here, AM
stands for two-message public-coin protocols (a verifier random message followed by a prover message),
and AM[k] is a k-round public-coin protocol.

1.1.1 Transformations for IOPs

As a corollary of Theorem 1, we get IOP analogues of classical IP theorems. We show IOP-to-IOP
transformations, with small query complexity, and achieve classical results that were known for IPs,
including: a private-coin to public-coin transformation (in the style of [GS86]); a round reduction
technique (in the style of [BM88]); and a method to obtain perfect completeness (in the style of
[FGMSZ89]). A graphic of this corollary is displayed in Figure 2.

Corollary 1. Let L be a language with a k-round IOP with polynomial proof length over a binary
alphabet. Then the following holds:

1. private-coins to public-coins: L has a O(k)-round public-coin IOP;
2. round reduction: for every constant c ≤ k, L has a k/c-round IOP;
3. perfect completeness: L has a perfectly complete k-round IOP.

All resulting IOPs have polynomial proof length and O(1) per-round query complexity over a binary
alphabet; all other parameters are polynomially related to the original IOP.

Similar to the case with IPs, one can combine these transformations to get all properties at once.
In particular, one can transform any IOP to be public-coin and have perfect completeness while
preserving the round complexity.

1.1.2 Index-decodable PCPs

A building block behind Theorem 1 is a new notion of PCP that we call index-decodable PCPs. We
discuss its definition and compare it with other notions of PCP in Section 2.3; here, we provide
an intuitive description. An index-decodable PCP can be seen as a PCP on maliciously encoded
data. The prover wishes to convince the verifier about a statement that regards k data segments
i[1], . . . , i[k] and an instance x (i.e., there exists a witness w such that C(i[1], . . . , i[k],x,w) = 1 for
some circuit C) by providing a PCP string Π. The verifier receives as input only the instance x, and

3

private coin
IOP

public-coin
IP

[GS86] public-coin
IOPTheorem 1

k-round
IOP

k/c-round
IP

[BM88] k/c-round
IOP

Theorem 1

imperfectly
complete

IOP

perfectly
complete

IP
[FGMSZ89]

perfectly
complete

IOP
Theorem 1

Figure 2: Using Theorem 1 to derive IOP analogues of classical IP theorems.

is given query access to an encoding of each data segment i[i] and query access to Π; this means
that the verifier has query access to a total of k + 1 oracles.

The definition of an index-decodable PCP, to be useful, needs to take into account several subtle
points (which, in fact, are crucial for our transformation in Theorem 1).

First, the encoding of each data segment must be computed independently of other data segments
and even the instance. (Though the PCP string Π can depend on all data segments and the instance.)

Second, the verifier is not guaranteed that the k data oracles are valid encodings, in the sense
that “security” is required to hold even against malicious provers that have full control of all k + 1
oracles (not just the PCP string oracle). In other words, we wish to formulate a security notion that
is meaningful even for data that has been maliciously encoded.

The security notion that we use is decodability. Informally, we require that if the verifier accepts
with high-enough probability a given set of (possibly malicious) data oracles and PCP string, then
each data oracle can be individually decoded into a data segment such that, collectively, all the data
segments and the instance form a true statement (there is a witness that makes the circuit accept
them). We stress that the decoder algorithm must run on each data oracle separately from other
data oracles and the instance (similarly as the encoder).

4

2 Techniques

We overview our ideas for transforming IPs into IOPs. We begin in Section 2.1 by describing a
solution in [Dru11a] that works for a single round and explaining why it is challenging to extend it to
work for multiple rounds. Then, we describe our transformation for many rounds in two steps. First,
in Section 2.2 we describe how to make a verifier query each of its random messages at few locations.
Next, in Section 2.3 we define our new notion of index-decodable PCPs and then in Section 2.4
describe how to use these to make the verifier query each prover message at few locations (without
affecting the first step). We conclude with our construction of index-decodable PCPs: in Section 2.5
we outline a randomness-efficient index-decodable PCP that makes O(1) queries to each of its oracles
except for one; then in Section 2.6 we use proof composition to improve this query complexity.

Throughout, we call interaction randomness (or verifier random messages) the randomness sent
by the verifier to the prover during the interaction, and decision randomness the randomness used
by the verifier in the post-interaction decision stage.

2.1 The case of a single-round IP

The case of a single-round was settled by Drucker [Dru11a], whose work implies a transformation
from a public-coin single-round IP to a single-round IOP where the verifier reads O(1) bits from
the communication transcript (here consisting of the prover message and the verifier message). His
construction uses as building blocks the randomness-efficient amplification technique of [BGG90] and
PCPs of proximity (PCPPs) [DR04; BGHSV06].6 We give a high-level overview of his construction.

In a public-coin single-round IP, given a common input instance x, the verifier VIP sends
randomness ρ, the prover PIP sends a message a, and the verifier VIP decides whether to accept by
applying a predicate to (x, ρ, a). Consider the non-deterministic machine Mx such that Mx(ρ) = 1
if and only if there exists a such that VIP accepts (x, ρ, a). The constructed IOP works as follows:

1. the IOP verifier sends VIP’s randomness ρ;
2. the IOP prover computes PIP’s message a and produces a PCPP string Π for the claim “Mx(ρ) = 1”;
3. the IOP verifier checks Π using the PCPP verifier with explicit input Mx and implicit input ρ.

This IOP is sound if the underlying IP is “randomness-robust”, which means that if x is not in
the language then with high probability over ρ it holds that ρ is far from any accepting input for
Mx. Drucker achieves this property by using an amplification technique in [BGG90] that achieves
soundness error 2−|ρ| while using O(|ρ|) random bits (standard amplification would, when starting
with a constant-soundness protocol, result in ω(|ρ|) random bits). Thus, with high probability, ρ is
not only a “good” random string (which holds for any single-round IP) but also is δ-far from any
“bad” random string, for some small constant δ > 0. This follows since the ball of radius δ around
any bad random string has size 2δ

′|ρ|, for some small constant δ′ that depends only on δ.

2.1.1 How to extend to multiple rounds?

We wish to obtain a similarly efficient transformation for a public-coin k-round IP where k = poly(n).
6A PCPP is a PCP system where the verifier has oracle access to its input in addition to the prover’s proof; the

soundness guarantee is that if the input is far (in Hamming distance) from any input in the language, then the verifier
accepts with small probability.

5

One possible approach would be to reduce the number of rounds of the given IP from k to 1 and
then apply the transformation for single-round IPs. The round reduction of Babai and Moran [BM88]
shows that any public-coin k-round IP can be transformed into a one-round IP where efficiency
parameters grow by nO(k). This transformation, however, is not efficient for super-constant values of
k. Moreover, it is undesirable even when k is constant because the transformation overhead is not a
fixed polynomial (the exponent depends on k rather than being a fixed constant).

Therefore, we seek an approach that directly applies to a multi-round IP. Unfortunately, Drucker’s
approach for one-round IPs does not generalize to multiple-round IPs for several reasons. First,
the corresponding machine Mx(ρ1, . . . , ρk) (which accepts if and only if there exist prover messages
a1, . . . , ak such that VIP accepts (x, ρ1, a1, . . . , ρk, ak)) does not capture the soundness of the inter-
active proof because it fails to capture interaction (a protocol may be sound according to the IP
definition and, yet, for every x and ρ1, . . . , ρk it could be that Mx(ρ1, . . . , ρk) = 1). Moreover, it is
not clear how to perform a randomness-efficient amplification for multiple rounds that makes the
protocol sufficiently “randomness robust” for the use of a PCPP. The main reason is that to get
soundness error 2−m (as in [Dru11a]), the techniques of [BGG90] add O(m) bits per round, which is
too much when the protocol has many rounds (see Section 2.2.3 for a more detailed discussion on
why this approach fails for many rounds).

We give a different solution that circumvents this step and works for any number of rounds. Our
transformation from k-round IP to an IOP in two stages. In the first stage, we transform the IP into
one in which the verifier reads only O(1) bits from each random message it sends. In the second
stage, we transform the IP into an IOP with O(1) per-round query complexity, simultaneously for
each prover message and each verifier message. We achieve this via a new notion of PCPs that we
call index-decodable PCPs, and we describe in Section 2.3. First, we explain how to achieve the
property that the verifier reads O(1) bits from each of its random messages to the prover.

2.2 Local access to randomness

We transform a public-coin IP (PIP,VIP) into an IP (P′IP,V
′
IP) whose verifier (i) reads O(1) bits

from each of its random messages to the prover, and (ii) has logarithmic decision randomness (the
randomness used by the verifier in the post-interaction decision stage). For now, the verifier reads
in full every message received from the prover, and only later we discuss how to reduce the query
complexity to prover messages while preserving the query complexity to the verifier random messages.

2.2.1 One-round public-coin proofs

In order to describe our ideas we begin with the simple case of one-round public-coin interactive
proofs. Recall from Section 2.1 that this case is solved in [Dru11a], but we nevertheless first describe
our alternative approach in this case and after that we will discuss the multiple-round case.
A strawman protocol. An idea would be for the prover to reply to the verifier with the received
randomness, and the verifier to use this latter and test consistency with its own randomness. Given
an instance x: V′IP sends VIP’s random message ρ ∈ {0, 1}r; P′IP replies with ρ′ := ρ and the message
a := PIP(x, ρ); and V′IP checks that ρ and ρ′ agree on a random location and that VIP(x, ρ′, a) = 1.

This new IP is complete, and its verifier queries its random message at one location to conduct
the consistency test. However, the protocol might not be sound, as we explain. Suppose that x /∈ L.
Let r be the length of ρ, let β be the soundness error of the original IP, and let νr be the volume of
the Hamming sphere of radius r/3 in {0, 1}r. A choice of verifier message ρ is bad if there exists a

6

such that VIP(x, ρ, a) = 1. By the soundness guarantee of VIP, the fraction of bad choices of random
verifier messages is at most β. A choice of verifier message ρ is ball-bad if there exist a bad ρ′ that is
1/3-close to ρ. By the union bound, the fraction of ball-bad coins is at most γ = β · νr.

Let E be the event over the choice of ρ that the prover sends ρ′ that is 1/3-far from ρ.
• Conditioned on E occurring, V′IP rejects with probability at least 1/3 (whenever V′IP chooses a

location on which ρ and ρ′ disagree).
• Conditioned on E not occurring, P′IP cannot send any ρ′ and a such that VIP(x, ρ′, a) = 1 unless ρ

is ball-bad, and so V′IP rejects with probability at least 1− γ.
Therefore, for the new IP to be sound, we need γ = β · νr to be small. Notice that νr = 2c·r (for
some constant 0 < c < 1) depends on r but not on β. Thus we need to achieve log 1/β > c · r. As in
Drucker’s transformation, this can be done using the randomness-efficient soundness amplification
of [BGG90], but we deliberately take a different approach that will generalize for multiple rounds.
Shrinking γ using extractors. Let Ext be an extractor with output length r, seed length
O(log 1/β), and error β;7 such extractors are constructed in [GUV09]. Suppose that the prover and
verifier have access to a sample z from a source D with high min-entropy. Consider the following IP:
V′IP sends s; P′IP replies with s′ := s and a := PIP(x,Ext(z, s

′)); V′IP checks that s and s′ agree on a
random location and that VIP(x,Ext(z, s′), a) = 1.

At most a 2β-fraction of the seeds s are such that there exists a such that VIP(x,Ext(z, s), a) = 1,
because Ext is an extractor with error β andD is a distribution with high min-entropy. By an identical
argument to the one done previously, either P′IP sends s′ that is far from s and so V′IP rejects with
constant probability, or V′IP rejects with probability at least γ = 2β · νr′ where r′ = |s| = O(log 1/β).
Thus we have that γ = 2 · β1−c, which is a constant fraction for small enough values of β (which can
be achieved with standard parallel repetition).
Generating a source of high min-entropy. We describe how the prover and verifier can agree
on a sample from a high-entropy source by leveraging the following observation: if z is a uniformly
random string and z′ is an arbitrary string that is close in Hamming distance to z, then z′ has high
min-entropy. Thus we can sample via similar ideas as above: V′IP samples and sends z; P′IP replies
with z′ := z; and V′IP checks that z and z′ agree on a random location. (So V′IP reads one bit of its
random message z.) If, with constant probability over z, P′IP sends z′ that is far from z, then V′IP
rejects with constant probability. Otherwise, we show that z′ has high min-entropy because with
high probability it agrees with z on most of its locations.
Putting it all together. Let (PIP,VIP) be a public-coin single-round IP with soundness β and
randomness complexity r, and let Ext be an extractor with output length r, seed length O(log 1/β),
and error β. The new IP (P′IP,V

′
IP) is as follows.

• Sample high min-entropy source: V′IP sends z and P′IP replies with z′ := z.
• Sample extractor seed: V′IP sends s and P′IP replies with s′ := s.
• Prover message: P′IP sends a := PIP(x,Ext(z′, s′)).
• Verification: V′IP checks that z and z′ agree on a random location, s and s′ agree on a random

location, and VIP(x,Ext(z′, s′), a) = 1.
7A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor if, for every random variable X over {0, 1}n with

min-entropy at least k, the statistical distance between Ext(X,Ud) and Um is at most ε.

7

2.2.2 Extending to multiple rounds

In order to extend the previously described protocol to multiple rounds, we leverage the notion
of round-by-round soundness. An IP for a language L has round-by-round soundness error βrbr if
there exists a “state” function such that: (i) for x /∈ L, the starting state is “doomed”; (ii) for every
doomed state and next message that a cheating prover might send, with probability βrbr over the
verifier’s next message, the protocol state will remain doomed; (iii) if at the end of interaction the
state is doomed then the verifier rejects.

In the analysis of the one-round case there was an event (called bad) over the IP verifier’s random
message ρ such that if this event does not occur then the prover has no accepting strategy. This
event can be replaced, in the round-by-round case, by the event that, in a given round, the verifier
chooses randomness where the transcript remains doomed. This idea leads to a natural extension of
the one-round protocol described in Section 2.2.1 to the multi-round case, which is our final protocol.

Let (PIP,VIP) be a public-coin k-round IP with round-by-round soundness βrbr and randomness
complexity r, and Ext an extractor with output length r, seed length O(log 1/βrbr), and error βrbr.

• For each round j ∈ [k] of the original IP:
1. Sample high min-entropy source: V′IP sends zj and P′IP replies with z′j := zj .
2. Sample extractor seed: V′IP sends sj and P′IP replies with s′j := sj .
3. Prover message: P′IP sends aj := PIP(x, ρ1, . . . , ρj) where ρi := Ext(zi, si).

• V′IP accepts if and only if the following tests pass:
1. Choose a random location and, for every j ∈ [k], test that zj and z′j agree on this location.
2. Choose a random location and, for every j ∈ [k], test that sj and s′j agree on this location.
3. For every j ∈ [k], compute ρj := Ext(z′j , s

′
j). Check that VIP(x, ρ1, a1, . . . , ρk, ak) = 1.

The soundness analysis of this protocol is similar to the one-round case. Suppose that x /∈ L.
Then the empty transcript is “doomed”. By an analysis similar to the one-round case, except where
we set “bad” verifier messages to be ones where the transcript state switches from doomed to not
doomed, if a round begins with a doomed transcript then except with probability γ = 2 · β1−c

rbr

(for some constant c) the transcript in the next round is also doomed. Thus, by a union bound,
the probability that the transcript ends up doomed, and as a result the verifier rejects, is at least
1 − 2 · k · β1−c

rbr . As shown in [CCHLRR18] round-by-round soundness error can be reduced via
parallel repetition, albeit at a lower rate than regular soundness error. Thus, by doing enough
parallel repetition before applying our transformation, the round-by-round soundness error βrbr can
be reduced enough so that the verifier rejects with constant probability.

The above protocol has 2kIP rounds. The verifier reads 1 bit from each of its random messages,
and has O(log |x|) bits of decision randomness (to sample random locations for testing consistency
between each z′j and zj and between each s′j and sj). To achieve kIP rounds, we first apply the round
reduction of [BM88] on the original IP to reduce to kIP/2 rounds, and then apply our transformation.

2.2.3 Why randomness-efficient soundness amplification is insufficient

We briefly sketch why applying randomness-efficient soundness amplification in the style of [BGG90]
is insufficient in the multi-round case, even if we were to consider round-by-round soundness. Recall
that we wish for βrbr · 2Θ(r) to be small, where βrbr is the round-by-round soundness of the protocol
and r is the number of random bits sent by the verifier in a single round. Bellare, Goldreich and
Goldwasser [BGG90] show that, starting with constant soundness and randomness r, one can achieve

8

soundness of 2−m using r′ = O(r +m) random bits; they do this via m parallel repetitions where
the randomness between repetitions is shared in a clever way. Using parallel repetition, achieving
round-by-round soundness 2−m requires m/k repetitions (see [CCHLRR18]). Thus, even if we were
to show that the transformation of [BGG90] reduces round-by-round soundness at the same rate
as standard parallel repetition (as it does for standard soundness), in order to get round-by-round
soundness error 2−m, we would need r′ = O(r + m · k) bits of randomness. This would achieve
βrbr · 2Θ(r′) = 2−m · 2Θ(r+mk), which, for super-constant values of k, is greater than 1 regardless of r.

2.3 Index-decodable PCPs

We introduce index-decodable PCPs, a notion of PCP that works on multi-indexed relations. A
multi-indexed relation R is a set of tuples (i[1], . . . , i[k],x,w) where (i[1], . . . , i[k]) is the index
vector, x the instance, and w the witness. As seen in the following definition, an index-decodable
PCP treats the index vector (i[1], . . . , i[k]) and the instance x differently, which is why they are not
“merged” into an instance x′ = (i[1], . . . , i[k],x) (and why we do not consider standard relations).

Definition 1. An index-decodable PCP for a multi-indexed relation R = { (i[1], . . . , i[k],x,w) }
is a tuple of algorithms (IPCP,PPCP,VPCP,DPCP), where IPCP is the (honest) indexer, PPCP the (hon-
est) prover, VPCP the verifier, and DPCP the decoder. The system has (perfect completeness and)
decodability bound κPCP if the following conditions hold.

• Completeness. For every (i[1], . . . , i[k],x,w) ∈ R,

Pr
ρ

 Vπ1,...,πk,Π
PCP (x; ρ) = 1

π1 ← IPCP(i[1])
...

πk ← IPCP(i[k])
Π← PPCP(i[1], . . . , i[k],x,w)

 = 1 .

• Decodability. For every x, malicious indexer proofs π̃1, . . . , π̃k, and malicious prover proof Π̃, if

Pr
ρ

[
Vπ̃1,...,π̃k,Π̃

PCP (x; ρ) = 1
]
> κPCP(|x|)

then there exists w such that
(
DPCP(π̃1), . . . ,DPCP(π̃k),x,w

)
∈ R.

The indexer IPCP separately encodes each index, independent of indices and the instance, to
obtain a corresponding indexer proof. The prover PPCP gets all the data as input (index vector,
instance, and witness) and outputs a prover proof. The verifier VPCP gets the instance as input and
has query access to k + 1 oracles (k indexer proofs and 1 prover proof), and outputs a bit.

The decodability condition warrants some discussion. The usual soundness condition of a PCP for
a standard relation R has the following form: “if VΠ̃

PCP(x) accepts with high-enough probability then
there exists a witness w such that (x,w) ∈ R”. For a multi-indexed relation it could be that for any
given instance x there exist indexes i[1], . . . , i[k] and a witness w such that (i[1], . . . , i[k],x,w) ∈ R.
Since we do not trust the indexer’s outputs, a soundness condition is not meaningful.

Instead, the decodability condition that we consider has the following form: “if Vπ̃1,...,π̃k,Π̃
PCP (x)

accepts with high-enough probability then there exists a witness w such that (i[1], . . . , i[k],x,w) ∈ R
where i[1], . . . , i[k] are the decoded indices respectively found in π̃1, . . . , π̃k”. It is crucial that

9

the decoder receives as input the relevant indexer proof but not also the instance, or else the
decodability condition would be trivially satisfied (the decoder could output the relevant index of the
lexicographically first index vector putting the instance in the relation). This ensures that the proofs
collectively convince the verifier not only that there exists an index vector and witness that place
the instance in the relation, but that there exists a witness that, along with index vector obtainable
from the index oracles via the decoder, places the instance in the relation.

We do not require the indexer or the decoder to be efficient. However, in some applications, it is
useful to have an efficient indexer and decoder, and indeed we construct an index-decodable PCP
with an efficient indexer and decoder.

Remark 2.1 (comparison with holography). We compare index-decodable PCPs and holographic
PCPs, which also work for indexed relations (see [CHMMVW20] and references therein). In both
cases, an indexer produces an encoding of the index (independent of the instance). However, there
are key differences between the two: (i) in an index-decodable PCP the indexer works separately on
each entry of the index vector, while in a holographic PCP there is a single index; moreover, (ii) in
a holographic PCP the indexer is trusted in the sense that security is required to hold only when
the verifier has oracle access to the honest indexer’s output, but in an index-decodable PCP, the
indexer is not trusted in the sense that the cheating prover can choose encodings for all of the
indices. Both differences are essential properties for our transformation of IPs into IOPs.

Our main technical result is an index-decodable PCPs with O(1) query complexity per oracle.

Theorem 2. Any multi-indexed relation R = {(i[1], . . . , i[k],x,w)} to which membership can be
verified in polynomial time has a non-adaptive index-decodable PCP with the following parameters:

Index-Decodable PCP for (i[1], . . . , i[k],x,w) ∈ R
Indexer proof length (per proof) O(|i[i]|)
Prover proof length poly(|x|)
Alphabet size 2
Queries per oracle O(1)
Randomness O(log |x|)
Decodability bound O(1)

Indexer running time Õ(|i[i]|)
Prover running time poly(|x|)
Verifier running time poly(|x|)
Decoder running time Õ(|i[i]|)

Our construction achieves optimal parameters similar to the PCP theorem: it has O(1) query
complexity (per oracle) over a binary alphabet, and the randomness complexity is logarithmic,
independent of the number of indexes k. Achieving small randomness complexity is challenging and
useful for applications. First, it facilitates proof composition (where a prover writes a proof for every
possible random string), which is common when constructing zero-knowledge PCPs (e.g., [IW14]).
Second, small randomness complexity is necessary for hardness of approximation results.

A similar notion is (implicitly) considered in [ALMSS98] but their construction does not achieve
the parameters we obtain in Theorem 2 (most crucially, they do not achieve small randomness).

2.4 Local access to prover messages

We show how to transform an IP into an IOP by eliminating the need of the verifier to read more
than a few bits of each prover message. This transformation preserves the number of bits read by

10

the verifier to its own interaction randomness. Thus, combining it with the transformation described
in Section 2.2, this completes the proof (overview) of Theorem 1.

We transform any public-coin IP into an IOP by using an index-decodable PCP. In a public-coin
k-round IP, the prover PIP and verifier VIP receive as input an instance x and then, in each round i, the
verifier VIP sends randomness ρi and the prover replies with a message ai ← PIP(x, ρ1, . . . , ρi); after
the interaction, the verifier VIP runs an efficient probabilistic algorithm with decision randomness ρdc

on the transcript (x, ρ1, a1, . . . , ρk, ak) to decide whether to accept or reject.
The IP verifier VIP defines a multi-indexed relation R(VIP) consisting of tuples(

i[1], . . . , i[k],x,w
)

=
(
a1, . . . , ak, (x, ρ1, . . . , ρk, ρdc),⊥

)
such that the IP verifier VIP accepts the instance x, transcript (ρ1, a1, . . . , ρk, ak), and decision
randomness ρdc. (Here we do not rely on witnesses although the definition of index-decodable PCPs
supports this.)
From IP to IOP. Let (IPCP,PPCP,VPCP,DPCP) be an index-decodable PCP for the relation R(VIP).
We construct the IOP as follows. The IOP prover and IOP verifier receive an instance x. In round
i ∈ [k], the IOP verifier sends randomness ρi (just like the IP verifier VIP) and the (honest) IOP prover
sends the indexer proof πi := IPCP(ai) where ai ← PIP(x, ρ1, . . . , ρi). In a final additional message
(which can be sent at the same time as the last indexer proof πk), the IOP prover sends Π := {Πρdc}ρdc
where, for every possible choice of decision randomness ρdc, Πρdc is an index-decodable PCP prover
proof to the fact that

(
a1, . . . , ak, (x, ρ1, . . . , ρk, ρdc),⊥

)
∈ R(VIP). After the interaction, the IOP

verifier samples IP decision randomness ρdc and checks that Vπ̃1,...,π̃k,Π̃
PCP

(
(x, ρ1, . . . , ρk, ρdc)

)
= 1.

Proof sketch. Completeness follows straightforwardly from the construction. We now sketch a proof
of soundness. Letting L be the language decided by (PIP,VIP), fix an instance x /∈ L and a malicious
IOP prover P̃IOP. Given interaction randomness ρ1, . . . , ρk, consider the messages π̃1, . . . , π̃k output
by P̃IOP in the relevant rounds (π̃i depends on ρ1, . . . , ρi) and the message Π̃ = {Π̃ρdc}ρdc output by
P̃IOP in the last round (this message depends on ρ1, . . . , ρk). We consider two complementary options
of events over the IOP verifier’s randomness (ρ1, . . . , ρk, ρdc).

1. With high probability the proofs π̃1, . . . , π̃k and Π̃ρdc generated while interacting with P̃IOP using
randomness ρ1, . . . , ρk and ρdc are such that(

DPCP(π̃1), . . . ,DPCP(π̃k), (x, ρ1, . . . , ρk, ρdc),⊥
)
/∈ R(VIP) .

If this is true, then, by the decodability property of the index-decodable PCP, the IOP verifier
must reject with high probability over the choice of randomness for VPCP.

2. With high probability the proofs π̃1, . . . , π̃k and Π̃ρdc generated while interacting with P̃IOP using
randomness ρ1, . . . , ρk and ρdc are such that(

DPCP(π̃1), . . . ,DPCP(π̃k), (x, ρ1, . . . , ρk, ρdc),⊥
)
∈ R(VIP) .

We prove that this case cannot occur by showing that it contradicts the soundness of the original
IP. Suppose towards contradiction that the above is true. We use P̃IOP and the decoder of the
index-decodable PCP, DPCP, to construct a malicious IP prover for the original IP as follows.

11

In round i, the transcript (ρ1, a1, . . . , ρi−1, ai−1) has already been set during previous interaction.
The IP verifier sends randomness ρi. The IP prover sends ai := DPCP(π̃i) to the IP verifier,
where π̃i := P̃IOP(ρ1, . . . , ρi). Recall that

(
DPCP(π̃1), . . . ,DPCP(π̃k), (x, ρ1, . . . , ρk, ρdc),⊥

)
∈ R(VIP)

if and only if the IP verifier accepts given instance x, randomness (ρ1, . . . , ρk, ρdc), and prover
messages DPCP(π̃1), . . . ,DPCP(π̃k), which is precisely what the IP prover supplies it with. Since the
event that

(
DPCP(π̃1), . . . ,DPCP(π̃k), (x, ρ1, . . . , ρk, ρdc),⊥

)
∈ R(VIP) happens with high probability,

this implies that with high probability the IP verifier will accept, contradicting soundness of
the original IP. Here we crucially used the fact that the decoder DPCP does not depend on the
instance of the index-decodable PCP (which consists of x and all of the IP verifier’s randomness
ρ1, . . . , ρk, ρdc) or on the other indexer messages.

The resulting IOP has k rounds, exactly as in the original IP. The IOP verifier uses as much
randomness as the original IP verifier with the addition of the randomness used by the index-
decodable PCP. The query complexity is that of the underlying verifier of the index-decodable PCP.
The proof length and alphabet are the same as those of the index-decodable PCP.
Preserving local access to randomness. The transformation described above can be modified
to preserve the query complexity of the verifier to its own interaction randomness if the verifier is
non-adaptive with respect to its queries to its random messages (i.e., the choice of bits that it reads
depends only on x and ρdc). We can redefine the multi-indexed relation R(VIP) to have as explicit
inputs the instance x, decision randomness ρdc, and the bits of ρ1, . . . , ρk that the verifier needs to
read to decide whether to accept or reject (rather than the entire interaction randomness strings).
In more detail, suppose that the verifier reads q bits from its own interaction randomness. Then the
new multi-indexed relation consists of tuples:(

i[1], . . . , i[k],x,w
)

=
(
a1, . . . , ak, (x, b1, . . . , bq, ρdc),⊥

)
such that given decision randomness ρdc the IP verifier VIP accepts given instance x, decision
randomness ρdc, prover messages (a1, . . . , ak), and (b1, . . . , bq) as answers to its q queries to ρ1, . . . , ρk.

Given a multi-indexed PCP for this relation, the IP to IOP transformation is identical to the one
described above, except that after the interaction, the IOP verifier samples IP decision randomness,
queries its own interaction randomness to get answers b1, . . . , bq, and these replace ρ1, . . . , ρk as
explicit inputs to the index-decodable PCP verifier VPCP.

2.5 Constructing index-decodable PCPs

We outline a construction of an index-decodable PCP with O(1) query complexity to each indexer
proof and to the prover proof, and where the prover proof is over a large alphabet (of size 2k). Later
on, in Section 2.6, we compose this index-decodable PCP with an inner PCP to reduce the alphabet
of the prover proof to binary. To achieve this composition while preserving polynomial proof length,
here we additionally require that the verifier has logarithmic randomness complexity.
Building blocks. In our construction we rely on variants of PCPPs. Recall that a PCPP is a
PCP system where the verifier has oracle access to its input in addition to the prover’s proof; the
soundness guarantee is that if the input is far (in Hamming distance) from any input in the language,
then the verifier accepts with small probability.

We use PCPPs that are multi-input and oblivious. We explain each of these properties.

12

• A PCPP is multi-input if the verifier has oracle access to multiple (oracle) inputs. The soundness
guarantee is that, for every vector of inputs that satisfy the circuit in question, if at least one input
oracle is far from the respective satisfying input, then the verifier accepts with small probability.

• A (non-adaptive) PCPP is oblivious for a circuit family C = {Ci}i∈[k] if the queries made by the
verifier to its oracles depend only on C and its randomness. In particular they do not depend on i.
This property will be used later to facilitate bundling queries. We will have k PCPs, each with
a different Ci, but the verifier will use the same randomness in each test. Since the PCPPs are
oblivious, this means that the verifier makes the same queries for every test. Thus we can group
together the k proofs into a single proof with larger alphabet and maintain good query complexity
on this proof. This property is important in order to achieve our final parameters.

See Section 5.1 for definitions for the above notions, and how to obtain them from standard PCPPs.
Henceforth, all PCPPs that we use will be over the binary alphabet and have constant proximity,
constant soundness error, constant query complexity, and logarithmic randomness complexity.
The construction. We construct an index-decodable PCP for a multi-indexed relation R =
{(i[1], . . . , i[k],x,w)} whose membership can be verified efficiently.

The indexer encodes each index via an error-correcting code with (constant) relative distance
greater than the (constant) proximity parameter of the PCPP used later. The prover uses PCPPs to
prove that there exist indexes and a witness that put the given instance in the relation and adds
consistency checks to prove that the indices are consistent with those encoded by the indexer. The
verifier checks each of these claims. The decoder decodes the indexer proofs using the same code.

In slightly more detail, the index-decodable PCP is as follows.

• IPCP(i[i]): Encode the index i[i] as πi using an error-correcting code.

• PPCP(i[1], . . . , i[k],x,w):

1. Encoding the indexes: Compute Π∗, an encoding of the string (i[1], . . . , i[k],w).
2. Membership of encoding : Compute a PCPP string Πmem for the claim that C∗,x(Π∗) = 1 where
C∗,x checks that Π∗ is a valid encoding of indexes and a witness that put x in R.

3. Consistency of encoding : For every i ∈ [k], compute a PCPP string Πi for the claim that
Ci(πi,Π∗) = 1 where Ci checks that πi and Π∗ are valid encodings and that the string i[i]
encoded within πi is equal to the matching string encoded within Π∗.

4. Output (Π∗,Πmem,Πi) where Πi are the proofs Π1, . . . ,Πk “bundled” together into symbols of k
bits such that Πi[q] = (Π1[q], . . . ,Πk[q]).

• V
π̃1,...,π̃k,(Π̃∗,Π̃mem,Π̃i)
PCP (x): Check that all the tests below pass.

1. Membership: Run the PCPP verifier on the claim that C∗,x(Π̃∗) = 1 using proof oracle Π̃mem.
2. Consistency : For every i ∈ [k], run the PCPP verifier on the claim that Ci(π̃i, Π̃∗) = 1 using

proof oracle Π̃i. These k tests are run with the same randomness. Since the PCPP is oblivious
and randomness is shared, the queries made by the PCPP verifier in each test are identical,
and so each query can be made by reading the appropriate k-bit symbols from Π̃i.

• DPCP(π̃i): Output the codeword closest to π̃i (in the error-correcting code).

Completeness follows straightforwardly from the construction. We now sketch decodability.
Decodability. Fix an instance x, indexer proofs π̃1, . . . , π̃k, and prover proof (Π̃∗, Π̃mem, Π̃i). Suppose
that the verifier accepts with high-enough probability. We argue that this implies that there exists

13

w such that
(
DPCP(π̃1), . . . ,DPCP(π̃k),x,w

)
∈ R. Specifically, we argue that Π̃∗ encodes indices

ĩ[1], . . . , ĩ[k] and witness w̃ that place x in R and, additionally, each π̃i is an encoding of ĩ[i]. This
completes the proof of decodability because DPCP decodes each π̃i to ĩ[i], and these strings together
with w̃ put x in the multi-indexed relation R.

Let δPCPP be the PCPP’s proximity and δECC the code’s (relative) distance; recall that δPCPP ≤ δECC.

• Membership: We claim that there exist strings ĩ[1], . . . , ĩ[k] and w̃ that place x in R and whose
encoding has Hamming distance at most δPCPP from Π̃∗; since δPCPP ≤ δECC, this implies that
Π̃∗ decodes to (̃i[1], . . . , ĩ[k], w̃). Suppose towards contradiction that there are no such strings.
In other words, for every codeword Π̂∗ that is close in Hamming distance to Π̃∗ we have that
C∗,x(Π̂∗) = 0. As a result the PCPP verifier must reject with high probability, which contradicts
our assumption that VPCP (which runs the PCPP verifier) accepts with high probability.

• Consistency : We claim that there exist strings ĩ[1], . . . , ĩ[k] and w̃ such that their collective
encoding is close to Π̃∗ and that, for every i ∈ [k], π̃i is close to the encoding of i∗[i]. As before,
since the proximity parameter of the PCPP is smaller than the distance of the code, this implies
that Π̃∗ decodes to (̃i[1], . . . , ĩ[k], w̃) and that π̃i decodes to ĩ[i]. Suppose towards contradiction
that for some i ∈ [k] the above condition does not hold: for every π̂i and Π̂ such that π̂i is close
to π̃i and Π̂∗ is close to Π̃∗ it holds that Ci(π̂i, Π̂∗) = 0. By the soundness of the (multi-input)
PCPP, the PCPP verifier must reject with high probability, which contradicts our assumption
that VPCP (which runs the PCPP verifier) accepts with high probability.

Complexity measures. The above construction is an index-decodable PCP with polynomial-length
proofs and where the verifier makes O(1) queries to each indexer proof and makes O(1) queries
to the prover proof. Moreover, the prover proof has alphabet size 2k since the prover bundles the
PCPP consistency test proofs into k-bit symbols; this bundling is possible because the verifier shares
randomness between all of the (oblivious) PCPPs in the consistency test. Since the PCPPs are
oblivious to the index i, and they share randomness, they all must make the same queries to their
oracles. The verifier uses O(log |x|) bits of randomness: O(log |x|) for the membership test, and
O(log |x|) for all k consistency test (which all share the same randomness).

2.6 Achieving constant query complexity

We describe how to achieve an index-decodable PCP with constant query complexity per proof over
the binary alphabet. The main tool is proof composition, which we review in Section 2.6.1. Then
in Section 2.6.2, we define and construct a robust variant of index-decodable PCPs, which we use as
the outer PCP in proof composition.

2.6.1 Proof composition

Proof composition is a technique to lower the query complexity of PCPs [AS98] and IOPs [BCGRS17].
In proof composition, an “inner” PCP is used to prove that a random execution of the “outer” PCP
would have accepted. The inner PCP needs to be a PCPP. Recall that a PCPP is a PCP system
where the verifier has oracle access to its input in addition to the prover’s proof, and the soundness
guarantee is that if the input is far from any input in the language, then the verifier accepts with
small probability. To match this, the outer PCP must be robust, which means that the soundness

14

guarantee ensures that when the instance is not in the language then not only is a random local
view of the verifier rejecting but it is also far (in Hamming distance) from any accepting local view.

Typically the robust outer PCP has small proof length but large query complexity, while the
inner PCPP has small query complexity but possibly a large proof length. Composition yields a
PCP with small query complexity and small proof length.

We observe that proof composition preserves decodability (see Section 6.1): if the outer PCP in
the composition is index-decodable, then the composed PCP is index-decodable. This is because the
composition operation does not change the outer PCP proof and only adds a verification layer to
show that the outer verifier accepts.

We thus apply proof composition as follows: the outer PCP is a robust variant of the index-
decodable PCP from Section 2.5 that we discuss in Section 2.6.2; and the inner PCP is a standard
PCPP with polynomial proof length. This will complete the proof sketch of Theorem 2.

2.6.2 Robust index-decodable PCPs

Our goal is to perform proof composition where the outer PCP is index-decodable. As mentioned
above, this requires the PCP to be robust. Our starting point is the index-decodable PCP from Sec-
tion 2.5. This PCP does have large query complexity over the binary alphabet (O(k) queries to the
prover proof). However, the fact that its queries to the prover proof are already bundled into a
constant number of locations over an alphabet of size 2k implies that we do not have to worry about
a “generic” query bundling step and instead only have to perform a (tailored) robustification step
prior to composition. Accordingly, the robustness definition below focuses on the prover proof, and
so is the corresponding construction described after.

Definition 2. A non-adaptive8 index-decodable PCP (IPCP,PPCP, (V
qry
PCP,V

dc
PCP),DPCP) for a multi-

indexed relation R is prover-robustly index-decodable with decodability bound κPCP and robustness
σPCP if for every x and proofs Π̃i = (π̃1, . . . , π̃k) and Π̃ if

Pr
ρ

[
∃A′ s.t. Vdc

PCP(x, ρ, Π̃i[Qi], A
′) = 1 ∧ ∆(A′, A) ≤ σPCP(|x|) (Qi, Q∗)← Vqry

PCP(x, ρ)

A := { Π̃[q] | q ∈ Q∗ }

]
> κPCP(|x|)

then there exists w such that
(
DPCP(π̃1), . . . ,DPCP(π̃k),x,w

)
∈ R. Above Qi and Q∗ are the queries

made to the indexer proofs the prover proof respectively and ∆(A′, A) is the relative distance between
A′ and A.

In other words, if there is no witness w such that
(
DPCP(π̃1), . . . ,DPCP(π̃k),x,w

)
∈ R then with

high probability not only will the verifier reject but also any set of answers from the prover proof
that are close in Hamming distance to the real set of answers will also be rejecting.

We now outline how we transform the index-decodable PCP constructed in Section 2.5 into a
robust index-decodable PCP. The techniques follow the robustification step in [BGHSV06]. The
transformation preserves the verifier’s randomness complexity O(log |x|), which facilitates using this
modified PCP as the outer PCP in proof composition.
Robustification. We apply an error-correcting code separately to each symbol of the prover proof.
When the verifier wants to read a symbol from this proof, it reads the codeword encoding the symbol,
decodes it, and then continues. It reads the indexer proofs as in the original PCP. This makes the

8A PCP verifier is non-adaptive if it can be split into two algorithms: Vqry
PCP chooses which locations to query

without accessing its oracles; and Vdc
PCP receives the results of the queries and decides whether to accept or reject.

15

PCP robust because if a few bits of the codeword representing a symbol are corrupted, then it will
still be decoded to the same value. The robustness, however, degrades with the number of queries.
If the relative distance of the error-correcting code is δ and the original verifier reads q symbols from
the prover proof, then the resulting PCP will have robustness O(δ/q).

Indeed, let c1, . . . , cq be the codewords read by the new PCP verifier from the prover proof, and
let a1, . . . , aq be such that ai is the decoding of ci. In order to change the decoding into some other
set of strings a′1, . . . , a′q that, when received by the verifier, may induce a different decision than
a1, . . . , aq, it suffices (in the worst case) to change a single codeword to decode to a different value.
Since the relative distance of the code is δ, to do this, one must change at least a δ-fraction of the
bits of a single codeword, ci. A δ-fraction of a single codeword is a δ/q-fraction of the whole string
of q codewords, c1, . . . , cq.

In sum, to achieve constant robustness, we need to begin with an index-decodable PCP with a
small number of queries to the prover proof, but possibly with a large alphabet. It is for this reason
that we required this property in Section 2.5.

16

3 Preliminaries

3.1 Relative distance

Let f, g : Σ1 → Σ2 be functions. The relative distance between f and g, denoted by ∆(f, g) is equal
to the relative number of locations in which f and g disagree:

∆(f, g) =
|{x ∈ Σ1 | f(x) 6= g(x)}|

|Σ1|
.

We say that f and g are δ-far if ∆(f, g) > δ, and if ∆(f, g) ≤ δ then the functions are δ-close.
Similarly, the relative distance between two strings x, y ∈ Σm is the relative distance between

the functions f, g : [m]→ Σ such that f(i) = xi and g(i) = yi.

3.2 Relations

We consider proof systems for binary relations and for multi-indexed relations.

• A binary relation R is a set of tuples (x,w) where x is the instance and w the witness. The
corresponding language L(R) is the set of x for which there exists w such that (x,w) ∈ R.

• A multi-indexed relation R is a set of tuples (i[1], . . . , i[k],x,w) where i[1], . . . , i[k] are the indexes,
x the instance, and w the witness.

3.3 Interactive oracle proofs

Interactive Oracle Proofs (IOPs) [BCS16; RRR16] are information-theoretic proof systems that
combine aspects of Interactive Proofs [Bab85; GMR89] and Probabilistically Checkable Proofs
[BFLS91; FGLSS91; AS98; ALMSS98], and also generalize the notion of Interactive PCPs [KR08].
Below we describe public-coin IOPs.

A kIOP-round public-coin IOP works as follows. For each round i ∈ [kIOP], the verifier sends a
uniformly random message ρi to the prover; then the prover sends a proof string Πi to the verifier.
After kIOP rounds of interaction, the verifier makes some queries to the proof strings Π1, . . . ,ΠkIOP

sent by the prover, and then decides if to accept or to reject.
In more detail, let IOP = (PIOP,VIOP) be a tuple where PIOP (the prover) is an interactive

algorithm, and VIOP (the verifier) is an interactive oracle algorithm. We say that IOP is a public-coin
IOP for a binary relation R with kIOP rounds and soundness error βIOP if the following holds.

• Completeness. For every (x,w) ∈ R,

Pr
ρ1,...,ρkIOP

,ρdc

 V
Π1,...,ΠkIOP

,ρ1,...,ρkIOP
IOP (x; ρdc) = 1

Π1 ← PIOP(x,w, ρ1)
...

ΠkIOP
← PIOP(x,w, ρ1, . . . , ρkIOP

)

 = 1 .

• Soundness. For every x /∈ L(R) and unbounded malicious prover P̃IOP,

Pr
ρ1,...,ρkIOP

,ρdc

 V
Π̃1,...,Π̃kIOP

,ρ1,...,ρkIOP
IOP (x; ρdc) = 1

Π̃1 ← P̃IOP(ρ1)
...

Π̃kIOP
← P̃IOP(ρ1, . . . , ρkIOP

)

 ≤ βIOP(|x|) .

17

Complexity measures. We consider several complexity measures beyond soundness error. All of
these complexity measures are implicitly functions of the instance x.
• proof length lIOP: the total number of bits in Π1, . . . ,ΠkIOP

.
• proof queries qIOP,Π: the number of bits read by the verifier from Π1, . . . ,ΠkIOP

.
• interaction randomness length rIOP,int: the total number of bits in ρ1, . . . , ρkIOP

.
• interaction randomness queries qIOP,int: the number of bits read by the verifier from ρ1, . . . , ρkIOP

.
• decision randomness length rIOP,dc: The number of bits in ρdc.
• prover time ptIOP: PIOP runs in time ptIOP.
• verifier time vtIOP: VIOP runs in time vtIOP.
PCPs and IPs. A probabilistically checkable proof (PCP) is an IOP where the prover sends
a single message and then the verifier probabilistically reads it (it is not exactly the case where
kIOP = 1, as the prover goes first, where we defined the verifier to speak first).

An interactive proof (IP) is an IOP in which the verifier reads every symbol of the proofs sent to
it by the prover. More formally, it is an IOP with proof length lIOP = poly(|x|) and query complexity
equal to lIOP. Unless explicitly stated otherwise, we assume that IPs have no decision randomness.
Notation. We sometimes denote with bold letters a combination of proofs. For example, we let
Π = (π1, . . . , πk,Π) denote the set of oracles received by the verifier. Given a set of queries Q to
these oracles, Π[Q] is the set of symbols written in the appropriate oracles.
Non-adaptive verifiers. A public-coin IOP is non-adaptive if the algorithm run by VIOP after the
interactive phase can be written as two algorithms Vquery

IOP and Vdec
IOP such that:

• Vquery
IOP : Given x and randomness ρ, outputs Q, the set of queries made to the oracles of VIOP on

the same instance and randomness.

• Vdec
IOP: Given x, ρ and a set A of query answers, outputs the decision that VIOP makes given instance

x, randomness ρ and A as the set of answers to its queries.

• Efficiency: Running Vquery
IOP and Vdec

IOP one after the other has identical running time to running VIOP

on the same instance and randomness.

That is, for every instance x, randomness ρ1, . . . , ρkIOP
, ρdc and oracles Π̃ = (Π̃1, . . . , Π̃k) :

VΠ̃
IOP(x, ρ1, . . . , ρkIOP

, ρdc) = Vdec
IOP

(
x, ρ1, . . . , ρkIOP

, ρdc, Π̃ [Vquery
IOP (x, ρ1, . . . , ρkIOP

, ρdc)]
)
.

3.4 Round-by-round soundness

Definition 3.1 (State function). Let (PIOP,VIOP) be an IOP for a relation R. A state function for
(PIOP,VIOP) is a deterministic (possibly inefficient) function state that receives as input an instance
x and a transcript tr = (ρ,Π) and outputs a bit for which the following holds.

• Empty transcript: if tr = ∅ is the empty transcript then state(x, tr) = 0.
• Prover moves: if tr is a transcript where the prover is about to move and state(x, tr) = 0, then for
any Π, state(x, tr||Π) = 0.

• Full transcript: if tr is a full transcript and state(x, tr) = 0, then VΠ
IOP(x; ρ) = 0.

Definition 3.2 (Round-by-round soundness). An IOP (PIOP,VIOP) with kIOP rounds for a relation
R has round-by-round soundness error βIOP,rbr if there exists a state function state such that for all

18

x /∈ L(R), every i ∈ [kIOP], and every transcript tr of the first i rounds where the verifier is about to
move and state(x, tr) = 0 it holds that

Pr
ρ

[state(x, tr||ρ) = 1] ≤ βIOP,rbr .

Fact 3.3 ([CCHLRR18], Corollary 5.7). Let IP be an interactive proof with soundness O(1) and kIP

rounds. Then the m-fold parallel repetition of IP has round-by-round soundness O(2−m/kIP).

3.5 Error correcting codes

A pair of efficient deterministic algorithms ECC = (Enc,Dec) is a (r, δECC)-code if for every k:
(i) Enc : {0, 1}k → {0, 1}r(k); (ii) Dec : {0, 1}r(k) → {0, 1}k; (iii) for every m and C ′ such that
∆(Enc(m), C ′) ≤ δECC it holds that Dec(C ′) = m.

For m = (m1, . . . ,m`) ∈ ({0, 1}k)` we denote Enc(m, `) = Enc(m1), . . . ,Enc(m`) and similarly
for C = (C1, . . . , C`) ∈ ({0, 1}r(k))` with, Dec(C, `) = Dec(C1), . . . ,Dec(C`). We call r the rate of
ECC. The following theorem follows from various previous works (e.g., [GI05]).

Theorem 3.4. There exists a (r, δECC)-code where r(k) = O(k) and δECC = Ω(1). Encoding and
decoding k-bit strings takes time Õ(k).

3.6 PCPs of proximity for circuit satisfiability

Let PCP = (PPCP,VPCP) be a tuple where PPCP is a deterministic algorithm and VPCP is a randomized
oracle algorithm. PCP is a PCP of proximity (PCPP) for circuit satisfiability with soundness error
βPCP and proximity δPCP if the following hold for every boolean circuit C : {0, 1}n → {0, 1} and
x ∈ {0, 1}n:

• Completeness. If C(x) = 1 then

Pr
[

Vx,Π
PCP (C) = 1 Π← PPCP(C,x)

]
= 1 .

• Soundness. If x is δPCP-far from any x′ such that C(x′) = 1 then for any Π̃

Pr
[

Vx,Π̃
PCP (C) = 1

]
≤ βPCP .

Theorem 3.5 (PCP of proximity [Mie09]). There exists a non-adaptive PCP of proximity for circuit
satisfiability such that:

PCP of Proximity for C(x) = 1

Proof length poly(|C|)
Alphabet size 2
Queries O(1)
Randomness O(log |C|)
Proximity O(1)
Soundness error O(1)
Prover running time poly(|C|)
Verifier running time Õ(|C|)

19

3.7 Extractors

Definition 3.6. The min-entropy of a random variable X is

Hmin(X) = min
x∈supp(X)

− log Pr[X = x]

Definition 3.7. A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor if for every X with
min-entropy at least k, SD(Ext(X,Ud), Um) ≤ ε (where SD is the statistical distance). An extractor
is explicit if it is computable in polynomial time.

We use the following explicit construction of extractors with tight parameters.

Theorem 3.8 ([GUV09]). For every constant α > 0, and all positive integers n, k and all ε > 0,
there is an explicit construction of a (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d =
O(log n+ log(1/ε)), and m ≥ (1− α)k.

Setting specific parameters, we will use this simpler version of the theorem.

Theorem 3.9. For all positive integers m, and ` ≥ logm there is an explicit construction of a
(2m, 2−`)-extractor Ext : {0, 1}3m × {0, 1}d → {0, 1}m with d = O(`).

Fact 3.10. For all n ∈ N, all x ∈ {0, 1}n and 0 < δ < 1 we have that

|{x′ ∈ {0, 1}n : ∆(x, x′) ≤ δ)}| ≤ 2n·H(δ) .

(here H is the entropy function H(p) = −p log(p)− (1− p) log(1− p)).

20

4 Index-decodable PCPs

Let PCP = (IPCP,PPCP,VPCP,DPCP) be a tuple where IPCP (the indexer) is a deterministic algorithm,
PPCP (the prover) is a deterministic algorithm, VPCP (the verifier) is a randomized oracle algorithm,
and DPCP (the decoder) is a (possibly inefficient) deterministic algorithm. PCP is an index-decodable
PCP for a multi-indexed relation R with decodability bound κPCP if the following holds.

• Completeness. For every (i[1], . . . , i[k],x,w) ∈ R,

Pr
ρ

 Vπ1,...,πk,Π
PCP (x; ρ) = 1

π1 ← IPCP(i[1])
...

πk ← IPCP(i[k])
Π← PPCP(i[1], . . . , i[k],x,w)

 = 1 .

• Decodability. For every x and malicious proofs π̃1, . . . , π̃k, Π̃, if

Pr
ρ

[
Vπ̃1,...,π̃k,Π̃

PCP (x; ρ) = 1
]
> κPCP(|x|)

then there exists w such that (DPCP(π̃1), . . . ,DPCP(π̃k),x,w) ∈ R.

The proofs π1, . . . , πk are called indexer proofs and the proof Π is called the prover proof. We refer
to Section 2.3 for an intuitive overview of this notion and further discussion.
Complexity measures. In addition to the standard complexity measures mentioned in Section 3.3
we consider several additional measures for index-decodable PCPs. All of these complexity measures
are implicitly functions of the instance x.
• Indexer proof length lPCP,I: the number of symbols in a single indexer proof πi.
• Indexer proof alphabet ΣPCP,I: the alphabet of the indexer proofs.
• Prover proof length lPCP,P: the number of symbols in a single indexer proof Π.
• Prover proof alphabet ΣPCP,P: the alphabet of the prover’s proof.
• Indexer time itPCP: IPCP runs in time itPCP.
• Decoder time dtPCP: DPCP runs in time dtPCP.
We sometimes refer separately to the number of queries done to the indexer proofs (per proof) and
and prover proof. If these are not listed separately, then the number is asymptotically identical.

Remark 4.1 (index-decodable IOPs). The definition of index-decodable PCPs can be extended in
a straightforward way to allow interaction, thereby obtaining index-decodable IOPs. While not used
in this paper, this extended notion is likely to achieve better parameters (e.g., linear proof length)
via interactive tools (e.g., interactive proof composition [BCGRS17] instead of non-interactive proof
composition as in Section 6.1) and is likely to be of further interest. We leave the exploration of this
notion to future work.

Remark 4.2 (comparison with decodable PCPs). Despite the similar names, index-decodable PCPs
and decodable PCPs [DH13] are different notions: a decodable PCP is a standard PCP with a “PCP
decoder” that list-decodes a random location in the NP witness from a given PCP string.

Prover-robust index-decodable PCPs. Let PCP = (IPCP,PPCP, (V
qry
PCP,V

dc
PCP),DPCP) be a non-

adaptive index-decodable PCP for a multi-indexed relation R. We say that PCP is prover-robust

21

with decodability bound κPCP and robustness σPCP if for every x and proofs Π̃i = (π̃1, . . . , π̃k) and Π̃
if

Pr
ρ

[
∃A′ s.t. Vdc

PCP(x, ρ, Π̃i[Qi], A
′) = 1 ∧ ∆(A′, A) ≤ σPCP(|x|) (Qi, Q∗)← Vqry

PCP(x, ρ)

A := { Π̃[q] | q ∈ Q∗ }

]
> κPCP(|x|) ,

where Qi are the queries made to the indexer proofs and Q∗ are the queries made to the prover
proof. Then there exists w such that (DPCP(π̃1), . . . ,DPCP(π̃k),x,w) ∈ R.

The notion of robustness essentially says that for any set of proofs whose decoding is not in the
relation, with probability κPCP the Hamming ball of radius σPCP around the answers to the verifier’s
queries to the prover proof do not make the verifier accept.

22

5 Constructing index-decodable PCPs

In our construction of index-decodable PCPs, we will use slight variations of the notion of PCPs of
proximity that suit our setting. We define these notions and show how to construct them (based
on standard PCPPs) in Section 5.1, and then in Section 5.2 we show the actual construction. We
achieve the following theorem:

Theorem 5.1. Let R = {(i[1], . . . , i[k],x,w)} be a multi-indexed relation whose membership can be
verified by a circuit C. Then R has a non-adaptive index-decodable PCP PCP = (IPCP,PPCP,VPCP,DPCP)
for R with the parameters below.

Index-Decodable PCP for (i[1], . . . , i[k],x,w) ∈ R
Indexer proof length (per proof) O(|i[i]|)
Prover proof length poly(|C|)
Indexer alphabet size 2
Prover alphabet size 2k

Queries to proofs O(1)
Randomness O(log |C|)
Decodability bound O(1)

Indexer running time Õ(|i[i]|)
Prover running time poly(|C|)
Verifier running time Õ(|C|)
Decoder running time Õ(|i[i]|)

Proof. We use the construction described in Theorem 5.7, plugging in the oblivious multi-input
PCPP of Lemma 5.5 and the constant-rate and constant-distance error-correcting code described
in Theorem 3.4.

5.1 Building blocks

Definition 5.2 (Multi-input PCP of proximity). A PCP of proximity system for circuit satisfiability
of a k-input circuit C : {0, 1}n1 × · · · × {0, 1}nk → {0, 1} is multi-input with soundness βPCPP and
proximity δPCPP if the soundness condition is replaced with the following:

Let x1, . . . ,xk be the inputs to the circuit. Suppose that for every set of inputs x′1, . . . ,x
′
k such

that C(x′1, . . . ,x
′
k) = 1 there exists i such that xi is δPCP-far from x

′
i. Then for any Π̃:

Pr
[

Vx1,...,xk,Π̃
PCP (C) = 1

]
≤ βPCP .

Definition 5.3 (Oblivious PCP of proximity). Let C = {Cz}z∈{0,1}m be a family of circuits where for
every z, Cz : {0, 1}n1×· · ·×{0, 1}nk → {0, 1}, and suppose that there exists a circuit C ′ : {0, 1}n1×· · ·×
{0, 1}nk ×{0, 1}m → {0, 1} such that for every x1, . . . ,xk and z: C ′(x1, . . . ,xk, z) = Cz(x1, . . . ,xk).
An oblivious multi-input PCP of proximity system for circuit satisfiability of C is PCPP that is
complete and sound for proving satisfiability of Cz z ∈ {0, 1}m. Additionally, the verifier’s queries
depend only on C and on the verifier’s randomness. In particular, its queries do not depend on z, or
on its oracles.

We now show how to generically construct these PCPPs from standard PCPPs (with minimal
overhead).

23

Lemma 5.4 (Existence of multi-input PCPPs). There exists a multi-input PCP of proximity for
circuit satisfiability of circuits C : {0, 1}n1 × · · · × {0, 1}nk → {0, 1} where k is a constant with the
following parameters:

Multi-input PCP of Proximity for C(x1, . . . ,xk) = 1

Proof length poly(|C|)
Alphabet size 2
Queries O(1)
Randomness O(log |C|)
Proximity O(1)
Soundness error O(1)
Prover running time poly(|C|)
Verifier running time Õ(|C|)

Proof. Let (PPCPP,VPCPP) be the PCPP system of Theorem 3.5 with soundness βPCPP and proximity
parameter δPCPP, where βPCPP and δPCPP are small enough constants satisfying δPCPP · k < 1/3. If this
is not the case, one can first improve proximity using standard techniques (e.g., [RR20, Lemma 8.6])
with minimal overhead. Let nmax := max{ni} For every i ∈ [k] let ti := nmax/ni. Assume without
loss of generality that these values are integers (otherwise, padding each input to the next power of
2 will suffice). For an instance xi, let xtii be the ti-wise repetition of xi.

Consider the circuit C ′ that on inputs (x̂1, . . . , x̂k) ∈ {0, 1}k·nmax outputs 1 if and only if the
following tests pass:
1. Encoding validity : For every i, there exists a string xi such that x̂ = x

ti
i .

2. Satisfiability : Let x1, . . . ,xk be the strings from the previous test. Test that C(x1 . . . ,xk) = 1.
We now describe the PCPP. On input a circuit C : {0, 1}n1 × · · · × {0, 1}nk → {0, 1}, and inputs
(x1, . . . ,xk) ∈ {0, 1}n1 × · · · × {0, 1}nk :

• The prover sends Π := PPCPP(C ′,xt11 , . . . ,x
tk
k).

• The verifier, given oracle access to the inputs x1, . . . ,xk and to Π̃ emulates the verification of:

V
x

t1
1 ,...,x

tk
k ,x,Π̃

PCP (C ′) = 1 ,

as follows: Queries to Π̃ are forwarded to the relevant oracle. For a query q ∈ [ti · |xi|] to xtii ,
return xi at location (q mod ti).

Completeness is immediate by the perfect completeness of the PCP of proximity and the fact
that the verifier correctly returns queries to xtii . We show soundness by proving the contrapositive.
Assume that the verifier accepts with high probability. We show that there must exist strings that
satisfy the circuit and are individually close to each input. Fix inputs x1, . . . ,xk and (possibly
malicious) proof Π̃ such that the verifier, given these inputs and proof, accepts with probability
greater than βPCPP. Then we have that with probability greater than βPCPP:

V
x

t1
1 ,...,x

tk
k ,x,Π̃

PCP (C ′) = 1 .

This implies, by soundness of the PCPP, that there exist x̂′1, . . . , x̂′k such that C ′(x̂′1, . . . , x̂′k) = 1
and

∆((xt11 , . . . ,x
tk
k), (x̂′1, . . . , x̂

′
k)) < δPCPP .

24

Since C ′(x̂′1, . . . , x̂′k) = 1, we have that for every i there exists x′i such that x̂′i = x
′ti
i . Moreover

C(x′1, . . . ,x
′
k) = 1.

Notice that for every i: |xtii | = |x
′ti
i | = nmax. Therefore, by a counting argument,

∆((xt11 , . . . ,x
tk
k), (x′t11 , . . . ,x′tkk)) < δPCPP ,

implies that for every i: ∆(xtii ,x
′ti
i) < k · δPCPP. It follows that ∆(xi,x

′
i) < k · δPCPP = O(1) since if

∆(xi,x
′
i) = m, then every one of the differences between the two strings propagates ti times, and so

the relative number of times it occurs is still m: ∆(xtii ,x
′ti
i) = m.

We now analyze the parameters of the new PCPP. Notice that |C ′| = O(|C|). Thus the new
prover has running time poly(|C|), which is also the proof length. The verifier uses the same number
of random bits as VPCPP, and runs in time Õ(|C ′|) = Õ(|C|). If the original verifier was non-adaptive,
then so is the new verifier.

Lemma 5.5 (Existence of oblivious multi-input PCPPs). Let C = {Cz}z∈{0,1}m be a circuit family
with Cz : {0, 1}n1×. . . ,×{0, 1}nk for constant k and suppose there exists C ′ : {0, 1}n1×· · ·×{0, 1}nk×
{0, 1}m → {0, 1} such that for every x1, . . . ,xk and z: C ′(x1, . . . ,xk, z) = Cz(x1, . . . ,xk). There
exists an oblivious multi-input PCP of proximity for circuit satisfiability of C with the following
parameters:

Oblivious PCP of Proximity for Cz(x1, . . . ,xk) = 1

Proof length poly(|C ′|)
Alphabet size 2
Queries O(1)
Randomness O(log |C ′|)
Proximity O(1)
Soundness error O(1)
Prover running time poly(|C ′|)
Verifier running time Õ(|C ′|)

Proof. Let (PPCPP,VPCPP) be the multi-input system of Lemma 5.4 and (Enc,Dec) be the error-
correcting code of Theorem 3.4.

Consider the (k + 1)-input circuit C ′′ that on inputs x1, . . . ,xk and ẑ outputs 1 if and only if
the following tests pass:
1. Encoding validity : Enc(Dec(ẑ)) = ẑ.
2. Satisfiability : C ′(x1, . . . ,xk,Dec(ẑ)) = 1.

We now describe the PCPP. On explicit input Cz, and oracle inputs x1, . . . ,xk:
• The prover sends Π := PPCPP(C ′′, (x1, . . . ,xk,Enc(z))).
• The verifier, given oracle access to x and to Π̃ computes Enc(z) and verifies

V
(x1,...,xk,Enc(z)),Π̃
PCP (C ′′) = 1 .

Completeness is immediate by the perfect completeness of the multi-input PCPP and the fact
that the verifier correctly returns queries to ẑ. We show that multi-input soundness holds with
respect to the circuit Cz. We do this via the contrapositive - we show that if the verifier accepts
with high probability, then the instances x1, . . . ,xk are close to satisfying Cz.

Fix z and instances x1, . . . ,xk and a proof Π̃. Suppose that, given z explicitly and oracle access
to x1, . . . ,xk and Π̃, the verifier accepts with probability greater than βPCP. Then we have that there

25

exist x′1, . . . ,x′k and ẑ′ such that: (i) C ′′(x′1, . . . ,x′k, ẑ
′) = 1, (ii) For every i: ∆(xi,x

′
i) < δPCPP and,

(iii) ∆(ẑ, ẑ′) < δPCPP. This must be true since otherwise we have a contradiction to the soundness of
the multi-input PCPP. This, in turn, implies that C ′(x′1, . . . ,x′k,Dec(ẑ′)) = 1. Since δPCPP < δECC,
we have that Dec(ẑ′) = Dec(ẑ) = z.

We now analyze the parameters of the new PCPP. Notice that |C ′′| = Õ(|C ′|). Thus the new
prover has running time poly(|C ′|), which is also the proof length. The verifier uses the same number
of random bits as VPCPP, and runs in time Õ(|C ′′|) = Õ(|C ′|). Since VPCPP is non-adaptive, the
queries it makes do not depend on its oracles. This includes the oracle to ẑ, and so the new verifier’s
queries do not depend on z.

5.2 The construction

We begin by giving a construction that achieves all of the parameters of our final index-decodable
PCP except that the number of queries made by the verifier to the prover proof is O(k) rather than
O(1). We define the circuit C∗,x and circuit family C = {Ci}i∈[k]. Later on, in the construction, we
will have a (standard) PCPP proof for satisfiability of C∗,x, and a proof for an oblivious multi-input
PCPP for satisfiability of each of the circuits Ci ∈ C.

Definition 5.6. Let R = {(i[1], . . . , i[k],x,w)} be a multi-indexed relation, and (Enc,Dec) be
an error-correcting code. Let x be an instance. Define boolean circuits C∗,x and a circuit family
C = {Ci}i∈[k] as follows:

• C∗,x(Π∗) = 1 if and only if the following tests pass:

1. Encoding validity: Test that Enc(Dec(Π∗)) = Π∗.
2. Membership: Test that (i∗[1], . . . , i∗[k],x,w∗) ∈ R, where (i∗[1], . . . , i∗[k],w∗) := Dec(Π∗).

• Ci(π,Π∗) = 1 if and only if the following tests pass:

1. Encoding validity: Test that:
– Enc(Dec(π)) = π.
– Enc(Dec(Π∗)) = Π∗.

2. Consistency: Let ĩ[i] := Dec(π) and (i∗[1], . . . , i∗[k],w∗) := Dec(Π∗). Test that ĩ[i] = i∗[i].

From the definition it is easy to see that there exists C ′ such that C ′(π,Π∗, i) = Ci(π,Π∗) for every
π,Π∗ where |C ′| = O(|Ci|). This facilitates using this circuit family with an oblivious PCPP.

Theorem 5.7. Let R = {(i[1], . . . , i[k],x,w)} be a multi-indexed relation. Let PCPP = (PPCPP,VPCPP)
be a (oblivious multi-input) PCP of proximity for circuit satisfiability with proximity parameter δPCPP
using a binary alphabet and (Enc,Dec) be an error-correcting code with distance δPCPP ≤ δECC.
Then Construction 5.8 is a non-adaptive index-decodable PCP PCP = (IPCP,PPCP,VPCP,DPCP) for R
with the parameters below.

PCPP for satisfiability of circuits C and C∗,x

Proof length lPCPP
Alphabet size 2
Queries qPCPP

Randomness rPCPP
Proximity δPCPP
Soundness error βPCPP

Prover running time ptPCPP
Verifier running time vtPCPP

+

Error correcting code
Distance δECC
Rate rtECC
Encoding time etECC
Decoding time dtECC

26

−→

Index-Decodable PCP for (i[1], . . . , i[k],x,w) ∈ R
Indexer proof length (per proof) rtECC(|i[i]|)
Prover proof length 2 · lPCPP + rtECC(|w|+

∑k
i=1 |i[i]|)

Indexer alphabet size 2
Prover alphabet size 2k

Queries to indexer proof (per proof) qPCPP

Queries to prover proof 2 · qPCPP

Randomness 2 · rPCPP
Decodability bound βPCPP

Indexer running time etECC(|i[i]|)
Prover running time etECC(|w|+

∑k
i=1 |i[i]|) + (k + 1) · ptPCPP

Verifier running time k · vtPCPP
Decoder running time dtECC(|i[i]|)

We now describe the construction (see Section 2.5 for an overview), and then prove the theorems.

Construction 5.8. We describe the index-decodable PCP for R.

• IPCP(i[i]): Output πi := Enc(i[i]).

• PPCP(i[1], . . . , i[k],x,w):
1. Compute Π∗ := Enc(i[1], . . . , i[k],w).
2. Proof of membership: Generate a proof Πmem := PPCPP(C∗,x,Π∗) (using a standard PCPP).
3. Proofs of consistency : For every i ∈ [k], compute Πi := PPCPP(Ci, (πi,Π∗)) where πi := IPCP(i[i])

(using the oblivious PCPP for C).
4. Query bundling : Let Πi := {Πi}i∈[k] be a proof such that Πi[q] = (Π1[q], . . . ,Πk[q]). That is, in

location q of Πi write a k-bit symbol consisting of the q-th bit of each of the proofs {Πi}i∈[k].
5. Output (Π∗,Πmem,Πi).

• Vπ̃1,...,π̃k,Π̃∗,Π̃mem,Π̃i

PCP (x): Accept if and only if all of the following test accept.

1. Membership test : VΠ∗,Π̃mem
PCPP (C∗,x) = 1.

2. Consistency test : Parse Π̃i = {Π̃i}i∈[k]. Choose PCPP verifier randomness ρ. For every i ∈ [k]

test that V
(π̃i,Π̃∗),Π̃i
PCPP (Ci; ρ) = 1. (Using the verifier of the oblivious PCPP for C).

• DPCP(π̃i): Output Dec(π̃i).

Proof. We prove completeness, then decodability, and finally analyze complexity measures.
Completeness. Fix (i[1], . . . , i[k],x,w) ∈ R. We show that both of VPCP’s tests pass with
probability 1 and therefore VPCP always accepts. Let π1, . . . , πk and Π∗,Πmem,Πi be the proofs
generated by the indexer and prover respectively where Πi := {Πi}i∈[k].

1. Membership test : Since (i[1], . . . , i[k],x,w) ∈ R and Π∗ = Enc(i[1], . . . , i[k],w) we have that
C∗,x(Π∗) = 1. By the perfect completeness of the PCP of proximity, since Πmem = PPCPP(C∗,x,Π∗),
we have that

Pr
[

VΠ∗,Πmem
PCPP (C∗,x) = 1

]
= 1 .

2. Consistency test : Since Π∗ = Enc(i[1], . . . , i[k],w) and for every i ∈ [k], πi = Enc(i[i]), we have
that for every i, Ci(πi,Π∗) = 1. Hence, since Πi = PPCPP(Ci, (πi,Π∗)), by the perfect completeness
of the PCP of proximity:

Pr
[

V
(πi,Π∗),Πi
PCPP (Ci) = 1

]
= 1 .

27

Decodability. Fix x, π̃1, . . . , π̃k, Π̃∗, Π̃mem and Π̃i = {Π̃i}i∈[k]. Suppose that:

Pr
[

Vπ̃1,...,π̃k,Π̃∗,Π̃mem,Π̃i

PCP (x) = 1
]
> βPCPP .

We show that there exists w such that (DPCP(π̃1), . . . ,DPCP(π̃k),x,w) ∈ R. To do so we give two
claims, each relating to a different test done by the verifier. The first says that the verifier’s
membership test implies that Π̃∗ encodes strings that put x in R.

Claim 5.9. There exist ĩ[1], . . . , ĩ[k] and w̃ such that:
1. Valid encoding: (̃i[1], . . . , ĩ[k], w̃) = Dec(Π̃∗).
2. Membership: (̃i[1], . . . , ĩ[k],x, w̃) ∈ R.

Proof. We show that there exist ĩ[1], . . . , ĩ[k] and w̃ such that ∆(Π̂∗, Π̃∗) ≤ δPCPP where Π̂∗ :=
Enc(̃i[1], . . . , ĩ[k], w̃) and which place x in the relation. This will imply the claim since the distance
of the error-correcting code is at most δPCP < δECC, and so Π̂∗ and Π̃∗ decode to the same value.

Suppose towards contradiction that for every ĩ[1], . . . , ĩ[k] and w̃ such that ∆(Π̂∗, Π̃∗) ≤ δPCPP
(where Π̂∗ is defined as before) we have that (̃i[1], . . . , ĩ[k],x, w̃) /∈ R. This means that Π̃∗ has
distance greater than δPCPP from every Π̂∗ such that C∗,x(Π̂∗) = 1. Hence by soundness of the PCPP
system:

Pr
[

VΠ̃∗,Π̃mem
PCPP (C∗,x) = 1

]
≤ βPCPP .

VPCP runs this test in Item 1 and hence will accept with probability at most βPCPP in contradiction
to the assumption that

Pr
[

Vπ̃1,...,π̃k,Π̃∗,Π̃mem,Π̃i

PCP (x) = 1
]
> βPCPP .

We now show that the indexer proofs π̃1, . . . , π̃k must be consistent with the encoding Π̃∗.

Claim 5.10. There exist ĩ[1], . . . , ĩ[k] and w̃ such that:
1. Valid encoding: (̃i[1], . . . , ĩ[k], w̃) = Dec(Π̃∗).
2. Consistency: For every i ∈ [k], ĩ[i] := Dec(π̃i).

Proof. We show that there exist ĩ[1], . . . , ĩ[k] and w̃ such that ∆(Π̂∗, Π̃∗) ≤ δPCPP where Π̂∗ :=
Enc(̃i[1], . . . , ĩ[k], w̃). Additionally we have that for every i ∈ [k], ∆(π̂i, π̃i) ≤ δPCPP where π̂i :=
Enc(̃i[i]). This will imply the claim since the distance of the error-correcting code is at most
δPCP < δECC, and so Π̂∗ and Π̃∗ decode to the same value. Similarly π̂i and π̃i decode to the same
value.

Suppose towards contradiction that there exists i ∈ [k] such that for every pair π̂i and Π̂∗ such
that Ci(π̂i, Π̂∗) = 1 (which implies that they have the required consistency), at least one of the
following holds: (i) ∆(π̂i, π̃i) > δPCPP, (ii) ∆(Π̂∗, Π̃∗) > δPCPP. Then by the soundness property of the
multi-input PCPP system:

Pr
[

V
(π̃i,Π̃∗),Π̃i
PCPP (Ci) = 1

]
≤ βPCPP ,

in contradiction to the assumption that VPCP, that runs the above test in Item 2, accepts with
probability greater than βPCPP.

We now prove decodability. Under the assumption that the verifier accepts with probability
greater than βPCPP, by Claim 5.9 and Claim 5.10, there exist ĩ[1], . . . , ĩ[k] and w̃ such that:

28

1. (̃i[1], . . . , ĩ[k],x, w̃) ∈ R.
2. (̃i[1], . . . , ĩ[k], w̃) = Dec(Π̃∗).
3. For every i ∈ [k]: ĩ[i] = Dec(π̃i).
Putting the above items together with the fact that the decoder simply decodes the encoded index
that it receives, we have that:

(DPCP(π̃1), . . . ,DPCP(π̃k),x, w̃) = (Dec(π̃1), . . . ,Dec(π̃k),x, w̃) = (̃i[1], . . . , ĩ[k],x, w̃) ∈ R .

Efficiency. We analyze the efficiency parameters of the PCP:

• Indexer alphabet. The indexer alphabet size is 2.

• Prover alphabet. The prover writes its proof in groups of k bits. The alphabet size is 2k.

• Indexer proof length. IPCP uses Enc on a bit-string of length ||i[i]|, so the proof length is rtECC(|i[i]|).

• Prover proof length. PPCP outputs the encoding of the string i[1], . . . , i[k],w, and outputs k + 1
proofs for the PCP of proximity. The proofs in the consistency test part are interleaved into
symbols. Thus the proof has length 2 · lPCPP + rtECC(|w|+

∑k
i=1 |i[i]|).

• Query complexity. VPCP makes qPCPP queries to each of the indexer proofs in the consistency tests.
The consistency check is done k times with the same randomness, and the same circuit family
C. The PCPP system is oblivious, and so all of these PCPPs make queries to exactly the same
locations – which are bundled together into one symbol by the prover. Thus this test makes only
qPCP queries. The verifier additionally makes qPCPP queries to the prover proof in the membership
test – a total of 2 · qPCPP.

• Randomness complexity. VPCP runs the membership test with randomness rPCPP, chooses new
PCPP randomness and runs each of the consistency checks with the same randomness. Therefore
it uses 2 · rPCPP random bits.

• Indexer running time. IPCP encodes i[i] in time etECC(|i[i]|).

• Prover running time. PPCP encodes a string of length |w|+
∑k

i=1 |i[i]| in time etECC(|w|+
∑k

i=1 |i[i]|)
and computes k + 1 PCP of proximity proofs, each in time ptPCPP. All together time etECC(|w|+∑k

i=1 |i[i]|) + (k + 1) · ptPCPP.

• Verifier running time. VPCP runs the PCPP verifier k + 1 times, taking time (k + 1) · vtPCPP.

• Decoder running time. DPCP uses Dec to decode the encoding of i[i] a string and so its running
time is dtECC(|i[i]|).

• Adaptivity. If VPCPP is non-adaptive then so is VPCP.

29

6 Achieving constant query complexity per oracle

In this section we construct index-decodable PCPs that make O(1) queries to every oracle. We
begin in Section 6.1 by showing that proof composition preserves index-decodability when the
outer index-decodable PCP is prover-robust. Then, in Section 6.2, we show how to transform the
index-decodable PCP constructed in Section 5 into a prover-robust index-decodable PCP. Putting
all this together, we prove the following theorem:

Theorem 6.1 (restatement of Theorem 2). Let R = {(i[1], . . . , i[k],x,w)} be a multi-indexed relation
whose membership can be verified by a circuit C. Then R has a non-adaptive index-decodable PCP
PCP = (IPCP,PPCP,VPCP,DPCP) for R with the parameters below.

Index-Decodable PCP for (i[1], . . . , i[k],x,w) ∈ R
Indexer proof length (per proof) O(|i[i]|)
Prover proof length poly(|C|)
Alphabet size 2
Queries per oracle O(1)
Randomness O(log |C|)
Decodability bound O(1)

Indexer running time Õ(|i[i]|)
Prover running time poly(|C|)
Verifier running time Õ(|C|)
Decoder running time Õ(|i[i]|)

Proof. We take the robust index-decodable PCP of Theorem 6.4 and compose it using Theorem 6.2
with the PCP of proximity achieved by Theorem 3.5.

6.1 Proof composition preserves index-decodability

We show that, in proof composition of PCPs [AS98], if the outer PCP of the proof is index-decodable
then the composed PCP is also index-decodable (given the outer index-decodable PCP has good
enough prover-robustness).

Theorem 6.2. Let PCPout = (Iout,Pout, (V
qry
out,V

dc
out),Dout) be a non-adaptive index-decodable PCP for

a relation R with prover-robustness σout and PCPin = (Pin,Vin) be a non-adaptive PCP of proximity
for NP with proximity δin ≤ σout. Then Construction 6.3 is a non-adaptive index-decodable PCP
PCP = (IPCP,PPCP,VPCP,DPCP) for R with the parameters below.

Index-Decodable PCP for (i[1], . . . , i[k],x,w) ∈ R
Indexer proof length lout,I
Proof length lout,P
Alphabet size λout

Queries to indexer proof iqout

Queries to prover proof pqout

Randomness rout
Prover-robustness σout

Decodability bound κout

Indexer running time itout
Prover running time ptout
Verifier running time vtout
Decoder running time dtout

+

PCPP for Vdc
out

Proof length lin
Alphabet size λin

Queries qin

Randomness rin
Proximity δin
Soundness error βin

Prover running time ptin
Verifier running time vtin

30

−→

Index-Decodable PCP for (i[1], . . . , i[k],x,w) ∈ R
Indexer proof length lout,I
Prover proof length lout,P + 2rout · lin
Alphabet size max{λout, λin}
Queries to indexer proof iqout

Queries to prover proof qin

Randomness rout + rin
Decodability bound κout + (1− κout) · βin

Indexer running time itout
Prover running time ptout + 2rout · (vtout + ptin)
Verifier running time vtout + vtin
Decoder running time dtout

Construction 6.3. We construct the index-decodable PCP PCP = (IPCP,PPCP,VPCP,DPCP) below.

• IPCP(i[i]): Output πi := Iout(i[i]).

• PPCP(i[1], . . . , i[k],x,w):

1. For every i ∈ [k], compute the indexer proof πi := IPCP(i[i]).
2. Compute the prover proof Πout := Pout(i[1], . . . , i[k],x,w) and set Πi := (π1, . . . , πk).
3. For every ρout ∈ {0, 1}rout , compute (Qi, Q∗) := Vqry

out(x, ρout) and set Cin := Vdc
out(x, ρout,Πi[Qi], ·)

(Vdc
out with instance, randomness and answers to queries to indexer proofs fixed to x, ρout and

Πi[Qi]) and xin := Π[Q∗]. Compute the PCPP string Πin[ρout] := Pin(Cin,xin).
4. Output Π := (Πout,Πin) where Πin := {Πin[ρout]}ρout∈{0,1}rout .

• Vπ̃1,...,π̃k,Π̃
PCP (x):

1. Parse Π̃ = (Π̃out, {Π̃in[ρout]}ρout∈{0,1}rout) and set Π̃i := (π̃1, . . . , π̃k) for convenience.
2. Sample randomness ρout ← {0, 1}rout and compute the query sets (Qi, Q∗) := Vqry

out(x, ρout).
3. Set Cin := Vdc

out(x, ρout,Πi[Qi], ·) and check that V
Π̃out[Q∗],Π̃in[ρout]
in (Cin) = 1.

• DPCP(π̃i): Output π̃i := Dout(π̃i).

Proof of Theorem 6.2. First we argue completeness, then argue decodability, and, finally, analyze
efficiency measures of the resulting PCP.
Completeness. Fix (i[1], . . . , i[k],x,w) ∈ R and let Πi = (π1, . . . , πk), Πout and {Πin[ρout]}ρout∈{0,1}rout
be the proofs output by the honest indexer IPCP and prover PPCP. By the (perfect) completeness of
the outer PCP,

Pr [Vdc
out(x, ρout,Πi[Qi],Πout[Q∗]) = 1 | (Qi, Q∗)← Vqry

PCP(x, ρ)] = 1 .

Hence, for every ρout ∈ {0, 1}rout , by the (perfect) completeness of the inner PCP (of proximity), for
Πin[ρout] output by Pin given circuit Cin := Vdc

out(x, ρout,Πi[Qi], ·) and input Πout[Q∗], it holds that

Pr
ρin

[
V

Πout[Q∗],Πin[ρout]
in (Cin; ρin) = 1

]
= 1 .

We conclude that the composed PCP also has perfect completeness:

Pr
[

Vπ1,...,πk,Π
PCP (x) = 1

]
= 1 .

31

Decodability. Fix x and malicious proofs Π̃i = (π̃1, . . . , π̃k) and Π̃ = (Π̃out, {Π̃in[ρout]}). Suppose
that:

Pr
[

Vπ̃1,...,π̃k,Π̃
PCP (x) = 1

]
> κout + (1− κout) · βin .

For every choice of randomness ρout ∈ {0, 1}rout let (Qi, Q∗) := Vqry
out(x, ρout) and set Ãρout := Π̃out[Q∗].

We consider the two possibilities for Ãρout .

1. There exists some Ã′ such that ∆(Ã′, Ãρout) ≤ σout and Vdc
out(x, ρout,Πi[Qi], Ã

′) = 1. In this case,
we cannot rule out that Vin accepts with high probability. So we can trivially write

Pr
ρin

[
V
Ãρout ,Π̃in[ρout]
in (Vdc

out(x, ρout,Πi[Qi], ·); ρin) = 1
]
≤ 1 .

2. There does not exist a set Ã′ such that ∆(Ã′, Ãρout) ≤ σout and Vdc
out(x, ρout,Πi[Qi], Ã

′) = 1. Since
δin ≤ σout, Ãρout is far enough from any true claim that the proximity soundness property of Vin

applies:
Pr
ρin

[
V
Ãρout ,Π̃in[ρout]
in (Vdc

out(x, ρout,Πi[Qi], ·); ρin) = 1
]
≤ βin .

Hence, letting p be the probability that ρout induces a choice of queries whose answers Ãρout are
such that Item 1 occurs, we have that VPCP accepts with probability at most p+ (1− p) · βin. By
assumption, the probability that VPCP accepts is greater than κout + (1 − κout) · βin. From this we
can infer that p > κout. By the prover-robust decodability of the outer (index-decodable) PCP, we
deduce that there exits a witness w such that:

(DPCP(π̃1), . . . ,DPCP(π̃k),x,w) = (Dout(π̃1), . . . ,Dout(π̃k),x,w) ∈ R .

Efficiency. We analyze the efficiency parameters of the resulting PCP.

• Alphabet. The new PCP involves the alphabet of the outer index-decodable PCP, which has size
λout, and the alphabet of the inner PCP of proximity, which has size λin. One can use the same
alphabet to write both, in which case its size would be max{λout, λin}.

• Indexer proof length. IPCP outputs the same indexer proofs as Iout, which are of length lout,I.

• Prover proof length. PPCP sends the proof (of length lout,P) of the index-decodable PCP and also,
for every ρout ∈ {0, 1}rout , sends a proof (of length lin) for the inner PCP for randomness ρout. Hence
the total proof length is lout,P + 2rout · lin.

• Query complexity. VPCP makes as many queries as Vin, which is qin.

• Randomness complexity. VPCP samples randomness for Vout and Vin, using rout + rin random bits.

• Indexer running time. IPCP runs runs Iout, and so its running time is itout.

• Prover running time. PPCP runs Pout once and Vqry
out,Pin a total of 2rout times, and so its running

time is ptout + 2rout · (vtout + ptin).

• Verifier running time. VPCP runs Vqry
out to compute its query locations and runs Vin to decide,

thereby running in time at most vtout + vtin.

• Decoder running time. DPCP equals Dout, and so its running time is dtout.

32

6.2 Robustification

We now show how to get a prover-robust index-decodable PCP with a binary alphabet and large
number of queries to the prover proof. This is later reduced by using proof composition.

Theorem 6.4. Let R = {(i[1], . . . , i[k],x,w)} be a multi-indexed relation whose membership can be
verified by a boolean circuit C. Then R a non-adaptive prover-robust index-decodable PCP with the
following parameters:

Prover-robust Index-Decodable PCP for (i[1], . . . , i[k],x,w) ∈ R
Indexer proof length (per proof) O(|i[i]|)
Proof length poly(|C|)
Alphabet size 2
Queries to indexer proof O(1)
Queries to prover proof O(k)
Randomness O(log |C|)
Prover-robustness Ω(1)
Decodability bound O(1)

Indexer running time Õ(|i[i]|)
Prover running time poly(|C|)
Verifier running time Õ(|C|)
Decoder running time Õ(|i[i]|)

We first describe the construction, and then prove Theorem 6.4.

Construction 6.5. Let PCP = (IPCP,PPCP, (V
qry
PCP,V

dc
PCP),DPCP) be a non-adaptive index-decodable

PCP for a relation R and ECC = (Enc,Dec) be a (r, δECC)-code with r(k) = c · k for constant c. Let
lPCP,P and ΣP be the prover proof length and alphabet respectively.

• I(i[i]): Output πi := IPCP(i[i]).

• P(i[1], . . . , i[k],x,w): Compute Π′ := PPCP(i[1], . . . , i[k],x,w) and output Π := Enc(Π′, lPCP,P).

• Vπ̃1,...,π̃k,Π̃(x):

1. Sample randomness ρ and generate (Qi, Q∗)← Vqry
PCP(x, ρ) the queries the PCP verifier makes

given instance x and randomness ρ. Qi are the queries made to the indexer proofs and Q∗ are
the queries made to the prover proof.

2. Let A := {Π̃[q] | q ∈ Q∗} and APCP := {Dec(a) | a ∈ A}. Let Π̃i = (π̃1, . . . , π̃k). Accept if and
only if Vdc

PCP(x, ρ, Π̃i[Qi], APCP) = 1.

• D(π̃i): Output ĩ[i] := DPCP(i[i]).

Proof of Theorem 6.4. We use Construction 6.5 where the index-decodable PCP used is the one
of Theorem 5.1. We use an error correcting code with parameters as in Theorem 3.4. We first
argue completeness, then decodability and, finally, we analyze the other complexity measures of the
resulting PCP.
Completeness. Fix (i[1], . . . , i[k],x,w) ∈ R. Let π1, . . . , πk and Π be the proofs generated by
the indexer and the prover respectively. Since the prover is honest, PPCP(i[1], . . . , i[k],x,w) =
Dec(Π, lPCP,P). Hence, letting Π′ := PPCP(i[1], . . . , i[k],x,w) and Π̃i = (π̃1, . . . , π̃k), we have:

Pr
[

Vπ1,...,πk,Π(x) = 1
]

= Pr
ρ

[
Vdc

PCP(x, ρ, Π̃i[Qi], APCP) = 1
(Qi, Q∗)← Vqry

PCP(x, ρ)
APCP := { Dec(Π[q]) | q ∈ Q∗ }

]
33

= Pr
ρ

[
Vdc

PCP(x, ρ, Π̃i[Qi], APCP) = 1
(Qi, Q∗)← Vqry

PCP(x, ρ)
APCP := { Π′[q] | q ∈ Q∗ }

]
= Pr

[
Vπ1,...,πk,Π

′

PCP (x) = 1
]

= 1 .

Prover-robust decodability. Fix an instance x and proofs Π̃i = (π̃1, . . . , π̃k) and Π̃. Denote by
κPCP = O(1), and qPCP = O(1) the decodability bound and number of queries to the prover proof
respectively. Let δECC = Ω(1) be the distance of the error correcting code such that δECC

qPCP
= Ω(1).

Denote by Vqry and Vdc the query generation and decision predicate of V respectively. Suppose that

Pr
ρ

[
∃A′ s.t. Vdc(x, ρ, Π̃i[Qi], A

′) = 1 ∧ ∆(A′, A) ≤ δECC
qPCP

(Qi, Q∗)← Vqry(x, ρ)

A := { Π̃[q] | q ∈ Q∗ }

]
> κPCP .

We show that this implies that there exists w such that:

(D(π̃1), . . . ,D(π̃k),x,w) ∈ R .

Notice that

Pr
ρ

[
∃A′ s.t. Vdc(x, ρ, Π̃i[Qi], A

′) = 1 ∧ ∆(A′, A) ≤ δECC
qPCP

(Qi, Q∗)← Vqry(x, ρ)

A := { Π̃[q] | q ∈ Q∗ }

]
,

is equal to

Pr
ρ

[
∃A′ s.t. Vdc

PCP

(
x, ρ, Π̃i[Qi], {Dec(a) | a ∈ A′}

)
= 1 ∧ ∆(A′, A) ≤ δECC

qPCP

(Qi, Q∗)← Vqry
PCP(x, ρ)

A := { Π̃[q] | q ∈ Q∗ }

]
.

Fix randomness ρ. Let (Qi, Q∗) ← Vqry
PCP(x, ρ) and A = { Π′[q] | q ∈ Q∗ }. Suppose that A′

is the set closest to A such that Vdc(x, ρ, Π̃i[Qi], A
′) = 1 and that ∆(A′, A) ≤ δECC

qPCP
. By a simple

counting argument it must be that for every i, ∆(A′[i], A[i]) ≤ δECC, and so Dec(A[i]) = Dec(A′[i]).
Moreover, since A[i] = Π̃[Q∗[i]], it follows that Dec(A′[i]) = Dec(Π̃[Q[∗i]]). Hence, considering the
decoded proof Π̃′ = Dec(Π̃, lPCP,P), we have:

Pr
ρ

[
∃A′ s.t. Vdc

PCP

(
x, ρ, Π̃i[Qi], {Dec(a) | a ∈ A′}

)
= 1 ∧ ∆(A′, A) ≤ δECC

qPCP

(Qi, Q∗)← Vqry(x, ρ)

A := { Π̃[q] | q ∈ Q∗ }

]
≤ Pr

ρ

[
Vdc

PCP(x, ρ, Π̃i[Qi], APCP) = 1
(Qi, Q∗)← Vqry(x, ρ)

APCP = { Π̃′[q] | q ∈ Q∗ }

]
,

and so

Pr
[

Vπ̃1,...,π̃k,Π̃
′

PCP (x)
]

= Pr
ρ

[
Vdc

PCP(x, ρ, Π̃i[Qi], APCP) = 1
(Qi, Q∗)← Vqry

PCP(x, ρ)

APCP = { Π̃∗[q] | q ∈ Q }

]
> κPCP .

By decodability of the index-decodable PCP, it follows that there exists a witness w such that

(D(π̃1), . . . ,D(π̃k),x,w) = (DPCP(π̃1), . . . ,DPCP(π̃k),x,w) ∈ R .

Efficiency. We analyze the efficiency parameters of the resulting PCP.

34

• Alphabet. The alphabet used by the system is binary as the error correcting code returns strings
of bits.

• Indexer proof length. The indexer proof is of length O(|i[i]|).

• Prover proof length. The prover wraps an error-correcting code with constant rate around its
proofs. Therefore the proof length is preserved up to constant factors and is poly(|C|).

• Query complexity. Queries to the indexer proofs remain unchanged. For each of the O(1) queries
made to the prover proof of the original PCP, the verifier queries O(k) bits. Hence it makes O(k)
queries to the prover proof.

• Randomness complexity. The verifier uses the same number of random bits as the original verifier,
O(log |C|).

• Indexer running time. The indexer simply runs IPCP and so has running time Õ(|i[i]|).

• Prover running time. The prover runs PPCP and encodes every k-bit symbol of the proof in time
that is quasi-polynomial in k. Hence it runs in time poly(|C|).

• Verifier running time. The verifier runs the original verifier in time Õ(|C|), and the efficient
decoding procedure of the error correcting code to decode O(1) symbols of length k bits. This
takes time Õ(k) = Õ(|C|). Thus, the verifier runs in time Õ(|C|).

• Decoder running time. The decoder simply runs the original decoder and so runs in time Õ(|i[i]|).

• Adaptivity. The original index-decodable is non-adaptive, and all that this transformation does is
to error-correct queries to the prover proof. Thus the queries are still independent of the proof,
and the resulting PCP is non-adaptive.

35

7 Transforming IPs into IOPs

We show how to use index-decodable PCPs to transform public-coin IPs into IOPs. We then combine
this with the index-decodable PCP from Section 6 to obtain our main theorem. Unless otherwise
stated, all of the interactive proofs in this section are assumed to have no decision randomness.

Theorem 7.1 (restatement of Theorem 1). Let IP = (PIP,VIP) be a public-coin IP for a relation
R = {(x,w)}. Then there exists a public-coin IOP IOP = (PIOP,VIOP) for R with the parameters
below.

IP (PIP,VIP) for R
Rounds kIP

Prover-to-verifier communication lIP
Total randomness rIP
Soundness error O(1)
Verifier running time vtIP

−→

IOP (PIOP,VIOP) for R
Rounds kIP

Proof length poly(|x|, lIP)
Queries per round O(1)
Interaction randomness poly(|x|, rIP)
Decision randomness O(log |x|)
Soundness error O(1)
Verifier running time poly(vtIP)

Proof. We begin by using the round reduction technique of [BM88] to reduce the number of rounds
of the protocol to kIP/2 (assuming that kIOP ≥ 2, as otherwise Drucker’s result can be applied). Then,
we modify the IP using Theorem 7.2 to have the verifier read little of its own randomness. This
yields a kIP-round IP whose parameters are polynomially related to the original proof, that has
O(log |x|) bits of decision randomness, and in which the verifier randomness query complexity is
O(1) (per-round). We then plug in the resulting IP into Theorem 7.7 using the index-decodable
PCP of Theorem 6.1, noting Remark 7.8 to get the final result.

7.1 Local access to randomness

In this section we show that any interactive proof can be transformed into an interactive proof in
which the verifier reads O(1) bits from the randomness generated by it during interaction with the
prover:

Theorem 7.2. Let IP = (PIP,VIP) be a public-coin interactive proof system for a relation R with
(per round) randomness complexity rIP, communication complexity lIP. Then, R has a public-coin
interactive proof system IP′ = (P′IP,V

′
IP) with the parameters indicated below.

IP

Rounds kIP

Prover-to-verifier communication lIP
Randomness (per round) rIP
Soundness error O(1)
Verifier running time vtIP

−→

IP′

Rounds 2kIP

Prover-to-verifier communication poly(lIP)
Interaction randomness (per round) poly(|x|+ rIP)
Interaction randomness queries (per round) O(1)
Decision randomness O(log |x|+ log kIP)
Soundness error O(1)
Verifier running time poly(vtIP)

36

Moreover, the verifier is non-adaptive with respect to its queries to its interaction randomness.

Proof. On input x, with parameters nz, ns ∈ N the protocol (P′IP,V
′
IP) works as follows, given an

extractor Ext : {0, 1}nz × {0, 1}ns → {0, 1}rIP with error εExt.

1. Augment IP such that it has round-by-round soundness error βIOP,rbr ≤ 1/4(|x| + k2
IP), and per

round randomness complexity r′IP = poly(|x|+ kIP). This can be achieved by O(kIP · log(|x|+ kIP))
parallel repetitions (see Fact 3.3).

2. For j = 1, . . . , kIP:

(a) V′IP(x, (z′1, s
′
1, a1), . . . , (z′j−1, s

′
j−1, aj−1)): Send to the prover a random string zj ← {0, 1}nz .

(b) P′IP(x,w, z1, s1, . . . , zj): Respond with z′j ∈ {0, 1}nz where (honestly) z′j := zj .

(c) V′IP(x, (z′1, s
′
1, a1), . . . , (z′j−1, s

′
j−1, aj−1), z′j): Send to the prover a random seed sj ∈ {0, 1}ns .

(d) P′IP(x,w, z1, s1, . . . , zj , sj):

i. Compute ρj := Ext(z′j , sj).
ii. Compute aj ← PIP(x,w, ρ1, . . . , ρj).
iii. Send (sj , aj) to the verifier.

3. V
′z1,s1,...,zkIP ,skIP
IP (x, (z′1, s

′
1, a1), . . . , (z′kIP , s

′
kIP
, akIP)):

(a) Sample a random mz ← [nz] and check that, for every j ∈ [kIP], zj [mz] = z′j [mz].

(b) Sample a random ms ← [ns] and check that, for every j ∈ [kIP], sj [ms] = s′j [ms].

(c) For every j ∈ [kIP], compute ρj := Ext(z′j , s
′
j) .

(d) Accept if and only if VIP(x, ρ1, a1, . . . , ρkIP , akIP) = 1.

The parameters nz, ns and εExt will be fixed during the analysis. Let δ > 0 be a small constant
that will specified later.
Completeness. Fix (x,w) ∈ R. For every j, let zj , sj , z′j , s′j , ρj and aj be the strings specified in a
random execution of the protocol. Since the prover is honest, we have that z′j = zj and s′j = sj , and
so the verifier’s tests in Item 3a and Item 3b pass with probability 1. Moreover, since the original
interactive proof has perfect completeness, and for every j, aj := PIP(x, ρ1, . . . , ρj), we have that
(always) VIP(x,wρ1, a1, . . . , ρkIP , akIP) = 1. Therefore, the new IP verifier accepts with probability 1.
Soundness. Fix x /∈ L(R) and a malicious prover P̃IP. Let E be the event over the verifier’s
random coins, (z1, s1, . . . , zkIP , skIP), that there exists some j ∈ [kIP] such that at least one of the
following is true: (i) ∆(z′j , zj) ≥ δ or; (ii) ∆(s′j , sj) ≥ δ, where z′j := P̃IP(z1, s1, . . . , zj−1, sj−1, zj)

and s′j := P̃IP(z1, s1, . . . , zj−1, sj−1, zj , sj). We first show that if E is true with probability 1/2 (i.e.,
with probability 1/2, P̃IP gives some z′j or s′j which is far from the matching string sent by the
verifier), then the verifier rejects with constant probability.

Claim 7.3. Suppose that

Pr
(z1,s1,...,zkIP ,skIP)

[(z1, s1, . . . , zkIP , skIP) ∈ E] ≥ 1/2 .

Then V′IP accepts with probability at most 1− δ/2 when interacting with P̃IP.

37

Proof. For every choice of verifier randomness (z1, s1, . . . , zkIP , skIP) ∈ E, there exists some round j
in which either ∆(zj , z

′
j) ≥ δ or ∆(sj , s

′
j) ≥ δ. As a result, one of the tests made by V′IP in Item 3b

and Item 3a, causes the verifier to reject with probability at least δ. The verifier rejects if both
(z1, s1, . . . , zkIP , skIP) ∈ E and the test fails, and so rejects with probability at least 1/2 · δ = δ/2.

We now show that if E does not happen with probability 1/2, then the prover’s messages z′j have
high min-entropy.

Claim 7.4. Suppose that

Pr
(z1,s1,...,zkIP ,skIP)

[(z1, s1, . . . , zkIP , skIP) ∈ E] < 1/2 .

Then for every j, Hmin(Z ′j | ¬E) ≥ 0.5nz, where Z ′j is the random variable describing the output z′j
of P̃IP in a random interaction with VIP on input x.

Proof. Fix a round number j, and some string z∗j . We have that

Pr
[
Z ′j = z∗j | ¬E

]
= Pr

[
Z ′j = z∗j ∧ ¬E

]
/Pr [¬E]

≤ 2 · Pr
zj

[
∆(z∗j , zj) < 1/4

]
(1)

= 2 · |{ x′ ∈ {0, 1}nz : ∆(x, x′) ≤ δ }|/2nz

≤ 2−nz+nzH(δ)+1 (2)

< 2−0.5nz . (3)

Above, Equation (1) is due to the fact that whenever (z1, s1, . . . , zkIP , skIP) /∈ E, we have by definition
that the output z′j of P̃IP, given (z1, s1, . . . , zkIP , skIP), has Hamming distance at less than δ from
zj . Equation (2) true due to Fact 3.10 and Equation (3) is true for a small enough constant δ. Then,
we get that

Hmin(Z ′j | ¬E) = min
z∗j
− log Pr[Z ′j = z∗j | ¬E] > 0.5nz .

Claim 7.5. Let state be the state function of the original interactive proof. Then for every transcript
tr where the verifier is about to make its j-th move such that state(x, tr) = 0:

Pr[state(x, tr||ρj) = 1 | ¬E] ≤ (βIOP,rbr + εExt) · 2ns·H(δ) ,

where ρj is drawn as in the protocol description.

Proof. Fix some j and a transcript as in the claim statement. In the following, for convenience,
we do not write the condition on ¬E but all of our random variables have this added conditioning.
By Claim 7.4, we have that z′j has min-entropy at least 0.5nz. Thus, by definition of the extractor,

|Pr[state(x, tr||Ext(z′j , Uns) = 1]− Pr[state(x, tr||UrIP) = 1]| ≤ εExt ,

where Uns and UrIP are the uniform distributions over bit strings of length ns and rIP respectively.
Furthermore, by round-by-round soundness of the original interactive proof, we have that

Pr[state(x, tr||UrIP) = 1] < βIOP,rbr .

38

Therefore the fraction of seeds that cause the state function to change from 0 to 1 is at most
εExt + βIOP,rbr. Recall that in the protocol, ρj := Ext(z′j , s

′
j), i.e., the seed of the extractor is s′j rather

than a uniformly random seed. Since we have that ¬E, we know that the message s′j chosen by the
prover has ∆(s′j , sj) < δ. We say that a seed sj is bad if there exists some sj with ∆(s′j , sj) < δ such
that state(x, tr||Ext(z′j , s′j)) = 1. Every point s′j that inhibits changing of the state function has a
ball of size 2ns·H(δ) of random seeds that have distance at most δ from it (see Fact 3.10). The total
probability of landing on a bad seed is at most the probability that a random seed sj falls within
one of these balls. Therefore the probability that sj bad is at most (εExt + βIOP,rbr) · 2ns·H(δ).

We set the extractor error to be εExt = βIOP,rbr, on a source with min entropy 0.5nz. We set
nz = 4r′IP such that the source has min entropy 2r′IP, and thus we extract r′IP random bits with error
εExt. The seed length is ns = O(log 1/εExt) = O(log(1/βIOP,rbr)).

If E happens with probability less than 1/2 then we have that:

Pr[〈VIP(x), P̃IOP〉 = 1] ≤ Pr[E] + Pr[∃j : state(x, tr||ρj) = 1 | ¬E] (4)

≤ 1/2 + kIP · (βIOP,rbr + εExt) · 2ns·H(δ) (5)

≤ 1/2 + kIP · 2βIOP,rbr · 2O(log(1/βIOP,rbr))·H(δ) (6)

≤ 1/2 + kIP ·
√
βIOP,rbr < 9/10 . (7)

Equation (4) follows from the fact that the verifier V′IP accepts only if VIP accepts given x, prover
messages a1, . . . , akIP and verifier randomness ρ1,ρkIP . By the round-by-round soundness of the
original IP, since state(x) = 0 (which follows from the fact that x /∈ L), in order for the verifier to
accept, it must be that the value of the state function changed from 0 to 1 in some round. Equation (5)
is true by applying the union bound and Claim 7.5. We have Equation (6) by noting that we set
εExt = βIOP,rbr and ns = O(log(1/βIOP,rbr)). Finally, Equation (7) holds for a small enough constant
δ > 0.

If the probability that E happens is greater than 1/2, then by Claim 7.3 the verifier rejects with
constant probability 1− δ/2 (with the same setting of δ as before).

Thus we have that in both options for the probability that E occurs the verifier rejects with
constant probability.
Complexity measures. We analyze the efficiency parameters of the PCP:

• Prover-to-verifier communication. We first amplify the protocol, giving polynomial overhead to
all messages. In addition to the original prover messages, the prover also sends z′j and s

′
j . This

adds at most polynomial overhead to the prover-to-verifier communication complexity.

• Query complexity to randomness. The verifier queries each sj and zj in O(1) locations.

• Randomness complexity. V′PCP generates nz + ns = poly(rIP, |x|) bits in every round.

• Decision randomness. V′PCP uses log nz + log ns = O(log |x|+ log kIP) bits of decision randomness.

• Verifier running time. V′IP runs the original IP verifier for polynomially many repetitions, generates
a few random strings and runs the extractor. Its running time is therefore polynomially related to
the running time of VIP.

• Adaptivity. V′PCP makes non-adaptive queries to its interaction randomness.

39

7.2 Local access to prover messages

Definition 7.6. Given a kIP-round public-coin IP IP = (PIP,VIP), define the multi-indexed relation

Ψ(VIP) := {(a1, . . . , akIP , (x, ρ1, . . . , ρkIP),⊥) | VIP(x, ρ1, a1, . . . , ρkIP , akIP) = 1} .

Here x corresponds to the common input instance to the IP prover and IP verifier, ρ1, . . . , ρkIP
correspond to verifier (random) messages, and a1, . . . , akIP correspond to prover messages.

Theorem 7.7. Suppose that:
• IP = (PIP,VIP) is a public-coin IP for a relation R; and
• PCP = (IPCP,PPCP,VPCP,DPCP) is an index-decodable PCP for the multi-indexed relation Ψ(VIP).
Then Construction 7.9 is a (kIP + 1)-round public-coin IOP for R with the parameters below.

IP (PIP,VIP) for R
Rounds kIP

Prover-to-verifier communication lIP
Interaction randomness rIP,int
Decision randomness rIP,dc
Soundness error βIP

Verifier running time vtIP

+

Index-Decodable PCP for Ψ(VIP)

Indexer proof length lPCP,I
Proof length lPCP,P
Queries per proof qPCP

Randomness rPCP
Decodability bound κPCP

Verifier running time vtPCP

−→

IOP (PIOP,VIOP) for R
Rounds kIP

Proof length kIP · lPCP,I + lPCP,P · 2rIP,dc
Queries per round qPCP

Total round randomness rIP,int
Decision randomness rPCP + rIP,dc
Soundness error βIP + κPCP

Verifier running time vtPCP

Moreover, if DPCP is efficient then the transformation maintains computational soundness (if IP has
computational soundness error βIP, then IOP has computational soundness error βIP + κPCP).

Remark 7.8. The transformation in Theorem 7.7 can be modified to preserve the verifier’s ran-
domness query complexity if the verifier is non-adaptive with respect to the queries it makes to its
interaction randomness. Suppose that the verifier reads q bits from its own messages. Then we
define a multi-indexed relation that consists of tuples:(

i[1], . . . , i[k],x,w
)

=
(
a1, . . . , ak, (x, b1, . . . , bq, ρdc),⊥

)
such that given decision randomness ρdc the IP verifier VIP accepts given instance x, decision
randomness ρdc, prover messages (a1, . . . , ak), and (b1, . . . , bq) as answers to queries to its own
interaction randomness. Given a multi-indexed PCP for this relation, the IP to IOP transformation
is identical to the one in Construction 7.9, except that at the end, after the verifier chooses decision
randomness, it also queries its own randomness to get bits b1, . . . , bq, and these replace ρ1, . . . , ρkIP
as explicit inputs to the index-decodable PCP verifier.

We now prove Theorem 7.7; we describe the construction and then analyze it.

40

Construction 7.9. The IOP verifier VIOP receives an instance x and the (honest) IOP prover PIOP

receives x and a witness w. They interact as follows.

1. For every round i ∈ [kIP]:
(a) VIOP sends a uniformly random string ρi as sampled by VIP;
(b) PIOP computes ai ← PIP(x,w, ρ1, . . . , ρi) and sends πi := IPCP(ai).

2. PIOP sends, for every ρdc ∈ {0, 1}rIP,dc , Πρdc := PPCP(a1, . . . , akIP , (x, ρ1, . . . , ρkIP , ρdc),⊥).
3. VIOP (given oracle access to π̃1, . . . , π̃kIP and Π̃ = {Π̃ρdc}ρdc) samples decision randomness ρdc and

PCP randomness ρPCP and checks that

V
π̃1,...,π̃kIP ,Π̃ρdc
PCP ((x, ρ1, . . . , ρkIP , ρdc); ρPCP) = 1 .

Proof of Theorem 7.7. First we argue completeness, then argue soundness, and finally analyze
efficiency measures.
Completeness. Fix (x,w) ∈ R. The strings a1, . . . , akIP are computed by running the honest
IP prover PIP given (x,w). By the (perfect) completeness of the IP, VIP(x, ρ1, a1, . . . , ρkIP , akIP ; ρdc) = 1
with probability 1 over VIP’s randomness ρ1, . . . , ρkIP , ρdc. Hence, (a1, . . . , akIP , (x, ρ1, . . . , ρkIP , ρdc),⊥) ∈
Ψ(VIP) with probability 1 over ρ1, . . . , ρkIP , ρdc. Moreover, by the (perfect) completeness of the index-
decodable PCP, VPCP accepts with probability 1 (over ρPCP) when given access to the indexer proofs
πi obtained from the indexes ai via IPCP and the prover proof Πρdc output by the PCP prover PPCP.
We conclude that VIOP accepts with probability 1, as desired.
Soundness. Fix x /∈ L(R) (L(R) is the language implied by the relation R) and let P̃IOP be a
malicious IOP prover. In the following, we let ρ = (ρ1, . . . , ρkIP , ρdc) denote a list of kIP verifier
messages and ρi = (ρ1, . . . , ρi) a prefix of length i. Let E be the event over the verifier’s coins ρ that

(DPCP(π̃1), . . . ,DPCP(kIP, π̃kIP), (x,ρ),⊥) ∈ Ψ(VIP) ,

where π̃i := P̃IOP(ρi) for any i ∈ {1, . . . , kIP−1} and (π̃kIP , Π̃) := P̃IOP(ρkIP) where Π̃ = {Π̃ρdc}ρdc∈[rIP,dc].
By the definition of Ψ(VIP), (ρ1, . . . , ρkIP , ρdc) ∈ E if and only if the proofs π̃1, . . . , π̃kIP can be decoded
into messages that make the IP verifier accept:

VIP(x, ρ1,DPCP(π̃1), . . . , ρkIP ,DPCP(π̃kIP); ρdc) = 1 .

Using the following claims, by the law of total probability we conclude that VIOP accepts with
probability at most κPCP + βIP as desired.

Claim 7.10. We have that:

Pr
ρ,ρPCP

 V
π̃1,...,π̃kIP ,Π̃
IOP (x,ρ; ρPCP) = 1 ∧ E

π̃1 ← P̃IOP(ρ1)
...

π̃kIP−1 ← P̃IOP(ρkIP−1)

(π̃kIP , Π̃)← P̃IOP(ρkIP)

 ≤ βIP .

Proof. Consider the malicious IP prover P̃IP that simulates P̃IOP by passing it the verifier’s messages,
decoding the proof that P̃IOP sends in return, and sending the decoded message to the IP verifier.
More formally, in round 1 ≤ i ≤ kIP, letting ρ1, . . . , ρi be the verifier messages up to this point, P̃IP

computes πi := P̃IOP(ρ1, . . . , ρi) and sends ai := DPCP(π̃i) as its message to the IP verifier (in round
kIP, P̃IOP(ρ1, . . . , ρkIP) outputs in addition to π̃kIP also a proof Π̃, but this proof is ignored by P̃IP).

41

Let εIP be the probability that the IP verifier VIP accepts when interacting with P̃IP:

εIP = Pr
ρ1,...,ρkIP ,ρdc

 VIP(ρ1, a1, . . . , ρkIP , akIP ; ρdc) = 1

a1 ← P̃IP(ρ1)
...

akIP ← P̃IP(ρ1, . . . , ρkIP)

 .

By definition, whenever ρ ∈ E the IP verifier accepts given messages (a1, . . . , akIP) decoded from
the proofs that the prover sent given instance x and verifier messages ρ = (ρ1, . . . , ρkIP) (i.e.,
ai := DPCP(π̃i) where π̃i := P̃IOP(ρ1, . . . , ρi)). This is precisely how the malicious IP prover computes
its own messages. Hence, for every instance x and verifier messages ρ for which simultaneously
the IOP verifier accepts and also ρ ∈ E, the malicious IP prover P̃IP makes the IP verifier accept.
By soundness of the IP, the verifier accepts x /∈ L(R) with probability at most βIP over its random
messages regardless of what the malicious IP prover does. Thus we conclude that:

Pr
ρ,ρPCP

 V
π̃1,...,π̃kIP ,Π̃
IOP (x,ρ; ρPCP) = 1 ∧ E

π̃1 ← P̃IOP(ρ1)
...

π̃kIP−1 ← P̃IOP(ρkIP−1)

(π̃kIP , Π̃)← P̃IOP(ρkIP)

 ≤ εIP < βIP .

Claim 7.11. We have that:

Pr
ρ,ρPCP

 V
π̃1,...,π̃kIP ,Π̃
IOP (x,ρ; ρPCP) = 1 ∧ ¬E

π̃1 ← P̃IOP(ρ1)
...

π̃kIP−1 ← P̃IOP(ρkIP−1)

(π̃kIP , Π̃)← P̃IOP(ρkIP)

 ≤ κPCP(|x|+ rIP,int + rIP,dc) .

Proof. Assume towards contradiction that the claim does not hold. There must exist ρ /∈ E such
that

Pr
ρPCP

 Vπ̃1,...,π̃k,Π̃
IOP (x,ρ; ρPCP) = 1

π̃1 ← P̃IOP(ρ1)
...

π̃kIP−1 ← P̃IOP(ρkIP−1)

(π̃kIP , Π̃)← P̃IOP(ρkIP)

 > κPCP(|x|+ rIP,int + rIP,dc) .

The IOP verifier accepts if and only if the underlying PCP verifier accepts. This means that the
PCP verifier accepts with probability greater than κPCP(|x|+ rIP,int + rIP,dc) (the knowledge bound of
the PCP). Thus, by decodability of the index-decodable PCP, we get that:

(DPCP(π̃1), . . . ,DPCP(π̃kIP), (x,ρ),⊥) ∈ Ψ(VIP) .

This contradicts the assumption that ρ /∈ E.

Notice that the prover P̃IP above simply runs the malicious IOP prover P̃IOP and the decoder
DPCP. If both P̃IOP and DPCP run in polynomial time, then so does P̃IP. Hence if this is the case, and
the IP is computationally sound (sound against efficient adversaries) then so is the resulting IOP.

42

Complexity measures. The number of rounds is kIP. The IOP verifier uses rIP,int during interaction
and rPCP + rIP,dc random bits in the decision phase. The IOP verifier makes qPCP queries to its oracles
when running the PCP verifier. The IOP verifier’s running time is vtPCP since it runs the PCP verifier.
The IOP prover generates kIP indexer proofs each of length lPCP,I, and 2rdc prover proofs of length
lPCP,P.

43

Acknowledgments

Gal Arnon is supported in part by a grant from the Israel Science Foundation (no. 2686/20) and by
the Simons Foundation Collaboration on the Theory of Algorithmic Fairness. Alessandro Chiesa is
funded by the Ethereum Foundation. Eylon Yogev is funded by the ISF grants 484/18, 1789/19,
Len Blavatnik and the Blavatnik Foundation, and The Blavatnik Interdisciplinary Cyber Research
Center at Tel Aviv University.

References

[ALMSS98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. “Proof
verification and the hardness of approximation problems”. In: Journal of the ACM 45.3
(1998). Preliminary version in FOCS ’92., pp. 501–555.

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic checking of proofs: a new characterization
of NP”. In: Journal of the ACM 45.1 (1998). Preliminary version in FOCS ’92., pp. 70–122.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed–Solomon
Interactive Oracle Proofs of Proximity”. In: Proceedings of the 45th International Colloquium
on Automata, Languages and Programming. ICALP ’18. 2018, 14:1–14:17.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scalable Zero Knowledge
with No Trusted Setup”. In: Proceedings of the 39th Annual International Cryptology
Conference. CRYPTO ’19. 2019, pp. 733–764.

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. “Linear-Time Arguments with Sub-
linear Verification from Tensor Codes”. In: Proceedings of the 18th Theory of Cryptography
Conference. TCC ’20. 2020, pp. 19–46.

[BCGGHJ17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and
Sune K. Jakobsen. “Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit Satisfiability”.
In: Proceedings of the 23rd International Conference on the Theory and Applications of
Cryptology and Information Security. ASIACRYPT ’17. 2017, pp. 336–365.

[BCGGRS19] Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, and Nicholas
Spooner. “Linear-Size Constant-Query IOPs for Delegating Computation”. In: Proceedings
of the 17th Theory of Cryptography Conference. TCC ’19. 2019, pp. 494–521.

[BCGRS17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner.
“Interactive Oracle Proofs with Constant Rate and Query Complexity”. In: Proceedings of
the 44th International Colloquium on Automata, Languages and Programming. ICALP ’17.
2017, 40:1–40:15.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. “Quasilinear-Size Zero
Knowledge from Linear-Algebraic PCPs”. In: Proceedings of the 13th Theory of Cryptography
Conference. TCC ’16-A. 2016, pp. 33–64.

[BCL20] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. Zero-Knowledge Succinct Arguments
with a Linear-Time Prover. Cryptology ePrint Archive, Report 2020/1527. 2020.

[BCRSVW19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. “Aurora: Transparent Succinct Arguments for R1CS”. In: Proceedings of
the 38th Annual International Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’19. Full version available at https://eprint.iacr.org/2018/
828. 2019, pp. 103–128.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In:
Proceedings of the 14th Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

44

https://eprint.iacr.org/2018/828
https://eprint.iacr.org/2018/828

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. “Checking computations
in polylogarithmic time”. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing. STOC ’91. 1991, pp. 21–32.

[BGG90] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. “Randomness in Interactive Proofs”. In:
Proceedings of the 31st Annual Symposium on Foundations of Computer Science. FOCS ’90.
1990, pp. 563–572.

[BGHSV05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
“Short PCPs Verifiable in Polylogarithmic Time”. In: Proceedings of the 20th Annual IEEE
Conference on Computational Complexity. CCC ’05. 2005, pp. 120–134.

[BGHSV06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
“Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding”. In: SIAM Journal
on Computing 36.4 (2006), pp. 889–974.

[BGKS19] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI:
Sampling Outside the Box Improves Soundness. ECCC TR19-044. 2019.

[BM88] László Babai and Shlomo Moran. “Arthur-Merlin Games: A Randomized Proof System,
and a Hierarchy of Complexity Classes”. In: Journal of Computer and System Sciences 36.2
(1988), pp. 254–276.

[BN21] Sarah Bordage and Jade Nardi. Interactive Oracle Proofs of Proximity to Algebraic Geometry
Codes. ArXiv cs/2011.04295. 2021.

[BS08] Eli Ben-Sasson and Madhu Sudan. “Short PCPs with Polylog Query Complexity”. In: SIAM
Journal on Computing 38.2 (2008). Preliminary version appeared in STOC ’05., pp. 551–607.

[Bab85] László Babai. “Trading group theory for randomness”. In: Proceedings of the 17th Annual
ACM Symposium on Theory of Computing. STOC ’85. 1985, pp. 421–429.

[Ben+17] Eli Ben-Sasson et al. “Computational integrity with a public random string from quasi-
linear PCPs”. In: Proceedings of the 36th Annual International Conference on Theory and
Application of Cryptographic Techniques. EUROCRYPT ’17. 2017, pp. 551–579.

[CCHLRR18] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, and Ron D.
Rothblum. Fiat–Shamir From Simpler Assumptions. Cryptology ePrint Archive, Report
2018/1004. 2018.

[CFLS95] Anne Condon, Joan Feigenbaum, Carsten Lund, and Peter W. Shor. “Probabilistically Check-
able Debate Systems and Nonapproximability of PSPACE-Hard Functions”. In: Chicago
Journal of Theoretical Computer Science 1995 (1995).

[CFLS97] Anne Condon, Joan Feigenbaum, Carsten Lund, and Peter W. Shor. “Random Debaters
and the Hardness of Approximating Stochastic Functions”. In: SIAM Journal on Computing
26.2 (1997), pp. 369–400.

[CHMMVW20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas
Ward. “Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS”. In: Pro-
ceedings of the 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques. EUROCRYPT ’20. 2020.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal: Post-Quantum and Trans-
parent Recursive Proofs from Holography”. In: Proceedings of the 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques. EUROCRYPT ’20.
2020, pp. 769–793.

[DH13] Irit Dinur and Prahladh Harsha. “Composition of Low-Error 2-Query PCPs Using Decodable
PCPs”. In: SIAM Journal on Computing 42.6 (2013). Preliminary version appeared in
Property Testing ’10., pp. 2452–2486.

45

[DR04] Irit Dinur and Omer Reingold. “Assignment Testers: Towards a Combinatorial Proof of the
PCP Theorem”. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science. FOCS ’04. 2004, pp. 155–164.

[Din07] Irit Dinur. “The PCP theorem by gap amplification”. In: Journal of the ACM 54.3 (2007),
p. 12.

[Dru11a] Andrew Drucker. “A PCP Characterization of AM”. In: Proceedings of the 38th International
Colloquium on Automata, Languages and Programming. ICALP ’11. 2011, pp. 581–592.

[Dru11b] Andrew Drucker. “Efficient Probabilistically Checkable Debates”. In: Proceedings of the 15th
International Workshop on Approximation, Randomization, and Combinatorial Optimization.
RANDOM ’11. 2011, pp. 519–529.

[FGLSS91] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. “Approxi-
mating clique is almost NP-complete (preliminary version)”. In: Proceedings of the 32nd
Annual Symposium on Foundations of Computer Science. SFCS ’91. 1991, pp. 2–12.

[FGLSS96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. “Interactive
proofs and the hardness of approximating cliques”. In: Journal of the ACM 43.2 (1996).
Preliminary version in FOCS ’91., pp. 268–292.

[FGMSZ89] Martin Fürer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis Zachos. “On
Completeness and Soundness in Interactive Proof Systems”. In: Advances in Computing
Research 5 (1989), pp. 429–442.

[GI05] Venkatesan Guruswami and Piotr Indyk. “Linear-time encodable/decodable codes with
near-optimal rate”. In: IEEE Transactions on Information Theory 51.10 (2005). Preliminary
version appeared in STOC ’03., pp. 3393–3400.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowledge complexity of inter-
active proof systems”. In: SIAM Journal on Computing 18.1 (1989). Preliminary version
appeared in STOC ’85., pp. 186–208.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs that Yield Nothing But Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems”. In: Journal of the
ACM 38.3 (1991). Preliminary version appeared in FOCS ’86., pp. 691–729.

[GS86] Shafi Goldwasser and Michael Sipser. “Private Coins versus Public Coins in Interactive Proof
Systems”. In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing.
STOC ’86. 1986, pp. 59–68.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. “Unbalanced expanders
and randomness extractors from Parvaresh–Vardy codes”. In: Journal of the ACM 56.4
(2009), 20:1–20:34.

[GVW02] Oded Goldreich, Salil Vadhan, and Avi Wigderson. “On interactive proofs with a laconic
prover”. In: Computational Complexity 11.1/2 (2002), pp. 1–53.

[HRT07] Ishay Haviv, Oded Regev, and Amnon Ta-Shma. “On the Hardness of Satisfiability with
Bounded Occurrences in the Polynomial-Time Hierarchy”. In: Theory of Computing 3.1
(2007), pp. 45–60.

[IW14] Yuval Ishai and Mor Weiss. “Probabilistically Checkable Proofs of Proximity with Zero-
Knowledge”. In: Proceedings of the 11th Theory of Cryptography Conference. TCC ’14. 2014,
pp. 121–145.

[KR08] Yael Kalai and Ran Raz. “Interactive PCP”. In: Proceedings of the 35th International
Colloquium on Automata, Languages and Programming. ICALP ’08. 2008, pp. 536–547.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. “Algebraic Methods
for Interactive Proof Systems”. In: Journal of the ACM 39.4 (1992), pp. 859–868.

46

[Mie09] Thilo Mie. “Short PCPPs verifiable in polylogarithmic time with O(1) queries”. In: Annals
of Mathematics and Artificial Intelligence 56 (3 2009), pp. 313–338.

[RR20] Noga Ron-Zewi and Ron Rothblum. “Local Proofs Approaching the Witness Length”. In:
Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science.
FOCS ’20. 2020, pp. 846–857.

[RRR16] Omer Reingold, Ron Rothblum, and Guy Rothblum. “Constant-Round Interactive Proofs
for Delegating Computation”. In: Proceedings of the 48th ACM Symposium on the Theory
of Computing. STOC ’16. 2016, pp. 49–62.

[Sha92] Adi Shamir. “IP = PSPACE”. In: Journal of the ACM 39.4 (1992), pp. 869–877.

47

	Abstract
	Contents
	1 Introduction
	1.1 Our results

	2 Techniques
	2.1 The case of a single-round IP
	2.2 Local access to randomness
	2.3 Index-decodable PCPs
	2.4 Local access to prover messages
	2.5 Constructing index-decodable PCPs
	2.6 Achieving constant query complexity

	3 Preliminaries
	3.1 Relative distance
	3.2 Relations
	3.3 Interactive oracle proofs
	3.4 Round-by-round soundness
	3.5 Error correcting codes
	3.6 PCPs of proximity for circuit satisfiability
	3.7 Extractors

	4 Index-decodable PCPs
	5 Constructing index-decodable PCPs
	5.1 Building blocks
	5.2 The construction

	6 Achieving constant query complexity per oracle
	6.1 Proof composition preserves index-decodability
	6.2 Robustification

	7 Transforming IPs into IOPs
	7.1 Local access to randomness
	7.2 Local access to prover messages

	Acknowledgments
	References

