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Abstract. Digital signatures following the methodology of “Fiat-Shamir
with Aborts”, proposed by Lyubashevsky, are capable of achieving the
smallest public-key and signature sizes among all the existing lattice sig-
nature schemes based on the hardness of the Ring-SIS and Ring-LWE
problems. Since its introduction, several variants and optimizations have
been proposed, and two of them (i.e., Dilithium and qTESLA) entered
the second round of the NIST post-quantum cryptography standardiza-
tion. This method of designing signatures relies on rejection sampling
during the signing process. Rejection sampling is crucial for ensuring
both the correctness and security of these signature schemes.
In this paper, we investigate the possibility of removing the two rejection
conditions used both in Dilithium and qTESLA. First, we show that
removing one of the rejection conditions is possible, and provide a variant
of Lyubashevsky’s signature with comparable parameters with Dilithium
and qTESLA. Second, we give evidence on the difficulty of removing the
other rejection condition, by showing that two very general approaches
do not yield a signature scheme with correctness or security.

1 Introduction

The emergence of quantum computers has made the development of signatures
with post-quantum security a necessity. A promising source of post-quantum
hardness is computational intractability assumptions on lattices. Common as-
sumptions are the hardness of learning with errors (LWE) problem, and the short
integer solution (SIS) problem, which are both related to solving the shortest
vector problem in a lattice [1,35].

The origin of lattice-based signatures can be traced back to the proposal
of Goldreich et al. [21] and the NTRU signature scheme [24]. They use the
“trapdoor approach”. Namely, they let the public verification key and the secret
signing key (the trapdoor) be a “bad” basis and a “good” basis of a lattice,
respectively. However, the initial schemes were broken since signatures leaked
information about the secret “good” basis. By obtaining sufficiently many sig-
natures, the secret “good” basis could be completely recovered [20,33].

Lattice signatures following the trapdoor approach were fixed by the seminal
work of Gentry et al. [19]. Their trapdoor mechanism allowed to produce a
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signature securely without leaking the signing key following the full-domain hash
paradigm. When relying on the NTRU problem, this approach leads to more
efficient signatures. However, this approach has been less competitive for LWE
or SIS, since it led to large key and signature sizes.

A different method for constructing digital signatures is through the Fiat-
Shamir [17] transformation. This technique uses a random oracle to transform an
interactive identification protocol to a digital signature, which is non-interactive.
The challenge of constructing a lattice based identification protocol is that the
security of LWE and SIS inherently rely on the fact that a solution does not
only need to have a particular algebraic structure, but it also needs to be small.
Finding a large solution is easy for a SIS instance as well as in case of an LWE
instance when the noise term is treated as a part of the solution. This is a signifi-
cant difference compared to the realm of cyclic groups and the discrete logarithm
assumption, where efficient identification protocols exist, e.g., the Schnorr iden-
tification protocol [36].

A key principle of the Schnorr identification protocol is to rerandomize a
discrete logarithm problem instance and expose the rerandomized solution as an
evidence of authenticity, or in case of a digital signature, as a signature. This
can be efficiently done using a uniform masking term. Unfortunately, this does
not translate to the lattice realm, since the verification mechanism that checks
the validity of a signature needs to ensure that a solution is small. A uniform
masking term would make the signature large, hence, one would need to use
a small masking term, which when applied in a straightforward fashion, would
expose parts of the secret key.

In his paper “Fiat-Shamir with Aborts”, Lyubashevsky [27] has overcome
this obstacle. One of his key findings is the idea of aborting, in case information
of the secret key is leaked. This process of rejection and resampling, i.e. rejection
sampling, helps to ensure correctness and security and has led to a fruitful line
of signature schemes based on the LWE and SIS problems [28,22,15,5,16,25,4].

Nevertheless, this does not lead to a smooth adaptation of signatures with ad-
ditional properties, such as blind signatures [9], multi signatures [7] and threshold
signatures [11,12]. Moreover, there is a concern of potential side-channel attacks.
Countermeasures for such attacks have been studied [32]. Nevertheless, providing
less attack surface to such attacks would be preferable.

While rejection sampling has provided a solution for efficient constructing
lattice based signatures, it constitutes at the same time an obstacle. Rejection
based lattice signatures have in common that their rejection mechanism achieves
integrity and security by ensuring two rejection conditions. The focus of this work
is to investigate the necessity of these two rejection conditions for Fiat-Shamir
based lattice signatures. The question we want to answer is:

How crucial are the two rejection conditions for efficiency when applying the
“Fiat-Shamir” paradigm to lattices?
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1.1 Contributions

We show both positive and negative results on removing the rejection conditions
in Fiat-Shamir based lattice signatures. Out of the two rejection conditions used
both in Dilithium and qTESLA, we show that removing one of the rejection con-
ditions is possible. As a result, we provide a variant of Lyubashevsky’s signature
with one rejection condition.

The variant of Fiat-Shamir based lattice signature we propose can be in-
stantiated with comparable parameters with Dilithium and qTESLA in terms
of security, public-key and signature sizes, and rejection rate. The key difference
to the previous schemes is that the secret key and masking terms are sampled
uniformly random over the base ring.

The remaining rejection condition in our signature scheme is used to ensure
that the first message (the commitment of the masking term) in the 3 round
lattice-based ID protocol can be recovered from the rest of the transactions. We
show that this rejection conditions is unlikely to be removed when the scheme
uses a polynomially large modulus. First, we adopt a recent result by Guo et
al. [23], which states that there is no non-interactive reconciliation mechanism
for lattice based key exchange protocols [14,34]. In our case this translates to the
fact that there is no reconciliation mechanism without taking additional hints
about the first message. We then take a step further and consider reconcilia-
tion mechanisms that takes hints. Indeed, the reconciliation mechanisms with
hints used in lattice based key exchange protocols [14,34] can be adopted in
our signature scheme to remove the rejection condition and provide correctness.
Unfortunately both reconciliations mechanisms are not reusable under the same
initial key exchange messages [18,13] which could be considered as a public key.
Since a signature scheme needs to allow polynomially many signatures per pub-
lic key, both reconciliation mechanisms are not sufficient for our purposes. Even
further, we show an attack against a wide ranged class of potential reconciliation
mechanisms.

1.2 Technical Overview

Let us recall the idea of “Fiat-Shamir with Aborts” from a more technical per-
spective. We present a simplified version of Bai and Galbraith’s scheme [5] based
on Lyubashevsky’s “Fiat-Shamir with Aborts” paradigm [28], which is followed
by Dilithium and qTESLA [16,4]. In the overview we assume the base ring is Zq.
The final scheme is instantiated on a polynomial ring.

The public key pk consists of a uniform A ∈ Zn×mq and y ≈ sA mod q,
where s ∈ Zn×nq is sampled from a distribution such that the norm of s is small
(the typical choices are uniform or Gaussian with small standard deviations).
Let b·cp be the rounding function that drops the log q − log p least significant
bits.

To sign a message m, there are two steps to follow:

1. Sample a small r ∈ Znq , compute H(brtAcp, pk,m) = c, where c is a small
vector in Znq .
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2. Compute zt = rt+cts ∈ Znq , then check the following two conditions. If they
are satisfied, output signature (z, c); if they are not satisfied, restart from
the first line.
(a) rt + cts is sufficiently small and does not leak the secret s.
(b) bztA− ctycp = brtAcp.

The verification algorithm accepts a signature (z, c) if and only if z is sufficiently
small and H(bztA− ctycp, pk,m) = c.

For the security of the scheme, it is important that z is small, since only then
would breaking the scheme lead to solving the SIS problem. But this presents
a challenge, since in addition to ct and z, r needs to be small too. Therefore r
might not completely hide the sensitive term cts when publishing z. A carefully
tailored rejection sampling, i.e., Step 2.(a), resolves this issue.

The second rejection, i.e., Step 2.(b), seems to be important mostly for cor-
rectness. For correctness, the verification algorithm needs to be able to recover
the same c, by hashing bztA − ctycp as the signing algorithm which hashes
brtAcp. This is only the case when bztA−ctycp = brtAcp. We will observe that
this step is crucial for security as well.

Removing Rejection condition 2.(a). In the scheme proposed in this paper, the
signing algorithm samples r uniformly at random from Znq , instead of sampling
r with small norm. The signing algorithm then computes H(brtAcp, pk,m) = c,
zt = rt + cts and rejects if bztA − ctycp 6= brtAcp. As a result, we are able
to remove Step 2.(a) in the signing algorithm. Consequently, the verification
algorithm no longer checks whether z is small.

The security of the scheme relies on the fact that the public key is indistin-
guishable from uniform based on the LWE assumption and for a uniform public
key. Forging a signature in our scheme is related to finding a vector r ∈ Znq ,
given a uniform A ∈ Zn×mq and y ∈ Zmp such that brtAcp = yt. Depending on
the choice of parameters p, q, m and n, the hardness of this problem varies from
trivial, computationally hard or even statistically hard (when y is uniformly ran-
dom). The problem of finding r, is identical to finding r and a sufficiently small
noise term e, which is related to the rounding function, such that rtA+et = ỹt,
for ỹ ∈ Zmq . We therefore refer to this problem as Bounded Distance Decoding.
In our actual scheme, we use a more tailored problem that we denote as Adaptive
BDD (ABDD). Like BDD, ABDD can be computationally or statistical hard.
Our scheme also accomplishes a tight security proof and security in the quantum
random oracle model (QROM) for the reasons pointed out by Unruh [37] and
Kiltz, Lyubashevsky and Schaffner [25].

Let us remark that one can also choose q to be sufficiently larger than p such
that the rounding function is more likely to round away the noise term affecting
y. The probability of a rejection can be made negligibly small, when choosing a
super-polynomially large modulus q. But choosing a large modulus q makes the
scheme inefficient.

Evidence on the difficulty of removing Rejection condition 2.(b). Compared to
Rejection condition (a), Rejection condition (b) seems much harder to remove
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without sacrificing the efficiency of the scheme. In fact, we show two general
approaches of removing Rejection condition (b) fail.

In the first approach, we consider the possibility of constructing functions g
and f that map rtA and rtA+êt for any bounded error term ê to the same value,
i.e. g(rtA) = f(rtA+ êt), while ensuring that g(rtA) serves as a commitment of
r, or at least preserves high min-entropy; then we can apply the hash function
on g(rtA) instead of brtAcp. However, one can show such functions g, f do not
exist when the modulus q is polynomially large. The result follows by the one of
Guo et al. [23], which shows a similar impossibility result for the lattice-based
key exchange protocols [14,34].

In the second approach, we try to adapt the reconciliation mechanism used
in lattice-based key-encapsulation mechanisms [14,34]. While the reconciliation
mechanisms can be adapted in our signature scheme to provide correctness,
we show that they leak information about the error term e in the public key.
More generally, we rule out the possibility of achieving security when a string
of the form of rtA + êt, where ê is bounded and independent of the challenge
c, is recovered from any potential reconciliation mechanism (no matter if the
mechanism is the same from the ones in [14,34] or not).

We also discuss the generalizations and limitations of these two types of
negative results.

Concrete parameters. For the variant of Fiat-Shamir lattice-based signature
scheme we propose, we give a detailed analysis of the hardness of ABDD and
appropriate parameter choices in Section 3 and Section 7. Even though, we are
able to remove the rejection condition on z being small, the larger dimension m
causes a significant loss of efficiency compared to Dilithium and qTESLA in the
random oracle model (ROM). When considering tight security reductions, i.e.
when ABDD is statistically hard, the efficiency, security and rejection rate are
comparable to those of Dilithium-QROM and qTESLA-provable, for carefully
chosen parameters. We give concrete parameter choices for our scheme and a
comparison to Dilithium and qTESLA in Section 7.

Organization. In Section 4, we present the signature scheme with one rejec-
tion condition and analyze its correctness. In Section 5, we prove its security
under the LWE and ABDD assumptions. In Section 6, we present the negative
results of removing the other rejection condition. In Section 7, we instantiate
our scheme with parameter choices for different levels of security and compare
it with Dilithium [16] and qTESLA [4].

2 Preliminaries

Notations. We use κ to denote the security parameter and v
$← S for a uniformly

random variable v over set S. ≈s and ≈c denote statistically close and computa-
tionally indistinguishable, respectively. For i ∈ N, we use [i] to denote {1, . . . , i}.
For a modulus q ∈ N, we denote Z/qZ by Zq and represent Zq by [−b q2c, b

q−1
2 c].
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Vectors are written as a bold lower-case letter (e.g. v) and its ith component is vi.
A matrix is written as a bold capital letter (e.g. A) and its ith column vector is ai.
The `p-norm is ‖v‖p := (

∑
vpi )1/p and the infinity norm is ‖v‖∞ := maxi{|vi|}.

The length of a matrix is the norm of its longest column: ‖A‖p := maxi ‖ai‖p.
For a random variable X, H∞(X) := − log(maxx Pr[X = x]) is the min-entropy.

2.1 Lattices

An n-dimensional lattice Λ of rank k ≤ n is a discrete additive subgroup of Rn.
Given k linearly independent basis vectors B = {b1, ...,bk ∈ Rn}, the lattice
generated by B is the following:

Λ(B) = Λ(b1, ...,bk) =

{
k∑
i=1

xi · bi, xi ∈ Z

}
.

The following presents the decisional learning with errors (LWE) problem.

Definition 1 (Decisional learning with errors [35]). For n,m ∈ N and
modulus q ≥ 2 and a noise distribution χ over Z. An LWEn,m,q,χ sample is

obtained from sampling s
$← Znq , A

$← Zn×mq , e
$← χm, and outputting (A,yt :=

stA + et mod q).
We say LWEn,m,q,χ is (t, ε)-secure if for any ppt algorithm A with running

time t,

|Pr[AOLWE(1κ) = 1]− Pr[AOuniform(1κ) = 1]| ≤ ε,

where oracle OLWE outputs LWEn,m,q,χ samples and oracle Ouniform outputs uni-
form samples over Zn×mq × Zmq .

Cyclotomic rings. Let φ2d(x) be the 2d-th cyclotomic polynomial where d is
a power of two (i.e., φ2d(x) := xd + 1), R := Z[x]/φ2d(x) be the associated
cyclotomic ring, and q ≥ 2 be an integer modulus so that Rq := R/qR is the
polynomial ring with coefficients modulo q. Usually q is taken as a prime with
q ≡ 1 mod 2n in order to use the Number Theoretic Transform (NTT) [29].

Geometrically, we are concerned with the coefficient embedding where each
polynomial h(x) ∈ R is associated with its ordered vector of coefficients,

h(x) 7→ h = (h1, . . . , hd) ∈ Zd. (1)

Multiplication by a polynomial g(x) =
∑d
i=1 gix

i ∈ R is given by the anti-cyclic
matrix

ψ(g) :=


g1 −gd −gd−1 · · · −g2
g2 g1 −gd · · · −g3
g3 g2 g1 · · · −g4
...

...
...

. . .
...

gd gd−1 gd−2 · · · g1

 ∈ Zd×d.
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Therefore, we have ψ(g) · h as the coefficient embedding of h(x) · g(x) ∈ R. In
fact, the map ψ : R→ Zd×d taking a polynomial and mapping it to its anti-cyclic
matrix is a (another) ring embedding, from R to d×d integer matrices. The same
holds when we consider the quotient Rq, except now the previous is expressed via
operations modulo q. An important feature of the coefficient embedding is that
scalars in the ring, α ∈ Z ⊂ R (or Zq ⊂ Rq), embed as scalar matrices, ψ(α) = α·
Id ∈ Zd×d (or Zd×dq ). Further, vectors over R or Rq have an entry-wise coefficient

embedding: v = (v1, . . . , vl) ∈ Rl 7→ (v1,1, . . . , v1,d, . . . , vl,1, . . . , vl,d) ∈ Zdl. We
suggest the reader regularly traverse between the rings (R or Rq) and their
coefficient embedding, in Zd or Zdq , as well as their representations as linear
transformations, while reading this article. Lastly, our norm will be the normal
Euclidean norm under the the coefficient embedding, ‖x‖ = ‖ψ(x)‖2.

For the generality and modularity of the presentation, we present our main
scheme under the module-LWE problem.

Definition 2 (Module-LWE [8,26]). Let l, k ∈ N and modulus q ≥ 2. Let
R := Z[x]/(xd + 1), where d is a power-of-two. Let χ be a noise distribution

over R. A module-LWE sample is obtained from sampling s
$← Rlq, A

$← Rl×kq ,

e← χk, and outputting (A,yt := stA + et mod q).
We say MLWEd,l,k,q,χ is (t, ε)-secure if for any ppt algorithm A with running

time t,

|Pr[AOMLWE(1κ) = 1]− Pr[AOuniform(1κ) = 1]| ≤ ε,

where oracle OMLWE outputs MLWEd,l,k,q,χ samples and oracle Ouniform outputs
uniform samples over Rl×kq ×Rkq .

In context of MLWE, we often use n to denote the effective dimension of the
MLWE secret, which is n := d` and m to denote the effective sample size, which
is m := dk.

Challenge Space and Noise Growth. For our signature scheme, we define as
previous works [5,16,25], a challenge space C ⊂ Rq. The elements in C consist of
entries in {−1, 0, 1} with respect to their coefficient embedding inRq of Hamming
weight at most wc.

For an appropriate choice of Rq, all elements in C as well as their differences
are invertible. This is the case for e.g. Rq := Zq[X]/(xn + 1), where n is a power
of two and q is a prime congruent 5 mod 8 [30].

Let ρs : Rn → R be the Gaussian function defined by

ρs(x) := exp

(
−π ‖x‖

2

s2

)
The discrete Gaussian distribution for Gaussian parameter and a lattice Λ ⊂ Rn
is defined by

DΛ,s(x) ∝

{
ρs(x) if x ∈ Λ
0 otherwise
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In the most general case, we consider χ over Rq to be a spherical discrete Gaus-
sian distribution for Gaussian parameter s := αq, i.e. each entry of the coefficient
embedding representation of a ring element sampled from χ is sampled indepen-
dently from the discrete Gaussian distribution DZ,αq. For a discrete Gaussian
with parameter αq over Z [31], it holds that

Pr
e

$←DZ,αq

[|e| ≥ t] ≤ 3 exp

(
−π t2

(αq)2

)
.

Hence, for η ≥ αq log κ, we have Pr[|e| ≥ η] ≤ negl. By the generalized Hoeffding
bound, we obtain

Pr
c

$←C,e $←[−η,η]d

[
|
d∑
i=1

ciei| ≥ t

]
≤ 2 exp

(
− t2

2wcη2

)
,

where wc is the Hamming weight of c. Hence, for be ≥ η
√
wc log κ, we have

Pr [|
∑
ciei| ≥ be] ≤ negl as well as Pr[‖ce‖∞ ≥ be] ≤ negl. Note that a trivial

bound yields |
∑
ciei| ≤ ηwc.

Rounding over Rq. For p, q ∈ N, q > p, the rounding operation bacp : Zq → Zp
is defined by multiplying a by p/q and rounding the result to the nearest smaller
integer, i.e. bpqac. In a ring R, we apply the rounding operation component wise
with respect to the coefficient embedding.

Further, for a noise distribution χ and dimension m, we define the set B ⊂ Rq
by all elements h(x) ∈ R that have coefficients (h0, . . . , hd−1) within the interval
[0, br] in Z, where br := b qpc − 1 bounds the error term caused by the rounding

function b·cp. Here, for any a ∈ Zp, the rounding function maps all values in the
interval [baqp c, br + baqp c] in Zq to a.

2.2 Digital Signatures

The following presents syntax and security definition of a digital signature scheme.

Definition 3 (Digital Signatures). A digital signature scheme for a mes-
sages space M is a triplet of ppt algorithms (KGen,Sign,Verify) with the following
syntax

KGen: Takes as input 1κ and outputs a key pair (pk, sk).

Sign: Takes as input sk, a message m ∈ M and outputs a signature σ.

Verify: Takes as input pk, a message m ∈ M, a signature σ and outputs 1 if σ is
a valid signature under pk for message m. Otherwise, it outputs 0.

For correctness, for any m ∈ M, we require that Verify(pk,m, σ) = 1, where
(pk, sk)← KGen(1κ), σ ← Sign(sk,m).
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Definition 4 (Existential Unforgeability under Chosen Message At-
tacks (UF-CMA) Security). A signature scheme SGN is (t, ε, qS , qH)-UF-CMA
secure (existentially unforgeable under chosen message attacks) if for all algo-
rithms A running in time at most t and making at most qS queries to the signing
oracle and qH queries to the random oracle,

Pr

[
Verify(pk,m∗, σ∗) = 1
∧ m∗ /∈ {mi | i ∈ [qS ]}

∣∣∣∣(pk, sk)← KGen(1κ)

(m∗, σ∗)← AOH ;Sign(sk,·)(pk)

]
≤ ε,

where for i ∈ [qS ], on the i-th query mi the signing oracle Sign(sk, ·) returns
σi ← Sign(sk,mi) to A and OH denotes query access to a random oracle.

3 Adaptive Bounded Distance Decoding

The security of our signature scheme requires the hardness of the adaptive
bounded distance decoding problem, defined as follows.

Definition 5 (Bounded Distance Decoding (BDD)). Let q, l, k ∈ N and
ring R. Bounded distance decoding for a tolerance set B ⊂ Rq, and dimension l
is (t, ε)-hard if for any ppt algorithm A with running time t

Pr

[
∃e ∈ Bk s.t.
yt − ztA = et

∣∣∣∣∣A $← Rl×kq ,y
$← Rkq

z← A(A,y)

]
≤ ε.

Definition 6 (Adaptive Bounded Distance Decoding (ABDD)). Let p, q, l, k ∈
N and ring R. Adaptive bounded distance decoding for dimension l and challenge
set C ⊂ R is (t, ε)-hard if for any ppt algorithm A with running time t

Pr

wt = bztA− cytcp

∣∣∣∣∣∣∣∣∣
A

$← Rl×kq ,y
$← Rkq

(w, st)← A(A,y)

c
$← C

z← A(c, st)

 ≤ ε,
where st is a state of algorithm A.

For some parameter choices, the BDD and ABDD problems are statistically
hard, meaning that with overwhelming probability, the problems are hard even
for computationally unbounded adversaries. For some other parameter choices,
the BDD and ABDD problems are conjectured to be computationally hard.

In both the computational and the statistical parameter regimes, we can
reduce bounded distance decoding by a simple rewinding argument to adaptive
bounded distance decoding.

Lemma 1. Let there be a classical, i.e. non-quantum, algorithm A that (t, ε)-
breaks ABDD for parameters p, q, l, k, ring R and challenge set C, where all
differences of two elements are invertible. Then there is an algorithm A′ that
(t′, ε′)-breaks BDD for parameters q, l, k, d and tolerance set B ⊆ Rq such that
for all e′ ∈ B′, ψ(e′) ∈ [−br, br]d×d, br := b qpc− 1, where ε′ ≥ ε2− 1/|C|, t′ ≤ 2t.
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Proof. Algorithm A′ receives a BDD challenge (A,y) and needs to find a z such

that yt − ztA = et with e ∈ Bk. A′ samples two challenges c1, c2
$← C. Unless

c1 = c2, which occurs with a probability at most of 1/|C|, (c1 − c2) is invertible
and A′ defines ỹ := (c1 − c2)−1y.
A′ invokes A on input A, ỹ to receive a response w. A′ also stores A’s current

state st such that A’ can run A twice on the same state (rewinding). A′ runs A
with state st on input c1 to receive solution z1 and on state st and input c2 to
receive z2. A′ outputs z := z1 − z2.

According to Jensen’s inequality z1 and z2 will be correct with a probability
of at least ε2. Correct z1 and z2 have the form

wt = zt1A− c1yt + et1 = zt2A− c2yt + et2,

where e1, e2 have coefficients in interval [0, br] in Z. In that case,

(c1 − c2)ỹt − (zt1 − zt2)A = et1 − et2.

By the definition of z = z1−z2 and y = (c1−c2)ỹ, yt−ztA = et1−et2. Therefore,
e := e1 − e2 ∈ Bk. ut

To make the ABDD problem statistically hard, we first provide a parameter
setting under which the BDD problem under the reduction in Lemma 1 is sta-
tistically hard. We give a bound with simple proof, but this bound is very loose
in terms of the minimum size of dimension k. We see this more as a proof of
concept and use a heuristic bound that directly bounds the hardness of ABDD
when determining our choices of parameters.

Lemma 2. Let B′ be a subset of Rq such that for all e′ ∈ B′, ψ(e′) ∈ [−br, br]d×d.
Let C be a subset of Rq such that all the c ∈ C are invertible in Rq and
ψ(c) ∈ [−2, 2]d×d. If 5d · (2br + 1)dk · qd(l−k) is a negligible function, then the
following statement holds.

Pr
A

$←Rl×kq ,y
$←Rkq

[
∃ z ∈ Rlq, e′ ∈ B′

k
, c′ ∈ C′ s.t. Atz− c′y = e′ (mod q)

]
≤ negl(κ)

Proof. Since c is invertible in Rq, rewrite the equation as y = (Atz − e′) · c−1
(mod q). Then for all A ∈ Rl×k, the number of possible vectors on the right
side of the equation is at most N := 5d · (2br + 1)dk · qd`. Therefore, if N/qdk =
5d · (2br + 1)dk · qd(l−k) ∈ negl(κ), the equation holds. ut

4 Proposed Scheme

In our scheme, we choose a random oracle-like hash function H : Rkp × Rl×kq ×
Rkq ×M→ C, that hashes a rounded vector of ring elements, the public key and
a message to our challenge set C. Further, we define a set Good that is used to
determine whether a signature is safe to publish, i.e. the acceptance condition,
as well as whether it satisfies correctness. We choose be such that ‖ce‖∞ ≤ be

with overwhelming probability over the choice of e← χk and c
$← C.
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Definition 7 (Rejection Condition, Set Good). Let h denote the coefficient
embeddingdefined in Eqn. (1) . For parameters p, q, d, k, be ∈ N, q > p and ring
R := Z[x]/(xd + 1), we define the set Good ⊂ Rkq as follows. (hi(x))i∈[k] ∈ Rkq ,
if for all j ∈ [k], i ∈ [d],

hj,i ∈ Zq \
bp/2c⋃

`=−bp/2c

[
−be +

⌊
`q

p

⌋
, be +

⌊
`q

p

⌋]
.

In Figure 1, we depict our scheme. The key generation algorithm samples
the secret s from a uniform distribution and the error e from the noise dis-
tribution χ. To sign a message m ∈ M, we first sample a one-time masking
term r from uniform from the same domain as the secret key, and compute
c := H(brtAcp, pk,m). The process is restarted if rtA − cet 6∈ Good. For an
eligible r, i.e., rtA − cet ∈ Good, the signer computes z := r + cs (mod q) and
outputs the signature as σ := (z, c). The verification of our scheme checks if
c = H(bztA− cytcp, pk,m).

The condition rtA− cet ∈ Good implies that bztA− cytcp = brtAcp. Hence
our scheme is correct. In fact, our signature scheme is perfectly correct, though
during the signing process, there might be many rejections. Nevertheless, for a
acceptance probability of ρr, the signing process is expected to terminate in time
t ∝ 1/ρr. More precisely, the signing process terminates with an overwhelming
probability within κ/ρr rejections.

We give a more formal treatment of correctness in the following.

(sk, pk)← KGen(1κ):

s
$← Rlq, e← χk,

A
$← Rl×kq

yt := stA + et (mod q)
sk := s, pk := (A,y)
Return (pk, sk)

σ ← Sign(sk,m):

Repeat until rtA− cet ∈ Good

rt
$← Rlq,

c := H(brtAcp, pk,m)
z := r + cs (mod q)

Return σ := (z, c)

{0, 1} ← Verify(pk, σ,m):

Parse σ = (z, c)
w := bztA− cytcp
if c = H(w, pk,m)
then Return 1
else Return 0

Fig. 1. Proposed signature scheme

5 Correctness and Security Analysis

Lemma 3 (Correctness and Termination). The signature scheme in Fig-
ure 1 is perfectly correct and has a heuristic acceptance rate of

ρr :=

(
br − 2be − 1

br

)dk
,

where br := b qpc − 1.
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Proof. Let (z, c) be the output of Sign(sk,m) for m ∈ M and (sk, pk)← KGen(1κ).
By the acceptance condition, rtA− cet ∈ Good always holds. By the definition
of set Good, the coefficient of each entry of rtA− cet have a distance larger than

be from the rounding borders (namely,
⌊
`q
p

⌋
for ` = −bp/2c, ..., bp/2c) caused by

rounding function b·cp. Hence, rtA rounds to the same value as rtA − cet, i.e.
brtA− cetcp = brtAcp.

By the definition of z and public key (A,y), ztA− cyt = rtA− cet. Further,
by the definition of c, c = H(brtAcp, pk,m). Thus, the verification check c =
H(bztA− cytcp, pk,m) passes and Verify returns 1.

For the acceptance rate ρr, we need to compute the probability over r
$← R`q

and c
$← C that rtA− cet ∈ Good. With overwhelming probability, ‖ce‖∞ ≤ be.

The probability that a random element u in Zq falls in the bad region excluded
in Good is

Pr
u

$←Zq

u ∈ bp/2c⋃
`=−bp/2c

[
−be +

⌊
`q

p

⌋
, be +

⌊
`q

p

⌋] ≤ 2be + 1

br
,

For the claimed heuristic bound in the lemma statement, we use the heuristic
that the coefficients of rtA− cet fall independently in the bad region. ut

In Theorem 1 below, we prove that our signature scheme is EU-CMA in the
ROM.

Theorem 1. Let LWE be (tLWE, εLWE)-hard, ABDD be (tABDD, εABDD)-hard and
H∞(brtAcp | A) ≥ ξ. Then, the signature scheme in Figure 1 is (tA, εA, qS , qH)-
UF-CMA secure in the programmable random oracle model, where tA ≈ tLWE +
tABDD and εA ≤ εLWE + qHεABDD + qS2−κ + κ2ρ−2r q2S2−ξ + 2κρ−1r qSqH2−ξ.

Proof. On a high level, we prove this theorem in two hybrids. In the first hybrid,
we exploit the programmability of the random oracle to respond to signature
queries without knowing the secret key. This step of faithfully simulating signa-
tures without knowing the secret key crucially relies on the rejection sampling
condition.

During the second hybrid, the public key of our signature scheme is replaced
with uniform randomness. In this hybrid, there will be no secret key that allows
to sign messages and, furthermore, it is infeasible for an adversary who cannot
program the random oracle to forge signatures.

In the following, we define the two hybrids and show that: 1) by a statistical
argument, simulated signatures are identically distributed as signatures created
by the signing algorithm with access to the secret key, i.e. every algorithm has
the same advantage in the UF-CMA game and hybrid 1; 2) there is no algorithm
that has a different advantage in hybrid 1 and hybrid 2, unless it implicitly
breaks the LWE assumption; 3) there is no algorithm that can forge a signature
in hybrid 2, unless it implicitly breaks the ABDD assumption.

To summarize, this proves the theorem statement. The detailed description
of the hybrids and the UF-CMA game are depicted in Figure 2.



On Removing Rejection Conditions in Practical Lattice-Based Signatures 13

Game:

s
$← Rlq, e← χk,A

$← Rl×kq \UF-CMA,hybrid 1
yt := stA + et (mod q) \UF-CMA,hybrid 1

A
$← Rl×kq ,y

$← Rkq \hybrid 2

(m∗, σ∗)← AOH ;Sign(s,·)(A,y) \UF-CMA

(m∗, σ∗)← AOH ;Sign(·)(A,y) \hybrid 1, hybrid 2
OH(a) :

If H(a) is not defined

then H(a)
$← C

Return H(a)

σ ← Sign(s,m) :

Repeat until rtA− cet ∈ Good

rt
$← Rlq

c := H(brtAcp, (A,y),m)
z := r + cs (mod q)

Return σ := (z, c)
σ ← Sign(m) :

Repeat until ztA− cyt ∈ Good

z
$← Rlq, c

$← C
w := bztA− cytcp
H(w, (A,y),m) := c

Return σ := (z, c)

Fig. 2. UF-CMA security game and hybrids to prove Theorem 1

We start the formal argument with showing that any adversary that is suc-
cessful in the UF-CMA game is also successful in hybrid 1.

Lemma 4. Let there be an algorithm that (t, ε, qS , qH) breaks the UF-CMA secu-
rity and H∞(brtAcp | A) ≥ ξ. Then, there is also an algorithm that (t′, ε′, q′S , q

′
H)

forges a signature in hybrid 1 for t′ ≈ t, ε′ ≥ ε − qS2−κ − κ2ρ−2r q2S2−ξ −
2κρ−1r qSqH2−ξ, q′S = qS, and q′H = qH .

Proof. The difference between the UF-CMA game and hybrid 1 is how signing

queries are answered. In the UF-CMA game, one first samples r
$← Rlq, computes

c = H(brtAcp, pk,m), rejects if rtA− cet 6∈ Good and then computes z = r+ cs.

In hybrid 1, one samples first z
$← Rlq, c

$← C, rejects if ztA − cyt 6∈ Good and
finally programs the random oracle H on point (bztA − cytcp, (A,y),m) to be
equal to c. In the following, we show that created signatures (z, c) have the same
distribution.

As a first intermediate step, we want to show that the generated signatures
(z, c) before the rejection have the same distribution in game UF-CMA and hy-
brid 1. This can only be the case if the reprogramming step of the oracle does
not fail. Except with probability qS2−κ, there are at most κ/ρr many repro-
grammings per signature for all signature queries. The amount of defined points
of the random oracle within hybrid 1 is upper bounded by κρ−1r qS + qH . At
each reprogramming step, brtAcp has at least min-entropy ξ given A. Hence the
probability that the random oracle is already defined for partial input brtAcp
is at most (κρ−1r qS + qH)2−ξ. Since there are at most κρ−1r qS reprogramming
steps, the probability that reprogramming the random oracle fails in hybrid 1 is
upper bounded by qS2−κ + κρ−1r qS(κρ−1r qS + qH)2−ξ. For the remaining parts
of the proof, we assume that the reprogramming does not fail.

The challenge c in game UF-CMA is the output of the random oracle on input
brtAcp, (A,y),m and therefore uniformly distributed. In hybrid 1, c is sampled
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uniformly at random and it is programmed to be the output of the oracle on
input bztA− cytcp, (A,y),m. Under the premise that bztA− cytcp = brtAcp, c
has the same distriubtion in game UF-CMA and hybrid 1.

We focus now on showing that z has the same distribution. In game UF-CMA,

z := r + cs, where r
$← Rlq. In hybrid 1, z

$← Rlq and we can define r := z− cs.
Therefore in hybrid 1, r is also uniform and z is determined by r, s and c as in
UF-CMA.

It is left to show that the premise bztA − cytcp = brtAcp is implied by
the rejection condition and that the rejection condition does not introduce any
difference between the signature disitribution in game UF-CMA and hybrid 1.
The latter is easy to show. rtA − cet ∈ Good is identical with ztA − cyt ∈
Good, because rtA− cet = ztA− cyt. Obviously, we could replace the rejection
condition in the orignial scheme with the publicly verifiable condition ztA−cyt ∈
Good that we need in hybrid 1. The only reason against it is a slight performance
gain due to the fact that rtA has already been computed when evaluating the
random oracle.

By the same argument as used for correctness (see Lemma 3), rtA − cet ∈
Good implies bztA − cytcp = brtAcp. Therefore all signatures obtained by the
adversary, i.e. that pass the rejection condition, have the same distribution in
hybrid 1 and game UF-CMA.

All other signatures, i.e. the once that trigger the rejection condition, remain
hidden and an adversary could at most observe a reprogrammed challenge. This
might be a problem, because there could be a slight bias in the random oracle
since the partial input bztA − cytcp might be biased with the output c (which
disappears for not rejected signatures where bztA − cytcp = brtAcp). But in
order to detect this bias, he would need to guess bztA− cytcp which has at least
min-entropy ξ for the same reason why brtAcp has at least min-entropy ξ. The
ability of an adversary to detect this bias is upper bounded by κρ−1r qSqH2−ξ.

ut

Lemma 5. Let there be an algorithm that (t, ε, qS , qH) forges a signature in
hybrid 1 and let LWE be (tLWE, εLWE)-secure. Then, there is also an algorithm
that (t′, ε′, q′S , q

′
H) forges a signature in hybrid 2 for t′ ≈ t+ tLWE, ε′ ≥ ε− εLWE,

q′S = qS, and q′H = qH .

Proof. The lemma follows from a straightforward reduction to LWE. The only
difference between hybrid 1 and hybrid 2 is the distribution of the public key
(A,y). In hybrid 1, it is LWE distributed, while uniform in hybrid 2. If there is
an algorithm that ε forges in hybrid 1 and ε′ forges in hybrid 2, then LWE can
be told apart from uniform with advantage |ε− ε′|, i.e. εLWE ≥ |ε− ε′|. ut

Lemma 6. Let there be an algorithm that (t, ε, qS , qH) forges a signature in
hybrid 2. Then, there is also an algorithm that (tABDD, εABDD) solves ABDD for
tABDD ≈ t, εABDD ≥ 1

qH
ε.

Proof. We prove the lemma by embedding an ABDD challenge in hybrid 2 such
that if an algorithm forges successfully, it solves the ABDD problem. This is
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straight forward. We use the ABDD challenge (A,y) as a public key in hybrid 2.
We guess a random oracle query for point (w, (A,y),m∗) to request a challenge
c for query w∗ = w from the ABDD challenger. We program the random oracle
by setting H(w, (A,y),m∗) = c. With a probability of 1

qH
, the forgery will be

for this c and message m∗ thereby a valid signature (z, c) contains a valid ABDD
solution z. ut

ut

For applicability of Theorem 1, we need to show that ξ ≤ H∞(brtAcp | A)
is sufficiently large. Technically, it would be sufficient to show that it is hard for
any efficient adversary to compute brtAcp, given A. This would be sufficient,
since it only needs to be hard for an efficient adversary to guess the points where
the random oracle is going to be programmed during the simulation. Though,
using computational intractability is not necessary.

Instead, we use a similar approach as used by Bai and Galbraith [5, Lemma
3], relying on the fact that the public key component A has at least one invertible
ring element. Unlike [5], we do not need to rely on a Gaussian heuristic, since in
our case r is chosen uniformly at random, which leads to a very simple analysis.

Lemma 7. For any A ∈ Rl×kq with an invertible entry ai,j ∈ Rq,

H∞(brtAcp | A) ≥ d log p,

where brtAcp ∈ Zmp .

Proof. Since ai,j is invertible,

H∞(riai,j | A) = H∞(ri) = d log q.

The rounding function causes to lose log(q/p) entropy at each of the d coefficients
of ri ∈ Rq with respect to the coefficient embedding. ut

6 The Difficulty of Removing the Remaining Rejection
Condition

In the signature scheme presented in Section 4, we have removed one rejection
condition used in Dilithium [16] and qTESLA [4]. The other rejection condition
which checks if rtA− cet ∈ Good is left to ensure that bztA− cytcp = brtAcp,
i.e., the rounding of rtA (mod q) is recoverable from ztA − cyt = rtA − cet
(mod q).

An interesting question is whether we can further remove this rejection con-
dition while maintaining the efficiency of the scheme. By “maintaining the effi-
ciency of the scheme”, let us remind the readers that in theory, there are ways
of achieving a Fiat-Shamir type of lattice signature without using rejection sam-
pling, such as setting the modulus q to be super-polynomially large, or creating
many independent commitments and challenges and allowing the third message
in the ID protocol to answer only a few of them. However, such methods sig-
nificantly increase the sizes of public-keys and signatures. Instead, we focus on
methods that remove the rejection condition with a potentially low cost.
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6.1 Impossibility of Extracting Consistent Values from
Commitments with Errors

Suppose there are functions g, f that map rtA and rtA+êt for any bounded error
term ê to the same value, and make sure that g(rtA) serves as a commitment of
r, or at least preserves high min-entropy; then we can apply the hash function
on g(rtA) instead of brtAcp.

However, when q is polynomial, no balanced functions g, f are able to guar-
antee that g(rtA) = f(rtA + êt) with probability 1 − negl. Here a boolean
function is called balanced if it outputs 0 and 1 with almost the same probabil-
ity over a random input from the domain. The result follows a recent result of
Guo et al. [23], which shows a similar impossibility result for the lattice-based
key exchange protocols [14,34].

The following corollary is implicit from [23, Theorem 1].

Corollary 1. Let m, q ≥ 2, χ be a symmetric distribution over Zq such that for
any a ∈ Zq\0, it holds that Prx←χ[ax = 0] ≤ 9/10, and Prx←χ[ax = q/2] ≤ 9/10.
Consider the joint distribution of (x,y) where x ← U(Zmq ), y = x + e where
e← χm. Then, for any balanced function f, g : Zmq → {0, 1}, it holds that

Pr
(x,y)

[f(x) = g(y)] ≤ 1−Ω(1/q2)

In our application, x = rtA (mod q). x is uniform over Rq since A is sampled
uniformly random over Rq.

6.2 Evidence on the Difficulty of Adapting the Reconciliation
Mechanism

We also tried to adapt the reconciliation mechanism used in lattice-based key-
encapsulation mechanisms [14,34]. The reconciliation mechanisms can be adapted
to our signature scheme to provide correctness when removing all rejection con-
ditions. Nevertheless, we show that they would leak information about the error
term e in the public key. Therefore, this attempt fails for security reason.

Let us first recall the reconciliation mechanisms [14,34] used in the lattice-
based key-exchange. Abstractly, the reconciliation mechanism uses two functions
hint : Zq → {0, 1} and g : Zq × {0, 1} → {0, 1} such that, given v ∈ Zq, hint(v)
is the hint bit of v, the reconciliation function g(v + e, hint(v)) is equal to bve
whenever e is bounded (this is used to ensure correctness). Furthermore, if v is
uniformly random from Zq, then bve is uniformly random given hint(v) (this is
used to ensure security in the key-exchange scheme).

The simple adaption of the reconciliation mechanism and the attack. Let us
apply the reconciliation mechanism on the string rtA generated in the signature
scheme. Suppose the first message in the three round protocol contains brtAep
and hint(rtA), then we hash on brtAep and hint(rtA), or brtAep only. In the
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final signature we give out z, c, and hint(rtA). This at least gives a signature
scheme with correctness due to the correctness of the reconciliation mechanism.

Let us run a security analysis over the modified scheme. To prove unforge-
ability, we need to simulate brtAep and hint(rtA). However it seems that the

simulator will only be able to get rtA−cet, from which it seems tricky to simulate
brtAep and the hint hint(rtA).

In fact, there is an explicit attack for the scheme. Suppose the adversary
makes N signature queries. For the ith query, the reconciliation mechanism guar-
antees to recover brtiAep and rtiA− ciet (mod q), for i ∈ [N ]; it is then possible
to recover the error term e in the public key when N is sufficiently large.

Here is the algorithm. From brtiAep we can obtain

rtiA + êti (mod q) (2)

where êi denotes the error caused by rounding; it is bounded and independent
of the error term e in the public key. Subtracting Eqn (2) by rtiA−ciet (mod q)
gives êi + cie over the base ring R without mod q. We can view ci, e · ci + êi
as “LWE samples without mod q”, where the error vector e in the public key is
treated as the secret term. The “LWE without mod q” problem can be solved
in polynomial time given polynomially many samples when the variance of the
error is polynomially bounded (an explicit analysis is given in [6]).

The same attack applies if an additional error term ẽ independent of e is
injected in the commitment, namely let the commitment be brtA + ẽtep and

the hint be hint(rtA + ẽt).

Generalizing the statistical attack to handle dependent noise. Suppose we modify
the first attempt by giving out brtA + E(e)ep and hint(rtA +E(e)) in the first

message, where E : R1×k
q → R1×k is a possibly randomized function. As long as

E outputs small vectors, then the correctness of the scheme still holds.
Following the attack mentioned previously, we can recover rtiA + E(e) + êti

where êi denotes the error caused by rounding. From there we can get

ci, e · ci + E(e) + êi (3)

without mod q. But E(e) is a possibly non-linear function on e, so the equation
above does not give samples in the form of “LWE without mod q”.

However, we show that information about the error term in the public key can
still be extracted by statistical analysis as long as sufficient amount of samples
of the form in Eqn. (3) are available.

Definition 8 (Hoeffding Bound). Let X1, . . . , Xn be independent random
variables bounded in interval [ai, bi], then for any positive t ∈ R,

Pr[| 1
n

∑
Xi − E[

1

n

∑
Xi]| ≥ t] ≤ 2e

− 2n2t2∑
i(bi−ai) .

For clarity, we present the theorem in the form where the signature scheme
is instantiated over the base ring Zq, or we can think of it as the coeffcient
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embedding of the scheme over Rq. Notice that the attack runs polynomial in
noise and rounding bound B. Hence if B is superpolynomial, the attack will not
be efficient. But this would require a superpolynomial modulus q.

Theorem 2. Let SGN be a signature scheme with public key A ∈ Zn×mq ,Y =
SA+E ∈ Zn×mq , based on the Fiat-Shamir transform of an identification scheme
where first message contains rtA + E(A, r,S,E) ∈ Z1×m

q , second message con-
tains c ∈ {0, 1}n and third message contains z = r + cS ∈ Z1×n

q , where E is
an arbitrary randomized function with range [−B,B]1×m, 2B ≤ q. Then for
any reconciliation function and hint that allows to recover rtA + E(A, r,S,E),
there is a key recovery attack against SGN given 3Bκ signature queries and time
polynomial in κ and B.

Proof. We describe an successful attack algorithm A as follows. The fact ztA−
ctY = rtA− ctE allows A to compute

F (r, c)A,S,E := rtA + E(A,S,E, r)− (ztA− ctY)

= E(A,S,E, r) + ctE =

E1(A,S,E, r)
...

Em(A,S,E, r)


t

+ ctE

A uses an estimator to estimate the mean of several random variables. To get
a good estimator for the mean µ of a random variable X ∈ [−B,B], it computes
µ′ := 1

Bκ

∑
xi, where for i ∈ [Bκ], xi ← X. By the Hoeffding bound,

Pr[|µ′ − µ| ≥ 1

3
] ≤ 2e−

2
18κ.

A picks Bκ signatures for which c1 = 0 and computes an estimate of the mean
µE1,c\c1 of the first entry of F (r, c)A,S,E.

E1(A,S,E, r) +
∑
i

ciE1,i = E1(A,S,E, r) +
∑
i 6=1

ciE1,i.

Here, we think of r, c as the source of independence in each signature sample.

It then computes an estimation of the mean µE1,c,c1 of E1(A,S,E, r) +∑
i ciEi for Bκ samples with c1 = 1. With overwhelming probability the esti-

mate matches the actual mean and thus A recovers E1,1 correctly by computing
E1,1 = bµE1,c,c1e− bµE1,c\c1e. It repeats this to recover the first row of E which
allows to recover the first row of S as well. Repeating this for each entry allows
to recover the whole secret S. By Chernoff bound, for each b ∈ {0, 1} at least
Bκ out of 3Bκ many random signatures will correspond to challenge c1 = b
except negligible probability. By a union bound over all n entries of c, this will
hold for all entries of c. Therefore, with overwhelming probability, 3Bκ random
signature queries are sufficient for the attack. ut
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6.3 Discussions of the Possible Generalizations and Limitations

Let us conclude this section with a summary of the possible generalizations and
limitations of our negative results.

For the first negative result, we are not able to rule out the possibility that
the function g depends on the public matrix A. In [23], the authors are able
to rule out such a possibility for the lattice-based key exchange. The setting in
the signature scheme seems to be different. In fact, given that in our setting,
using reconciliation mechanisms with hints has already provide a scheme with
correctness, we do not attempt to rule out the possibility of achieving correctness.

For the second negative result, we are not able to rule out the possibility of
using the reconciliation mechanism when the underlying commitment, on a string
r, is not of the form of rtA. However, changing the structure of the commitment
in the first round of the ID protocol seems to require a significant change in the
lattice-based commitment protocol.

Let us also remark that it is impossible to rule out a lattice-based signature
scheme with polynomial modulus without rejection sampling, given the presence
of the signature scheme based on lattice trapdoor [19]. But of course, this would
require significant changes to our protocol or similar rejection sampling based
protocols like [27,28,22,15,5,16,25,4].

7 Parameter and Comparison

We provide concrete parameters for the signatures in two settings. In the first
setting, the parameters are set so that the adaptive bounded distance decoding
problem (ABDD, cf. Definition 6) is hard even for a computationally unbounded
adversary. In the second setting, the parameters are set so that the ABDD prob-
lem is computationally hard. Compared to the first setting, the second setting
gives schemes with smaller public keys and less number of repetitions, while
relying on one more computational assumptions.

It is reasonable to compare our first setting with Dilithium-QROM [25] and
the “provable” version of qTESLA [4], since all of them set the scheme in the
“lossy” mode, so that the schemes have tight security proofs from (Ring or Mod-
ule)LWE in the QROM [25]; then compare our second setting with Dilithium [16],
which also requires additional computational assumptions in addition to Module
LWE. We do not compare with the “heuristic” version of qTESLA [4] since there
are bugs in those parameter estimations, and the qTESLA team decided to drop
the “heuristic” parameters in the second round of NIST PQC standardization.

Let us recall the notations. Let R := Z[x]/(xd + 1), where d is a power-of-
two. Let q be the bigger modulus, p be the smaller modulus after rounding.
Let br := b qpc − 1. When setting the concrete parameters, we assume br + 1
is a power of 2. Then rounding a number a ∈ Zq to Zp is effectively done by
dropping the log(br+1) least significant bits when a ∈ [0, bq/2− 1c], or dropping
the log(br + 1) least significant bits then subtracting by 1 when a ∈ [−bq/2c , 0).
Let A ∈ Rl×kq . Let n = d · l, m = d · k. Let C ⊆ R denote the space of the
challenge c.
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7.1 Parameters with Statistical Hardness of ABDD

We emphasize that under statistical hardness of ABDD, the underlying identifi-
cation protocol of our signature scheme is statistically sound and honest verifier
zero-knowledge. By a result of Unruh, this implies security of our signature
scheme in the QROM.

Theorem 3 ([37], Theorem 1). Assume that an identification protocol has
completeness, unpredictable commitments, honest-verifier zero-knowledge and sta-
tistical soundness. Then the Fiat-Shamir transformed protocol has completeness,
zero-knowledge and weak simulation soundness in the QROM.

Alternatively, we can also rely on [25, Theorem 3.2, 3.3 and 3.4] for the same
tightness bounds obtained for Dilithium in the QROM setting.4

To determine the concrete parameter setting where the statistical hardness of
ABDD holds, we assume the Gaussian heuristic in the similar fashion of e.g. [5].
This heuristic implies the statistical hardness of ABDD for significantly smaller
parameters than Lemma 2.

Theorem 4. Let B be the set of all elements h(x) ∈ R that have coefficients
(h1, . . . , hd) within the interval [0, br] in Z. If qn−m · |B|m is a negligible function,
then, under Gaussian heuristic, for all but negligibly many A ∈ Rl×kq and y ∈
Rkq , the following statement holds. For all v ∈ Rkq ,

Pr
c∈C

[
∃ z ∈ Rlq, e′ ∈ Bk such that Atz− cy = v + e′ (mod q)

]
≤ negl(κ)

Proof. First we note that m has to be bigger than n (i.e. k > l). Otherwise,
suppose k = l and A is invertible, then z exists for any c ∈ C.

To understand how small m can be, consider the following lattice Λ:

Λ :=
{

t ∈ Zn+h+m | [Ât | Ŷt | Im] · t = 0 (mod q)
}
,

where Â ∈ Zn×m, Ŷ ∈ Zd×m denote the matrices obtained from taking the
coefficient embedding of A and y.

The determinant of Λ is qm. Define a set S = [−q/2, q/2]n×[−1, 1]d×[0, br]
m,

which is a convex subset of Rn+d+m. If we assume Gaussian heuristic, then for
any v ∈ Zm, fix a vector t ∈ Zn+h+m such that [Ât | Ŷt | Im] · t = v (mod q),
the number of elements in Λ+ t ∩ S is expected to be N := qn · |C| · |B|m/qm.

Therefore, if N/|C| is negligible, i.e. qn · |B|m/qm is negligible, then the prob-
ability statement in the theorem holds. ut
4 Theorem 3.2, 3.3 require a non-standard version for honest-verifier zero-knowledge

that is called no-abort HVZK. A simulator for naHVZK does not output transcripts
that lead to an abort. On the downside the challenge of accepting transcripts must
be uniform. We observe that both theorems hold in case of HZVK simulators that
do output commitment and challenge of aborting transcripts but do not necessarily
have uniform challenges in accepting transcripts. In the security proofs, the QROM
just needs to be also “programmed” for challenges that lead to a rejection.
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Table 1. Parameters of our scheme assuming the statistical hardness of ABDD

Parameters 1 2 3 4 5 6

log2 q 23 45 30 28 27 31

d 256 512 1024 1024 1024 512

l 3 4 1 1 1 3

k 14 8 5 4 4 9

n = d · l 768 2048 1024 1024 1024 1536

m = d · k 3584 4096 5120 4096 4096 4608

η (= ‖e‖∞) 6 7 20 10 6 3

w = the weight of c 60 46 36 36 36 46

log2(br) 18 20 24 21 20 21

be 360 322 720 360 216 138

Expected repetitions 19097 12.4 1.55 4.08 5.41 1.83

LWE security 122.8 165.1 139.4 140.2 138.1 170.0

Public key size (bytes) 10336 23072 19232 14368 13856 17888

Signature size (bytes) 2247 11589 3972.5 3716.5 3588.5 6021.8

Now we can determine the concrete parameters according to the bound given
in Theorem 4. The parameters are determined in the following order: we first
pick q, d, l, br, then choose m so that

m ≥ κ+ n log q

log q − log2 br

The probability that rtA− cet ∈ Good is lower bounded by(
br − 2be − 1

br

)m
(4)

where be ≥ ‖ce‖∞.
The public key is composed of the 256-bit seed to generate A, and y which

is of size m log2 q. The signature is composed of a ring vector of size n log2 q plus
d+w bits to store the challenge c, where w is the weight of c. Currently, we do
not adopt the public-key size optimization technique from [16], i.e., by dropping
bits from the y term in the public key and adding hint bits in the signatures. It is
reasonable to expect that over fixed q, d, l, k, be and br values, the optimization
leads to smaller public keys, slightly bigger signatures, and slightly less security
(since the ABDD problem would be slightly easier to solve given a vector y
without the least significant bits).

In Table 1, we provide 6 sets of concrete parameters. Parameter sets 1 and 2
follow the q, d, l, η, w, be values chosen in [16] and [25], then derive m, expected
repetition, LWE hardness, and the rest of the parameters. The parameter sets 3
to 6 choose the q, d, l, η, w, be values that are more suitable for our scheme.

In Table 2, we compare the parameters of our scheme with the param-
eters of Dilithium-QROM and qTESLA-provable. We only list the classical
security estimation since under the commonly used LWE security estimation
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Table 2. Comparison with Dilithium-QROM and qTESLA-provable.

Parameters Classical security PK size Sign size Exp. repetitions

Dilithium-QROM standard 140 7712 5696 4.3

qTESLA-p standard 140 14880 2592 3.45∗

Ours standard-I 138.1 13856 3588.5 5.41

Ours standard-II 140.2 14368 3716.5 4.08

Ours standard-III 139.4 19232 3972.5 1.55

Dilithium-QROM high 175 9632 7098 2.2

qTESLA-p high 279 38432 5664 3.84∗

Ours high 170.0 17888 6021.8 1.83

∗: The expected repetition numbers reported in [4] are obtained by experiments,
which are smaller than the estimated numbers derived from Formula (4).

model [3,2], schemes with 140-bit classical security are expected to have 128-
bit quantum security (similarly for the higher security level). Compared to
Dilithium-QROM, we achieve smaller signatures, similar rejection rates, but
bigger public keys, since they use an extra public-key optimization technique.
Compared to qTESLA-provable, under similar rejection rates, our public key
sizes are smaller, but the signature sizes are larger.

7.2 Parameters with Computational Hardness of ABDD

We can further reduce parameter m, the width of the public key, so as to reduce
the public key size and the number of rejections. The saving comes with a cost of
additionally assuming the computational hardness of the ABDD problem. In the
rest of the section, we first explain our model of estimating the cost of solving
the ABDD problem using the BKZ algorithm, then provide the parameters of
our signature scheme.

To explain our estimation model of solving BDD in general, we assume all
the matrices are defined over Z in this paragraph. The best way we know to
solve ABDD is to treat the entire w∗ + cy as the target vector for the standard
bounded distance decoding problem (cf. Definition 5), and then use BKZ to solve
the BDD problem.

Let A ∈ Zn×mq , t = Atz + e (mod q) be such a BDD instance. To express
the basis of the integer lattice used in the attack, we write the BDD instance
in its Hermite normal form. Let Ā be the first n × n part of A, assuming it is
invertible. Then

tt = ztA+et+qkt = zt[Ā,A′]+et+q[k̄t | k′t] = (ztĀ)[I | Ā−1·A′]+et+q[k̄t | k′t],

where k ∈ Zm, k̄, k′ are the top n and bottom m− n entires of k.
Let A′′ := Ā−1 ·A′. Let

B :=

(
In 0

A′′
t
qIm−n

)
.
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Table 3. Parameters of our scheme assuming the computational hardness of ABDD.

Parameters 1 2 3 4 5 6

log2 q 23 45 30 28 27 31

d 256 512 1024 1024 1024 512

l 3 4 1 1 1 3

k 6 5 2 2 2 5

n = d · l 768 2048 1024 1024 1024 1536

m = d · k 1536 2560 2048 2048 2048 2560

η (= ‖e‖∞) 6 7 20 10 6 3

w = the weight of c 60 46 36 36 36 46

log2(br) 18 20 24 21 20 20

be 360 322 720 360 216 138

Expected repetitions 68.3 4.82 1.19 2.02 2.33 1.96

BKZ approx factor δ 1.0053 1.0045 1.0049 1.0042 1.0041 1.0035

BKZ block-size β 258 332 290 370 388 492

ABDD hardness 103.2 126.8 115.1 138.4 142.6 173.1

LWE security 122.8 165.1 139.4 140.2 138.1 170.0

Public key size (bytes) 4448 14432 7712 7200 6944 9952

Signature size (bytes) 2247 11589 3972.5 3716.5 3588.5 6021.8

Then B ·
(

Ātz + qk̄
k′

)
− t = −e.

So the problem can be solved by running an approximate-CVP solver on a
given basis B and target t, or running an approximate-SVP solver on B′ :=(

B t
0 1

)
.

One of the most common cost model for estimating the running time of BKZ
for solving approximate-SVP is the following. Let h be the dimension of the
lattice (h(B′) = m + 1). Let δ be the approximation factor. Following [3,2], we
use sieving as the SVP oracle with time complexity 20.292β+16.4 in the block
size β. BKZ is expected to return a vector of length δhdet1/h for a lattice of
dimension h. Therefore, we found the smallest block size β in achieving the

needed δ corresponding to the length of e, which can be obtained from ‖e‖2
det1/h

=

δh.
Finally, we used the heuristic δ ≈ ( β

2πe (πβ)1/β)
1

2(β−1) to determine the re-
lation between β and δ, and we set the total time complexity of BKZ with a
block-size of β and dimension h as 8h · time(SV P ) = 8h · 20.292β+16.4 [10,3].

In Table 3, we provide the concrete parameters. In each of the 6 sets of
parameters, the values of q, d, l, η and w follow the same choices of from Table 1.
We then choose smaller values for k, so that the computational hardnesses of
the ABDD problem match the hardnesses of breaking the LWE instance in the
public key.

In Table 4 we compare the parameters of our scheme with the parameters of
Dilithium [16]. Compared to Dilithium, the sizes of signatures and public keys of
our scheme are larger. The public key is inherently larger in our scheme since m



24 Rouzbeh Behnia, Yilei Chen, Daniel Masny

Table 4. Comparison with Dilithium.

Parameters Classical security PK size Sign size Exp. repetitions

Dilithium standard 138 1472 2701 6.6

Ours standard-I 138.4 7200 3716.5 2.02

Ours standard-II 138.1 6944 3972.5 2.33

Dilithium high 174 1760 3366 4.3

Ours high 170.0 9952 6021.8 1.96

has to be larger than n for the hardness of ABDD to hold, whereas Dilithium can
choose m smaller than n and base the security of the signature on the hardness
of SIS. Even adding the public-key optimization technique from [16] is not likely
to make the public key of our scheme smaller than Dilithium.
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based cryptography: A signature scheme for embedded systems. In Cryptographic
Hardware and Embedded Systems - CHES 2012 - 14th International Workshop,
Leuven, Belgium, September 9-12, 2012. Proceedings, pages 530–547, 2012.

23. Siyao Guo, Pritish Kamath, Alon Rosen, and Katerina Sotiraki. Limits on the
efficiency of (ring) LWE based non-interactive key exchange. In Public Key Cryp-
tography (1), volume 12110 of Lecture Notes in Computer Science, pages 374–395.
Springer, 2020.

24. Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and
William Whyte. NTRUSIGN: digital signatures using the NTRU lattice. In CT-
RSA, volume 2612 of Lecture Notes in Computer Science, pages 122–140. Springer,
2003.

25. Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment
of fiat-shamir signatures in the quantum random-oracle model. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
pages 552–586. Springer, 2018.
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