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Abstract

This paper presents a brand-new idea of masking the algebraic structure of linear codes used
in code-based cryptography. Specially, we introduce the so-called semilinear transformations
in coding theory, make a thorough study on their algebraic properties and then creatively apply
them to the construction of code-based cryptosystems. Note that Fqm can be viewed as an
Fq-linear space of dimension m, a semilinear transformation φ is therefore defined to be an
Fq-linear automorphism of Fqm . After that, we impose this transformation to a linear code C
over Fqm . Apparently φ(C) forms an Fq-linear space, but generally does not preserve the Fqm-
linearity according to our analysis. Inspired by this observation, a new technique for masking
the structure of linear codes is developed in this paper. Meanwhile, we endow the secret code
with the so-called partial cyclic structure to make a reduction in public-key size. Compared to
some other code-based cryptosystems, our proposal admits amuchmore compact representation
of public keys. For instance, 1058 bytes are enough to reach the security of 256 bits, almost
1000 times smaller than that of the Classic McEliece entering the third round of the NIST PQC
project.

1 Introduction
Over the past decades, post-quantum cryptography (PQC) have been drawing more and more atten-
tion from the cryptographic community. The most important advantage of PQC is their potential
resistance against attacks from quantum computers. In post-quantum cryptography, cryptosystems
based on coding theory are one of the most promising candidates. In addition to security in the
future quantum era, these cryptosystems generally have fast encryption and decryption procedures.
Code-based cryptography has quite a long history, nearly as old as RSA–one of the best known
public-key cryptosystems. However, this family of cryptosystems have never been used in prac-
tical situations for the reason that they require large memory for public keys. For instance, the
Classic McEliece [1] submitted to the NIST PQC project has a public-key size of 255 kilobytes for
128 bits security. To overcome this drawback, a variety of improvements for McEliece’s original
scheme [16] were proposed one after another. Generally these improvements can be divided into
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two categories: one is to substitute Goppa codes used in the McEliece system with other families
of codes endowed with special structures, the other is to use codes endowed with the rank metric.
However, most of these invariants have been shown to be insecure against structural attacks.

The first cryptosystem based on rank metric codes, known as the GPT cryptosystem, was pro-
posed by Gabidulin et al. in [2]. The main advantage of rank-based cryptosystems consists in their
compact representation of public keys. For instance, 600 bytes are enough to reach the 100 bits secu-
rity for the original GPT cryptosystem. After that, applying rank metric codes to the construction of
cryptosystems became an important topic in code-based cryptography. Some of the representative
variants based on Gabidulin codes can be found in [3–7]. Unfortunately, most of these invariants,
including the original GPT cryptosystem, have been completely broken because of Gabidulin codes
being highly structrued. Concretely, Gabidulin codes contain a large subspace invariant under the
Frobenius transformation, which provids the feasibility for us to distinguish Gabidulin codes from
general ones. Based on this observation, various structural attacks [24–28] on the GPT cryptosys-
tem and some of their variants were designed. Apart from Gabidulin codes, another family of rank
metric codes, known as the Low Rank Parity Check (LRPC) codes, and a probabilistic encryption
scheme based on these codes were proposed in [8, 9]. Compared to Gabidulin codes, LRPC codes
admit a weak algebraic structure. Encryption schemes based on these codes can therefore resist
structural attacks designed for Gabidulin codes based cryptosystems. However, this type of cryp-
tosystems generally have a decrypting failure rate, which can be used to devise a reaction attack [10]
to recover the private key.

Our contribution. In the paper [11], Guo et al. claimed that φ(C) does not preserve the Fqm-
linearity with high probability according to their experiments on Magma, where φ is an Fq-linear
automorphism of Fqm and C is a linear code over Fqm . This inspires us to apply this kind of transfor-
mations to the construction of code-based cryptosystems. According to our analysis in the present
paper, transformations that preserve the Fqm-linearity of all linear codes over Fqm is indeed a com-
position of the Frobenius transformation and stretching transformation. AnFq-linear transformation
admitting this property is called a fully linear transformation over Fqm . Following this we give a
sufficient and necessary condition for an Fq-linear transformation being fully linear. Meanwhile we
find that, in general cases, an Fq-linear transformation preserving the Fqm-linearity is in fact fully
linear. Note that the total number of Fq-linear automorphisms of Fqm is

∏m−1
i=0 (qm − qi), while the

total number of fully linear transformations is m(qm − 1) according to our analysis. This implies
that a fully linear transformation occurs with extremely low probability when qm is large enough,
which provides the feasibility for us to exploit this kind of transformations in code-based cryptogra-
phy. To reduce the public-key size, we endow the underlying Gabidulin code with the partial cyclic
structure.

The rest of this paper is organized as follows. Section 2 introduces some basic notations used
throughout this paper, as well as definitions of Moore matrices and partial cyclic codes. Section
3 presents two hard problems in coding theory and some attacks on them that will be useful to
estimate the security level of our proposal. In Section 4, we will introduce the concept of semilinear
transformations, and investigate some of their algebraic properties. Section 5 is devoted to the
description of our new proposal and some notes on the choice of secret keys, then we present the
security analysis of our proposal in Section 6. After that, we give some suggested parameters for
different security levels and make a comparison on public-key size with some other code-based
cryptosystems in Section 7. And we will make a few concluding remarks in Section 8.
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2 Preliminaries
In this section, we first introduce some notations used throughout this paper and recall some basic
concepts in coding theory.

2.1 Notations and basic concepts
Let Fq a finite field of characteristic 2, and Fqm be an extension field of Fq of degree m. A vector
a ∈ Fm

qm is called a basis vector of Fqm over Fq if components of a are linearly independent over
Fq. Particularly, we call α a polynomial element if a = (1, α, · · · , αm−1) forms a basis vector of
Fqm over Fq, and call α a normal element if a = (α, αq, · · · , αqm−1

) forms a basis vector of Fqm

over Fq. For two positive integers k and n, denote byMk,n(Fq) the space of all k×nmatrices over
Fq, and by GLn(Fq) the set of all invertible matrices in Mn,n(Fq). For a matrix M ∈ Mk,n(Fq),
let ⟨M⟩q be the linear space spanned by rows ofM over Fq.

A linear code C of length n and dimension k over Fqm is a k-dimensional subspace of Fn
qm . The

dual code of C, denoted by C⊥, is the orthogonal space of C under the usual inner product over Fqm .
A matrix G with full row rank is called a generator matrix of C if its row vectors form a basis of
C. A generator matrix H of C⊥ is called a parity-check matrix of C. For a codeword c ∈ C, the
Hamming support of c, denoted by SuppH(c), is defined to be the set of coordinates of c at which
the components are nonzero. The Hamming weight of c, denoted by wtH(c), is the cardinality of
SuppH(c). The minimum Hamming distance of C is defined as the minimum Hamming weight of
nonzero codewords in C. The rank support of c, denoted by SuppR(c), is the linear space spanned
by components of c over Fq. The rank weight of c, denoted by wtq(c), is the dimension of SuppR(c)
over Fq.

2.2 Gabidulin codes
Before presenting the definition of Gabidulin codes, we first introduce the concept of Moore matri-
ces and some related results.
Definition 1 (Moore matrices). For a positive integer i, we introduce the notation [i] = qi. With
this notation, we define α[i] = αqi to be the i-th Frobenius power of α ∈ Fqm . For a vector
g = (g1, · · · , gn) ∈ Fn

qm , we define g[i] = (g
[i]
1 , · · · , g[i]n ) to be the i-th Frobenius power of g. A

matrixG ∈ Mk,n(Fqm) is called aMoore matrix generated by g if the i-th row vector ofG is exactly
g[i−1] for 1 ⩽ i ⩽ k, namely we have

G =


g1 g2 · · · gn
g
[1]
1 g

[1]
2 · · · g

[1]
n

... ... ...
g
[k−1]
1 g

[k−1]
2 · · · g

[k−1]
n

 .

For an [n, k] linear code C ⊆ Fn
qm , the i-th Frobenius power of C is defined to be C[i] = {c[i] :

c ∈ C}.

Proposition 1. As for Moore matrices, we have the following statements.
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(1) For two Moore matrices A,B ∈ Mk,n(Fqm), apparently A+B is also a Moore matrix.

(2) For a vector a ∈ Fn
qm with wtq(a) = s, let A ∈ Mk,n(Fqm) be a Moore matrix generated by

a. Then we have Rank(A) = min{s, k}.

Definition 2 (Gabidulin codes). For positive integers k ⩽ n ⩽ m, let g ∈ Fn
qm such that wtq(g) = n.

LetG ∈ Mk,n(Fqm) be the Moore matrix generated by g, then an [n, k]Gabidulin code G generated
by g is defined to be the linear space ⟨G⟩qm .

Gabidulin codes can be seen as an analogue of GRS codes in the rank metric, both of which have
pretty good algebraic structure. Similarly, Gabidulin codes are optimal in the rank metric, namely
an [n, k] Gabidulin code has minimum rank distance d = n− k + 1 [33] and can therefore correct
up to ⌊n−k

2
⌋ rank errors.

2.3 Partial cyclic codes
In the paper [6], Lau et al. proposed the use of partial cyclic codes to shrink the public-key size in
code-based cryptography. Nowwe formally introduce this family of codes and some related results.
Definition 3 (Partial circulant matrices). Let m = (m0, · · · ,mn−1) ∈ Fn

q . The circulant matrix
M ∈ Mn,n(Fq) generated bym is defined to be

M =


m0 m1 · · · mn−1

mn−1 m0 · · · mn−2
... ... ...

m1 m2 · · · m0

 .

For a positive integer k ⩽ n, the k × n partial circulant matrix generated by m is defined to be
the first k rows of M . We denote by Pk(m) the partial circulant matrix with respect tom, and by
Pn(m) the circulant matrix particularly. Furthermore, we denote by Pn(Fq) the set of all n × n
circulant matrices over Fq.
Remark 1. Chalkley in [23] proved that all circulant matrices over Fq form a commutative ring
under matrix addition and multiplication. Following this, it is easy to see that for a k × n partial
circulant matrixA and a circulant matrixB of order n, the product matrixAB is also a k×n partial
circulant matrix.

Since we will use an invertible circulant matrix as part of the secret key, it is necessary to make
clear in what situation a circulant matrix is invertible and how many invertible circulant matrices
of order n× n there will be over Fq. The following two propositions first describe a necessary and
sufficient condition for a circulant matrix being invertible, and then make an accurate estimation on
the quantity of invertible circulant matrices over Fq.

Proposition 2. [21] For a vector m = (m0, · · · ,mn−1) ∈ Fn
q , we define m(x) =

∑n−1
i=0 mix

i ∈
Fq[x]. A sufficient and necessary condition for Pn(m) being invertible is gcd(m(x), xn − 1) = 1.

Proposition 3. [22] For a polynomial f(x) ∈ Fq[x] of degree n, let g1(x), · · · , gs(x) ∈ Fq[x] be s
distinct irreducible factors of f(x), namely we have f(x) =

∏s
i=1 gi(x)

ei for some positive integers
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e1, · · · , es. Let di = deg(gi(x)) for 1 ⩽ i ⩽ s, the we have

Φq(f(x)) = qn
s∏

i=1

(1− 1

qdi
),

where Φq(f(x)) denotes the number of polynomials relatively prime to f(x) of degree less than n.

Now we introduce the concept of partial cyclic codes.
Definition 4 (Partial cyclic codes). For a vector a = (a1, · · · , an) ∈ Fn

q , let G = Pk(a) be the
k × n partial circulant matrix generated by a. An [n, k] linear code C spanned by rows of G over
Fq is called a partial cyclic code.
Remark 2. For a basis vector g = (g[n−1], · · · , g[1], g) of Fqn over Fq, let G = Pk(g) be the k × n
partial matrix generated by g. It is easy to verify that G is a k × n Moore matrix. The linear code
G generated by G is called a partial cyclic Gabidulin code.

As for the total number of [n, k] partial cyclic Gabidulin codes over Fqn , or equivalently the
total number of normal elements of Fqn over Fq, we present the following proposition.

Proposition 4. [22] Normal elements of Fqn over Fq are in one-to-one correspondence to circulant
matrices in GLn(Fq), which implies that the total number of normal elements of Fqn over Fq can
be evaluated as Φq(x

n − 1).

3 Hard problems in coding theory
Definition 5 (Syndrome Decoding (SD) Problem). Given positive integers n, k and t, let H be an
(n− k)× n matrix over Fq and s ∈ Fn−k

q . The SD problem with parameters (q, n, k, t) is to find a
vector e ∈ Fn

q such that s = eHT and wtH(e) = t.
The SD problem, proved to be NP-complete by Berlekamp et al. in [15], plays a crucial role in

both complexity theory and code-based cryptography. The NP-completeness implies that the best
known algorithm of solving this problem requires exponential time. The first example of the SD
problem being used in code-based cryptography is the McEliece cryptosystem [16] based on Goppa
codes. A generalized version of this problem in the rank metric is the rank syndrome decoding
problem defined as follows.
Definition 6 (Rank Syndrome Decoding (RSD) Problem). Given positive integersm,n, k and t, let
H be an (n−k)×nmatrix overFqm and s ∈ Fn−k

qm . The RSD problemwith parameters (q,m, n, k, t)
is to find a vector e ∈ Fn

qm such that s = eHT and wtq(e) = t.
The RSD problem is an important issue in rank code-based cryptography, which has been used

for designing cryptosystems since the proposal of the GPT cryptosystem [2] in 1991. However, the
hardness of this problem had never been proved until the work in [14], where the authors gave a
randomized reduction of the SD problem to the RSD problem.

Generally speaking, attacks on the RSD problem can be divided into two categories, namely
the combinatorial attack and algebraic attack. The main idea of combinatorial attacks consists in
solving a linear system obtained from the parity-check equation, whose unknowns are components
of ei (1 ⩽ i ⩽ n) with respect to a potential support of e. Up to now, the best known combinatorial
attacks can be found in [17, 19, 20], as summarized in Table 1.
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Attack Complexity

[17] O
(
min

{
m3t3q(t−1)(k+1), (k + t)3t3q(t−1)(m−t)

})
[19] O

(
(n− k)3m3qmin{t⌈

mk
n ⌉,(t−1)⌈m(k+1)

n ⌉}
)

[20] O
(
(n− k)3m3qt⌈

m(k+1)
n ⌉−m

)
Table 1: Best known combinatorial attacks on the RSD problem.

As for the algebraic attack, the main idea consists in converting an RSD instance into a quadratic
system and then solving this system using algebraic approaches. Here in this paper, we mainly con-
sider attacks proposed in [12,13,18,19], whose complexity and applicable condition are summarized
in Table 2.

Attack Condition Complexity

[19]
⌈
(t+1)(k+1)−(n+1)

t

⌉
⩽ k O

(
k3t3qt⌈

(t+1)(k+1)−(n+1)
t ⌉

)
[18] O

(
k3m3qt⌈

km
n ⌉
)

[12]
m
(
n−k−1

t

)
⩾
(
n
t

)
− 1

O
(
m
(
n−p−k−1

t

)(
n−p
t

)ω−1
)
, where ω = 2.8 and

p = max{p ∈ [n] : m
(
n−i−k−1

t

)
⩾
(
n−i
t

)
− 1}

[13] O
((

((m+n)t)t

t!

)ω)
[12]

m
(
n−k−1

t

)
<
(
n
t

)
− 1

O
(
qatm

(
n−k−1

t

)(
n−a
t

)ω−1
)
, where

a = min{a ∈ N : m
(
n−k−1

t

)
⩾
(
n−a
t

)
− 1}

[13] O
((

((m+n)t)t+1

(t+1)!

)ω)
Table 2: Best known algebraic attacks on the RSD problem.

4 Semilinear transformations
Note that Fqm can be regarded as an Fq-linear space of dimension m. Let a = (α1, · · · , αm) and
b = (β1, · · · , βm) be two basis vectors of Fqm over Fq. We define an Fq-linear automorphism of
Fqm as follows

φ(α1) = β1, · · · , φ(αm) = βm.

This implies that for any α =
∑m

i=1 λiαi ∈ Fqm with λi ∈ Fq, we have φ(α) =
∑m

i=1 λiβi.
Furthermore, we introduce the following notations:

(1) For a vector v = (v1, · · · , vn) ∈ Fn
qm , we define φ(v) = (φ(v1), · · · , φ(vn));
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(2) For a set V ⊆ Fn
qm , we define φ(V) = {φ(v) : v ∈ V};

(3) For a matrixM ∈ Mk,n(Fqm), we define φ(M) = (φ(Mij)).

In the remaining part of this section, we will make a thorough study on this kind of transforma-
tions. Firstly, we introduce a basic fact about the Fq-linear automorphisms of Fqm .

Proposition 5. The total number of Fq-linear automorphisms of Fqm is

m−1∏
i=0

(qm − qi).

Proof. For a basis vector a of Fqm over Fq and an invertible matrix A ∈ GLm(Fq), it is easy to
see that aA is also a basis vector. On the contrary, let b be another basis vector, then there exists
a unique B ∈ GLm(Fq) such that b = aB. This enables us to conclude that, for a given basis
vector a, all the Fq-linear automorphisms of Fqm are in one-to-one correspondence to GLm(Fq).
By evaluating the cardinality of GLm(Fq), we obtain the conclusion immediately.

For a given vector c ∈ Fn
qm , a natural question is how the Hamming (rank) weight of c changes

under the action of an Fq-linear transformation φ. To answer this question, we introduce the fol-
lowing proposition.

Proposition 6. An Fq-linear automorphism of Fqm is an isometric transformation in both the Ham-
ming metric and rank metric.

Proof. Let α ∈ Fqm and φ be an automorphism of Fqm , apparently we have φ(α) = 0 if and
only if α = 0. Hence SuppH(φ(v)) = SuppH(v) holds for any v ∈ Fn

qm , which implies that
wtH(φ(v)) = wtH(v).

As for the rank metric, let v ∈ Fn
qm such that wtq(v) = n. If wtq(φ(v)) < n, then there

exists b ∈ Fn
q \{o} such that φ(v)bT = φ(vbT ) = 0. Following this we have vbT = 0, which

conflicts with wtq(v) = n. More generally, let wtq(v) = r < n. Then there exist v∗ ∈ Fr
qm with

wtq(v∗) = r and Q ∈ GLn(Fq) such that v = (v∗|o)Q. Apparently we have φ(v) = (φ(v∗)|o)Q
and wtq(φ(v)) = wtq(φ(v∗)) = r.

For a linear code C ⊆ Fn
qm and an Fq-linear automorphism φ of Fqm , it is easy to see that

φ(C) is an Fq-linear space, but generally no longer Fqm-linear. Formally, we classify the Fq-linear
automorphisms of Fqm according to the following definition.
Definition 7. Let C ⊆ Fn

qm be an [n, k] linear code, and φ be an Fq-linear automorphism of Fqm . If
φ(C) is also an Fqm-linear code, we say that φ is linear on C. Otherwise, we say that φ is semilinear
on C. If φ is linear on all linear codes over Fqm , we say that φ is fully linear over Fqm . Otherwise,
we say that φ is semilinear over Fqm .

The following theorem provides a sufficient and necessary condition for φ being fully linear
over Fqm .

Theorem 8. Let a = (α1, · · · , αm) be a basis vector of Fqm over Fq, and φ be an Fq-linear auto-
morphism of Fqm . Let A = [φ(α1a), · · · , φ(αma)]

T , then a sufficient and necessary condition for
φ being fully linear is that A has rank 1.
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Proof. On the necessity aspect, assume that φ is fully linear over Fqm . Let C = ⟨a⟩qm be a linear
code over Fqm , and ai = φ(αia) be the i-th row of A. Since φ is linear on C, there must be
µai ∈ φ(C) for any µ ∈ Fqm and 1 ⩽ i ⩽ m. This implies that there exists α ∈ Fqm such that
µai = φ(αa). Since components of a form a basis of Fqm over Fq, there exists λj ∈ Fq (1 ⩽ j ⩽
m) such that α =

∑m
j=1 λjαj . Hence we have

µai = φ(αa) = φ(
m∑
j=1

λjαja) =
m∑
j=1

λjφ(αja) =
m∑
j=1

λjaj.

Let Vi = {µai : µ ∈ Fqm} and V = {
∑m

j=1 λjaj : λ1, · · · , λm ∈ Fq}, apparently we have Vi ⊆ V .
Note that a1, · · · ,am are linearly independent over Fq, then we have |Vi| = |V| = qm and hence
Vi = V . Particularly, we have aj ∈ Vi for any 1 ⩽ j ⩽ m. This implies thatA has rank 1 over Fqm .

On the sufficiency aspect, let V and Vi be defined as above. Note that A has rank 1 over Fqm ,
then for a fixed ai, there exists µj ∈ F∗

qm such that aj = µjai for 1 ⩽ j ⩽ m. This implies that
V = {

∑m
j=1 λjµjai : λj ∈ Fq}. Apparently V ⊆ Vi, together with |V| = |Vi| we have V = Vi.

Hence for any µ ∈ Fqm , there exist λ1, · · · , λm ∈ Fq such that µai =
∑m

j=1 λjaj .
Let C be an arbitrary linear code over Fn

qm . For any c ∈ φ(C), there exists u ∈ C such that
c = φ(u). Furthermore, there existsM ∈ Mm,n(Fq) such that u = aM . Apparently we have

ajM = φ(αja)M = φ(αjaM) = φ(αju) ∈ φ(C)

for any 1 ⩽ j ⩽ m. Assume that
∑m

i=1 aiαi = 1 where ai ∈ Fq, then u = aM =
∑m

i=1 aiαiaM .
Hence

µc = µφ(u) = µφ(
m∑
i=1

aiαiaM) = µ
m∑
i=1

aiφ(αia)M =
m∑
i=1

aiµaiM.

Note that for any µ ∈ Fqm and 1 ⩽ i ⩽ m, there exists λij ∈ Fq such that µai =
∑m

j=1 λijaj .
Hence we have

µc =
m∑
i=1

ai(
m∑
j=1

λijaj)M =
m∑
i=1

m∑
j=1

λijai(ajM) ∈ φ(C)

because of ajM ∈ φ(C) and φ(C) being Fq-linear. Furthermore, we have µ1c1 + µ2c2 ∈ φ(C) for
any c1, c2 ∈ φ(C) and µ1, µ2 ∈ Fqm . Following this we conclude that φ(C) is Fqm-linear, and hence
then φ is fully linear over Fqm .

The following theorem gives an accurate count of fully linear transformations over Fqm .

Theorem 9. The total number of fully linear transformations over Fqm is m(qm − 1).

Proof. Let a = (1, α, · · · , αm−1) be a basis vector of Fqm over Fq, and φ be an Fq-linear automor-
phism of Fqm . By Theorem 8, a necessary condition for φ being fully linear is that φ(αa) = γφ(a)
or equivalently

(φ(α), φ(α2), · · · , φ(αm)) = γ(φ(1), φ(α), · · · , φ(αm−1)) (1)

holds for some γ ∈ Fqm . Assume that φ(1) = β ∈ F∗
qm , then we can deduce from (1) that

φ(αi) = γφ(αi−1) = γiβ for any 1 ⩽ i ⩽ m.
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Let f(x) = xm +
∑m−1

i=0 aix
i ∈ Fq[x] be the minimal polynomial of α, then we have

f(α) = αm +
m−1∑
i=0

aiα
i = 0. (2)

Because of φ being Fq-linear, applying φ to both sides of (2) leads to the equation

φ(αm) +
m−1∑
i=0

aiφ(α
i) = γmβ +

m−1∑
i=0

aiγ
iβ = 0.

This implies that f(γ) = 0, and there must be γ = α[i] for some 0 ⩽ i ⩽ m− 1.
Moreover, it is easy to verify that φ(αia) = γiφ(a) holds for any 1 ⩽ i ⩽ m− 1. By Theorem

8, with such a choice of γ and β, φ is fully linear over Fqm . Let Γ = {α[i] : 0 ⩽ i ⩽ m− 1}, then
all elements in Γ× F∗

qm are feasible for φ being fully linear. Hence the total number of fully linear
transformations over Fqm ism(qm − 1).

Remark 3. Let α be a polynomial element of Fqm over Fq, and Γ be the set of conjugates of α.
For any γ ∈ Γ and β ∈ F∗

qm , the Fq-linear transformation, determined by φ(αi) = βγi for 0 ⩽
i ⩽ m − 1, forms a fully linear transformation over Fqm according to Theorem 9. Note that γ is a
conjugate of α, there exists 0 ⩽ j ⩽ m − 1 such that γ = α[j]. For any µ =

∑m−1
i=0 λiα

i ∈ Fqm

where λi ∈ Fq, we have

φ(µ) = φ(
m−1∑
i=0

λiα
i) =

m−1∑
i=0

λiφ(α
i) =

m−1∑
i=0

λiβγ
i

= β
m−1∑
i=0

λi(α
[j])i = β(

m−1∑
i=0

λiα
i)[j] = βµ[j].

This implies that a fully linear transformation overFqm can be seen as a composition of the Frobenius
transformation and stretching transformation.

Theorem 10. For two positive integers k < n, let C be an [n, k] linear code over Fqm . Let
G = [Ik|A] be a systematic generator matrix of C, where Ik is the k × k identity matrix and
A ∈ Mk,n−k(Fqm). Let S = {Aij : 1 ⩽ i ⩽ k, 1 ⩽ j ⩽ n − k}, then we have the following
statements.

(1) If S ⊆ Fq, then any Fq-linear automorphism of Fqm is linear on C. Furthermore, we have
φ(C) = C;

(2) If there exists α ∈ S such that α is a polynomial element of Fqm over Fq, then any Fq-linear
transformation φ over Fqm is fully linear if and only if φ is linear on C.

Proof. (1) Let gi be the i-th row of G, apparently we have φ(αgi) = φ(α)gi for any α ∈ Fqm .
For any c ∈ C, there exists x = (x1, · · · , xk) ∈ Fk

qm such that c = xG. Then we have

φ(c) = φ(xG) = φ(
k∑

i=1

xigi) =
k∑

i=1

φ(xigi) =
k∑

i=1

φ(xi)gi ∈ C.

By the definition of φ(C), we have φ(C) ⊆ C. Together with |φ(C)| = |C|, there will be
φ(C) = C.
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(2) The necessity is obvious, and it suffices to prove the sufficiency. Without loss of generality,
we consider the first row ofG and assume that g1 = (1, 0, · · · , 0, α, ⋆) ∈ Fn

qm , whereα ∈ Fqm

is a polynomial element and “⋆” represents some vector in Fn−k−1
qm . Note that φ is linear on

C, or equivalently φ(C) is an Fqm-linear code that has φ(G) as a generator matrix. For any
β ∈ Fqm , it is easy to see that φ(g1) and φ(βg1) are linearly dependent over Fqm . Following
this we have φ(1)φ(αβ) = φ(α)φ(β), and then

φ(αβ) =
φ(α)

φ(1)
φ(β) = γφ(β),

where γ = φ(α)
φ(1)

. Because of α being a polynomial element, a = (1, α, · · · , αm−1) ∈ Fm
qm

forms a basis vector of Fqm over Fq. Assume that φ(αi) = βi ∈ Fqm for 0 ⩽ i ⩽ m − 1,
namely

φ(a) = (β0, · · · , βm−1).

Following this we have

φ(αa) = (φ(α), · · · , φ(αm)) = (γφ(1), · · · , γφ(αm−1)) = γφ(a),

and furthermore φ(αia) = γiφ(a) for 0 ⩽ i ⩽ m− 1. By Theorem 8, we have that φ forms
a fully linear transformation over Fqm .

Corollary 1. Let m be a prime and Fqm be the extension field of Fq of degree m, and S be defined
as in Theorem 10. If there exists α ∈ S such that α /∈ Fq, then any Fq-linear transformation φ over
Fqm is fully linear as long as φ is linear on C.

Proof. Note thatm is a prime, then any α ∈ Fqm\Fq is a polynomial element of Fqm over Fq. Hence
the conclusion is proved immediately from Theorem 10.

5 Our proposal

5.1 Description of the cryptosystem
For a given security level, choose positive integers m,n, k such that n = 2m and k = am + b,
where 1 < a < 2 and 0 ⩽ b < (2 − a)m. Let g = (g[n−1], · · · , g[1], g) ∈ Fn

qn be a basis vector
of Fqn over Fq, and G = Pk(g) ∈ Mk,n(Fqn) be a partial circulant matrix. Let G = ⟨G⟩qn be
the [n, k] partial cyclic Gabidulin code over Fqn generated by g. Randomly choose an Fqm-linear
transformation φ over Fqn such that φ is not fully linear. Now we introduce the cryptosystem with
the following three procedures.

• Key generation

Randomly choose a vector m ∈ Fn
qn such that wtqm(m) = 2 and m(x) is coprime to xn −

1. Let M = Pn(m) ∈ GLn(Fqn) and compute φ(GM)φ(M)−1 = Pk(g
′), where g′ =

φ(gM)φ(M)−1. We publish (g′, t) as the public key where t = ⌊n−k
2
⌋, and keep (g,m, φ)

as the secret key.
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• Encryption

For a plaintext x ∈ Fk
qm , randomly choose a vector e ∈ Fn

qm such that wtq(e) = t. The
ciphertext corresponding to x is computed as y = xPk(g

′) + e.

• Decryption

With the knowledge of g andm, we can recover G andM . Let y be a valid ciphertext, then
we compute

yφ(M) = xφ(GM) + eφ(M) = φ(xGM + eM),

and
y′ = φ−1(yφ(M))M−1 = xG+ e.

Since wtq(e) ⩽ t, applying the fast decoder of G to y′ reveals the error vector e. Then we
can recover x by solving the linear system xG = y′ − e with O(n3) operations in Fqn .

5.2 On the choice of φ
At first, we explain why the secret transformation φ cannot be fully linear. Suppose φ is fully linear
over Fqn , then by Remark 3 there exist β ∈ F∗

qn and j ∈ {0, 1} such that

φ(GM) = β(GM)[j] = βG[j]M [j].

Following this we have

φ(GM)φ(M)−1 = βG[j]M [j] · (βM [j])−1 = G[j].

By Remark 2, G[j] generates an [n, k] partial cyclic Gabidulin code. Apparently an adversary can
decrypt any valid ciphertext with the knowledge ofG[j], which means that the cryptosystem will be
completely broken. Hence the cryptosystem is insecure in the case of φ being fully linear over Fqn .

According to our experiments on Magma, the systematic form of GM always has entries be-
longing to Fqn\Fqm . Because of Corollary 1, an Fqm-linear transformation φ linear on ⟨GM⟩qn
will be fully linear over Fqn with extremely high probability. By Proposition 5, the total number of
Fqm-linear transformations over Fqn can be computed as (qn−1)(qn−qm). By Theorem 9, the total
number of fully linear transformations over Fqn with respect to Fqm is 2(qn − 1). Hence the total
number of Fqm-linear transformations optional for our proposal is (qn − 1)(qn − qm)− 2(qn − 1).
The probability that a random choice of Fqm-linear automorphisms of Fqn happens to be the secret
transformation is evaluated as

1

(qn − 1)(qn − qm)− 2(qn − 1)
≈ 1

q2n
.

This implies that the complexity of recovering the secret transformation through the exhaustion
method is O(q2n).
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5.3 On the choice ofm
In this section, we first discuss how to choose the secret m to avoid some potential attack. For a
random m ∈ Fn

qn , let m′ = φ(m) and r = wtqm(m) = wtqm(m′), then there must be r = 1 or
r = 2. Now we divide this problem into the following two cases.

Case 1: r = 1. There exists a ∈ Fqn and ms ∈ Fn
qm such that m = ams. Let Ms = Pn(ms),

thenM = Pn(m) = aPn(ms) = aMs. Suppose that α = φ(a) for some α ∈ Fqn , then we have

φ(M) = φ(aMs) = φ(a)Ms = αMs.

Following this we have φ(GM) = φ(aGMs) = φ(aG)Ms, then the public matrix

φ(GM)φ(M)−1 = φ(aG)Ms · (αMs)
−1 = α−1φ(aG).

Apparently this yields a degenerated instance, which we think may cause some unknown structural
vulnerability to the new proposal. For instance, suppose one has obtained the secret transformation
φwith some method, then one can recover α andG by checking every possible a ∈ F∗

qn . After that,
the adversary would be able to decrypt any ciphertext in polynomial time. The complexity of the
brute-force attack is apparently bounded from above by O(qn).

Case 2: r = 2. Let a = (a1, a2) ∈ F2
qn be a basis vector of Fqn over Fqm , then there exists

Ms ∈ M2,n(Fqm) such thatm = aMs. Let

Da =
(
a1In|a2In

)
∈ Mn,2n(Fqn) andMS =

(
M

(1)
s

M
(2)
s

)
∈ M2n,n(Fqm),

whereM (i)
s is a circulant matrix generated by the i-th row vector ofMs. Then we have

M = Pn(m) = Pn(aMs) = a1M
(1)
s + a2M

(2)
s = DaMS,

and

φ(GM) = φ(GDaMS) = φ(GDa)MS = φ
(
a1G|a2G

)
MS.

Following this we have that the public matrix

φ(GM)φ(M)−1 = φ
(
a1G|a2G

)
MSφ(M)−1.

It is easy to see thatMSφ(M)−1 consists of two circulant matrices joined vertically, and meanwhile
we have

(
φ(a1)In|φ(a2)In

)
MSφ(M)−1 = In. According to our experiments on Magma, different

m always leads to differentMSφ(M)−1. Hence it is reasonable to conclude that choosingm such
that wtqm(m) = 2 is a better choice than wtqm(m) = 1.

Further discussion on m. An observation on m is that for fixed g and φ, different choices
of m may result in the same public key. For a secret m ∈ Fn

qn and an invertible Q ∈ Pn(Fqm),
there exists m0 ∈ Fn

qn such that m = m0Q. Let M = Pn(m) and M0 = Pn(m0), then we have
M = M0Q and

φ(GM)φ(M)−1 = φ(GM0)Q · (φ(M0)Q)−1 = φ(GM0)φ(M0)
−1.

12



We say thatm0 andm are equivalent if there existsQ ∈ Pn(Fqm)∩GLn(Fqm) such thatm = m0Q.
Letm = {mQ : Q ∈ Pn(Fqm)∩GLn(Fqm)}, called the equivalent class ofm. For any two vectors
m1,m2 ∈ Fn

qn , apparently we have either m1 = m2 or m1 ∩ m2 = ∅. In practical situation,
therefore, it is the quantity of nonequivalent m that really matters in terms of security. As for the
quantity of nonequivalentm, we have the following proposition.

Proposition 7. Let

N (m) = |{m : m ∈ Fn
qn such that wtqm(m) = 2 and Pn(m) ∈ GLn(Fqn)}|,

then we have
N (m) =

|S1|
|S2|

− qm − 1,

where
S1 = {m ∈ Fn

qn : Pn(m) ∈ GLn(Fqn)}

and
S2 = {m ∈ Fn

qm : Pn(m) ∈ GLn(Fqm)}.

Proof. Let S0 = {m ∈ Fn
qn : wtqm(m) = 1 and Pn(m) ∈ GLn(Fqn)}, then we have N (m) =

|S1|−|S0|
|S2| . It remains to estimate the value of |S0|. It is easy to see that F∗

qm forms a normal subgroup
of F∗

qn . Denote by R the set of representatives of the quotient group F∗
qn\F∗

qm , apparently |R| =
qn−1
qm−1

= qm + 1. For any m ∈ S0, there exist α ∈ R and ms ∈ S2 such that m = αms.
Furthermore, we have that there exists a one-to-one correspondence between S0 and the Cartesian
productR× S2. Hence we have

|S0| = |R| · |S2| = (qm + 1)|S2|,

which yields the conclusion immediately.

6 Security analysis

6.1 Existing structural attacks
Since Gabidulin et al. exploited Gabidulin codes in the design of cryptosystems, many variants
based on these codes have been proposed one after another. Unfortunately, almost all of these
cryptosystems were completely broken due to the inherent structural vulnerability of Gabidulin
codes. The best known structural attacks are the one proposed by Overbeck in [24] and some of its
derivations [25,26]. In this section, we will present the principle of this type of attacks and give an
explanation of why our proposal can resist these attacks.

In Section 2, we have introduced the concept of Frobenius transformations. It is not difficult
to see that Gabidulin codes keep a large subspace invariant under the Frobenius transformation.
Formally, we introduce the following propositions without proving. These propositions provide us
with a method of distinguishing Gabidulin codes from general ones.
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Proposition 8. Let G ⊆ FN
qn be an [N,K] Gabidulin code. In terms of the intersection of G and its

Frobenius power G [1], we have

dim(G ∩ G [1]) = K − 1.

Proposition 9. Let G ⊆ FN
qn be an [N,K] Gabidulin code. For any positive integer i, the following

equality holds

dim(G + G [1] + · · ·+ G [i]) = min{N,K + i}.

Proposition 10. [27] Let C ⊆ FN
qn be an [N,K] random linear code. For any positive integer i,

the following equality holds with high probability

dim(C + C[1] + · · ·+ C[i]) = min{N,K(i+ 1)}.

In our proposal, we adopt two approaches to disguise the structure of Gabidulin codes. First we
choose an invertible circulant matrixM to perform a column-mixing transformation to columns of
G. Note that entries of M are taken from the extension field Fqn , the linear code ⟨GM⟩qn is no
longer a Gabidulin code in general. As a matter of fact,

dim(⟨GM⟩qn ∩ ⟨GM⟩[1]qn) = 2k − n and dim(⟨GM⟩qn + ⟨GM⟩[1]qn) = n

hold with extremely high probability according to our experiments on Magma. In other words, the
linear code generated by GM behaves more like a random code than a Gabidulin code. However,
it is not enough to mask the secret Gabidulin code. This is because the total number of [n, k] partial
cyclic Gabidulin codes over Fqn is bounded from above by qn. It seems feasible to recover the
generator vector g through the exhaustion method when qn is not large enough, and then one can
recover M by computing Pn(g)

−1Pn(g
′), where g′ denotes the first row vector of GM . To avoid

this potential weakness, we randomly choose an Fqm-linear transformation φ to further distort the
linear code ⟨GM⟩qn . According to our analysis, the transformed code is generally no longer Fqn-
linear when φ is not fully linear. General Fqn-linear operations on the matrix φ(GM), including
the Frobenius transformation designed for attacking classical Gabidulin codes based cryptosystems,
will be extremely limited. This greatly increase the complexity of recovering the secret key with
no doubt.

6.2 A potential plaintext recovery attack

LetGpub =

(
Pn(g

′)
In

)
where In is the identitymatrix of ordern, then the ciphertext can be expressed

as
y = xPn(g

′) + e = (x, e)Gpub.

Let x1 ∈ Fk
qm and x2 ∈ Fn

qm be two undetermined vectors, then we construct a linear system as

y = (x1,x2)Gpub. (3)

If the system (3) admits only a small number of solutions over Fqm , then one can recover the plain-
text directly by solving this system in polynomial time. In particular, expanding this system over
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Fqm leads to another linear system with 2n equations and k+n variables over Fqm , and solving this
system requires O(8n3) operations in Fqm . Our analysis shows that, however, this system admits
quite a large number of solutions for a properly chosen k. In this situation, this kind of plaintext re-
covery attack will be infeasible. Before presenting our main result, we first introduce the following
lemma.

Lemma 11. Let g = (g[n−1], · · · , g[1], g) ∈ Fn
qn be a basis vector of Fqn over Fq, then we have

wtq(g + g[m]) = m.

Proof. It is easy to see that

g + g[m] = (g[n−1] + g[m−1], · · · , g[1] + g[m+1], g + g[m])

= (g[n−1], · · · , g[1], g)
(
Im Im
Im Im

)
,

where Im is the identity matrix of orderm. Note that wtq(g) = n, then we have

wtq(g + g[m]) = Rank(
(
Im Im
Im Im

)
) = m.

Theorem 12. The linear system y = (x1,x2)Gpub admits qm(k−m) solutions over Fqm .

Proof. Note that a solution of a nonhomogeneous linear system can be expressed as a particular
solution plus a generic solution of its homogeneous form. Hence the conclusion holds if and only
if (x1,x2)Gpub = 0 has qm(k−m) solutions over Fqm . Note that

(x1,x2)Gpub = x1φ(GM)φ(M)−1 + x2

= (x1φ(GM) + x2φ(M))φ(M)−1

= φ(x1GM + x2M)φ(M)−1,

then we have

(x1,x2)Gpub = 0 ⇔ φ(x1GM + x2M) = 0

⇔ x1GM + x2M = 0

⇔ x1G+ x2 = 0. (4)

Let (x1,x2) ∈ Fk+n
qm be a solution of the linear system (4), then x1G = x2 ∈ Fn

qm . This implies
that x1G = (x1G)[m] = x1G

[m], resulting in a solution of the following linear system

x1(G+G[m]) = 0. (5)

On the contrary. Let x1 ∈ Fk
qm be an arbitrary solution of (5), and set x2 = x1G. Apparently

x2 ∈ Fn
qm and (x1,x2) forms a solution of (4) over Fqm . This enables us to conclude that solutions

of (4) over Fqm are in one-to-one correspondence to that of (5).
In what follows, it sufficies to consider the solution space of (5). It is easy to see thatG+G[m] is a

Moorematrix of order k×n overFqm generated by g+g[m]. By Lemma 11, we have wtq(g+g[m]) =
m. By Proposition 1, we have Rank(G+G[m]) = m because of k > m. Hence the solution space
of (5) is of dimension k−m over Fqm . Eventually we have that the system (5), or equivalently the
system (4), has qm(k−m) solutions over Fqm . This completes the proof.
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6.3 Conversion into an RSD instance
A legitimate message receiver can always recover the plaintext in polynomial time, while an adver-
sary trying to obtain the plaintext has to deal with the so-called RSD problem introduced in Section
3. In what follows, we mainly talk about how to convert our proposal into an RSD instance.

Although theoretically we cannot ensure that φ(GM) preserves the rank of GM , our experi-
ments on Magma show that Rank(φ(GM)) = Rank(GM) holds with extremely high probability.
Let G′ = φ(GM)φ(M)−1, then it is reasonable to assume that Rank(G′) = Rank(GM) = k. Let
H ′ ∈ Mn−k,n(Fqn) be a full rank matrix such that G′H ′T = O and compute s = yH ′T = eH ′T .
Apparently we get an RSD instance of parameters (q, n, n, k, t).

On the other hand. Since components of e are taken from Fqm , we can convert the problem of
recovering e into solving an RSD instance over Fqm . Let a be a basis vector of Fqn over Fqm and
set

A =


a

a
. . .

a

 ∈ Mn−k,2(n−k)(Fqn).

Apparently there existHs ∈ M2(n−k),n(Fqm) and ss ∈ F2(n−k)
qm such thatH ′ = AHs and s = ssA

T .
Following this we have ssAT = eHT

s A
T and then ss = eHT

s . Finally we obtain an RSD instance
of parameters (q,m, n, 2k − n, t) over Fqm .

7 Parameters and public-key sizes
In this section, we evaluate the practical security of our proposal against general attacks presented
in Section 3. The public key of our proposal is a vector in Fn

qn , leading to a public-key size of
n2 · log2(q) bits. In Table 3, we give some parameters for security of 128 bits, 192 bits and 256 bits.
After that, we make a comparison on public-key size with some other code-based cryptosystems. It
is easy to see that our proposal has large advantage over other variants in public-key representation.

Parameters
Public-key size Securityq m n k

2 32 64 50 512 128

2 40 80 64 800 192

2 46 92 70 1058 256

Table 3: Parameters and public-key size (in bytes) for different security levels.

In addition to generic attacks described in Section 3, we should also consider the plaintext re-
covery attack discussed in Section 6.2, as well as a brute-force attack against the secret g,m and
φ. Denote by N (g) the quantity of all partial circulant Gabidulin codes of length n and dimension
k over Fqn , by N (m) the quantity of nonequivalent m’s as described in Proposition 7, by N (φ)
the quantity of all semilinear transformations over Fqn and by N (x) the quantity of solutions of
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Instance
Security 128 bits 192 bits 256 bits

Classic McEliece [1] 261120 524160 1044992

NTS-KEM [29] 319488 929760 1419704

KRW [30] 578025

HQC [31] 2249 4522 7245

BIKE [32] 1540 3082 5121

Lau-Tan [6] 2421 3283 4409

Our proposal 512 800 1058

Table 4: Comparison on public-key size (in bytes) with other cryptosystems.

the linear system (3) over Fqm . For suggested parameters in Table 3, these values are presented in
Table 5 using base-2 logarithmic representation. Apparently the complexity of recovering g or φ
is much lower than the corresponding security level. However, it remains unknown whether or not
we can recover more information about the secret key with the knowledge of g or φ. Therefore, we
still have confidence in security of our proposal up to now for parameters given in Table 5.

N (g) N (m) N (φ) N (x) Security

63 2048 128 576 128

79 3200 160 960 192

91 4232 184 1104 256

Table 5

8 Conclusion
In this paper, a completely new technique is developed to distort the structure of linear codes used
in code-based cryptography. Based on this masking technique, we exploit the so-called partial
cyclic Gabidulin code to construct a code-based cryptosystem. According to our analysis, this
cryptosystem can resist existing structural attacks, and admit quite a small public-key size compared
to some other code-based cryptosystems. For instance, only 1058 bytes are enough to achieve the
security of 256 bits, 987 times smaller than that of the ClassicMcEliece moving onto the third round
of the NIST PQC standardization process.

References
[1] Albrecht, M.R., Bernstein, D.J., et al.: Classic McEliece: conservative code-based cryptogra-

phy. https://classic.mceliece.org/nist/mceliece-20201010.pdf. Accessed Octo-

17

https://classic.mceliece.org/nist/mceliece-20201010.pdf


ber 10, 2020.

[2] Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring
and their application in cryptology. In: Davies, D.W. (Ed.): Proceedings of Advances in
Cryptology-EUROCRYPT’91, LNCS, vol. 547, pp. 482–489. Springer (1991).

[3] Gabidulin, E.M., Ourivski, A.V., Honary, B., Ammar, B.: Reducible rank codes and their
applications to cryptography. IEEE Trans. Inform. Theory 49(12), 3289–3293 (2003).

[4] Loidreau, P.: A new rank metric codes based encryption scheme. In: Lange, T., Takagi, T.
(Eds.): Proceedings of PQCrypto 2017, LNCS, vol. 10346, pp. 3–17. Springer (2017).

[5] Faure, C., Loidreau, P.: A new public-key cryptosystem based on the problem of reconstruct-
ing p-polynomials. In: Ytrehus, ∅. (Ed.): Proceedings of WCC 2005, LNCS, vol. 3969, pp.
304–315. Springer (2005).

[6] Lau, T.S.C., Tan, C.H.: New rank codes based encryption scheme using partial circulant ma-
trices. Des. Codes Cryptogr. 87(12), 2979–2999 (2019).

[7] Berger, T., Loidreau, P.: Designing an efficient and secure public-key cryptosystem based on
reducible rank codes. In: Proceedings of INDOCRYPT 2004, LNCS, vol. 3348, pp. 218–229.
Springer (2004).

[8] Gaborit, P., Murat, G., Ruatta, O., Zémor, G.: Low rank parity check codes
and their application to cryptography. In: Proceedings of the Workshop on Cod-
ing and Cryptography (WCC), vol. 2013, pp. 167–179. [Online]. Available:
http://www.selmer.uib.no/WCC2013/pdfs/Gaborit.pdf

[9] Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., Zémor, G.: Low rank parity check
codes: new decoding algorithms and applications to cryptography. IEEE Trans. Inform. The-
ory 65(12), 7697–7717 (2019).

[10] Samardjiska, S., Santini, P., Persichetti, E., Banegas, G.: A reaction attack against cryptosys-
tems based on LRPC codes. In: Proceedings of LATINCRYPT 2019, LNCS, vol. 11774, pp.
197–216. Springer (2019).

[11] Guo, W., Fu, F.-W.: Expanded Gabidulin codes and their application to cryptography.
arXiv:2107.01610 [cs.IT] (2021).

[12] Bardet, M., Bros, M., Cabarcas, D., et al.: Improvements of algebraic attacks for solving the
rank decoding and MinRank problems. In: Proceedings of ASIACRYPT 2020, LNCS, vol.
12491, pp. 507–536. Springer (2020).

[13] Bardet, M., Briaud, P., Bros, M., et al.: An algebraic attack on rank metric code-based cryp-
tosystems. In: Proceedings of EUROCRYPT 2020, LNCS, vol. 12107, pp. 64–93. Springer
(2020).

[14] Gaborit, P., Zémor, G.: On the hardness of the decoding and the minimum distance problems
for rank codes. IEEE Trans. Inf. Theory 62(12), 7245–7252 (2016).

18



[15] Berlekamp, E.R., McEliece, R.J., van Tilborg, H.: On the inherent intractability of certain
coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978).

[16] McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Jet Propuls. Lab.
DSN Progr. Rep. 42-44, 114–116 (1978).

[17] Ourivski, A.V., Johansson, T.: New technique for decoding codes in the rank metric and its
cryptography applications. Problems Inform. Transm. 38(3), 237–246 (2002).

[18] Goubin L., Courtois N.T.: Cryptanalysis of the TTM cryptosystem. In: Proceedings of Ad-
vances in Cryptology (ASIACRYPT 2000), LNCS, vol. 1976, pp. 44–57. Springer (2000).

[19] Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decoding problem.
IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016).

[20] Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.-P.: A new algorithm for solving the rank
syndrome decoding problem. In: Proceedings of 2018 IEEE International Symposium on In-
formation Theory (ISIT), pp. 2421–2425. IEEE (2018).

[21] Otmani, A., Tillich, J.-P., Dallot, L.: Cryptanalysis of two McEliece cryptosystems based on
quasi-cyclic codes. Math. Comput. Sci. 3(2), 129–140 (2010).

[22] Mullen, G.L., Panario, D.: Handbook of Finite Fields. CRC Press (2013).

[23] Chalkley, R.: Circulant matrices and algebraic equations. Math. Mag. 48(2), 73–80. Taylor &
Francis (1975).

[24] Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin codes. J.
Cryptology 21(2), 280–301 (2008).

[25] Horlemann-Trautmann, A.-L., Marshall, K., Rosenthal, J.: Extension of Overbeck’s attack for
Gabidulin-based cryptosystems. Des. Codes Cryptogr. 86(2), 319–340 (2018).

[26] Otmani, A., Kalachi, H.T., Ndjeya, S.: Improved cryptanalysis of rank metric schemes based
on Gabidulin codes. Des. Codes Cryptogr. 86(9), 1983–1996 (2018).

[27] Gaborit, P., Otmani, A., Kalachi, H.T.: Polynomial-time key recovery attack on the Faure–
Loidreau scheme based on Gabidulin codes. Des. Codes Cryptogr. 86(7),1391–1403 (2018).

[28] Coggia, D., Couvreur, A.: On the security of a Loidreau rank metric code based encryption
scheme. Des. Codes Cryptogr. 88(9), 1941–1957 (2020).

[29] Albrecht, M., Cid, C., Paterson, K.G., et al.: NTS-KEM. https://drive.google.com/
file/d/1N3rv4HKCt9yU4xn6wuepsBUrfQW8cuFy/view. Accessed November 29, 2019.

[30] Khathuria, K., Rosenthal, J., Weger, V.: Encryption scheme based on expanded Reed-Solomon
codes. Adv. Math. Commun. 15(2), 207–218 (2021).

[31] Melchor, C.A., Aragon, N., et al.: Hamming quasi-cyclic (HQC). http://pqc-hqc.org/
doc/hqc-specification_2020-10-01.pdf. Accessed October 10, 2020.

19

https://drive.google.com/file/d/1N3rv4HKCt9yU4xn6wuepsBUrfQW8cuFy/view
https://drive.google.com/file/d/1N3rv4HKCt9yU4xn6wuepsBUrfQW8cuFy/view
http://pqc-hqc.org/doc/hqc-specification_2020-10-01.pdf
http://pqc-hqc.org/doc/hqc-specification_2020-10-01.pdf


[32] Aragon, N., Barreto, P.S., et al.: BIKE: bit flipping key encapsulation. https://bikesuite.
org/files/v4.1/BIKE_Spec.2020.10.22.1.pdf. Accessed October 10, 2020.

[33] Horlemann-Trautmann, A.-L., Marshall, K.: New criteria for MRD and Gabidulin codes and
some rank-metric code constructions. arXiv:1507.08641 [cs.IT] (2015).

20

https://bikesuite.org/files/v4.1/BIKE_Spec.2020.10.22.1.pdf
https://bikesuite.org/files/v4.1/BIKE_Spec.2020.10.22.1.pdf

	Introduction
	Preliminaries
	Notations and basic concepts
	Gabidulin codes
	Partial cyclic codes

	Hard problems in coding theory
	Semilinear transformations
	Our proposal
	Description of the cryptosystem
	On the choice of 
	On the choice of m

	Security analysis
	Existing structural attacks
	A potential plaintext recovery attack
	Conversion into an RSD instance

	Parameters and public-key sizes
	Conclusion

