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Abstract

Many of the recent advanced lattice-based Σ-/public-coin honest verifier (HVZK) interactive protocols
based on the techniques developed by Lyubashevsky (Asiacrypt’09, Eurocrypt’12) can be transformed into
a non-interactive zero-knowledge (NIZK) proof in the random oracle model (ROM) using the Fiat-Shamir
transform. Unfortunately, although they are known to be secure in the classical ROM, existing proof
techniques are incapable of proving them secure in the quantum ROM (QROM). Alternatively, while we
could instead rely on the Unruh transform (Eurocrypt’15), the resulting QROM secure NIZK will incur a
large overhead compared to the underlying interactive protocol.

In this paper, we present a new simple semi-generic transform that compiles many existing lattice-based
Σ-/public-coin HVZK interactive protocols into QROM secure NIZKs. Our transform builds on a new
primitive called extractable linear homomorphic commitment protocol. The resulting NIZK has several
appealing features: it is not only a proof of knowledge but also straight-line extractable; the proof overhead
is smaller compared to the Unruh transform; it enjoys a relatively small reduction loss; and it requires
minimal background on quantum computation. To illustrate the generality of our technique, we show
how to transform the recent Bootle et al.’s 5-round protocol with an exact sound proof (Crypto’19) into
a QROM secure NIZK by increasing the proof size by a factor of 2.6. This compares favorably to the
Unruh transform that requires a factor of more than 50.
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1 Introduction
The Fiat-Shamir transform [FS87] is one of the most popular methods to construct non-interactive zero-
knowledge (NIZK) proofs1 in the random oracle model (ROM) based on a Σ-protocol (or more generally
a public-coin honest-verifier zero-knowledge (HVZK) interactive protocol). Due to the ever-growing risk of
quantum computers, understanding the quantum security of NIZKs in the quantum ROM [BDF+11] based
on the Fiat-Shamir transform (or related transforms) have been considered to be an important research
topic both in theory and practice. However, although many techniques in the QROM have accumulated in
the last decade, including but not limited to [BDF+11, Zha12b, Unr12, BZ13, Unr15, Unr17, KLS18, Zha19,
DFMS19, LZ19, DFM20], our understanding of NIZKs in the QROM is still not as clear as those in the
classical ROM. Notably, many of the recent lattice-based Σ-/public-coin HVZK interactive protocols, such as
[BDL+18, BBC+18, BLS19, YAZ+19, ESLL19, ALS20], based on the techniques developed by Lyubashevsky
[Lyu09, Lyu12] fall into the following situations:

- they are not known to be (in)secure when applied the Fiat-Shamir transform in the QROM, and/or

- they can be transformed into a QROM secure NIZK using the Unruh transform [Unr15] but incurs a
large overhead, say at least ×50, compared to the underlying interactive protocol.

Considering that we can securely apply the Fiat-Shamir transform to these protocols in the classical ROM to
obtain efficient NIZKs, the current state-of-the-affair is unsatisfactory. Below, we briefly recall NIZKs in the
QROM.
QROM secure NIZKs. Broadly speaking, there are two breeds of transformation to obtain QROM secure
NIZKs (that are a proof of knowledge) from a Σ-/public-coin HVZK interactive protocol. One is the Fiat-Shamir
transform [FS87] and the other is the Unruh transform [Unr15].

Recently, Don et al. [DFMS19] and Liu and Zhandry [LZ19] showed how to argue security of the Fiat-
Shamir transform in the QROM in two steps: they first showed that the Fiat-Shamir transform converts a
standard Σ-protocol that is additionally a quantum proof of knowledge into an NIZK secure in the QROM,
and then additionally showed how to construct a Σ-protocol that is a quantum proof of knowledge. Let us call
such a Σ-protocol as a quantum secure Σ-protocol. It was shown in [LZ19] (and partially in [DFMS19]) that
Lyubashevsky’s Σ-protocol for proving possession of a short vector e such that Ae = u is quantum secure
for appropriate parameters. Concretely, by increasing the parameters compared to those required by the
classically secure protocol, they showed that Lyubashevsky’s Σ-protocol has a “collapsing” property. However,
such techniques for proving that a Σ-protocol is quantum secure are still limited and it seems non-trivial to
generalize them to work for the recent more advanced lattice-based protocols. Moreover, these techniques
that require rewinding quantum adversaries so far incur a large reduction loss of at least a factor Q4t−2,
where Q is the number of adversarial random oracle queries and t is the number of valid transcripts required
to invoke special soundness of the underlying Σ-protocol. Since setting the parameters without taking these
huge reduction losses into consideration sometimes lead to concrete attacks [KM07, KZ20], having a tighter
reduction is desirable. Recently, Don et al. [DFM20] generalized the first step above to (2n + 1)-round
public-coin HVZK interactive protocols.

On the other hand, Unruh [Unr15] showed an elegant transform that converts any standard Σ-protocol into
a QROM secure NIZK. The benefit of the Unruh transform is that it works for any Σ-protocol, the reduction
loss is tight, and it is also straight-line extractable.2 The last strong property guarantees that the witness from
a proof can be extracted without rewinding the adversary and is especially suitable for applications requiring
multiple concurrent executions of NIZKs such as group signatures [BMW03] and anonymous attestations
[BCC04]. On the other hand, one of the main downsides is that it may incur a noticeable overhead in the
proof size compared to the Fiat-Shamir transform since the transformation crucially relies on the challenge
set being small. While the overhead can be reasonable when the underlying Σ-protocol already has a small
challenge set, e.g., [CDG+17], it becomes prohibitively large as the challenge set grows. (See Appendix C for

1We may simply refer to NIZK proofs or NIZK proofs of knowledge as NIZKs when the distinction is not relevant.
2This notion is also called online extractable in the literature.
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a minimal background on the Unruh transform and its overhead). Recently, Chen et al. [CHR+18] extended
the Unruh transform to work against a 5-round public-coin HVZK interactive protocol when restricting the
second challenge to be binary.
Coming back to lattice-based ZK proofs. There are two main approaches in the current literature to
construct lattice-based NIZKs. One builds on the Fiat-Shamir with abort paradigm developed by Lyubashevsky
[Lyu09, Lyu12] and the other builds on Stern’s protocol [Ste94, KTX08]. While the QROM security of
the latter approach is well understood since it has a simple combinatorial “commit-and-open” structure
[DFMS19, ?], the QROM security of the former approach remains elusive. Notably, for the recent lattice-based
protocols such as [BDL+18, BBC+18, BLS19, YAZ+19, ESLL19, ALS20], we either still do not know how to
apply the Fiat-Shamir transform and/or require to pay a huge overhead when adopting the Unruh transform
to argue QROM security. Therefore, a natural question is:

Can we generically and more efficiently transform lattice-based Σ-/public-coin HVZK interactive
protocols based on the Fiat-Shamir with abort paradigm into QROM secure NIZKs?

Ultimately, we would like the transform to achieve the best of the two known transforms: to maintain similar
proof size and soundness error of the underlying Σ-protocol like the Fiat-Shamir transform [FS87], while also
providing a tight reduction along with a straight-line extractor like the Unruh transform [Unr15].

1.1 Our Contribution
In this work, we provide partial affirmative answers to the above problem. We present a new simple
semi-generic transform that compiles many existing lattice-based Σ-/public-coin HVZK interactive protocols
such as [BDL+18, BLS19, YAZ+19, ESLL19, ALS20] into a QROM secure NIZK that is also straight-line
(simulation) extractable [FKMV12]. The proof overhead is smaller compared to the Unruh transform and
enjoys a relatively small reduction loss. In many cases, the reduction loss only scales linearly with t (i.e.,
number of valid transcripts to invoke special soundness), rather than exponentially (e.g., Q4t−2) required
by the Fiat-Shamir transform explained above. This is quite desirable since t can get quite large in recent
advanced protocols; for instance [ALS20] requires t = 32 in one of their settings, making the reduction loss as
large as 2638 for a modest Q = 220.

As a concrete example, we show how to transform the recent Bootle et al.’s 5-round protocol with an exact
sound proof [BLS19] into a QROM secure NIZK by only increasing the proof size by a factor of 2.6.3 This is
in contrast to using the recent extended Unruh transform [CHR+18]4, which increases the proof size by a
larger factor of 51.8. Note that we are not aware of any method to securely apply the Fiat-Shamir transform
to Bootle et al.’s protocol in the QROM. Finally, we highlight that not only our transform is very simple but
the security proofs are also quite simple and involves a minimal amount of discussion regarding quantum
computation.

Our contribution can be divided into the following steps. We only provide a high-level explanation of
each step below and refer to Section 1.2 for a more detailed overview.

1. We first propose a new 3-round public-coin interactive protocol called extractable linear-homomorphic
commitment (LinHC) protocol. (See Section 3)

2. We then show how to bootstrap a broad class of Σ-protocols into a Σ-protocol that is also a quantum
straight-line proof of knowledge by using an extractable LinHC protocol. Here, we consider the class of
Σ-protocols where the response (i.e., the prover’s third message) is of the form z = β · e + r, where
e ∈ Zmq is the witness, β is the challenge sampled by the verifier, and r ∈ Zmq is the masking term
committed in the prover’s first message.5 (See Section 4.1)

3As a point of reference, the signature scheme Dilithium, a finalist to the NIST post-quantum standardization process based
on the simple Lyubashevsky’s Σ-protocol, requires to increase the sum of public key and signature size by a factor 3.2 to achieve
QROM security [KLS18].

4Since Bootle et al’s protocol requires slightly more transcripts for special soundness compared to those considered in
[CHR+18], the security proof of [CHR+18] may need to be modified to apply the transform to Bootle et al’s protocol.

5Although we consider a slightly broader type of Σ-protocols in the main body, we keep the presentation simple here as the
main idea generalizes easily.
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3. We further show that we can apply the Fiat-Shamir transform to Σ-protocols with a quantum straight-
line proof of knowledge to construct a QROM secure NIZK that is also straight-line extractable. (See
Section 4.2)

4. We provide two simple constructions of lattice-based extractable LinHC protocols: one based on the
module learning with errors (MLWE) problem, and the other based on the MLWE and the decisional
small matrix ratio (DSMR) problem, where the latter is more efficient. Here the DSMR problem is a
generalization of the decisional small polynomial ratio problem [LTV12, SXY18] defined over a module
NTRU lattice [?]. (See Sections 3.4 and 3.5)

5. Finally, we discuss how to apply extractable LinHC protocols to more advanced lattice-based public-coin
HVZK interactive protocols. As a concrete example, we provide the details on how to make Bootle
et al.’s 5-round protocol with an exact sound proof [BLS19] into a QROM secure NIZK with concrete
parameters. We chose this protocol since it is one of the more complex protocols that have appeared in
the literature while still being relatively simple enough to fit in our framework. We show how the ideas
can be used to obtain similar results for other protocols such as [BDL+18, YAZ+19, ESLL19, ALS20].
(See Section 5)

One notable difference between our transform and prior transforms that achieve straight-line extractable
NIZKs either in the classical or post-quantum setting (i.e., Fischlin [Fis05] and Unruh [Unr15]) is that ours
do not put any restriction on the size of the challenge set of the underlying Σ-protocol. Therefore, if the
underlying Σ-protocol has an exponentially large challenge set, we can use it directly to obtain an NIZK, thus
circumventing an inefficient soundness amplification required by prior transforms. We note that our result
does not contradict the impossibility result of Fischlin [Fis05] who (roughly) showed that an NIZK in the
ROM with a straight-line extractor that cannot program the random oracle requires a prover to query the
random oracle on at least ω(log κ) points to produce a proof, where κ is the security parameter.6 The main
reason is that our NIZK requires the extractor to program the (Q)RO similar to the proof in the Fiat-Shamir
transform. The difference between the Fiat-Shamir transform is that our extractor reprograms the (Q)RO in
a way that it does not require to rewind the adversary to extract the witness.

1.2 Technical Overview
We provide an overview of each step explained in the above contribution.
Items 1 and 2: Extractable LinHC protocols and integrating it to Σ-protocols. We use Lyuba-
shevsky’s Σ-protocol [Lyu09, Lyu12], which we denote by ΣLyu-protocol, as a leading example. It forms the
basis of lattice-based zero-knowledge proofs based on the Fiat-Shamir with abort paradigm and the ideas
presented below extend naturally to more advanced protocols.

Let A ∈ Rn×mq and u ∈ Rnq be public, where R and Rq denote the rings Z[X]/(Xd+1) and Zq[X]/(Xd+1).
Then, the ΣLyu-protocol allows one to prove knowledge of a short vector e ∈ Rm satisfying Ae = u.7 The
prover first sends w = Ar to the verifier where r ∈ Rm is a random short vector sampled from some specific
distribution. The verifier returns a randomly sampled challenge β ← {0, 1}d, where β is viewed as an element
over R by the standard coefficient embedding. Finally, the prover sends z = β · e + r to the verifier. Here,
it is standard to perform a rejection sampling step to make z statistically independent from e. However,
we ignore this subtle issue in the overview. Finally, the verifier accepts if z is short and Az = β · u + w
holds. It is known that the ΣLyu-protocol satisfies relaxed (rather than exact) special soundness: Given two
valid transcripts of the form (w, β, z) and (w, β′, z′) with β 6= β′, an extractor Extractss outputs a witness
z∗ = z− z′ such that Az∗ = (β − β′) · u. Here, although z∗ does not lie in the original relation, such proof of
knowledge for a relaxed relation has proven to suffice in many applications.
Modifying the ΣLyu-protocol. Our idea to turn the ΣLyu-protocol to be a straight-line proof of knowledge is
simple. Here, recall that to show a Σ-protocol is straight-line proof of knowledge, informally we need to

6This result informally shows that we need at least ω(log κ)-parallel repetition, assuming that a constant number of hash
query is required in each repetition.

7All operations with elements over Rq are understood to be performed over mod q.
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construct an extractor SL-Extract that on input a single valid transcript (and some private information),
outputs a witness z∗. As a first step, we let the prover commit to its witness e and randomness r by a
linear homomorphic commitment scheme. The prover outputs w = Ar as in the original protocol along
with two commitments come = Compk(e)[δe] and comr = Compk(r)[δr], where pk is a commitment key, and
δe and δr are commitment randomness.8 Then, given a random challenge β from the verifier, the prover
returns z = β · e + r and the commitment randomness δz := β · δe + δr as the third message. The verifier
accepts if z is short; Az = β · u + w holds; and Compk(z)[δz] = β · come + comr holds. Here, for correctness
to hold, we require the commitment scheme to satisfy linear homomorphism also over the randomness, i.e.,
β · come + comr = Compk(β · e + r)[β · δe + δr] for any β ∈ {0, 1}d ⊂ R.

We first check our modified ΣLyu-protocol remains secure in the standard sense. Special soundness
follows since two valid transcripts of the modified ΣLyu-protocol include two valid transcripts of the original
ΣLyu-protocol. Next, assume δz does not leak any information on the original commitment randomness δe
and δr. Then, (roughly) we can invoke the hiding property of the commitment scheme to argue that δz,
come, and comr leak no information on e and r expect that they satisfy z = β · e + r. Therefore, since the
ΣLyu-protocol is HVZK, so is our modified ΣLyu-protocol.
How to extract a witness. To show that it is a straight-line proof of knowledge, we enhance the linearly
homomorphic commitment scheme to be extractable. Namely, we assume there exists an alternative key
generation algorithm SimKeyGen that outputs a simulated commitment key pk∗ with an associated trapdoor
τ with the following properties: pk∗ is indistinguishable from pk output by the honest key generation
algorithm KeyGen, and there exists a commitment extractor ExtractCom such that on input the trapdoor
τ and an honestly generated commitment comx = Compk∗(x)[δx], outputs x. Intuitively, it seems such an
extractor ExtractCom immediately implies a straight-line extractor SL-Extract. On input a valid transcript
((w, come, comr), β, (z, δz)), SL-Extract just runs e← ExtractCom(τ, come) to extract the witness e. However,
this intuition is clearly wrong since an adversary might have constructed a malformed commitment come and
comr that satisfies Compk∗(z)[δz] = β · come + comr. Notably, the only commitment SL-Extract sees that is
guaranteed to be valid is β · come + comr due to correctness. However, since SL-Extract already knows that
this opens to z, there seems to be no point using the trapdoor τ .

The main observation here is that since the adversary must prepare come and comr before seeing the
challenge β, there should be several other β’s in {0, 1}d that it would have been able to produce valid openings
to. To make the discussion simple, we first assume the case where the challenge space of the ΣLyu-protocol
is only of polynomial size and the existence of another valid commitment β′ · come + comr with β′ 6= β is
guaranteed. Then, SL-Extract runs through all β ∈ {0, 1}d and executes ExtractCom(τ, β · come + comr) in
polynomial time. Since β′ · come + comr is guaranteed to be a valid commitment, ExtractCom outputs the
corresponding message z′ committed to β′ · come + comr. After finding such z′, SL-Extract can invoke the
special soundness extractor Extractss on input (w, β, β′, z, z′) to obtain a witness z∗ for the (relaxed) relation.
We can turn this rough idea into a formal proof by performing parallel repetition of the ΣLyu-protocol to
amplify the soundness error to be negligible while noticing that SL-Extract still only needs to invoke ExtractCom
a polynomial time. However, recall the goal was to extract without having to restrict the challenge space of
the ΣLyu-protocol to be polynomial size as required by the Fischlin and Unruh transforms [Fis05, Unr15].9
Making the challenge set exponentially large. By slightly refining the above argument, we can make sure the
above idea works even when the challenge set is exponentially large. Assume an adversary has a non-negligible
probability ε in completing the ΣLyu-protocol with an honest verifier. Then conditioning on the adversary
succeeding, a standard statistical argument shows that with probability at least 1/2, the adversary must
have been able to output a valid response for at least ε-fraction of the challenges. That is, there exists 2d · ε
other β’s in {0, 1}d that the adversary was able to output a valid third message (z, δz). Therefore, we define
the SL-Extract to execute ExtractCom(τ, β · come + comr) on roughly (κ/ε)-randomly chosen β’s. Then, with
probability at least 1− 2−κ, SL-Extract finds the desired z′ and the rest follows the same argument made
above.

8For any probabilistic algorithm A, A(x)[ρ] denotes running A on input x with randomness ρ.
9To be precise, [Fis05] can use any Σ-protocol with an exponential challenge set size. Nevertheless, it still needs to rely on

parallel repetition to amplify soundness since it can only use polynomially of the challenges in a meaningful way.
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Since the above argument is purely statistical and agnostic to whether the adversary is classical or
quantum, the resulting modified ΣLyu-protocol is by default a quantum straight-line proof of knowledge. In
Section 3, we formalize the properties required by the underling commitment scheme and define it as a
new interactive protocol called the extractable linear homomorphic commitment (LinHC) protocol. We note
that the extractable LinHC protocol can be naturally plugged into multi-round public-coin HVZK interactive
protocols with similar structures. Finally, an acute reader may have noticed that our resulting Σ-protocol is
in the common reference string (CRS) model since it requires a commitment key pk. Although this is true in
general, for our specific extractable LinHC protocol, the pk can be the output of the (Q)RO on any input of
the prover’s choice so the resulting Σ-protocol will not require any CRS.
Item 3: Applying the Fiat-Shamir transform in the QROM. A quantum straight-line extractable
Σ-protocol is particularly quantum secure so we can appeal to recent techniques [DFMS19, LZ19] to transform
it into a QROM secure NIZK or a QROM secure signature. However, we can take advantage of the straight-line
extractability of the Σ-protocol to provide simpler and tighter proofs. Recall one of the main reasons that
made the proof of Fiat-Shamir transform in the QROM difficult when basing on standard Σ-protocols was
that there was no easy way to extract a witness from a forged proof output by the adversary. Therefore, by
using the straight-line extractor SL-Extract to extract from the forged proof, it seems we can overcome one of
the most difficult obstacles. We outline the proof and explain some of the pitfalls. As commonly done in
the literature, below we consider the proof for the deterministic signature scheme based on the Fiat-Shamir
transform (which captures the essence of a simulation sound/extractable NIZK).10

Proof overview. The proof consists of two parts: first show that if the signature scheme is unforgeable against
no-message attack (UF-NMA) secure, then it is secure in the standard sense, i.e., unforgeable against chosen
message attack (UF-CMA) secure; next, show that if the relation used by the Σ-protocol is hard, then the
signature scheme is UF-NMA secure. Here, recall UF-NMA considers the setting where an adversary is not
allowed to make any signing queries.
Part 1: UF-NMA to UF-CMA. The first part of the proof follows closely to those given by Kiltz et al. [KLS18]
(which themselves follow [Unr15, Unr17]) who showed quantum security of a Fiat-Shamir transformed signature
scheme basing on a special type of Σ-protocol (or more specifically a lossy identification protocol). The
main observation is that by using the HVZK simulator of the Σ-protocol, we can make the proof history-free
[BDF+11]. In particular, for each message M, we deterministically generate a transcript (wM, βM, zM) of the
Σ-protocol using the HVZK simulator run on message-dependent randomness. Since the simulated transcript
is determined uniquely by the message, we can program the random oracle H at the beginning of the game
before invoking the adversary so that H(w‖M) outputs βM if and only if w = wM. Then, to answer a signature
query, the simulator can output the already programmed simulated proof as the signature.

This high-level approach works for Kiltz et al. [KLS18] without complications, however, we encountered a
slight issue in our setting. The main difference is that while the Σ-protocol of Kiltz et al. satisfied statistical
HVZK, ours is only computational HVZK. Concretely, for our specific instantiation of the extractable LinHC
protocol based on the MLWE assumption, we informally need to argue that a superposition of the MLWE
samples of the form

∑
sM,s′M

|B〉 |B · sM + s′M〉, where sM, s′M are random MLWE secrets, is indistinguishable
from

∑
sM,s′M

|B〉 |bsM,s′M〉, where bsM,s′M is a random vector. Unfortunately, we were not able to reduce the
standard MLWE assumption to such an assumption. Here, roughly, B corresponds to the commitment key of
the extractable LinHC protocol and each B · sM + s′M corresponds to the commitment.

To resolve this issue, we tweak the extractable LinHC protocol to use fresh commitment keys BM for each
message M and provide a slightly more general definition than what we laid out above. In particular, the
extractable LinHC protocol we require to construct a QROM secure NIZK/signature needs to have a more
general structure compared to those required to construct a Σ-protocol with a quantum proof of knowledge.
In Section 3, the latter is referred to as the “simplified” definition. Here, if we only care about the classical
setting, then this issue does not appear so we can always rely on the simplified definition for both cases.
Part 2: Straight-line extractable Σ-protocol to UF-NMA. The remaining piece is to show that we can extract
a witness from the forgery output by the adversary. The reduction is the same as before: provided a forgery,

10Note that considering deterministic signature schemes is w.l.o.g since we can always derandomize the signing algorithm
using pseudorandom functions.
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the extractor probes many challenges β randomly until ExtractCom(τ, β · come + comr) outputs a valid z,
where come and comr are the commitments of the extractable LinHC protocol included in the adversary’s
forgery. The main difference is in the analysis of the success probability of such a procedure. Since β is
generated as H(· · · ‖come‖comr) when applying the Fiat-Shamir transform, the adversary has some control
over the β it uses. To make matters worse, it can make quantum queries to H to obtain a superposition of
challenges

∑
β αβ |β〉. Therefore, we can no longer rely on the simple statistical argument that relied on β

being uniformly random. We will show how to upper bound the number of random sampling the extractor
must perform before finding a “good” challenge β by using bounds on the generic quantum search problem
[Zha12a, HRS16, KLS18].
Item 4: Constructing extractable LinHC protocols. It remains to show how to construct an extractable
LinHC protocol based on lattices. The construction is a simple variant of the (dual) Regev public-key
encryption scheme [Reg05, GPV08] that is known to be linearly homomorphic. The commitment key is two
random matrices pk = (A,B) ∈ Rm×nq ×Rm×nq and commitments to the short vectors (e, r) ∈ Rmq ×Rmq are
defined as follows for X ∈ {e, r}:

comX :=
(
p · (AsX,1 + sX,2), p · (BsX,1 + sX,3) +X

)
,

where p is some odd integer coprime to q and the s’s are commitment randomness sampled from an appropriate
domain. Then, for any challenge β ∈ {0, 1}d ⊂ R, we can construct a commitment to z = β · e + r by
computing comz = β ·come +comr, which is again of the form comz =

(
p · (Asz,1 +sz,2), p · (Bsz,1 +sz,3)+z

)
,

where sz,i = β · se,i + sr,i for i ∈ [3]. However, we cannot simply output the tuple (sz,i)i∈[3] as the opening of
comz to the message z since sz,i may leak information of se,i and sr,i. Instead, we use the rejection sampling
technique [Lyu09, Lyu12] and sample each sr,i for i ∈ [3] from a slightly wider distribution compared to
those of the se,i’s and only output the tuple (sz,i)i∈[3] with some fixed probability.11 Effectively, the opening
(sz,i)i∈[3] are independent of the se,i’s. At this point, we can argue come is indistinguishable from random
by invoking the MLWE assumption. Moreover, since comr = comz − β · come, we conclude that we can
simulate comr, come, and (sz,i)i∈[3] only using z = β · e + r. Finally, extractability follows by switching
the commitment key pk to be the real public-key of the encryption scheme. We set pk∗ = (A,B), where
B = D1A + D2 for two matrices D1 and D2 with small entries. Then, for an appropriate set of parameters,
given comz = (t1, t2), we can decrypt it by (t2 −D1t1) mod p = z.
Item 5: A concrete example. Finally, we provide a more interesting use-case for our extractable LinHC
protocol other than the Lyubashevsky’s Σ-protocol explained above. We consider the 5-round public-coin
HVZK interactive protocol by Bootle et al. [BLS19] that achieves exact special soundness. So far, we do
not know how to apply the Fiat-Shamir transform securely in the QROM to this protocol since unlike the
Lyubashevsky’s Σ-protocol, there is no natural notion of “collapsingness” [LZ19, DFMS19]. We can instead try
applying the recent Unruh transform extended to 5-round protocols by Chen et al. [CHR+18] by limiting the
second challenge used by the verifier to be binary. For completeness, we show in Appendix C.3 that assuming
the extended Unruh transform applies to Bootle et al’s protocol, we incur a factor 51.8 blowup in the proof
size. In Section 5, we show that our extractable LinHC works simply as a wrapper and bootstraps the original
protocol of Bootle et al. to be quantum secure with an overhead of only a factor 2.6. We also discuss how the
same ideas are applicable to other lattice-based protocols such as [BDL+18, YAZ+19, ESLL19, ALS20]. As
the main focus of this study is to introduce new theoretical tools and ideas to transform Σ-protocols into
QROM secure NIZKs, we leave optimization and assessment of the concrete security of other lattice-based
protocols as future work. Finally, we note that applying our extractable LinHC on Lyubashevsky’s Σ-protocol
does not result in a more efficient QROM secure signature scheme compared to the QROM secure Dilithium
proposed in [KLS18]. Roughly, this is because when viewed as an NIZK, ours achieve a stronger property:
while [KLS18] only achieves soundness, we also achieve (straight-line) proof of knowledge.

11We ignore in the overview the fact that our extractable LinHC protocol has non-negligible correctness error as it is standard
in lattice-based Σ-protocols.
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1.3 Related Work
Σ-protocols and NIZKs. Lindell [Lin15] and Ciampi et al. [CPSV16] consider using a dual mode commitment
to commit to the first prover message in any Σ-protocol and then to apply the Fiat-Shamir transform. They
show the resulting NIZK is sound (and not a proof of knowledge) and satisfies zero-knowledge in the non-
programmable classical ROM. Similar to ours, Maurer [Mau15] abstracts and formalizes many existing natural
Σ-protocols (e.g., Schnorr, Guillou-Quisquater) that admit a linearly homomorphic property in the prover’s
response. Finally, linearly homomorphic encryption has been used along with the class of Σ-protocols
considered in this work to construct a designated-verifier NIZK in the standard model, e.g., [DFN06, CC18].
Other lattice-based ZK proofs. Stern’s protocol is another starting point to construct lattice-based ZK
proofs. It has been extensively used to construct primitives such as ring signatures, group signatures, and
e-cash systems [LNSW13, LLM+16, LLNW16, LLNW17]. Recently, Beullens [Beu20] generalized the idea
by Katz et al. [KKW18] and constructed more efficient NIZKs based on Stern-type protocols and showed
that it is QROM secure if the hash function it uses is collapsing [DFMS19, DFM20]. Bootle et al. [BLNS20]
presented the first poly-logarithmic lattice-based ZK proof improving upon [BBC+18]. Lyubashevsky and
Neven [LN17] construct a verifiable encryption scheme by proving validity of the ciphertext using NIZKs
based on the Fiat-Shamir with abort technique. The decryption algorithm works by (informally) searching
through a set of possible valid ciphertext and runs in expected polynomial time. Although this is similar to
our straight-line extractor in the sense that they both search for a valid ciphertext/commitment, we believe
the resemblance is only superficial. Results by [BLNS20, LN17] are provided in the classical ROM.
QROM secure signatures using the Fiat-Shamir or Unruh transform. Picnic [CDG+17] is based
on an identification protocol constructed using the “MPC-in-the-head” technique [IKOS07] and the Unruh
transform. Dilithium is based on Lyubashevsky’s identification protocol and was shown by Kiltz et al. [KLS18]
to enjoy QROM security via the Fiat-Shamir transform by using larger parameters than compared to those
required in the classical setting. The result relies on the identification protocol having a lossy key generation.
El Kaafarani et al. [EKP20] constructs a signature scheme based on the CSIDH assumption building on the
same technique. MQDSS [CHR+16] is based on a multivariate quadratic 5-round identification protocol and
Chen et al. [CHR+18] showed QROM security by extending the Unruh transform. Beullens [Beu20] provides
a more efficient multivariate quadratic-based signature using the Fiat-Shamir transform due to [DFMS19, ?].
Recently, Kales and Zaverucha [KZ20] proposed attacks on some of the signature schemes based on a 5-round
identification protocol. However, the attack does not contradict the security proof of the original schemes as
the schemes were not set based on provably secure parameters.
Concurrent and independent work. Esgin et al. [ENS20] provide a zero-knowledge protocol for exact
proofs based on lattices using ideas from [ALS20]. Compared to Bootle et al’s protocol [BLS19] they achieve
a proof size smaller by a factor 8. Vadim et al. [LNS20] provide an efficient zero-knowledge protocol for
proving additive and multiplicative relations of committed integers. Both works use optimizations specific
to polynomial rings and can be turned into classical ROM secure NIZKs via the Fiat-Shamir transform.
Very recently, in an exciting work by [?] showed a general method to rewind quantum adversaries against a
collapsing public-coin interactive protocol without incurring an exponential loss in the number of performed
rewinding. We believe this technique can be used to make the reduction loss of lattice-based protocols
requiring many rewinding, conditioned on that they can be further shown to be collapsing.

1.4 Open Problems
In this work, we provide a new path to modify many of the lattice-based Σ-protocols into QROM secure NIZKs
using the Fiat-Shamir transform. Many of the recent efficient lattice-based Σ-protocols uses optimizations
exploit the algebraic structure of the polynomial rings. We leave it as an interesting open problem whether we
can optimize our extractable LinHC using similar techniques to achieve a transform that incurs less overhead
than what we propose. Another important problem is to figure out whether there is an efficient way to convert
these lattice-based Σ-protocol to be “collapsing” so that we can securely apply the Fiat-Shamir transform
[DFMS19, LZ19, DFM20] in the QROM.
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2 Preliminary
Notation. For a set S and distribution (or algorithm) D, “← S[ρ]” and“← D[ρ]” denote the process of
uniformly sampling from S with randomness ρ and sampling from (or executing) D with randomness ρ,
respectively. For sets X and Y , Func(X ,Y) denotes the set of all functions from X to Y . For column vectors
a and b, [a‖b] denotes the vertical concatenation. With an overload of notation, for two strings s and r over
some alphabet, s‖r denotes the concatenated string. We use PPT and QPT as shorthand for probabilistic
polynomial time and quantum polynomial time, respectively.

2.1 Σ-Protocol
Let R ⊂ {0, 1}∗ × {0, 1}∗ be a polynomial time recognizable relation. For (X,W) ∈ R, we call X as the
statement and W as the witness. Furthermore, let L = {X | ∃ s.t. (X,W) ∈ R} be the corresponding NP
language to the relation R.

A Σ-protocol defined for a relation R is a public-coin three-move interactive protocol between a prover
and a verifier. As with many lattice-based Σ-protocols, we define a slightly relaxed variant of the standard
Σ-protocol where soundness holds for a wider relation R′ than the relation R being used in the actual
protocol. Below, we provide a definition of a Σ-protocol in the common reference string model [Bel20].12

An overview is depicted in Figure 1. We note that this does not loose generality since most of the results
known to hold for Σ-protocols in the plain model hold for Σ-protocols in the CRS model. Moreover, in many
cases, Σ-protocols are implicitly defined in the CRS model by, for example, assuming public parameters for a
commitment scheme is provided to the prover and verifier.

Prove: crs, (X,W) ∈ R Verifier: crs, X ∈ L
(α, st)← Prove1(X,W) α

−−−−−−−−−−−−−−−→
β

←−−−−−−−−−−−−−−−
β ← ChSet

γ ← Prove2(X,W, (α, β, st)) γ
−−−−−−−−−−−−−−−→

> or ⊥ ← Verify(X, (α, β, γ))

Figure 1: Σ-protocol in the CRS model. All the algorithms are assumed to be given crs as input.

Definition 2.1 (Σ-protocol in the CRS model). A Σ-protocol in the common reference string (CRS)
model for relations (R, R′) such that R ⊆ R′ is defined by a tuple of algorithms (Setup,Prove = (Prove1,Prove2),
Verify), where Verify is a deterministic polynomial time algorithm. We assume the relation R defines the
set of all commitments ComSet, challenges ChSet, and responses ResSet. A Σ-protocol in the CRS model
proceeds as follows:

1. A common reference string is sampled crs← Setup(1κ);

2. The prover, on input crs and (X,W) ∈ R, runs (α, st)← Prove1(crs,X,W) and returns α ∈ ComSet to
the verifier;

3. The verifier then samples a challenge β ← ChSet and returns it to the prover;

4. The prover sends a response γ ← Prove2(crs,X,W, (α, β, st)) to the verifier, where γ ∈ ResSet ∪ {⊥}
and ⊥ 6∈ ResSet is a special symbol indicating failure. Finally, the verifier runs Verify(crs,X, (α, β, γ))
and outputs > for acceptance and ⊥ for rejection.

The transcript (α, β, γ) is called a valid transcript if Verify(crs,X, (α, β, γ)) = >.
12We define Σ-protocols in the CRS model for generality but emphasize that our concrete resulting Σ-protocols do not require

them.
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Below, for simplicity, we may refer to the above simply as a Σ-protocol when the meaning is clear. We
require a Σ-protocol to satisfy several properties. The first property is correctness.

Definition 2.2 (Correctness). A Σ-protocol has correctness error (δ0, δ1) if for any crs ∈ Setup(1κ) and
(X,W) ∈ R, the following holds:

• We have Pr[Verify(crs,X, (α, β, γ)) = >] ≥ 1 − δ0, where the probability is take over the randomness
to sample (α, st)← Prove1(crs,X,W), β ← ChSet, and γ ← Prove2(crs,X,W, (α, β, γ)) conditioning on
γ 6= ⊥.

• The probability that an honestly generated transcript (α, β, γ) contains γ = ⊥ is bounded by δ1. In
particular, Pr[γ = ⊥] ≤ δ1 where the probability is taken over the random coins of the prover and
verifier.

We define no-abort honest-verifier zero-knowledge, a weaker variant of the standard honest-verifier zero-
knowledge. For this variant, we only require the transcript to be simulatable with only knowledge of X
conditioned on γ 6= ⊥.

Definition 2.3 (No-abort honest-verifier zero-knowledge). Let D 6⊥trans(crs,X,W) be the distribution of
trans = (α, β, γ) from an honest protocol with prover input (crs,X,W) conditioned on γ 6=⊥. Then, we
say a Σ-protocol is (quantum) εzk-no-abort honest-verifier zero-knowledge (naHVZK), if there exists a PPT
algorithm ZKSim13 such that for all (X,W) ∈ R and QPT A, the advantage AdvnaHVZK(A) defined below is
less than εzk:

AdvnaHVZK(A) :=
∣∣∣Pr[trans← D 6⊥trans(crs,X,W) : A(crs, trans)→ 1]

−Pr[β ← ChSet, (α, γ)← ZKSim(crs,X, β) : A(crs, (α, β, γ))→ 1]
∣∣∣,

where the probability is taken also over the randomness of crs← Setup(1κ).

Definition 2.4 (Relaxed k-special soundness). A Σ-protocol has relaxed k-special soundness if there is a
deterministic PT algorithm Extractss such that given k valid transcripts (α, {βi, γi}i∈[k]) for any crs ∈ Setup(1κ)
and statement X ∈ L with pairwise distinct βi’s, it outputs a witness W such that (X,W) ∈ R′. In case
R′ = R, we call it “exact” special sound or simply special sound.

The following is a stronger variant of the standard proof of knowledge that allows the knowledge extractor
to directly extract from the proof output by an adversary A without rewinding. In the definition, the runtime
of the extractor is independent of the runtime of A and only depends on the advantage of A.

Definition 2.5 (Straight-line proof of knowledge). A Σ-protocol has a (quantum) εIndO-straight-line
proof of knowledge (SL-PoK) if there exists a PPT simulator SimSetup and a PPT straight-line extractor
SL-Extract with the following properties:

• For any QPT A, the advantage AdvIndCRS(A) defined below is less than εIndCRS:

AdvIndCRS(A) :=
∣∣∣Pr[crs← Setup(1κ) : A(1κ, crs)→ 1]− Pr[(c̃rs, τ)← SimSetup(1κ) : A(1κ, c̃rs)→ 1]

∣∣∣.
• For any QPT A and any X ∈ L satisfying

Pr


crs← Setup(1κ)

(α, st)← A(crs,X)
β ← ChSet

γ ← A(crs,X, α, β, st)

: Verify(crs,X, (α, β, γ)) = >

 ≥ ε,
13Although we define it to be PPT for simplicity, we can consider it to be QPT. Note that this comment holds for SimOracle

and SL-Extract defined in Definition 2.5.
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we have

Pr


(c̃rs, τ)← SimSetup(1κ)

(α, st)← A(c̃rs,X)
β ← ChSet

γ ← A(c̃rs,X, α, β, st)

:
Verify(c̃rs,X, (α, β, γ)) = >

W← SL-Extract(τ, (α, β, γ))
(X,W) ∈ R′

 ≥ ε− ν1

p1
,

for some polynomial p1 and negligible function ν1. Moreover, the runtime of SL-Extract is upper bounded
by p2 ·

(
ε−ν2
p3
− 1
|ChSet|

)−1 for some polynomials p2, p3 and negligible function ν2.14 Concretely, if ε is
non-negligible and |ChSet| is super-polynomially large, then SL-Extract runs in polynomial time.

Finally, we provide one additional property of Σ-protocol we require for the Fiat-Shamir transform.

Definition 2.6 (Min-entropy). A Σ-protocol has ζ-min-entropy if for all (X,W) ∈ R, and (possibly
unbounded) quantum algorithm A, we have

Pr[crs← Setup(1κ), (α, st)← Prove1(crs,X,W), α′ ← A(crs) : α = α′] ≤ 2−ζ .

2.2 Quantum Background
Quantum Computation. We briefly give some backgrounds on quantum computation. We refer to [NC00]
for more details. A state |ψ〉 of n qubits is expressed as

∑
x∈{0,1}n αx |x〉 ∈ C2n where {αx}x∈{0,1}n is a

set of complex numbers such that
∑
x∈{0,1}n |αx|2 = 1 and {|x〉}x∈{0,1}n is an orthonormal basis on C2n

(which is called a computational basis). If we measure |ψ〉 in the computational basis, then the outcome
is a classical bit string x ∈ {0, 1}n with probability |αx|2, and the state becomes |x〉. The evolution of a
quantum state can be described by a unitary matrix U , which transforms |x〉 to U |x〉. A quantum algorithm
is composed of quantum evolutions described by unitary matrices and measurements. We also consider
a quantum oracle algorithm, which can quantumly access to certain oracles. The running time Time(A)
of a quantum algorithm A is defined to be the number of universal gates (e.g., Hadamard, phase, CNOT,
and π/8 gates) and measurements required for running A. (An oracle query is counted as a unit time if
A is an oracle algorithm.) Any efficient classical computation can be realized by a quantum computation
efficiently. That is, for any function f that is classically computable, there exists a unitary matrix Uf such
that Uf |x, y〉 = |x, f(x)⊕ y〉, and the number of universal gates to express Uf is linear in the size of a
classical circuit that computes f .
Quantum random oracle model. Boneh et al. [BDF+11] introduced the quantum random oracle model
(QROM), which is an extension of the usual random oracle model to the quantum setting. Roughly speaking,
the QROM is an idealized model where a hash function is idealized to be a quantumly accessible oracle that
simulates a random function. More precisely, in security proofs in the QROM, a random function H : X → Y
is uniformly chosen at the beginning of the experiment, and every entity involved in the system is allowed to
access the oracle H, which on input

∑
x,y αx,y |x, y〉 returns

∑
x,y αx,y |x,H(x)⊕ y〉. We denote a quantum

algorithm A that accesses the oracle H by A|H〉. In the QROM, one query to the random oracle is counted as
one unit time. Although we do not require it, recently, Zhandry [Zha19] devised a new proof technique for
simulating the QRO without having to commit to one fixed description of a random function at the beginning
of the security game. One of the benefits of using the prior proof technique is that the proof follows much
like the classical counterpart and requires minimal background on quantum computation.
Useful lemmas. We prepare a minimal set of lemmas regarding quantum computation.

Definition 2.7 (Quantum-accessible PRF). We say that a function PRF : K × X → Y is a quantum-
accessible pseudorandom function (PRF) if for all QPT adversaries A, its advantage defined below is negligible:

AdvqaPRF(A) :=
∣∣∣Pr[A|RF〉(1κ)→ 1]− Pr[A|PRF(K,·)〉(1κ)→ 1]

∣∣∣ ,
where RF← Func(X ,Y) and K← K.

14In case the term inside (·)−1 is a non-positive, it is understood that SL-Extract simply outputs ⊥ on invocation.
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Zhandry [Zha12a] proved that some known constructions of classical PRFs including the classical construc-
tion of [GGM86] and the lattice-based construction of [BPR12] are also quantum-accessible PRFs. Moreover,
it is known that as in the classical ROM, we can use a QRO as a PRF [SXY18].

Lemma 2.8 ([Zha12a, Theorem 1.1]). Let X and Y be arbitrary sets and let D0 and D1 be efficiently
sampleable distributions on Y. For b ∈ {0, 1}, let Hb be a distribution over Func(X ,Y) such that when we
take Hb ← Hb, for each x ∈ X , Hb(x) is identically and independently distributed according to Db. Then if A
is a QPT algorithm that makes at most Q oracle queries such that∣∣∣Pr[A|H0〉(1κ)→ 1]− Pr[A|H1〉(1κ)→ 1]

∣∣∣ ≥ ε,
where Hb ← Hb for b ∈ {0, 1}, then we can construct a QPT algorithm B with runtime similar to A that
distinguishes D0 from D1 with probability at least ε2/(C ·Q3) for some universal constant C > 0.

Above, by removing the requirements that D0 and D1 are efficiently sampleable and A runs in polynomial
time, we obtain a statistical variant of the lemma. Below, for any λ ∈ [0, 1], let Bλ denote the Bernoulli
distribution, i.e., Prb←Bλ [b = 1] = λ.

Lemma 2.9 (Generic search problem with bounded probabilities, [KLS18, Lemma 2.1]). Let
λ ∈ [0, 1] and X be any set. For any (possibly unbounded) quantum algorithm A making at most Q quantum
queries to its oracle, consider the following game between a challenger:

1. A outputs a set of reals (λx)x∈X ;

2. The challenger checks if λx ≤ λ for all x ∈ X. If not, abort. Otherwise, it samples bx ← Bλx and
prepares the function G : X → {0, 1} such that G(x) = bx for all x ∈ X, and finally provides A oracle
access to G;

3. A|G〉 outputs x ∈ X. We say A wins if G(x) = 1.

Then, we have AdvGSBP(A) := Pr[A wins] ≤ 8 · λ · (Q+ 1)2.

2.3 Lattices
Rings and Gaussian Measures. For positive integers d and q, let Rq denote the polynomial ring
Zq[X]/(Xd + 1). Throughout this paper we view ring elements in a =

∑d−1
i=0 αiX

i ∈ Z[X]/(Xd + 1) as a
vector (α0, · · · , αd−1)> ∈ Zd interchangeably. For a positive real σ, let DZd,σ denote the discrete Gaussian
distribution over Zd. To make the notation simple, we denote a← Dσ to mean that the coefficient vectors of
a ∈ Rq is sampled from DZd,σ. The definition naturally extends to vectors a ∈ Rm by viewing a as a vector
in Zmdq . Finally, let Sη denote the set of all elements in a ∈ Rq such that ‖w‖∞ ≤ η. The followings are some
useful tools regarding Gaussian distributions.

Lemma 2.10 (Rejection Sampling, [Lyu12, Lemmas 4.3, 4.6]). Let V ⊂ Zm in which all elements have
`2-norm less than T , h be a probability distribution over V , φ a positive real, err a positive real smaller than 1,
and set σ = φ·T . Now sample e← h and r← DZm,σ, set z = e+r, and run b← Rej(z, e, φ, T, err) in Figure 2.
Then, the probability that b = > is at least (1− err)/µ(φ, err) for µ(φ, err) = exp

(√
−2 log err

log e · 1
φ + 1

2φ2

)
and

the distribution of (e, z) conditioned on b = > is within statistical distance of err/µ(φ, err) of the product
distribution h×DZm,σ.

As a concrete example that is often used, by setting φ = 11 and err = 2−100 we get µ(φ, err) ≈ 3. We can
also set for example φ = 14 and err = 2−256 to obtain µ(φ, err) ≈ 4 if we want better statistical bounds. The
following is a useful lemma to bound the norm of an element sampled from DZn,σ.

13



Rej(z, e, φ, T, err)
1: u← [0, 1)
2: if u > 1

µ(φ,err) · exp
(
−2〈z,e〉+‖e‖2

2
2σ2

)
then return ⊥

3: else return >

Figure 2: Rejection sampling.

Lemma 2.11 ([MR04, Lyu12]). For any real t > 0 and t′ > 1, we have

Pr[x← DZn,σ : ‖x‖∞ > tσ] < 2n · 2−
log e

2 ·t
2
,

Pr[x← DZn,σ : ‖x‖2 > tσ
√
n] < 2n·(

log e
2 (1−t2)+log t).

The MLWE assumption. We define a variant of the standard module learning with errors MLWE assumption
(which remains as hard as the standard MLWE assumption), where the adversary is allowed to obtain a
superposition of independent MLWE samples.

Definition 2.12 (Quantum accessible MLWE). For integers n = n(κ),m = m(n), q = q(n) > 2, L = L(κ),
an error distribution χ = χ(n) over Rq, and a QPT algorithm A that makes at most Q oracle queries, the
advantage of the quantum accessible module learning with errors qaMLWEn,m,L,Q,χ problem of A is defined
as follows:

AdvqaMLWEn,m,L,Q,χ(A) =
∣∣∣Pr[A|OLWE〉(1κ)→ 1]− Pr[A|O$〉(1κ)→ 1]

∣∣∣ ,
where oracles OMLWE and O$ are defined as

- OMLWE : On input t ∈ [L], sample A← Rm×nq , (s1, s2)← χn × χm, and output (A,As1 + s2);

- O$ : On input t ∈ [L], sample (A,b)← Rm×nq ×Rmq and output (A,b).

We assume the oracles run on a uniform and independent randomness for each input t ∈ [L] and reuse the
same randomness when run again on the same t.

When L = 1, qaMLWE is equivalent to the standard MLWE [Reg09, LS15] and we simply call it MLWEn,m,χ.
When L > 1, since all the secrets and noises are sampled independently for each t ∈ [L], a naive hybrid
argument shows that qaMLWE is equivalent to the standard MLWE with reduction loss 1/L. Moreover, using
Lemma 2.8, an adversary A making Q oracle queries against qaMLWE with advantage ε can be used to
construct an adversary B against the standard MLWE with advantage ε2/(C ·Q3), where the reduction loss
is independent of L. This is useful in scenarios when L is exponentially large. When we consider qaMLWE
where the error distribution χ is uniform random over the set Sη, we simply write qaMLWEn,m,L,Q,η. We use
the same convention for the following hardness assumption.

We note that [GKZ19] considers a setting where an adversary can obtain a superposition of LWE samples
for all A ∈ Rm×nq with the same secret, i.e.,

∑
A∈Rm×nq

|A〉 |A · s + eA〉. They showed that such a problem
can be broken in quantum polynomial time. However, such an attack cannot be applied to our setting since
in our setting, the output of OMLWE for each input are identically and independently distributed.
The DSMR assumption. We define the decisional small matrix ratio (DSMR) assumption that generalizes
the decisional small polynomial ratio (DSPR) assumption used by [LTV12, SXY18]. While the DSPR problem
is a hardness assumption defined over the so-called NTRU lattices [HPS98], the DSMR problem is defined
over a module NTRU lattice [?]. Similarly to above, we consider the quantum accessible variant which is as
secure as the standard DSPR by either applying a naive hybrid argument or Lemma 2.8.

Definition 2.13 (Quantum accessible DSMR). For integers n = n(κ),m = m(n), p = p(n), q = q(n) >
2, L = L(κ) where p < q are coprime odd integers, a distribution χ = χ(n) over Rq, and a QPT algorithm A
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that makes at most Q oracle queries, the advantage of the quantum accessible decisional small matrix ratio
qaDSMRn,m,L,χ problem of A is defined as follows:

AdvqaDSMRn,m,L,Q,χ(A) =
∣∣∣Pr[A|ODSMR〉(1κ)→ 1]− Pr[A|O$〉(1κ)→ 1]

∣∣∣ ,
where oracles ODSMR and O$ are defined as

- ODSMR : On input t ∈ [L], sample (F,G)← χm×m × χm×n conditioned on F being invertible over mod q
and mod p, and output H = p · F−1G ∈ Rm×nq

- O$ : On input t ∈ [L], sample H← Rm×nq and output H.

We assume the oracles run on a uniform and independent randomness for each input t ∈ [L] and reuse the
same randomness when run again on the same t.

3 Extractable Linear Homomorphic Commitment Protocol
In this section, we introduce a new interactive protocol called the extractable linear homomorphic commitment
(LinHC) protocol. We first provide the definition of an extractable LinHC protocol and then give two
instantiations: one from the MLWE assumption and the other from the MLWE and the DSMR assumption.
Below whenever we say Σ-protocols, the readers may safely replace them by public-coin HVZK non-interactive
protocols.

We first define extractable LinHC protocol in its most general form and provide a simplified variant in
the subsequent section. As explained in the introduction, the general definition, which is defined in the
QROM, is useful when directly constructing (straight-line simulation extractable) NIZKs15 in the QROM
from a possibly non-quantum secure Σ-protocol (see Section 4.2). In contrast, the simplified definition, which
is defined in the standard model, is useful when constructing a quantum straight-line proof of knowledge
Σ-protocol from a non-quantum secure Σ-protocol (see Section 4.1).

3.1 Definition
An illustration of the extractable LinHC protocol is provided in Figure 3. Looking ahead, in the context
of Σ-protocols, the ei’s and r correspond to the witness and commitment randomness (or masking term),
respectively.

Prover:
(
Kcom, (ei)i∈[N ], r

)
Verifier: Kcom

(com, st)← Com(Kcom, (ei)i∈[N ], r) com
−−−−−−−−−−−−−−−→
β = (β1, · · · , βN )
←−−−−−−−−−−−−−−−

β ← ChSet

z =
∑N
i=1 βi · ei + r

op← Open(Kcom, (com,β, z), st) (z, op)
−−−−−−−−−−−−−−−→

Verify(Kcom, (com,β, (z, op))) ?= >

Figure 3: An overview of an extractable linear homomorphic commitment protocol. Kcom is a commitment
key generated by KeyGenH(1κ), where H is modeled as a (quantum) random oracle.

Definition 3.1 (Extractable linear homomorphic commitment protocol in QROM). An extractable
linear homomorphic commitment (LinHC) protocol is a three-round public-coin interactive protocol run be-
tween two parties (prover and verifier), and is defined by a tuple of PPT algorithms ΠLinHC = (KeyGen,Com,
Open,Verify) and a challenge set ChSet ⊆ (Rq)N . The protocol procedure is as follows:

15Roughly, this is type of NIZK that, even after seeing many simulated proofs, whenever an adversary outputs a valid proof,
we can straight-line extract a witness from the proof [FKMV12].
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1. A random oracle H is chosen and the key generation algorithm is executed Kcom ← KeyGenH(1κ). Here,
let {0, 1}ν be the randomness space used by KeyGen;

2. The prover on input vectors ((ei)i∈[N ], r) ∈ (Rmq )N ×Rmq , runs the commitment algorithm (com, st)←
Com(Kcom, (ei)i∈[N ], r), and sends the first message com to the verifier;

3. The verifier samples a random challenge β ← ChSet and sends the second message β to the prover;

4. The prover computes z ←
∑N
i=1 βi · ei + r16, runs the opening algorithm op ← Open(Kcom, (com,β,

z), st), and sends the third message (z, op) to the verifier. We allow op = ⊥ for a special symbol ⊥ to
indicate failure;

5. The verifier returns the output of the deterministic verification algorithm Verify(Kcom, (com,β, (z, op))),
where > indicates accept and ⊥ indicates reject. We call (com,β, (z, op)) the transcript and call
(com,β, op) a valid opening for z if the verifier accepts.

We require the following properties to hold.

Definition 3.2 (Correctness). An extractable linear homomorphic commitment protocol ΠLinHC has correct-
ness error (δ0, δ1) if for any choice of random oracle H, Kcom ∈ KeyGenH(1κ), and ((ei)i∈[N ], r) ∈ (Rmq )N×Rmq
the following holds:

• We have Pr[Verify(Kcom, (com,β, (z, op))) = >] ≥ 1− δ1, where the probability is taken over the random-
ness to sample (com, st)← Com(Kcom, (ei)i∈[N ], r), β ← ChSet, and op← Open(Kcom, (com,β,

∑N
i=1 βi ·

ei + r), st) conditioned on op 6= ⊥.

• The probability that an honestly generated transcript (com,β, (z, op)) contains op = ⊥ is bounded by δ1.
In particular, Pr[op = ⊥] ≤ δ1 where the probability is taken over the random coins of the prover and
verifier.

Zero-knowledge. At a high level, zero-knowledge for an extractable LinHC protocol stipulates that the
transcript should leak no information of the vectors (ei)i∈[N ] and r other than the fact that it adds up
to z. Below, we provide a definition of zero-knowledge where an adversary can obtain superpositions of
simulated proofs. Since (ei)i∈[N ] corresponds to the witness of the underlying Σ-protocol, it will be reused
many times. On the other hand, r is the commitment randomness that is freshly sampled for each trasncript.
This is reflected in the following definition by fixing (ei)i∈[N ] and sampling fresh r (and challenge β) using
the distribution Dβ,r. Also, one can think of each ρ in the definition as a specific tag to distinguish each
transcripts. Below, we say it is “semi”-honest-verifier since β does not necessarily need to be uniformly
distributed over ChSet.

Definition 3.3 (Quantum accessible no-abort (semi-)honest-verifier zero-knowledge). Let Dβ,r
be any distribution over ChSet×Rmq . For an oracle H and algorithm ZKSim, define the following algorithms:

• D 6⊥trans(ρ, (ei)i∈[N ]) : On input ρ ∈ {0, 1}ν and (ei)i∈[N ] ∈ (Rmq )N , generate Kcom ← KeyGenH(1κ)[ρ] and
sample (β, r)← Dβ,r. Then run an honest protocol with prover input (Kcom, ((ei)i∈[N ], r)) conditioned
on the verifier message being β and op 6= ⊥ (i.e., a non-aborting protocol). Finally, output r along with
the valid transcript (r, trans = (com,β, (z, op))).

• Dsim(ρ, (ei)i∈[N ]) : On input ρ ∈ {0, 1}ν and (ei)i∈[N ] ∈ (Rmq )N , generate Kcom ← KeyGenH(1κ)[ρ],
sample (β, r) ← Dβ,r, and compute z ←

∑N
i=1 βi · ei + r. Then, run (com, op) ← ZKSim(Kcom,β, z)

and output (r, trans = (com,β, (z, op))).
16Although it suffices to consider z = β · e + r in many cases, there are recent protocols that require this extra level of

generality, e.g., [ESLL19].
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In above, we assume D 6⊥trans and Dsim run on a uniform and independent randomness for each input ρ ∈ {0, 1}ν
and reuse the same randomness when run again on the same ρ.

Then, we say an extractable linear homomorphic commitment protocol ΠLinHC has εzk-quantum accessible
no-abort (semi-)honest-verifier zero-knowledge (QAnaHVZK), if there exists a PPT algorithm ZKSim such
that for any (ei)i∈[N ] ∈ (Rmq )N , distribution Dβ,r, and QPT A, the advantage AdvQAnaHVZK(A) defined below
is less than εzk:

AdvQAnaHVZK(A) :=
∣∣∣Pr

[
A|H〉,|D

6⊥
trans(·,(ei)i∈[N])〉(1κ)→ 1

]
− Pr

[
A|H〉,|Dsim(·,(ei)i∈[N])〉(1κ)→ 1

] ∣∣∣,
where the probability is also taken over the random choice of the random oracle H.

Extractability. When considering extractable LinHC protocol as a tool to be integrated into a preexisting
Σ-protocol, the third message z corresponds to the third message (usually referred to as the “response”) of
the Σ-protocol. See Figure 8 for an illustrative example. In particular, the verifier will always perform an
additional check f(β, z) ?= >, where f is some function defined by the verifier algorithm of the underlying
Σ-protocol. Therefore, for an extractable LinHC to be useful in the context of Σ protocols, we want it to be
able to extract valid tuples {(βi, zi)}i∈[k] such that f(βi, zi) = > without rewinding the adversary only given
an accepting transcript. After such k tuples are collected, we can invoke the k-special soundness extractor of
the underlying Σ-protocol to extract a witness. More formally, we require the following.

Definition 3.4 (F-Almost straight-line extractable). Let X and Y be the input and output space required
by the random oracle H. An extractable linear homomorphic commitment protocol ΠLinHC is εIndO-F-almost
straight-line extractable for a function family F if there exists PPT algorithms SimOracle and LinCExtract
with the following properties:

1. For any QPT A, the advantage AdvIndO(A) defined below is less than εIndO:

AdvIndO(A) :=
∣∣∣Pr[H← Func(X ,Y) : A|H〉(1κ)→ 1]− Pr[(H̃, τ)← SimOracle(1κ) : A|H̃〉(1κ)→ 1]

∣∣∣.
2. For any (H̃, τ) ∈ SimOracle(1κ), randomness ρ ∈ {0, 1}ν , first message com, and any efficiently

computable function f ∈ F with binary output {>,⊥}, define the set

Sf (ρ, com) := {β | ∃(z, op) s.t. Verify(Kcom, (com,β, (z, op))) = > ∧ f(β, z) = >},

where Kcom = KeyGenH̃(1κ)[ρ]. Let δ, k be any positive integers such that k < |Sf (ρ, com)|, and denote
T ∗ = k·δ·|ChSet|

|Sf (ρ,com)|−k . Then, on input a valid transcript trans = (com,β, (z, op)), the linear commitment
extractor LinCExtract(τ, ρ, trans) outputs either a set L = {(βj , zj)}j∈[k] or ⊥ in time T ∗ · poly(κ) for
some fixed polynomial poly(κ), where all the βj’s in L are pairwise distinct and satisfies f(βj , zj) = >.
Moreover, the probability that it outputs L is at least 1 − k · 2−δ. Concretely, when k is a constant,
δ = κ, and |Sf (ρ, com)| = |ChSet| · ε for a non-negligible ε, then LinCExtract outputs L in polynomial
time with overwhelming probability.

In general we cannot efficiently check if the extracted βj satisfies βj ∈ Sf (ρ, com) since we cannot extract
opj corresponding to (βj , zj), hence the term “almost” straight-line extractable. This implies that the set L
may include an invalid (βj , zj) for which there does not exist a valid opj . However, this will not be an issue
for most of our application where f defines the entire verification algorithm of the underlying Σ-protocol. In
these cases, we only need f(βj , zj) = > for k-tuples to hold to invoke the k-special soundness extractor. We
also point out that in many cases we are not able to efficiently compute the cardinality of the set Sf (ρ, com)
so we do not know if LinCExtract runs in polynomial time. However, in typical applications, we can deduce
that Sf (ρ, com) must be of size |ChSet| · ε for a non-negligible ε unless the adversary breaks some other
intractable problem.
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Optional. Finally, we consider two optional properties for F -almost straight-line extractability. The following
is useful in situations where the function f does not comprise the entire verification algorithm of the
underlying Σ-protocol. In these situations, collecting (βj , zj)j∈[k] may not suffice to invoke the special
soundness extractor.

Definition 3.5 (Optional properties). The definition of F-almost straight-line extractability in Defini-
tion 3.4 can be augmented by the following two optional properties:

3. (small challenge set) In case ChSet is only of polynomial size, then LinCExtract(τ, ρ, trans) outputs a set
L = {(βj , zj)}j∈[M ] in time |ChSet| ·poly(κ) for some M and fixed polynomial poly(κ) where all the βj ’s
in L are pairwise distinct and there exists |Sf (ρ, com)|-tuples (βj , zj) in L such that βj ∈ Sf (ρ, com)
and f(βj , zj) = >.

4. (uniqueness) For any (H̃, τ) ∈ SimOracle(1κ), randomness ρ, and first message com, there exists at most
one z for each β ∈ ChSet such that there exists a valid op satisfying Verify(Kcom, com,β, (z, op)) = >,
where Kcom = KeyGenH̃(1κ)[ρ].

Remark 3.6 (Classical definition). All of the above definitions can be turned into a classical definition by
replacing the QPT algorithms to classical PPT algorithms. We believe the classical case can be of an
independent interest since it can be used as an alternative to the Fischlin transform [Fis05] that realizes
straight-line extractable NIZKs in the classical ROM.

3.2 Simplified Definition of Extractable LinHC
As explained earlier, in case the goal is to construct quantum secure Σ-protocols (and not a QROM secure
simulation extractable NIZK or a signature), we can use a simplified definition of extractable LinHC protocols
in the standard model. One of the main simplification comes from the fact that since all of the security
notions are decoupled from the QRO, the proofs follow much like the classical counterparts. For example,
zero-knowledge of a simplified extractable LinHC protocol is defined similarly to standard naHVZK of a
Σ-protocol. Details follows.

Definition 3.7 (Simplified extractable linear homomorphic commitment protocol). A simplified
version of the extractable linear homomorphic commitment protocol is defined exactly as in Definition 3.1
except that a random oracle H is no longer sampled and the key generation algorithm KeyGen is executed
without having access to any oracle.

Correctness is defined exactly as in Definition 3.2 except that we get rid of the random oracle H. We only
require a simple definition of naHVZK defined as follows:

Definition 3.8 (Simplified no-abort honest-verifier zero-knowledge). Let W = ((ei)i∈[N ], r) ∈
(Rmq )N ×Rmq and D 6⊥trans(Kcom,W) be the distribution of trans = (com,β, (z, op)) from an honest protocol with
prover input (Kcom,W) conditioned on op 6=⊥. Then, we say a simplified extractable linear homomorphic
commitment protocol ΠLinHC has (quantum) εzk-no-abort honest-verifier zero-knowledge (naHVZK), if there
exists a PPT algorithm ZKSim such that for all W and QPT A, the advantage AdvnaHVZK(A) defined below is
less than εzk:

AdvnaHVZK(A) :=
∣∣∣Pr

[
trans← D 6⊥trans(Kcom,W) : A(Kcom,W, trans)→ 1

]
−Pr

[
β ← ChSet, z←

∑N
i=1 βi · ei + r,

(com,β, op)← ZKSim(Kcom, z) : A(Kcom,W, (com,β, (z, op)))→ 1
] ∣∣∣,

where the probability is also taken over the random choice of Kcom ← KeyGen(1κ).

Finally, we define a slightly simplified definition of F-almost straight-line extractable along with its
optional requirements.
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Definition 3.9 (Simplified F-Almost straight-line extractable). A simplified extractable linear homo-
morphic commitment protocol ΠLinHC is εIndCom-F-almost straight-line extractable for a function family F if
there exist PPT algorithms SimKeyGen and LinCExtract with the following properties:

1. For any QPT A, the advantage AdvIndCom(A) defined below is less than εIndCom:

AdvIndCom(A) :=
∣∣∣Pr[Kcom ← KeyGen(1κ) : A(1κ,Kcom)→ 1]− Pr[(K̃com, τ)← SimKeyGen(1κ) : A(1κ, K̃com)→ 1]

∣∣∣.
2. For any (K̃com, τ) ∈ SimKeyGen(1κ), first message com, and any efficiently computable function f ∈ F

with binary output {>,⊥}, define the set

Sf (K̃com, com) := {β | ∃(z, op) s.t. Verify(K̃com, (com,β, (z, op)) = > ∧ f(β, z) = >)}.

Let δ, k be any positive integers such that k < |Sf (K̃com, com)|, and denote T ∗ = k·δ·|ChSet|
|Sf (K̃com,com)|−k

. Then,
on input a valid transcript trans = (com,β, (z, op)), the linear commitment extractor LinCExtract(τ, trans)
outputs either a set L = {(βj , zj)}j∈[k] or ⊥ in time T ∗ · poly(κ) for some fixed polynomial poly(κ),
where all the βj ’s in L are pairwise distinct and satisfies f(β̃j , z̃j) = >. Moreover, the probability that it
outputs L is at least 1−k ·2−δ. Concretely, when k is a constant, δ = κ, and |Sf (K̃com, com)| = |ChSet| ·ε
for a non-negligible ε, then LinCExtract outputs L in polynomial time with overwhelming probability.

Definition 3.10 (Optional properties). The definition of the simplified F-almost straight-line extractability
in Definition 3.9 can be augmented by the following two optional properties:

3. ( small challenge set) In case ChSet is only of polynomial size, then LinCExtract(τ, trans) outputs a set
L = {(βj , zj)}j∈[M ] in time |ChSet| ·poly(κ) for some M and fixed polynomial poly(κ) where all the βj ’s
in L are pairwise distinct and there exists |Sf (ρ, com)|-tuples (βj , zj) in L such that βj ∈ Sf (ρ, com)
and f(βj , zj) = >.

4. (uniqueness) For any (K̃com, τ) ∈ SimKeyGen(1κ), and first message com, there exists at most one z
for each β ∈ ChSet such that there exists a valid op satisfying Verify(K̃com, com,β, (z, op)) = >.

3.3 Interlude: Extractable LinHC Specialized for Lattices
In most, if not all, lattice-based Σ-protocols, the witness being proven is a “short” vector. Therefore,
throughout this work, we assume such shortness condition holds by default and integrate it into the definition
of the extractable LinHC protocol. Effectively, we are able to construct a more efficient extractable LinHC
protocol by taking advantage of these bounds.
Norm bound on (ei)i∈[N ] and r. In the following, we assume the size of the vectors (ei)i∈[N ] and r in
Rmq have an upper bound. That is, for all i ∈ [N ], there exist positive integers B∞,e, B2,e, B∞,r, and B2,r
such that ‖ei‖∞ ≤ B∞,ei , ‖ei‖2 ≤ B2,ei , ‖r‖∞ ≤ B∞,r and ‖r‖2 ≤ B2,r. In particular, we only guarantee
correctness and naHVZK for such ei’s and r.
Restricting the function class F to check norm bound. As explained in the previous section, the
function class F of F-almost straight-line extractability (Definition 3.4) corresponds to the the check
performed by the verifier of the underlying Σ-protocol, which we are trying to make secure in the (Q)ROM
via extractable LinHC. Namely, the verifier of the Σ-protocol receives z from the prover and then checks
whether some condition f ∈ F holds with respect to the challenge β it sampled, i.e., f(β, z) ?= >. In any
lattice-based Σ-protocol, one of the conditions that is always checked by the verifier is whether z is “small”
(see Section 4.1 for a concrete example). We therefore restrict the function class F to be a family of functions
FB such that for any f ∈ FB , f includes the check ‖z‖2 ≤ B.17 In many lattice-based Σ-protocols, we have
B ≈ B∞,r or B2,r, where recall r is the “masking” term to hide (ei)i∈[N ].

17The choice of the Euclidean norm is arbitral and we can also chose the infinity norm (or include both norms).
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3.4 First Construction of Extractable LinHC: Only MLWE
The construction of our first extractable LinHC protocol based on MLWE is provided in Figure 4.

KeyGenH(1κ)
1: ρ← {0, 1}ν
2: (A,B)← H(ρ)
3: return Kcom := (A,B) ∈ Rm×nq ×Rm×nq

Com(Kcom, (ei)i∈[N ], r)
1: for i ∈ [N ] do
2: (si,1, si,2, si,3)← Snη × Smη × Smη
3: ti,1 ← p · (Asi,1 + si,2)
4: ti,2 ← p · (Bsi,1 + si,3) + ei
5: (y1,y2,y3)← Dn

φ·T ×Dm
φ·T ×Dm

φ·T
6: w1 ← p · (Ay1 + y2)
7: w2 ← p · (By1 + y3) + r
8: com :=

(
(ti,1, ti,2)i∈[N ],w1,w2

)
9: st :=

(
(si,1.si,2, si,3)i∈[N ],y1,y2,y3

)
10: return (com, st)

Open(Kcom, (com,β, z), st))
1: (β1, · · · , βN )← β
2: for ` ∈ {1, 2, 3} do
3: s̄` ←

∑N
i=1 βi · si,`

4: z` ← s̄` + y`
5: b← Rej([z1‖z2‖z3], [s̄1‖s̄2‖s̄3], φ, T, err)
6: if b = ⊥ then return op := ⊥
7: else return op := [z1‖z2‖z3]

Verify(Kcom, (com,β, (z, op 6= ⊥)))
1: (β1, · · · , βN )← β
2:
(
zr, (ti,1.ti,2)i∈[N ],w1,w2

)
← com

3: [z1‖z2‖z3]← op
4: for ` ∈ {1, 2, 3} do
5: if ‖z`‖2 >

√
2nd · φ · T then return ⊥

6: zA ←
∑N
i=1 βi · ti,1 + w1 − p · (Az1 + z2)

7: zB ←
∑N
i=1 βi · ti,2 + w2 − p · (Bz1 + z3)

8: if zA 6= 0 ∨ z 6= zB then return ⊥
9: else return >

Figure 4: An extractable LinHC protocol based on MLWE.

Parameters and size. Let the dimension d of the ring Rq be larger than 256 and n,m be positive integers
such that n ≤ m,18 p < q be coprime odd integers, η a positive real, and H be a random oracle with domain
{0, 1}ν and range Rm×nq ×Rm×nq . The concrete value of ν is specific to the underlying Σ-protocol being used.
Let T, φ, and err be parameters required by the rejection sampling algorithm Lemma 2.10, where we set
T = η ·

∑N
i=1 ‖βi‖∞ ·

√
(n+ 2m)d.

The size of the first message com is 2md(N + 1) log q and the third message op is (n+ 2m)d · log(10φT ).
Looking ahead, when we make the protocol non-interactive via the Fiat-Shamir transform, we can send the
challenge β instead of (w1,w2) since the latter can be recovered from the other components and β. In this
case, the total size is 2mdN log q + (n+ 2m)d · log(10φT ) + |ChSet|.
Properties. The following Lemmata 3.11 to 3.13 establishes the correctness and security of our extractable
LinHC. In Section 3.6, we discuss the simplified version of our extractable LinHC and see that we only require
MLWE instead of the quantum accessible MLWE.

Lemma 3.11 (Correctness). The extractable LinHC protocol in Figure 4 has correctness error (δ0, δ1) with
δ0 ≤ 2−256 and δ1 = 1− (1− err)/µ(φ, err). For instance, if φ = 14 and err = 2−256, then δ1 ≈ 3/4.

Proof. First, the probability of op = ⊥ for an honest execution of the protocol is δ1 due to Lemma 2.10.
We now check the correctness of the verification algorithm conditioned on op 6= ⊥. By setting t =

√
2 in

Lemma 2.11 and using the assumption that d ≥ 256, the check in Line 5 of the verification algorithm will
pass with probability at least 1 − δ0. Moreover, routine calculation shows that Line 8 of the verification
algorithm also holds. That is, zA = 0 and z =

∑N
i=1 βi · ei + r = zB. Therefore, correctness holds.

18d could be set arbitrary as long as the underling hardness assumptions (MLWE and DSMR) hold. We consider a lower bound
of 256 to make it easier to provide concrete bounds on the properties of extractable LinHC, e.g., Lemma 3.11.

20



Lemma 3.12 (QAnaHVZK). Define the zero-knowledge simulator ZKSim as in Figure 5. Then, for any
QPT adversary A against QAnaHVZK of the extractable LinHC protocol in Figure 4 making at most Q oracle
queries, there exists a QPT adversary B against the quantum accessible MLWEn,m,2ν ,Q,η problem such that

AdvQAnaHVZK(A) ≤ N · AdvqaMLWEn,2m,2ν,Q,η (B) +
√
C ·Q3 · err

µ(φ, err) ,

where Time(B) ≈ Time(A). Here C is a positive constant defined independent of A.

Proof. Fix an arbitrary (ei)i∈[N ] ∈ (Rmq )N . We assume for simplicity that when A makes a quantum
query

∑
ρ αρ |ρ〉 to its oracles, it receives both

∑
ρ αρ |H(ρ)〉 and

∑
ρ αρ |D(ρ, (ei)i∈[N ])〉. Now define a

simulator ZKSim0 that on input Kcom,β ∈ ChSet, and W := ((ei)i∈[N ], r) outputs a transcript identical
to an honest execution conditioned on op 6= ⊥ and the verifier outputting β. Then, D 6⊥trans(ρ, (ei)i∈[N ]) is
equivalent to the distribution that first generates Kcom ← KeyGenH(1κ)[ρ], samples (β, r) ← Dβ,r, runs
(com, op)← ZKSim0(Kcom,β,W), and finally outputs (r, trans = (com,β, (z, op))). On the other hand, Dsim
is the same as D 6⊥trans except that it runs ZKSim instead of ZKSim0, where ZKSim only takes (Kcom,β, z) as
input. Therefore, it suffices to show that ZKSim0 and ZKSim are indistinguishable even given oracle access to
them. In the following, let us consider a sequence of simulators ZKSimi, where ZKSim2 := ZKSim. We show
that each adjacent simulators are indistinguishable.

ZKSim0(Kcom,β,W) : It computes z =
∑N
i=1 βi·ei+r, runs (com, st)← Com(Kcom,W), op← Open(Kcom, (com,β, z), st),

and finally outputs (com, op) conditioned on op 6= ⊥.

ZKSim1(Kcom,β,W) : We modify how it computes op = (z1, z2, z3). Specifically, it samples (z1, z2, z3)←
Dn
φ·T ×Dm

φ·T ×Dm
φ·T , and sets

w1 = −
N∑
i=1

βi · ti,1 + p · (Az1 + z2), w2 = −
N∑
i=1

βi · ti,2 + p · (Bz1 + z3) + z,

where (ti,1, ti,2)i∈[N ] are set as in ZKSim0. It then outputs (com, op).
Due to Lemma 2.10, conditioned on op 6= ⊥, the distribution of the transcripts output by ZKSim0

and ZKSim1 are within statistical distance err/µ(φ, err). Moreover, notice ZKSim0 and ZKSim1 are
respectively distributed independently and identically for each input (which is randomly defined by
ρ ∈ {0, 1}ν). Therefore, by Lemma 2.8, the advantage of distinguishing ZKSim0 and ZKSim1 even with
oracle access to them is bounded by

√
C ·Q3 · err/µ(φ, err) for some universal constant C > 0. The

transcript is now independent of r.

ZKSim2(Kcom,β,W) : We modify how it computes (ti,1, ti,2)i∈[N ]. Specifically, it samples (ti,1, ti,2) ←
Rmq ×Rmq for all i ∈ [N ]. All other terms are set as in ZKSim1. It then outputs (com, op). Notice that
ZKSim2 is identical to ZKSim.

Indistinguishability of the transcripts output by ZKSim1 and ZKSim2 follows from a simple hybrid
argument using the quantum accessible MLWEn,2m,2ν ,Q,η assumption. This follows by noticing that
due to the modification we made in ZKSim1, (si,1, si,2, si,3)i∈[N ] are now independent of (z1, z2, z3).
The qaMLWE adversary B will be able to simulate the transcript by embedding its challenge into
(ti,1, ti,2)i∈[N ]. In case the MLWE sample is valid (resp. random), it simulates ZKSim1 (resp. ZKSim2)
perfectly. Since there are N -tuples (ti,1, ti,2), we can go through N hybrid arguments. Moreover, it
is clear that the running time of B is closely related to A. Finally, notice that we can simulate the
random oracle H by using the oracle provided by the MLWE problem.

This completes the proof.
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ZKSim(Kcom,β, z)
1: (z1, z2, z3)← Dn

φ·T ×Dm
φ·T ×Dm

φ·T
2: for i ∈ [N ] do
3: (ti,1, ti,2)← Rmq ×Rmq
4: w1 ← −

∑N
i=1 βi · ti,1 + p · (Az1 + z2)

5: w2 ← −
∑N
i=1 βi · ti,2 + p · (Bz1 + z3) + z

6: com :=
(
zr, (ti,1, ti,2)i∈[N ],w1,w2

)
7: op := [z1‖z2‖z3]
8: return (com, op)

H̃(ρ)
1: (ρ1, ρ2, ρ3)← PRF(K, ρ)
2: A← Rm×nq [ρ1]
3: (D1,D2)← Sm×mη [ρ2]× Sm×nη [ρ3]
4: B← D1A + D2
5: return (A,B)

SimOracle(1κ)
1: K← K . Sample PRF key
2: return (H̃, τ := K)

LinCExtract(τ = K, ρ, trans = (com,β, (z, op)))
1: (ρ1, ρ2, ρ3)← PRF(K, ρ)
2: D1 ← Sm×mη [ρ2]
3:
(
(ti,1.ti,2)i∈[N ],w1,w2

)
← com

4: (β1, · · · , βN )← β
5: (c, L)← (0, {(β, z)})
6: while |L| ≤ k ∨ c ≤ T ∗ do
7: β̃ = (β̃1, · · · , β̃N )← ChSet\Lβ

8: z̃←
(∑N

i=1 β̃i · ti,2 + w2
)

9: −D1
(∑N

i=1 β̃i ·ti,1+w1
)

mod p

10: if f(β̃, z̃) = > then L← L ∪ {(β̃, z̃)}
11: c← c+ 1
12: if |L| < k then return ⊥
13: else return L

Figure 5: Description of ZKSim, SimOracle, H̃, and LinCExtract for the extractable LinHC protocol in Figure 4.
Here the PRF key K is assumed to be hardwired to H̃ and denote Lβ as the set {β | (β, z) ∈ L}.

Lemma 3.13 (FB-Almost straight-line extractable). Assume B ≥
√

2nd · φ · T , 2
√

2p(ndη+
√
nmdη+√

nd)φT + 2B < q/2, and B ≤ (p − 1)/4. Define the oracle simulator SimOracle and linear commitment
extractor LinCExtract as in Figure 5, where T ∗ in Line 6 of algorithm LinCExtract is T ∗ = k·δ·|ChSet|

|Sf (ρ,com)|−k . Then,
the extractable LinHC protocol in Figure 4 is FB-almost straight-line extractable also satisfying the optional
properties in Definition 3.5. Moreover, for any QPT adversary A that distinguishes between a random H
and H̃ output by SimOracle making at most Q queries, there exists a QPT adversary B1 against the quantum
accessible MLWEm,n,2ν ,Q,η problem and a QPT adversary B2 against the quantum accessible PRF such that

AdvIndO(A) ≤ m · AdvqaMLWEm,n,2ν,Q,η (B1) + AdvqaPRF(B2),

where Time(A) = Time(B1) ≈ Time(B2).

Proof. We prove Items 1 and 2 in Definition 3.4 and the two optional Items 3 and 4 in Definition 3.5.
Item 1. Consider the following sequence of oracles Hi, where H0 is identical to H and H2 is identical to H̃.
We show that each adjacent oracles are indistinguishable.

H0 : Same as H. That is, a random function is sampled.

H1 : We modify H0 so that it outputs a random MLWE sample. Concretely, sample a random function
G : {0, 1}ν → Rm×nq × Sm×mη × Sm×nη and define H1(ρ) to run G(ρ)→ (A,D1,D2) and then to output
(A,B = D1A + D2). By invoking the quantum accessible MLWEm,n,2ν ,Q,η assumption for each row of
B we conclude that H0 and H1 are indistinguishable.

H2 : We modify H1 to use a PRF : K×{0, 1}ν → Rm×nq ×Sm×mη ×Sm×nη instead of G to sample (A,D1,D2).
Due to the security of the quantum accessible PRF, H1 and H2 are indistinguishable.

This completes the proof of Item 1.
Item 2. Fix any (H̃, τ = K), randomness ρ ∈ {0, 1}ν , first message com =

(
(ti,1, ti,2)i∈[N ],w1,w2

)
, and

any function f ∈ FB. Moreover, let trans = (com,β, (z, op)) be a valid transcript. We first show that
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conditioned on β̃ ∈ Sf (ρ, com)\{β} ⊂ ChSet being sampled in Line 7, LinCExtract(τ, ρ, trans) always succeeds
in outputting a valid z̃ such that f(β̃, z̃) = >. By definition of the set Sf (ρ, com), existence of (z̃, õp) such
that Verify(Kcom, (com, β̃, (z̃, õp))) = > and f(β̃, z̃) = > is guaranteed. Therefore, denoting õp = [z̃1‖z̃2‖z̃3],
we have ‖z̃`‖2 ≤

√
2nd · φ · T for all ` ∈ {1, 2, 3}, and

p · (Az̃1 + z̃2) =
N∑
i=1

β̃i · ti,1 + w1, p · (Bz̃1 + z̃3) + z̃ =
N∑
i=1

β̃i · ti,2 + w2,

where A and B = D1A + D2 are uniquely defined by H̃(ρ) and τ = K as in Figure 5. Therefore,∥∥∥∥∥(
N∑
i=1

β̃i · ti,2 + w2

)
−D1

( N∑
i=1

β̃i · ti,1 + w1

)∥∥∥∥∥
∞

=
∥∥∥p · (D2z̃1 −D1z̃2 + z̃3

)
+ z̃
∥∥∥
∞

≤p ·
(√
nd‖D2‖∞ · ‖z̃1‖2 +

√
md‖D1‖∞ · ‖z̃2‖2 + ‖z̃3‖∞

)
+ ‖z̃‖∞

≤
√

2p(ndη +
√
nmdη +

√
nd)φT +B < q/2,

where we have ‖z̃‖2 ≤ B by definition of FB (see Section 3.3), ‖D1‖∞, ‖D2‖∞ ≤ η, and the last equation
holds from the assumption in the statement. Moreover, we use the fact that for two vectors a,b ∈ Zn,
we have ‖a>b‖∞ ≤

√
n‖a‖∞‖b‖2. This implies that the equality holds over R, and in particular, when

‖z̃‖∞ ≤ B ≤ (p− 1)/2,
(∑N

i=1 β̃i · ti,2 + w2
)
−D1

(∑N
i=1 β̃i · ti,1 + w1

)
mod p is identical to z̃. Hence, we

are able to extract z̃ such that f(β̃, z̃) = >.
Next, we check that LinCExtract succeeds in outputting a set L = {(β̃j , z̃j)}j∈[k] such that f(β̃j , z̃j) = >

for all j ∈ [k], where by construction all the β̃j ’s are pairwise distinct. Since β̃ is sampled uniformly
random from ChSet\Lβ, the probability of sampling β̃ ∈ Sf (ρ, com)\Lβ in one loop is at least |Sf (ρ,com)|−k

|ChSet| .
Therefore, given any L, if we sample β̃ δ·|ChSet|

|Sf (ρ,com)|−k -times from the set ChSet\Lβ, then the probability of
sampling β̃ ∈ Sf (ρ, com)\Lβ is at least 1 − 2−δ. Since each loop is independent from each other, after
T ∗ = k·δ·|ChSet|

|Sf (ρ,com)|−k -loops, we obtain the desired set L with probability at least 1− k · 2−δ, where the bound
follows from the union bound. Finally, since each loop takes a fixed polynomial time, the running time of
LinCExtract is T ∗ · poly(κ) as desired. We note that there could exist β̃ 6∈ Sf (ρ, com) for which LinCExtract
succeeds in extracting z̃ such that f(β̃, z̃) = >. However, this will not be a problem since such β̃ can only
increase the success probability and lower the running time of LinCExtract.

This completes the proof of Item 2.
In case ChSet is only of polynomial size we define LinCExtract to run for all β̃ ∈ ChSet in Figure 5. Then,

it is clear that Item 3 holds since we can enumerate over all β̃ ∈ ChSet in polynomial time and LinCExtract
always output z̃ such that f(β̃, z̃) = > when β̃ ∈ Sf (ρ, com).
Item 4. Fix any (H̃, τ = K), randomness ρ ∈ {0, 1}ν , first message com =

(
(ti,1, ti,2)i∈[N ],w1,w2

)
. Assume

there exists β ∈ ChSet and (z, z′, op, op′) satisfying Verify(Kcom, com,β, (z, op)) = > and Verify(Kcom, com,
β, (z′, op′)) = >, where Kcom = KeyGenH̃(1κ)[ρ]. Denote op = [z1‖z2‖z3] and op′ = [z′1‖z′2‖z′3]. Then, we
have

p · (Az1 + z2) =
N∑
i=1

βi · ti,1 + w1, p · (Bz1 + z3) + z =
N∑
i=1

βi · ti,2 + w2,

p · (Az′1 + z′2) =
N∑
i=1

βi · ti,1 + w1, p · (Bz′1 + z′3) + z′ =
N∑
i=1

βi · ti,2 + w2.
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By subtracting the two sides and substituting B = D1A + D2, we have

p ·
(

D2(z1 − z′1)−D1(z2 − z′2) + (z3 − z′3)
)

+ (z− z′) = 0

Following the same argument we made in the proof for Item 2, the left hand side holds over R (and not only over
Rq). Therefore, taking mod p over both sides, we have z− z′ = 0 mod p. Since ‖z− z′‖∞ ≤ 2B ≤ (p− 1)/2,
z− z′ = 0 holds over R as well. This completes the proof of Item 4.

Remark 3.14 (Using Grover’s Algorithm). We can get an asymptotically more efficient extractor by allowing
algorithm LinCExtract to perform quantum computation. At a high level, our classical algorithm LinCExtract
is simply searching for an element in the set ChSet that satisfies an efficiently computable predicate f(·, ·). In
the classical setting, the best we can do is to sample a random element in ChSet and hope that it satisfies this
predicate. On the other hand, if we allow LinCExtract to be a quantum algorithm, we can get a quadratic
speed up by using the Grover’s search algorithm [Gro96]. In particular, the runtime of LinCExtract can be
lowered down to roughly k ·

√
|ChSet|

|Sf (ρ,com)|−k from k·|ChSet|
|Sf (ρ,com)|−k .

3.5 Second Construction of Extractable LinHC: MLWE + DSMR
The second construction of our extractable LinHC protocol based on LWE and DSMR is provided in Figure 6.
The high level structure of the protocol is the same as in our first construction. The only difference is how we
“encrypt” the witness vectors (ei)i∈[N ]. Namely, by using an NTRU-type encryption, we are able to halve the
proof size compared to our first construction.

KeyGenH(1κ)
1: ρ← {0, 1}ν
2: H← H(ρ)
3: return Kcom := H ∈ Rm×nq

Com(Kcom, (ei)i∈[N ], r)
1: for i ∈ [N ] do
2: (si,1, si,2)← Snη × Smη
3: ti ← Hsi,1 + p · si,2 + ei
4: (y1,y2)← Dn

φ·T ×Dm
φ·T

5: w← Hy1 + p · y2 + r
6: com :=

(
(ti)i∈[N ],w

)
7: st :=

(
(si,1.si,2)i∈[N ],y1,y2

)
8: return (com, st)

Open(Kcom, (com,β, z), st))
1: (β1, · · · , βN )← β
2: for ` ∈ {1, 2} do
3: s̄` ←

∑N
i=1 βi · si,`

4: z` ← s̄` + y`
5: b← Rej([z1‖z2], [s̄1‖s̄2], φ, T, err)
6: if b = ⊥ then return op := ⊥
7: else return op := [z1‖z2]

Verify(Kcom, (com,β, (z, op 6= ⊥)))
1: (β1, · · · , βN )← β
2:
(
(ti)i∈[N ],w

)
← com

3: [z1‖z2]← op
4: for ` ∈ {1, 2} do
5: if ‖z`‖2 >

√
2nd · φ · T then return ⊥

6: zH ←
∑N
i=1 βi · ti + w− (Hz1 + p · z2)

7: if z 6= zH then return ⊥
8: else return >

Figure 6: An extractable LinHC protocol based on MLWE and DSMR.

Parameters and size. The parameters are identical to those discussed in our first construction. The
size of the first message com is md(N + 1) log q and the third message op is (n + m)d · log(10φT ). When
we make the protocol non-interactive via the Fiat-Shamir transform, we can send the challenge β instead
of w since the latter can be recovered from the other components and β. In this case, the total size is
mdN log q+(n+m)d·log(10φT )+|ChSet|. Since the t’s in com are the dominant term, the second construction
is roughly half the size of our first construction.

24



Properties. The following Lemmata 3.15 to 3.17 establishes the correctness and security of our extractable
LinHC protocol. We omit the proof of Lemmata 3.15 and 3.16 since they are identical to those of the first
construction.

Lemma 3.15 (Correctness). The extractable LinHC protocol in Figure 6 has correctness error (δ0, δ1) with
δ0 ≤ 2−256 and δ1 = 1− (1− err)/µ(φ, err). For instance, if φ = 14 and err = 2−256, then δ1 ≈ 3/4.

Lemma 3.16 (QAnaHVZK). Define the zero-knowledge simulator ZKSim as in Figure 7. Then, for any
QPT adversary A against QAnaHVZK of the extractable LinHC protocol in Figure 6 making at most Q oracle
queries, there exists a QPT adversary B against the quantum accessible MLWEn,m,2ν ,Q,η problem such that

AdvQAnaHVZK(A) ≤ N · AdvqaMLWEn,m,2ν,Q,η (B) +
√
C ·Q3 · err

µ(φ, err) ,

where Time(B) ≈ Time(A). Here C is a positive constant defined independent of A.

ZKSim(Kcom,β, z)
1: (z1, z2)← Dn

φ·T ×Dm
φ·T

2: for i ∈ [N ] do
3: ti ← Rmq

4: w← −
∑N
i=1 βi · ti + (Hz1 + p · z2)

5: com :=
(
(ti)i∈[N ],w

)
6: op := [z1‖z2]
7: return (com, op)

H̃(ρ)
1: (ρ1, ρ2)← PRF(K, ρ)
2: (F,G)← Ŝm×mη [ρ1]× Sm×nη [ρ2]
3: H← p · F−1G
4: return H

SimOracle(1κ)
1: K← K . Sample PRF key
2: return (H̃, τ := K)

LinCExtract(τ = K, ρ, trans = (com,β, (z, op)))
1: (ρ1, ρ2)← PRF(K, ρ)
2: F← Ŝm×mη [ρ2]
3:
(
(ti)i∈[N ],w

)
← com

4: (β1, · · · , βN )← β
5: (c, L)← (0, {(β, z)})
6: while |L| ≤ k ∨ c ≤ T ∗ do
7: β̃ = (β̃1, · · · , β̃N )← ChSet\Lβ

8: ṽ← F
(∑N

i=1 β̃i · ti + w
)

mod p

9: z̃← F−1ṽ mod p
10: if f(β̃, z̃) = > then L← L ∪ {(β̃, z̃)}
11: c← c+ 1
12: if |L| < k then return ⊥
13: else return L

Figure 7: Description of ZKSim, SimOracle, H̃, and LinCExtract for the extractable LinHC protocol in Figure 6.
Here the PRF key K is assumed to be hardwired to H̃, denote Ŝm×mη ⊂ Sm×mη be the set of all invertible
elements over mod q and mod p, and denote Lβ as the set {β | (β, z) ∈ L}.

Lemma 3.17 (FB-Almost straight-line extractable). Assume B ≥
√

2nd ·φ ·T , 2
√

2p(n+
√
nm)dηφT +

2
√
mdηB < q/2, and B ≤ (p− 1)/4. Define the oracle simulator SimOracle and linear commitment extractor

LinCExtract as in Figure 7, where T ∗ in Line 6 of algorithm LinCExtract is T ∗ = k·δ·|ChSet|
|Sf (ρ,com)|−k . Then, the

extractable LinHC protocol in Figure 6 is FB-almost straight-line extractable also satisfying the optional
properties in Definition 3.5. Moreover, for any QPT adversary A that distinguishes between a random H
and H̃ output by SimOracle making at most Q oracle queries, there exists a QPT adversary B1 against the
quantum accessible DSMRn,m,2ν ,Q,η problem and a QPT adversary B2 against the quantum accessible PRF
such that

AdvIndO(A) ≤ m · AdvqaDSMRn,m,2ν,Q,η (B1) + AdvqaPRF(B2),

where Time(A) = Time(B1) ≈ Time(B2).
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Proof. The proofs for Item 1 in Definition 3.4 is identical to the proof of our first construction in Lemma 3.13
except that we use the quantum accessible DSMR assumption instead of the quantum accessible MLWE
assumption. Moreover, two optional Items 3 and 4 in Definition 3.5 follows naturally from Item 2 in
Definition 3.4. Therefore, we only check Item 2 below.
Item 2. Fix any (H̃, τ = K), randomness ρ ∈ {0, 1}ν , first message com =

(
(ti)i∈[N ],w

)
, and any function

f ∈ FB . Moreover, let trans = (com,β, (z, op)) be a valid transcript. Since the number of repetition required
is identical to the first construction, we only need to show that conditioned on β̃ ∈ Sf (ρ, com)\{β} ⊂ ChSet
being sampled in Line 7, LinCExtract(τ, ρ, trans) always succeeds in outputting a valid z̃ such that f(β̃, z̃) = >.
By definition of the set Sf (ρ, com), existence of (z̃, õp) such that Verify(Kcom, (com, β̃, (z̃, õp))) = > and
f(β̃, z̃) = > is guaranteed. Therefore, denoting õp = [z̃1‖z̃2], we have ‖z̃`‖2 ≤

√
2nd · φ · T for all ` ∈ {1, 2},

and

Hz̃1 + p · z̃2 + z̃ =
N∑
i=1

β̃i · ti + w,

where H = p · F−1G is uniquely defined by H̃(ρ) and τ = K as in Figure 7. Multiplying by F on the right
hand side, we obtain∥∥∥∥∥F ·

( N∑
i=1

β̃i · ti + w
)∥∥∥∥∥
∞

=
∥∥∥p · (Gz̃1 + Fz̃2

)
+ Fz̃

∥∥∥
∞

≤p ·
(√
nd‖G‖∞ · ‖z̃1‖2 +

√
md‖F‖∞ · ‖z̃2‖2

)
+ 2
√
md‖F‖∞ · ‖z̃‖2

≤
√

2p(n+
√
nm)dηφT + 2

√
mdηB < q/2,

where we have ‖z̃‖2 ≤ B by definition of FB (see Section 3.3), ‖F‖∞, ‖G‖∞ ≤ η, and the last equation holds
from the assumption in the statement. Moreover, we use the fact that for two vectors a,b ∈ Zn, we have
‖a>b‖∞ ≤

√
n‖a‖∞‖b‖2. This implies that the equality holds over R, and in particular, F · (

∑N
i=1 β̃i · ti+ w)

mod p = Fz̃ mod p. Therefore, if ‖z̃‖∞ ≤ B ≤ (p − 1)/2, we can recover z̃ by further inverting it by F.
Hence, we are able to extract z̃ such that f(β̃, z̃) = > by first computing ṽ as in in Line 8 and then computing
z̃ = F−1ṽ mod p.

3.6 Downgrading to Simplified/Classical Extractable LinHC for Tighter Proofs
Simplified extractable LinHC. The two constructions of extractable LinHC protocols in Section 3.4 can
be trivially downgraded to satisfy the simplified definition of extractable LinHC presented in Section 3.2.
Specifically, we remove the oracle H and define algorithm KeyGen to output random matrices (A,B) (resp.
H) in the first (resp. second) construction without querying the random oracle H. One of the benefits is that
the proofs of the simplified version of zero-knowledge and F-almost straight-line extractability defined in
Section 3.2 now only rely on the standard MLWE, DSMR, and pseudorandomness of PRF against quantum
adversaries. Consequently, this allows for a tighter proof, where recall that the quantum accessible version of
MLWE and DSMR do not have a tight reduction from standard MLWE and DSMR since we need to rely on
either a naive hybrid argument or on Lemma 2.8.
Classical extractable LinHC. The proofs of our two extractable LinHC protocols in Section 3.4 are almost
identical in the classical setting. In the classical setting, the reduction loss of the (non-simplified) zero-
knowledge and F-almost straight-line extractability will all be only linearly dependent on the number of
random oracle query A makes. For instance the term

√
C ·Q3 · err

µ(φ,err) in the statement of zero-knowledge
(Lemmata 3.12 and 3.16) becomes Q · err

µ(φ,err) . In addition, we no longer require a PRF in the proof of F -almost
straight-line extractability since we can lazily sample the random oracle.
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4 How to Use Extractable LinHC
In this section, we provide a basic example of bootstrapping the classical ROM secure Lyubashevsky’s
Σ-protocol [Lyu09, Lyu12] to be QROM secure using an extractable LinHC protocol. The aim of this section
is to provide a guide on how to prove QROM security using an extractable LinHC protocol. In Section 5, we
see how these ideas can be used to prove QROM security of more complex protocols.

As explained in the beginning of Section 3, we can either construct a (1) quantum straight-line extractable
Σ-protocol using the simplified extractable LinHC protocol (see Section 3.2) or a (2) quantum secure simulation
straight-line extractable NIZK (or a signature scheme) using the standard extractable LinHC protocol. We
explain both items. The former is easier to prove and makes it simpler to understand the essence of the
extractable LinHC protocol, while the latter provides a stronger and more useful result.

4.1 Lyubashevsky’s Σ-Protocol ⇒ Quantum Secure Σ-Protocol via Simplified
Extractable LinHC

We show how to make the classical lattice-based Σ-protocol of Lyubashevsky into a Σ-protocol that is
quantum straight-line proof of knowledge in the CRS model by integrating it with a simplified extractable
LinHC in the standard model. Since the CRS is a random bit string, we can get rid of it in the (Q)ROM by
allowing the prover to generate the CRS as an output of the (Q)RO. Recall Lyubashevsky’s Σ-protocol allows
a prover to prove possession of a (module) short integer solution (MSIS) instance. That is, the prover proves
possession of a short vector e ∈ Rmq such that Ae = u for public (A,u).19 Below, we denote Lyubashevsky’s
Σ-protocol as ΣLyu-protocol.
Preparation. Let ChSet ⊂ {0, 1}κ be a set such that all β ∈ ChSet satisfies ‖β‖1 ≤ `. Here, ` is chosen in
such a way to guarantee

(
n
`

)
≥ 2256. Let φ and err be parameters specified by the rejection sampling algorithm

Lemma 2.10. Let Be, Br, and Bz be positive reals such that Br ≥
√

2md · ` · Be and Bz ≥
√

2nd · φ · Br.
Define the MSIS relation as RMSIS = {(X := (A,u),W := e) | Ae = u ∧ ‖e‖2 ≤ Be}, where A ∈ Rn×mq ,
u ∈ Rnq , and e ∈ Rmq . We also define the “relaxed” relation R′MSIS where the only difference between RMSIS is
that e now only satisfies Ae = (β − β̃) · u for some β, β̃ ∈ ChSet and ‖e‖2 ≤ B′e for a slightly larger bound
B′e > Be. We provide the Lyubashevsky’s original Σ-protocol for relations (RMSIS,R′MSIS) in Appendix A.2
for reference. It is known that the ΣLyu-protocol is naHVZK and satisfies relaxed 2-special soundness.
Our quantum secure Σ-protocol. The construction is depicted in Figure 1. Algorithm Setup of the
Σ-protocol runs KeyGen of the extractable LinHC protocol. Below, we show correctness, naHVZK, and SL-PoK
of our Σ-protocol in Figure 1. The first two properties follow almost immediately from the underlying
ΣLyu-protocol and the simplified extractable LinHC protocol.

Lemma 4.1 (Correctness). Let the ΣLyu-protocol for the relations (RMSIS,R′MSIS) and the simplified ex-
tractable LinHC protocol have correctness error (δ0, δ1) and (δ′0, δ′1), respectively. Then, our Σ-protocol in the
CRS model for the relations (RMSIS,R′MSIS) in Figure 8 has correctness error (1− (1− δ0) · (1− δ′0), 1− (1−
δ1)(1− δ′1)).

Proof. The correctness error follows from noticing the rejection probability of the underlying Σ-protocol is
independent of that of the extractable LinHC.

Lemma 4.2 (NaHVZK). Let the ΣLyu-protocol for the relations (RMSIS,R′MSIS) and the simplified extractable
LinHC protocol be εzk-naHVZK and ε′zk-naHVZK with zero-knowledge simulators ZKSimΣ and ZKSimLinHC,
respectively. Then our Σ-protocol in the CRS model for the relations (RMSIS,R′MSIS) in Figure 8 is (εzk + ε′zk)-
naHVZK with zero-knowledge simulator ZKSim described in Figure 9.

Proof. Note we only require the simplified naHVZK defined in Section 3.2. We first modify the real transcript
and simulate (com, op) by ZKSimLinHC(Kcom, β, z), where z = β · e + r. Due to ε′zk-naHVZK of the extractable
LinHC protocol, the transcripts are indistinguishable. We then further modify the transcript and simulate

19To be precise, this is an inhomogeneous MSIS instance.
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Prover: X = (A,u) ∈ Rn×mq ×Rnq
W = e ∈ Rmq

crs = Kcom Verifier: X = (A,u)

r← Dm
φ·Br

w← Ar
(com, st)← Com(Kcom, (e, r))

w, com
−−−−−−−−−−−−−−−→

β
←−−−−−−−−−−−−−−−

β ← ChSet

z← β · e + r
op← Open(Kcom, (com, β, z), st)
If op = ⊥, abort
If Rej(z, β · e, φ,Br, err) = ⊥, abort

z, op
−−−−−−−−−−−−−−−→

Verify(Kcom, (com, β, (z, op))) ?= >

‖z‖2
?
≤ Bz

Az ?= β · u + w

Figure 8: Quantum secure Σ-protocol in the CRS model for the lattice relation Ae = u, where crs is
Kcom ← KeyGen(1κ). The witness e satisfies ‖e‖2 ≤ Be. The gray indicates the components that are used in
the ΣLyu-protocol. In case abort occurs, we send ⊥ as the third message.

(w, z) by ZKSimΣ(X, β). Due to εzk-naHVZK of the ΣLyu-protocol, the transcripts are indistinguishable. Since
the transcript corresponds to those output by ZKSim, this completes the proof.

ZKSim(crs = Kcom,X = (A,u), β)
1: (w, z)← ZKSimΣ(X, β)
2: (com, op)← ZKSimLinHC(Kcom, β, z)
3: return

(
(w, com), (z, op)

)
SimSetup(1κ)

1: (K̃com, τ)← SimKeyGen(1κ)
2: return (c̃rs := K̃com, τ)

SL-Extract
(
τ, ((w, com), β, (z, op))

)
1: Run L ← LinCExtract

(
τ, (com, β, (z, op))

)
and re-

turn ⊥ if does not terminate in time T ∗ · poly(κ).
2: if L = ⊥ then return ⊥
3: {(β, z), (β̃, z̃)} ← L

4: z∗ ← Extractss(w, (β, z), (β̃, z̃))
5: return W := z∗

Figure 9: Description of ZKSim, SimSetup, and SL-Extract for the Σ-protocol in Figure 8.

Lemma 4.3 (SL-PoK). Let the ΣLyu-protocol for the relations (RMSIS,R′MSIS) be relax 2-special sound with
extractor Extractss. Let the simplified extractable LinHC protocol be εIndCom-FBz-almost straight-line extractable
with simulator SimKeyGen and linear commitment extractor LinCExtract, where FBz is the family of functions
of the form fA,u,w(β, z) = > if and only if ‖z‖2 ≤ Bz and Az = β · u + w. Finally, let T ∗ = ((ε− ν2)/2−
1/ |ChSet|)−1 where ε is the advantage of the adversary A and ν2 is a negligible function as in the statement
of Definition 2.5, and poly(κ) is some fixed polynomial independent of A.

Then our Σ-protocol in the CRS model for the relations (RMSIS,R′MSIS) in Figure 8 is a straight-line PoK
with simulator SimSetup and straight-line extractor SL-Extract described in Figure 9.

Proof. Fix any X = (A,u). Let A be a QPT algorithm that outputs a valid transcript with probability ε as
in the statement of Definition 2.5. Then, by Item 1 of Definition 3.9, we have

Pr


(c̃rs = K̃com, τ)← SimSetup(1κ)

(α, st)← A(c̃rs,X)
β ← ChSet

γ ← A(c̃rs,X, α, β, st)

: Verify(c̃rs,X, (α, β, γ)) = >

 ≥ ε− εIndCom, (1)

where α = (w, com) and γ = (z, op). Let Γ = |ChSet| · ε−εIndCom
2 which we assume to be a positive integer

larger than 2 without loss of generality. Omitting the randomness for simplicity, we can rewrite the left hand
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side of Equation (1) as

Pr
[

Verify(c̃rs,X, (α, β, γ)) = > ∧ |Sf (K̃com, com)| ≥ Γ
]

+ Pr
[

Verify(c̃rs,X, (α, β, γ)) = > ∧ |Sf (K̃com, com)| < Γ
]
,

(2)

where, f ∈ FBz is the function that on input (β, z), outputs > if and only if ‖z‖2 ≤ Bz and Az = β · u + w,
where w is the vector included in α output by A. Nota that we use f instead of fA,u,w as in the statement
for better readability. Since β is sampled uniformly random from ChSet and independently of com output by
A, and Sf (K̃com, com) is the set of β’s that permit a valid (z, op) we have

Pr
[
Verify(c̃rs,X, (α, β, γ)) = > ∧ |Sf (K̃com, com)| < Γ

]
<

Γ
|ChSet| = ε− εIndCom

2 .

Combining this with Equations (1) and (2), we have

Pr
[
Verify(c̃rs,X, (α, β, γ)) = > ∧ |Sf (K̃com, com)| ≥ Γ

]
≥ ε− εIndCom

2 .

Specifically, with probability at least ε−εIndCom
2 , we have |Sf (K̃com, com)| ≥ Γ. Conditioning on such an event,

by Item 2 of Definition 3.9, we have that LinCExtract(τ, (com, β, (z, op))) outputs a tuple L = {(β, z), (β̃, z̃)}
such that β 6= β̃ and f(β̃, z̃) = > in time at most

(
|ChSet|
Γ−1

)
· polyLinHC(κ) with probability at least 1− 2−κ,

where we set δ = κ. By setting T ∗ = |ChSet|
Γ−1 and poly(κ) = polyLinHC(κ) in Figure 9, with probability at least

ε−εIndCom
2 · (1− 2−κ), SL-Extract moves on to Line 3. Be definition of f ∈ FBz , (w, β, z) and (w, β̃, z̃) are two

valid transcripts for the underlying classical Σ-protocol. Hence, we obtain z∗ ← Extractss(w, (β, z), (β̃, z̃))
such that (X,W = z∗) ∈ R′MSIS as desired.

To summarize, we have

Pr


(c̃rs = K̃com, τ)← SimSetup(1κ)

(α, st)← A(c̃rs,X)
β ← ChSet

γ ← A(c̃rs,X, α, β, st)

:
Verify(c̃rs,X, (α, β, γ)) = >

W← SL-Extract(τ, (α, β, γ))
(X,W) ∈ R′MSIS

 ≥ ε− εIndCom
2 (1− 2−κ),

and the runtime of SL-Extract is upper bounded by
(
ε−εIndCom

2 − 1
|ChSet|

)−1
· polyLinHC(κ). This completes the

proof.

Remark 4.4 (Modulus used by the extractable LinHC). We note that the modulus q used by the extractable
LinHC protocol and the underlying ΣLyu-protocol do not need to be the same.

Remark 4.5 (Transforming quantum secure Σ protocols in the CRS model into NIZKs/signatures). A Σ-
protocol in the CRS model with a quantum straight-line proof of knowledge is also a standard quantum
proof of knowledge. Therefore, using resent works [LZ19, DFMS19], we can transform our quantum secure
Σ-protocol into NIZKs or signatures. However, in the next section, we provide a conceptually simpler
proof that converts a non-quantum secure Σ-protocol directly into NIZKs or signatures. Our proof works
identically for multi-round public-coin interactive proofs and it provides tighter reduction compared to
[LZ19, DFMS19, DFM20] since it does not have to rewind the adversary.

4.2 Lyubashevsky’s Σ-Protocol ⇒ QROM Secure Signature via Extractable
LinHC and Fiat-Shamir

We show how to directly compile the ΣLyu-protocol into an eu-cma secure signature scheme using the Fiat-
Shamir transform (see Appendix A.3 for a definition of signature schemes.) At a high-level the Fiat-Shamir
transform compiles a public-coin HVZK interactive protocol into a simulation extractable (tagged) NIZK.
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Roughly, this can be thought of as a particular type of signature scheme by viewing the message as the tag.
Therefore the main technicality of this section is to show that even if an adversary can observe polynomially
many simulated proofs, we are still able to extract a witness from a valid proof output by the adversary
without rewinding. In the context of signature schemes the (simulated) proofs correspond to (simulated)
signatures the adversary observes, and the witness extraction from a forged proof corresponds to extracting
the secret key of the signature scheme.

Below, we describe a signature scheme based on the Fiat-Shamir transform rather than a simulation
straight-line extractable NIZK. This is a common approach taken in prior works such as [LZ19, DFMS19].
There are mainly two reasons for this: defining such NIZK in the (Q)ROM is more complicated compared to
defining a standard signature scheme, and a typical proof of a signature scheme based on the Fiat-Shamir
transform captures all the essence of such NIZK. Specifically, the proof implicitly constructs a reduction
algorithm that simulates a NIZK proof to the adversary and extracts the witness from the forgery output by
the adversary. Therefore, in this paper we view (straight-line) extractable NIZKs as a signature scheme, and
vice versa, whenever the context is clear.

Finally, as we explained in the introduction, we do not provide any concrete parameters for our resulting
signature scheme since we believe it would be less efficient compared to QROM secure Dilithium proposed
in [KLS18]. Roughy, this is because when viewed as an NIZK, [KLS18] only achieves soundness, where ours
achieve a stronger proof of knowledge (i.e., there is an extractor that extracts the witness from a forged
proof). Hence, keep in mind that the main focus of this section is to provide a tutorial on how one would use
an extractable LinHC in a security proof.
Our QROM secure signature scheme. The construction of our (deterministic) signature scheme in the
QROM is provided in Figure 10.20 The algorithms are provided oracle access to the random oracle H, and
we use appropriate domain separation to simulate two independent random oracles with different domains
and ranges: HLHC for the extractable LinHC protocol and HFS for applying the Fiat-Shamir transform (see
Figure 11). The output space of HFS is ChSet := {β ∈ {0, 1}κ | ‖β‖1 ≤ `}. Let all the parameters be defined
identically to those of the Σ-protocol. We assume that each first message (w = Ar) of the underlying
ΣLyu-protocol has ζ-min-entropy (see Definition 2.6), and further assume with overwhelming probability that
there exists at least two short vectors e, e′ ∈ SmBe

such that Ae = Ae′ = u. Both of these assumptions are
standard in prior works.
Properties. Correctness can be checked similarly to Lemma 4.1. We provide the proof of eu-cma security.

Lemma 4.6 (Eu-cma security). Let the extractable LinHC protocol satisfy εzk-QAnaHVZK and εIndO-FBz-
almost straight line extractability, where the function family FBz is defined identically to Lemma 4.3. Then,
assuming the hardness of the MSISn,m,B problem for B = 2 ·Bz +Br and the quantum accessible pseudoran-
domness of the PRF, the signature scheme in Figure 10 is eu-cma secure.

Proof. Let A be a quantum adversary against the eu-cma security of the signature scheme with advantage
ε. Assume A issues at most QLHC, QFS, and QS queries to HLinHC, HFS, and the signing oracle, respectively.
Below, we consider a sequence of games and denote Ei the event that A breaks the eu-cma security in Gamei.
We denote by Smsg the set of messages queried to the signing oracle.

Game0 : This is the real eu-cma security game. By assumption, we have Pr[E0] = ε.

Game1 : In this game, the challenger modifies the description of HFS as in Figure 11. Here, RF used within
GetTrans is a uniformly random function with an appropriate domain and range.21 Since β is uniform
random regardless of the input to HFS, the distribution of these oracles are identical. Therefore, we have

Pr[E0] = Pr[E1].
20Strictly speaking, we require an upper bound on the number of loops we perform in the while clause to make the signature

algorithm terminate in strict polynomial time. However, since our main focus is to showcase how to use the extractable LinHC
protocol and this issue can be handled in a straightforward manner (see [KLS18] for example), we ignore this unrelated subtlety
for better readability.

21As in Footnote 20, we intentionally ignore the fact that GetTrans only runs in expected polynomial time without loss of
generality.
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S.KeyGenH(1κ)
1: (A, e)← Rn×mq × SmBe
2: u = Ae
3: K← K
4: vk := (A,u)
5: sk := (e,K)
6: return (vk, sk)

S.VerifyH(vk, σ,M)
1: (β, z, com, op)← σ
2: Kcom ← KeyGenHLHC(1κ)[M]
3: b← Verify(Kcom, (com, β, (z, op)))
4: if b = ⊥ then return ⊥
5: w← Az− β · u
6: if ‖z‖2 > Bz or β 6= HFS(w‖com‖M)

then return ⊥
7: else return >

S.SignH(vk, sk,M)
1: Kcom ← KeyGenHLHC(1κ)[M]
2: (b, op, c)← (⊥,⊥, 0)
3: while b = ⊥ ∨ op = ⊥ do
4: ρr‖ρRej‖ρCom‖ρOpen ← PRF(K,M‖c)
5: r← Dm

φ·Br
[ρr]

6: w← Ar
7: (com, st)← Com(Kcom, (e, r))[ρCom]
8: β ← HFS(w‖com‖M)
9: z← β · e + r
10: b← Rej(z, β · e, φ,Br, err)[ρRej]
11: op← Open(Kcom, (com, β, z), st)[ρOpen]
12: c← c+ 1
13: return σ := (β, z, com, op)

Figure 10: QROM secure signature scheme by applying the Fiat-Shamir transform to our Σ-protocol in
Figure 8. Oracles HLHC and HFS are defined in Figure 11.

Game2 : In this game, the challenger uses a modified signing algorithm S.SimSign depicted in Figure 11
to answer the signing query. Since the hash function HFS is patched in Game1, the only difference
between the previous game comes from the difference in using a PRF. Due to the quantum accessible
pseudorandomness of the PRF, for a QPT algorithm B1,PRF, we have

|Pr[E1]− Pr[E2]| ≤ AdvPRF(B1,PRF).22

Game3 : In this game, the challenger adds a winning condition to the forgery output by the adversary. This
is depicted in the CheckWinCond algorithm in Figure 11. Concretely, the challenger additionally checks
whether w∗ = Az∗ − β∗ · u is equal to that output by GetTrans(M∗). If so it aborts the game, and
otherwise, it is defined exactly as in the previous game. By our assumption, each first message w of the
underlying Σ-protocol has ζ-min-entropy if M∗ was never queried to the signing oracle, i.e., M∗ 6∈ Smsg.
Therefore, we have

|Pr[E2]− Pr[E3]| ≤ 2−ζ .

Game4 : In this game, the challenger modifies the description of GetTrans used within HFS and S.SimSign as
defined in Figure 11. We show that the two games are indistinguishable assuming that the extractable
LinHC protocol is QAnaHVZK. Concretely, fix e and let Dβ,r be a distribution that samples uniformly
random β ← ChSet and r ← Dm

φ·Bz
until > ← Rej(β · e + r, β · e, φ,Bz, err), that finally outputs

(β, r). Then, by viewing M as the randomness ρ in Definition 3.3, we see that GetTrans(M) in Game3
(resp. Game4) can be simulated by running D 6⊥trans(M, e) (resp. Dsim(M, e)). Here, notice that since r
is provided as output of D 6⊥trans(M, e) and Dsim(M, e)), we can simulate w = Ar. Therefore, we can
construct an adversary BQAnaHVZK that makes at most QLHC quantum queries to HLHC and QFS + QS

22A keen reader may have noticed that the QPT B1,PRF must efficiently simulate the random oracle H. Here, we implicitly rely
on the fact that this can be simulated unconditionally by a 2QFS-wise independent function f2QFS in time roughly to evaluate
f2QFS QFS-times [Zha12b]. We implicitly rely on this throughout the proof and omit it for simplicity.
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HLHC(M)
1: return H(LHC‖M) . G0-G6

2: return H̃LinHC(M) . G7

HFS(w‖com‖M)
1: (βM,wM, zM, comM, opM)← GetTrans(M) . G1-G7
2: if (w, com) = (wM, comM) then return βM . G1-G7

3: return H(FS‖w‖com‖M)

S.SimSignH(vk, sk,M) // G2-G7

1: Smsg ← Smsg ∪ {M}
2: (β,w, z, com, op)← GetTrans(M)
3: return σ := (β, z, com, op)

GetTrans(M) // G1-G3

1: Kcom ← KeyGenHLHC (1κ)[M]
2: (b, op, c)← (⊥,⊥, 0)
3: while b = ⊥ ∨ op = ⊥ do
4: β‖ρr‖ρRej‖ρCom‖ρOpen ← RF(M‖c)
5: r← Dm

φ·Bz [ρr]
6: w← Ar
7: (com, st)← Com(Kcom, (e, r))[ρCom]
8: z← β · e + r
9: b← Rej(z, β · e, φ, Bz, err)[ρRej]
10: op← Open(Kcom, (com, β, z), st)[ρOpen]
11: c← c+ 1
12: return (β,w, z, com, op)

GetTrans(M) // G4

1: Kcom ← KeyGenHLHC (1κ)[M]
2: (b, c)← (⊥, 0)
3: while b = ⊥ do
4: β‖ρr‖ρRej‖ρLHC ← RF(M‖c)
5: r← Dm

φ·Bz [ρr]
6: w← Ar
7: z← β · e + r
8: b← Rej(z, β · e, φ, Bz, err)[ρRej]
9: c← c+ 1
10: (com, op)← ZKSimLinHC(Kcom, β, z)[ρLHC]
11: return (β,w, z, com, op)

GetTrans(M) // G5,G6

1: Kcom ← KeyGenHLHC (1κ)[M]
2: β‖ρΣ‖ρLHC ← RF(M) . G5
3: β‖ρΣ‖ρLHC ← PRF(K,M) . G6
4: z← Dm

φ·Bz [ρΣ]
5: w← Az− β · u
6: (com, op)← ZKSimLinHC(Kcom, β, z)[ρLHC]
7: return (β,w, z, com, op)

CheckWinCond(σ∗,M∗) // G3-G7

1: w ← S.VerifyH(vk, σ∗,M∗)
2: if M∗ ∈ Smsg ∨ w = ⊥ then return ⊥
3: (β∗, z∗, com∗, op∗)← σ∗

4: w∗ ← Az∗ − β∗ · u
5: (βM∗ ,wM∗ , zM∗ , comM∗ , opM∗)← GetTrans(M∗)
6: if w∗ = wM∗ then return ⊥
7: return >

Figure 11: Description of oracles, where LHC and FS are special bit strings used nowhere else in the scheme.
CheckWinCond checks whether the forgery output by A satisfies the winning condition in each Gamei. Gi is
an abbreviation for Gamei and RF denotes a random function defined over an appropriate domain and range.

queries (out of which QS is classical) to oracles D 6⊥trans or Dsim such that

|Pr[E3]− Pr[E4]| ≤ AdvQAnaHVZK(BQAnaHVZK).

Game5 : In this game, the challenger further modifies the description of GetTrans used within HFS and
S.SimSign as defined in Figure 11. Due to rejection sampling (Lemma 2.10), each signature returned by
the signing oracle is distributed err

µ(φ,err) -close to the previous game. Moreover, the output distribution of
oracle HFS remains the same since in both games it outputs a random challenge regardless of w = wM.
Therefore, we have

|Pr[E4]− Pr[E5]| ≤ QS ·
err

µ(φ, err) .

Game6 : In this game, the challenger makes a final modification to the description of GetTrans used within
HFS and S.SimSign as defined in Figure 11. That is, GetTrans derives the randomness from a PRF rather
than a truly random function RF. Due to the quantum accessible pseudorandomness of the PRF, for a
QPT algorithm B2,PRF, we have

|Pr[E5]− Pr[E6]| ≤ AdvPRF(B2,PRF).
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Game7 : In this game, the challenger modifies the description of HLHC. The challenger first runs the oracle
simulator (H̃LinHC, τ)← SimOracleLinHC(1κ) defined by the LinHC protocol. Here, we assume the domain
and range of H̃LinHC(·) is identical to those of H(LinHC‖·). Then, the challenger defines HLHC as in
Figure 11. By the εIndO-FBz-almost straight line extractability of LinHC, for a QPT algorithm BIndO
making at most QLHC query, we have

|Pr[E6]− Pr[E7]| ≤ AdvIndO(BIndO).

Let ε∗ := Pr[E7]. Below, in Lemma 4.7 we show we can use A with a non-negligible advantage ε∗ to solve
the MSIS problem in quantum polynomial time with probability at least ε∗/4. Collecting all the bounds, we
conclude that A’s advantage ε in the original game must be negligible. The following proof of Lemma 4.7
completes the proof of the statement.

Lemma 4.7. Let A be a QPT adversary with advantage ε∗ in Game7 making at most QFS query to oracle
HFS. Then, there exists an adversary BMSIS against the MSISn,m,B problem for B = 2 ·Bz +Br such that

Adveu-cma
Game7

(A) ≤ 4 · AdvMSISn,m,B (BMSIS) · (1 + 2−κ+1),

where Time(BMSIS) = Time(A) +
(

ε∗

16·(QFS+1)2 − 1
|ChSet|

)−1
· poly(κ) for a polynomial poly(κ) independent of A.

Proof. Assume BMSIS is given A ∈ Rn×mq as the MSISn,m,B problem. To simulate the view of A in Game7,
BMSIS samples e ← SmBe

and provides A with vk = (A,u = Ae). Due to the modification we made, BMSIS
is able to simulate the Game7-challenger without using e. Finally, at some point A outputs a valid forgery
(M∗, σ∗ = (β∗, z∗, com∗, op∗)) with non-negligible probability ε∗ such that CheckWinCond(σ∗,M∗) = >. BMSIS
then sets trans∗ = (com∗, β∗, (z∗, op∗)) and runs LinCExtract(τ,M∗, trans∗) of the extractable LinHC protocol.
If LinCExtract does not terminate in time ( ε∗

16·(QFS+1)2 − 1
|ChSet| )

−1 · poly(κ), it aborts. Here, poly(κ) is
the polynomial in Definition 3.4. Moreover, if LinCExtract terminates but outputs ⊥, then it also aborts.
Otherwise, if LinCExtract outputs the set L = {(β∗, z∗), (β̃, z̃)}, then BMSIS outputs v = (z∗− z̃)− (β∗− β̃) · e
as its solution to the MSIS problem. Let us analyze BMSIS below.

Let w∗ = Az∗−β∗ ·u and K∗com = KeyGenH̃LHC(1κ)[M∗]. Then, we have Verify(K∗com, (com∗, β∗, (z∗, op∗))) =
>, ‖z∗‖2 ≤ Bz, and β∗ = H(FS‖w∗‖com∗‖M∗), where the last equality is guaranteed by w∗ 6= wM∗ . Recall
the function fA,u,w ∈ FBz defined as fA,u,w(β, z) = > if and only if Az = β · u + w and ‖z‖2 ≤ Bz.
Let the set SfA,u,w∗ (M∗, com∗) for (w∗, com∗,M∗) output by A have cardinality larger than |ChSet| · εLinHC
for some εLinHC > 0. Then, by setting δ = κ in Definition 3.4, LinCExtract(τ,M∗, trans∗) outputs L =
{(β∗, z∗), (β̃, z̃)} such that β∗ 6= β̃ and fA,u,w∗(β̃, z̃) = >, where trans∗ = (com∗, β∗, (z∗, op∗)) in time at
most (εLinHC − 1

|ChSet| )
−1 · poly(κ) with probability at least 1 − 2−κ. We show in Lemma 4.8 below, that

εLinHC ≥ ε∗

16·(QFS+1)2 with probability at least 1/2. This implies that LinCExtract terminates by outputting the
set L with probability at least 1

2 · (1− 2−κ). So as not to interrupt the proof of Lemma 4.7, we postpone its
proof to the end. Below, we condition on the event that L← LinCExtract(τ,M∗, trans∗) and L 6= ⊥. Since
w∗ = Az∗ − β∗ · u and w∗ = Az̃− β̃ · u, we have A(z∗ − z̃) = (β∗ − β̃) · u. Plugging in Ae = u, we have
Av = 0, where v = (z∗ − z̃)− (β∗ − β̃) · e. Here ‖v‖2 ≤ 2Bz +

√
md`Be ≤ 2Bz + Br = B, where the first

inequality follows since we have ‖β‖∞ = 1 and ‖β‖1 ≤ ` for all β ∈ ChSet. Finally, by the assumption that
the set {e|Ae = u} has cardinality more than 2 for any u with overwhelming probability over the random
choice of A, we conclude that v 6= 0 with at least probability 1/2 since e is statistically hidden from A. Hence,
BMSIS solves the MSISn,m,B problem in time Time(A) + ( ε∗

16·(QFS+1)2 − 1
|ChSet| )

−1 · poly(κ) with probability at
least ε∗

4 · (1− 2−κ) as desired.

Lemma 4.8. The probability that
∣∣SfA,u,w∗ (M∗, com∗)

∣∣ < ε∗

16·(QFS+1)2 · |ChSet| is at most 1
2 conditioning on

A winning in Game7.
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Proof. Fix an arbitrary vk = (A,u). Let X be the set of all possible choice of (w, com,M) and define λx :=
|SfA,u,w (M,com)|

|ChSet| for all x = (w, com,M) ∈ X. Moreover, define the set XGood ⊆ X to be the maximal set such
that for any x ∈ XGood, λx ≤ λ where λ := ε∗

16·(QFS+1)2 . Let us construct a quantum algorithm BGSBP against the
GSBP game that internally runs A. At the outset of the game, BGSBP prepares the set of reals {λ′x}x∈X , where
λ′x = λx if x ∈ XGood and λ′x = 0 if x ∈ X\XGood. After BGSBP submits the set {λ′x}x∈X to the challenger, it is
given oracle access to G. It then samples three random functions RF0,RF1,RF2 ← Func(X,ChSet) conditioned
on RF0(x) ∈ ChSet\SfA,u,w(M, com) and RF1(x) ∈ SfA,u,w(M, com) for all x = (w, com,M) ∈ X. Finally,
BGSBP simulates Game7 to A by using its oracle G to simulate H(FS‖·). Specifically, to simulate an oracle
query to H(FS‖x), BGSBP first checks x ∈ XGood and returns RF2(x) if not. Otherwise, it returns RF0(x) if
0 ← G(x) and returns RF1(x) if 1 ← G(x). When A outputs a signature forgery σ∗, BGSBP parses it and
outputs x∗ := (w∗, com∗,M∗). Let us analyze BGSBP below.

First of all, it can be checked that BGSBP simulates the view of Game7 perfectly to A since the output
distribution of oracle H(FS‖·) is identical to that of Game7. For the sake of contradiction, let us assume A
outputs a forgery such that

∣∣SfA,u,w∗ (M∗, com∗)
∣∣ < ε∗

16·(QFS+1)2 · |ChSet| with probability greater than ε∗

2 . Then,
since x∗ ∈ XGood and G(x∗) = 1 by definition, BGSBP winw the GSBP problem with probability greater than
ε∗

2 . However, this is a contradiction to Lemma 2.9 since we must have AdvGSBP(BGSBP) ≤ 8 ·λ · (QFS +1)2 ≤ ε∗

2 .
This completes the proof.

Remark 4.9 (Straight-Line Extractable Proofs in the Classical Setting). The proofs provided in the previous
sections all translate naturally to the classical setting. In fact, we could go through the same proof while
only relying on the simplified extractable LinHC protocol in the classical setting as we can lazily program the
random oracle. Moreover, Lemma 4.7 can be proven tighter in the classical setting since a classical adversary
A making Q queries to a random oracle has at most probability Q/ |ChSet| of finding the desired output.
Therefore, we would be able to get a tighter reduction compared to the quantum case where the reduction
loss would all be linear in Q.

5 Application: Quantum Secure 5-Round Public-Coin Exact Sound
Proof and QROM Secure Exact Sound NIZK

In this section, to showcase the generality of the extractable LinHC protocol, we show how to integrate it
to the recent 5-round public-coin HVZK interactive exact sound proof of Bootle et al [BLS19]. The main
motivation for choosing [BLS19] as the case study is because the ideas presented in this section can be directly
applied to other recent works [BDL+18, ESLL19, YAZ+19, ALS20]. We can convert the protocol of [BLS19]
into either (1) a quantum secure straight-line extractable interactive proof using the simplified extractable
LinHC protocol (as in Section 4.1) or (2) a quantum secure simulation straight-line extractable NIZK (or a
signature scheme) using the extractable LinHC protocol (as in Section 4.2).

5.1 Quantum Secure Exact Sound Interactive Proof via Simplified Extractable
LinHC

We first show how to apply the simplified extractable LinHC protocol to Bootle et al’s protocol [BLS19] to
obtain a 5-round public-coin interactive proof that is quantum secure, straight-line extractable, and exact
sound. In brief, Bootle et al. constructs an interactive protocol that allows the prover to prove knowledge of
a vector s ∈ {0, 1, 2}d satisfying As = u, where the main difference between Lyubashevsky’s protocol is that
it it exact sound. That is, a knowledge extractor extracts a witness that satisfies the original relation used by
the prover (and not a “relaxed” relation). Readers may refer to Appendix B.1 for a minimal introduction
on the exact sound interactive protocol of Bootle et al. While zero-knowledge of our protocol is a direct
consequence of that of Bootle et al’s protocol, soundness needs slightly more work.
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Parameters. Following Bootle et al., we chose the dimension d and modulus q so that Rq completely splits
into d linear factors modulo q, e.g., d is a power of 2 and q ≡ 1 mod 2d. For a ring element s ∈ Rq, we denote
ŝ ∈ Zdq as the NTT representation of s. Then, for a matrix-vector pair (A,u) ∈ Zm×dq × Zmq , we consider the
relation claES = {s ∈ Rq | Aŝ = u ∧ ŝ ∈ {0, 1, 2}d}. Let C denote the set {0, Xi | 0 ≤ i < 2d} ⊂ Rq, and φ
and err be parameters specified by the rejection sampling algorithm Lemma 2.10. Let Be, Br, and Bz be
positive reals such that Br ≥

√
6d ·Be and Bz ≥

√
12d · φ ·Br, where the size of Be dictates the hardness of

the MLWE assumption.
Our quantum secure exact sound protocol. The protocol is depicted in Figure 12. It can be seen that
the way we apply the extractable LinHC protocol is very similar to what was done for Lyubashevsky’s protocol
(see Figure 8). Here, we could have included another extractable LinHC protocol in the middle to let the
prover commit to the witness s and y. Although this would make the proof of straight-line proof of knowledge
much easier, we chose not to since this will add a considerable overhead in the concrete proof size since s and
y are elements over Rq rather than short elements. Namely, we would require an extractable LinHC protocol
that supports a message space Rq and this will be quite costly, where we note that theoretically constructing
such protocol is easy using a slight modification of the Regev encryption scheme.

Below, correctness and naHVZK of the Σ-protocol in Figure 12 are straightforward to prove.

Prover: X = (A,u) ∈ Zm×dq × Zmq
W = s ∈ Rq

crs = (B,Kcom) Verifier: X = (A,u)

y ← Rq
e← S6

Be

t←


b>1
b>2
b>3
b>4
b>5

 e+


0
y
s

y(2s− 3)
y2(s− 3)

 ∈ R5
q

w← Aŷ ∈ Zmq
r← D6

φ·Br
(com, st)← Com(Kcom, (e, r))

(t,w, com)
−−−−−−−−−−−→

c
←−−−−−−−−−−−

c← Zq

z0 ← c · s+ y

x0 ← b>1 r
x1 ← (b>2 + c · b>3 )r
x2 ← ((z0 − c)(z0 − 2c) · b>3

−z0 · b>4 + b>5 )r

(z0, x0, x1, x2)
−−−−−−−−−−−→

β
←−−−−−−−−−−−

β ← C

z← β · e + r
op← Open(Kcom, (com, β, z), st)
If op = ⊥, abort
If Rej(z, β · e, φ, Br, err) = ⊥, abort

(z, op)
−−−−−−−−−−−→

Verify(Kcom, (com, β, (z, op))) ?= >

‖z‖2
?
≤ Bz

Aẑ0
?= c · u + w

b>1 z ?= β · t1 + x0
(b>2 + c · b>3 )z + β · z0

?= β · (c · t3 + t2) + x1
((z0 − c)(z0 − 2c) · b>3 − z0 · b>4 + b>5 )z

?= β · ((z0 − c)(z0 − 2c) · t3 − z0 · t4 + t5) + x2

Figure 12: Quantum secure exact sound public-coin interactive protocol in the CRS model for the relation RES. The
witness s satisfies Aŝ = u and ŝ ∈ {0, 1, 2}d. Kcom is the commitment key of the simplified extractable LinHC protocol,
B ∈ R5×6

q is the public parameter of the (implicit) commitment scheme ΠCom (see Appendix A.4), and b>i denotes its
i-th row vector. The gray indicates the components that are used in the protocol of Bootle et al. [BLS19]. In case
abort occurs, we send ⊥ as the fifth message.
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Lemma 5.1 (Correctness). Let Bootle et al’s protocol [BLS19] for the relation RES and the simplified
extractable LinHC protocol have correctness error (δ0, δ1) and (δ′0, δ′1), respectively. Then, our protocol in the
CRS model for the relation RES in Figure 12 has correctness error (1− (1− δ0) · (1− δ′0), 1− (1− δ1)(1− δ′1)).

Proof. The correctness error follows from noticing the rejection probability of the underlying Bootle et al.’s
protocol is independent of that of the extractable LinHC.

Lemma 5.2 (NaHVZK). Let Bootle et al’s protocol [BLS19] for the relation RES and the simplified extractable
LinHC protocol be εzk-naHVZK and ε′zk-naHVZK with zero-knowledge simulators ZKSimES and ZKSimLinHC,
respectively. Then our protocol in the CRS model for the relation RES in Figure 12 is (εzk + ε′zk)-naHVZK.

Proof. The zero-knowledge simulator ZKSim is given random challenges c← Zq and β ← C as inputs and runs(
(t,w), (z0, x0, x1, x2), z

)
← ZKSimES(crsES = B,X = (A,u), (c, β)) and (com, op)← ZKSimLinHC(Kcom, β, z).

It then outputs
(
(t,w, com), (z0, x0, x1, x2), (z, op)

)
as the transcript. Similarly to the proof of Lemma 4.2,

indistinguishability of the transcript output by ZKSim and the real prover follows from a simple hybrid
argument where we first invoke ZKSimLinHC and then ZKSimES.

The high level idea of the proof for straight-line proof of knowledge is similar to those provided by Bootle
et al. [BLS19, Theorem 3.1]. The main difference is how we extract a witness from partial valid transcripts.
Recall Bootle et al. first rewinds the adversary to obtain six valid transcripts with a specific form and then
shows how to extract a witness from such transcripts. In our proof, we are only able to extract a small
portion of the six valid transcripts so we need to rely on a different argument compared to Bootle et al.

Lemma 5.3 (SL-PoK). Let the simplified extractable LinHC protocol be εIndCom-FBz-almost straight-line
extractable with simulator SimKeyGen and linear commitment extractor LinCExtract, where FBz is the singleton
set {f} for a f such that f(β, z) = > if and only if ‖z‖2 ≤ Bz. Moreover, let it satisfy the optional requirements
in Definition 3.9, Items 3 and 4.

Then, there exists a PPT simulator SimSetup and a straight-line extractor SL-Extract with the following
property: Let A be an adversary that outputs a valid transcript with probability ε > 3/q + 2/d.23 Then, on
input a valid transcript output by A executed on a simulated crs output by SimSetup, SL-Extract outputs
either a witness s ∈ Rq in the relation RES or a MSISn,6n,8Bz solution for b>1 with probability ε/3− ν for a
negligible function ν. Moreover, the runtime of SL-Extract is independent of the runtime of A and depends
only polynomially on d and log q.

Proof. Assume A successfully fools the honest verifier with advantage ε > 3/q + 2/d and the resulting
transcript is trans∗ =

(
(t,w, com), c(1), (z(1)

0 , x
(1)
0 , x

(1)
1 , x

(1)
2 ), β(1,1), (z(1,1), op(1,1))

)
.

We first establish that if A has advantage greater than 3/q+2/d, then with probability at least 1/3, the fol-
lowing property: there exists at least three distinct first challenges c(1), c(2), c(3) ∈ Zq and two distinct second
challenges β(k,1), β(k,2) ∈ C for each k ∈ [3] such that there exists some third message (z(k)

0 , x
(k)
0 , x

(k)
1 , x

(k)
2 ) and

fifth message (z(k,j), op(k,j)) where trans(k,j) =
(
(t,w, com), c(k), (z(k)

0 , x
(k)
0 , x

(k)
1 , x

(k)
2 ), β(k,j), (z(k,j), op(k,j))

)
is a valid transcript for all (k, j) ∈ [3]×[2]. Let VerifyES be the verification algorithm for the interactive protocol
and denote S(α) ⊆ Zq×C the set of challenges for which there exists a valid response, where α = (t, z, com) is
the first message sent by the adversary. Specifically, S(α) := {(c, β)|∃(γ1, γ2) s.t. VerifyES(crs,X, α, c, γ1, β, γ2) =
>}. Further define BAD the event that there does not exist distinct c(1), c(2), c(3) ∈ Zq such that for some
k ∈ [3], there does not exist distinct β(k,1), β(k,2) ∈ C for which (c(k), β(k,1)), (c(k), β(k,2)) ∈ S(α). By the
definition of event BAD, we must have |S(α)| ≤ 2d ·2+(q−2) when BAD occurs. Then, since the first message
α is chosen by A before seeing (c, β) ∈ Zq ×C, we have Pr[BAD] < 2/q + 1/2d. Therefore, conditioning on A
succeeding, the probability of ¬BAD occurring is lower bounded by

Pr[¬BAD|VerifyES(crs,X, trans∗) = >]
23Bootle et al. [BLS19, Theorem 3.1] only requires ε > 2/q + 1/d. Although our proof works in this regime as well, this slight

modification makes our proof easier to state and will have minimal impact on the concrete efficiency of the scheme.
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= 1
Pr[VerifyES(crs,X, trans∗) = >] ·

(
Pr[VerifyES(crs,X, trans∗) = >]− Pr[¬BAD|VerifyES(crs,X, trans∗) = >]

)
>1− 1

Pr[VerifyES(crs,X, trans∗) = >] ·
(2
q

+ 1
2d

)
> 1− 1( 3

q + 2
d

) · (2
q

+ 1
2d

)
>

1
3 .

This establishes the bound as desired.
Next, conditioning on ¬BAD not occurring, we show how SL-Extract obtains a list that contains all

((β(k,j), z(k,j)))(k,j)∈[3]×[2] using the straight-line extractability of the simplified extractable LinHC protocol.
Let us define SimSetup to run (K̃com, τ)← SimKeyGen(1κ) and output crs = (B, K̃com). Due to the simplified
εIndCom-FBz-almost straight-line extractability, A still has advantage ε/3 − εIndCom in outputting a valid
transcript trans∗ with the above property run on this modified crs. Next, by Definition 3.9, Item 3, SL-Extract
can use the extractor of the simplified extractable LinHC protocol LinCExtract(τ, trans∗) to obtain a set
L = ((βj , zj))j∈[d] in time polynomial in |C| = d24, where we are guaranteed to extract all β ∈ C that
has a corresponding (z′, op′) such that Verify(Kcom, (com, β, (z′, op′))) = > and ‖z′‖2 ≤ Bz. That is, all the
extracted β satisfies β ∈ Sf (Kcom, com). Moreover, due to Definition 3.9, Item 4, once com is fixed, there
exists at most one z′ satisfying Verify(Kcom, (com, β, (z′, op′))) = > for each β ∈ C and any op′ regardless of
the choice of the second and third messages (i.e., c ∈ Zq and (z, x0, x1, x2)). Therefore, the extracted z must
be the unique z′. Combining the argument so far, we have established ((β(k,j), z(k,j)))(k,j)∈[3]×[2] ⊆ L. Here,
note β(k,j) and β(k′,j′) may be the same when k 6= k′. In the following, we show how SL-Extract determines
which two tuples (β, z) and (β′, z′) ∈ L correspond to the tuples (β(k,1), z(k,1)) and (β(k,2), z(k,2)).

Assume we knew which elements in the set L corresponded to (β(k,1), z(k,1)) and (β(k,2), z(k,2)) for each
k ∈ [3]. Then, since (trans(k,j))(k,j)∈[3]×[2] are valid transcripts, we have b>1 z(k) = β(k,j) · t1 + x

(k)
0 for an

unknown x(k)
0 . By subtracting j = 1, 2 for each k ∈ [3], we can remove x(k)

0 to obtain b>1 z(k) − β(k,1) · t1 =
b>1 z(k) − β(k,2) · t1. Notice that we can check this equality with only knowledge of B in the crs and t in the
first message, which is shared among all the transcripts. With this observation in mind, SL-Extract performs
the following:

1. Prepare an empty list S and counter t = 1.

2. For each pair (β, z), (β′, z′) ∈ L, check if b>1 z− β · t1 = b>1 z′ − β′ · t1. If not move on to the next pair.
Otherwise, add (t, (β.z), (β′, z′)) to the list S, update t = t+ 1, and move on to the next pair.

For each (t, (β, z), (β′, z′)) ∈ S, denote βt = β − β′ and zt = z − z′. Then, we have b>1 zt = βt · t1,
which is an approximate solution to the first equation of the commitment t (see Appendix A.4). Therefore,
we can compute openings Mt,2, Mt,3 and Mt,4 and Mt,5 of t by setting Mt,` = t` − β

−1
t · (b>` zt) ∈ Rq for

each ` ∈ {2, 3, 4, 5}. Here, note that these openings are valid relaxed openings for the commitment scheme
in Appendix A.4 with ‖zt‖2 ≤ 2Bz. Hence, unless A breaks the binding property of the commitment (or
equivalently the MSISn,6n,8Bz problem due to Lemma A.4), we are guaranteed that Mt,2, Mt,3, Mt,4, and
Mt,5 are the same value for all t ∈ |S|. Conditioning on A not breaking the MSISn,6n,8Bz problem, SL-Extract
outputs s∗ := M1,3 = · · · = M|S|,3 as the witness. Here, observe that the runtime of SL-Extract is only
polynomially related to |C| = d: it takes time d · poly(κ) to prepare the list L and takes time at most
d2 · poly(κ) to prepare the list S. Therefore, it remains to show that s∗ ∈ Rq output by SL-Extract indeed
satisfies Aŝ∗ = u and ŝ∗ ∈ {0, 1, 2}, where ŝ∗ ∈ Zdq is the NTT representation of s∗. In the following, since
all the messages are the same unless A breaks the MSISn,6n,8Bz problem, we drop the subscript t from the
messages M and further denote y∗ = M2.

Although we do not know (c(k), (z(k)
0 , x

(k)
0 , x

(k)
1 , x

(k)
2 ))k∈[3], we have a list L that is guaranteed to contain

(β(k,j), z(k,j))(k,j)∈[3]×[2] included in (trans(k,j))(k,j)∈[3]×[2]. For each (k, j) ∈ [3]× [2] consider the following
verification equation

(b>2 + c(k) · b>3 )z(k,j) + β(k,j) · z(k)
0 = β(k,j) · (c(k) · t3 + t2) + x

(k)
1 ,

24Since d is the dimension of the lattice, we can assume that it is polynomial in the security parameter κ.
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where recall that z(k)
0 and x(k)

1 are unknown but guaranteed to exist. Subtracting the equations for the same
k and j = 1, 2, we obtain

(b>2 + c(k) · b>3 )z(k) + β
(k) · z(k)

0 = β
(k) · (c(k) · t3 + t2),

where β(k) = β(k,1) − β(k,2) and z(k) = z(k,1) − z(k,2). Further substituting the commitment openings for t2
and t3 to the above equation, we obtain

(b>2 + c(k) · b>3 )z(k) + β
(k) · z(k)

0 = β
(k) ·

(
c(k) ·

((
β

(k))−1 · (b>3 z(k)) + s∗
)

+
((
β

(k))−1 · (b>2 z(k)) + y∗
))
.

Routine calculation shows z(k)
0 = y∗ + c(k) · s∗. By performing the same argument on the final verification

equation and substituting the commitment openings for t4 and t5, we obtain(
(y∗)2s∗ − y∗M4 + M5

)
+
(

(y∗(2s∗ − 3)−M4)s∗
)
· c(k) +

(
s∗(s∗ − 1)(s∗ − 2)

)
· (c(k))2 = 0.

Since this equation holds for all k ∈ [3] and c(1) 6= c(2) 6= c(3) ∈ Zq, we must have s∗(s∗ − 1)(s∗ − 2) = 0
over Rq. Applying the NTT transform, this equation implies that ŝ∗ ∈ {0, 1, 2}d. Finally, by subtracting the
second verification equation from one another, we get A(ẑ(1)

0 − ẑ(2)
0 ) = (c(1) − c(2)) · u. Since c(1) 6= c(2) and

we established z(k)
0 = y∗ + c(k) · s∗ for each k ∈ [3], this implies Aŝ∗ = u as desired.

To summarize, with probability 1/3, L contains ((β(k,j), z(k,j)))(k,j)∈[3]×[2]. Conditioned on this fact,
SL-Extract outputs a valid witness s∗ ∈ RES unless it finds a solution to the MSISn,6n,8Bz problem. Note that
SL-Extract performs all the steps without explicitly knowing (c(k), (z(k)

0 , x
(k)
0 , x

(k)
1 , x

(k)
2 ))k∈[3].

Remark 5.4 (Amplifying soundness). To achieve negligible soundness error, we need to repeat the protocol
t-times so that (3/q+2/d)t is negligible. However, Bootle et al. [BLS19] observed that we can do better. Since
the modulus size q is typically much larger than the dimension size d, we can perform t′-parallel execution of
the lower half of the protocol for each t-parallel execution of the upper half, resulting in a soundness error of
(3/q + 2/dt′)t. By taking t′ to be q ≈ dt′ , this results in a better soundness amplification.

A keen reader may notice that our protocol in Section 4.2 is not amenable to this technique. Unlike
Bootle et al.’s protocol, we “commit” to both vectors e and r before obtaining the first challenge c ∈ Zq using
the extractable LinHC protocol, where in Bootle et al’s protocol, e and r were sampled before and after c
was given, respectively. Although we cannot apply Bootle et al’s technique for general extractable LinHC
protocols, we observe that we can apply it when instantiating the extractable LinHC protocol with our two
concrete constructions in Section 3. Informally, the property we require to employ this technique is that
Com(Kcom, (e, r)) can be decomposed into two independent algorithms: Come(Kcom, e) and Comr(Kcom, r),
while maintaining zero-knowledge and straight-line extractability even reusing the Come(Kcom, e) on multiple
Comr(Kcom, r). This property is naturally satisfied by our two instantiations and we provide a concrete
example of this in the following section.

5.2 QROM Secure Exact Sound NIZK via Extractable LinHC and Fiat-Shamir
Bootle et al. [BLS19] showed how to transform their interactive protocol into an NIZK using the soundness
amplification technique explained in Remark 5.4. We can apply the same technique when instantiating the
extractable LinHC protocol with our two constructions provided in Sections 3.4 and 3.5. In this section,
as a concrete example, we provide the full detail of our straight-line extractable NIZK by instantiating the
extractable LinHC protocol with our second construction in Section 3.5.
Parameters. Parameters d, q, Be, Br, and Bz are set exactly in the previous section. Let t and t′ be positive
integers so that q ≈ dt

′ and (3/q + 2/dt′)t is smaller than 2−256. Let p < q∗ be coprime odd integers
and T be a positive real used by the simplified extractable LinHC protocol in Section 3.5. Following the
parameter description provided in Section 3.5, we require T =

√
12dtη, 2

√
2(2pdη + (p+ 1)

√
d)φT < q∗/2,

and
√

2dφT ≤ (p− 1)/4.
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Our QROM secure exact sound NIZK. For simplicity, we present our NIZK using the simplified
extractable LinHC protocol in Section 3.5. Therefore, it only achieves naHVZK and straight-line extractability,
independently. Similarly to in Section 4.2. we can use the standard extractable LinHC protocol to make
the NIZK simulation straight-line extractable. The prover and verifier algorithms are provided in Figures 13
and 14, respectively. Components with the superscript “*” denote the elements used by the extractable
LinHC protocol. Here, we use the standard technique of sending the challenges ci and βj instead of the large
binding elements wi,w∗j , x0,j , x1,j , x2,j .

Correctness and zero-knowledge of our NIZK follows directly from those of Bootle et al’s protocol25

and the simplified extractable LinHC protocol. We note zero-knowledge of the extractable LinHC protocol
when reusing the same t∗i can be checked easily from the proof of Lemmata 3.12 and 3.16. Straight-line
extractability of our NIZK is a simple generalization of the eu-cma proof of Lemma 4.6 (or more precisely
the forgery extraction step, Lemmata 4.7 and 4.8, of the eu-cma proof) combined with the SL-PoK proof in
Lemma 5.3. The only difference is that we invoke the GSBP argument in Lemma 2.9 twice to argue that
the proof output by the adversary permits the desired structure explained in the beginning of the proof of
Lemma 5.3. Namely, we lower bound the probability that the proof leads to 6 valid transcripts in the form
explained in Lemma 5.3. The main thing to keep in mind is that once (ti,wi, t∗i )i∈[t] and (w∗j )j∈[tt′] is fixed,
the set of challenges (c, β) for which there exists a valid response is uniquely defined. We omit the full proof
since it follows almost exactly the same argument made in the previous proofs.

5.3 Candidate Parameters and Comparison
Asymptotic comparison. We compute the proof size of the NIZK in Figure 13. Each of the t polynomial
vectors ti (resp. t∗i ) consists of 5 (resp. 6) polynomials in Rq (resp. Rq∗). The polynomial z0,i is in
Rq. Therefore, the upper half of the proof (ti, t∗i , z0,i)i∈[t] is of size 6td

(
dlog qe + dlog q∗e

)
/8 bytes. Next,

each zj , z∗j,1, z∗j,2 are distributed statistically close to D6
φ·Br

, D6
φ·T , D

6
φ·T , respectively, so due to Lemma 2.11,

these components add up to size
(
6tt′d(dlog 12φBre + dlog 12φT e)

)
/8 bytes. Finally, the challenges add

up to (tdlog qe + tt′dlog 2de)/8 bytes. Compared to Bootle et al. [BLS19], our proof size is larger by
6td
(
dlog q∗e+ t′dlog 12φT e

)
/8 bytes.

Concrete comparison. We provide a comparison between Bootle et al’s NIZK and our QROM secure NIZK
by considering the application of proving knowledge of the ternary secret in LWE samples over Zq, which has
often been used in the literature to provide a simple benchmark, e.g., [BLS19, Beu20]. Concretely, let q = 232,
d = 2048 and m be some positive integer smaller than d, and set A = [A′|Im] ∈ Zm×dq for a random matrix
A′ ∈ Zm×(d−m)

q , where these parameters are set to capture the parameter setting of FHE schemes and group
signature schemes. We then prove knowledge of a ring element s ∈ Rq such that its NTT representation
ŝ ∈ Zdq satisfies Aŝ = u and ŝ ∈ {0, 1, 2}d. Here, ŝ is understood to be the LWE secret (including the noise).
We perform t′ = 3 lower repetition so that q ≈ d3 ≈ 2−31 and perform t = 8 upper repetitions to reach the
128-bit of post-quantum security level. Then, our NIZK has a proof size of 2071 KB while Bootle et al’s has
proof size of 812 KB,26 which is around a factor 2.6 larger. We note that as in [BLS19], we have computed
the proof size by using the more space efficient Huffman code to encode the vectors sampled from discrete
Gaussian distributions (see [DDLL13] for an example). We provide details on how we set the parameters in
Appendix B.2.
Applying the Unruh transform. The standard Unruh transform only works for Σ-protocols but Chen et
al. [CHR+18] extended the Unruh transform to work against a 5-round public-coin HVZK interactive protocol
when restricting the second challenge to be binary. Although we did not check in detail if the extended Unruh
transform can be securely applied to Bootle et al’s protocol, we computed the proof size assuming it is (see
Footnote 4). Specifically, if we were to make Bootle et al’s NIZK secure in the QROM using the extended

25We found a slight issue with the zero-knowledge proof of Bootle et al’s NIZK so the protocol in Figure 13 is modified
accordingly. Discussion on the modification is provided in Appendix B.1 for completeness.

26Bootle et al. [BLS19] provides a proof size of 384 KB. Ours is around two times larger since we require t = 8, unlike t = 4,
to achieve post-quantum security. Moreover, we do not reuse the commitment t3,i for all i ∈ [t] as in [BLS19] since it would
harm zero-knowledge (see Appendix B.1).
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NIZK.ProveH(crs = (B,Kcom),X = (A,u),W = s)
1: for i ∈ [t] do
2: yi ← Rq
3: wi ← Aŷi ∈ Zmq
4: ei = (e1,i, e2,i, e3,1, e4,i, e5,i, e6,i)> ← S6

Be
5: t1,i ← b>1 ei
6: t2,i ← b>2 ei + yi
7: t3,i ← b>3 ei + s
8: t4,i ← b>4 ei + yi(2s− 3)
9: t5,i ← b>4 ei + y2

i (s− 3)
10: ti ← (t1,i, t2,i, t3,i, t4,i, t5,i)>
11: for ` ∈ [6] do
12: (s∗`,i,1, s∗`,i,2)← S2

η

13: t∗`,i ← h∗s∗`,i,1 + p · s∗`,i,2 + e`,i

14: for ω ∈ [2] do
15: s∗i,ω ← (s∗1,i,ω, s∗2,i,ω, s∗3,ω, s∗4,i,ω, s∗5,i,ω, s∗6,ω)>

16: t∗i ← (t∗1,i, t∗2,i, t∗3,i, t∗4,i, t∗5,i, t∗6,i)>

17: for j ∈ [tt′] do
18: rj ← D6

φ·Br
19: (y∗j,1,y∗j,2)← D6

φ·T ×D6
φ·T

20: w∗j ← h∗ · y∗j,1 + p · y∗j,2 + rj
21: (ci)i∈[t] ← H

(
0‖(ti,wi, t∗i )i∈[t], (w∗j )j∈[tt′]

)

22: for i ∈ [t] do
23: z0,i ← ci · s+ yi
24: for j ∈ {(i− 1)t′ + 1, · · · , (i− 1)t′ + t′} do
25: x0,j ← b>1 rj
26: x1,j ← (b>2 + cib>3 )rj
27: x2,j ←

(
(z0,i − ci)(z0,i − 2ci) · b>3

28: −z0,j · b>4 + b>5
)
rj

29: (βj)j∈[tt′] ← H
(
1‖((ti,wi, t∗i )i∈[t], (w∗j )j∈[tt′]), (ci)i∈[t],

30:
(
(z0,i)i∈[t], (x0,j , x1,j , x2,j)j∈[tt′]

))
31: for j ∈ [tt′] do
32: zj ← βj · edj/t′e + rj
33: z∗j,1 ← βj · sdj/t′e,1 + y∗j,1
34: z∗j,2 ← βj · sdj/t′e,2 + y∗j,2
35: for k ∈ [t′] do
36: z̄k ← [zk‖zt′+k‖ · · · ‖z(t−1)t′+k]
37: ēk ← [βke1‖βt′+ke2‖ · · · ‖β(t−1)t′+ket]
38: b← Rej(z̄k, ēk, φ, Br, err)
39: for ω ∈ [2] do
40: z̄∗k,ω ← [z∗k,ω‖z∗t′+k,ω‖ · · · ‖z∗(t−1)t′+k,ω]
41: s̄∗k,ω ← [βks∗1,ω‖βt′+ks∗2,ω‖ · · · ‖β(t−1)t′+ks∗t,ω]
42: b∗ ← Rej([z̄∗k,1‖z̄∗k,2], [s̄∗k,1‖s̄∗k,2], φ, T, err)
43: if b = ⊥ ∨ b∗ = ⊥ then
44: goto Line 1
45: return π :=

(
(ti, t∗i , ci, z0,i)i∈[t],

46: (βj , zj , z∗j,1, z∗j,2)j∈[tt′]
)

Figure 13: Prover algorithm of the QROM secure exact sound NIZK for the relation RES in the CRS model. The
statement X = (A,u) ∈ Zm×dq × Zmq and witness s ∈ Rq satisfy Aŝ = u and ŝ ∈ {0, 1, 2}d. Kcom = h∗ ∈ Rq∗ is the
commitment key of the simplified extractable LinHC protocol in Section 3.5, B ∈ R5×6

q is the public parameter of the
(implicit) commitment scheme ΠCom (see Appendix A.4), and b>i and bi,j denotes its i-th row vector and (i, j)-th
entry, respectively. The gray indicates the components that are used in the protocol of Bootle et al. [BLS19].

Unruh transform, the proof size would be 44.9MB, which is around a factor 51.8 larger compared to Bootle
et al’s NIZK secure in the classical ROM. For completeness, we provide the details in Appendix C.3. Finally,
note that it is unclear whether the Fiat-Shamir transform in the QROM can be securely applied to Bootle et
al’s NIZK.

5.4 Further Applications of Extractable LinHC
We show that other recent Σ-/public-coin HVZK interactive protocols are compatible with our extractable
LinHC protocol. As the main focus of this work is introducing the concept of extractable LinHC protocols and
providing another route to obtaining QROM security, we leave optimization and assessment of the concrete
security of these other protocols as future work.
[BDL+18]: Opening to commitments. The commitment scheme by Baum et al. is used in almost all
recent lattice-based ZK proofs (See Appendix A.4). Since this was also implicitly used in [BLS19], it is clear
that we can turn the Σ-protocol of valid opening of a commitment to a QROM secure NIZK.
[ESLL19]: Range proofs. Range proof allows one to prove that a committed value resides in a specific
range and is used in applications such as privacy-preserving linkable anonymous credentials and confidential
transactions in cryptocurrencies. Recently, Esgin et al. [ESLL19] provided an efficient range proof by using
new ideas on CRT-packing supporting “inter-slot” operations and NTT-friendly tools that permit the use
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NIZK.VerifyH(crs,X, π)
1:
(
(ti, t∗i , ci, z0,i)i∈[t], (βj , zj , z∗j,1, z∗j,2)j∈[tt′]

)
← π

2: for i ∈ [t] do
3: wi ← Aẑ0,i − ci · u
4: for j ∈ {(i− 1)t′ + 1, · · · , (i− 1)t′ + t′} do
5: w∗j ← h∗ · z∗j,1 + p · z∗j,2 − βj · t∗i + zj
6: x0,j ← b>1 zi − βj · t1,i
7: x1,j ← (b>2 + cib>3 )zj − βj · (ci · t3,i + t2,i)
8: x2,j ←

(
(z0,i − ci)(z0,i − 2ci) · b>3 − z · b>4 + b>5

)
zj − βj · ((z0,i − ci)(z0,i − 2ci) · t3,i − z0,i · t4,i + t5,i)

9: (c′i)i∈[t] ← H
(
0‖(ti,wi)i∈[t], (w∗j )j∈[tt′]

)
10: (β′j)j∈[tt′] ← H

(
1‖((ti,wi, t∗i )i∈[t], (w∗j )j∈[tt′]), (c′i)i∈[t],

(
(z0,i)i∈[t], (x0,j , x1,j , x2,j)j∈[tt′]

))
11: for j ∈ [tt′] do
12: if ‖z∗j,1‖2 >

√
12d · φ · T ∨ ‖z∗j,2‖2 >

√
12d · φ · T then

13: return ⊥
14: if ‖zj‖2 > Bz then
15: return ⊥
16: if (ci)i∈[t] 6= (c′i)i∈[t] ∨ (βj)j∈[tt′] 6= (β′j)j∈[tt′] then
17: return ⊥
18: else
19: return >

Figure 14: Verifier algorithm of the QROM secure exact sound NIZK for the relation RES in the CRS model. The
gray indicates the components that are used in the protocol of Bootle et al. [BLS19].

of fully-splitting rings. It can be checked that the Σ-protocol for the range relation provided in [ESLL19,
Theorem 1] is compatible with extractable LinHC protocols. Although it was not necessary for their scheme,
we can modify the verifier in [ESLL19, Protocol 2] (without affecting any parameters) to further check the
bound on fcrt to perfectly fit the description of the extractable LinHC protocol. Concretely, we can view
(aij)(i,j)∈[ψ,ki−1], ra, rd, and re in their Protocol 2 as r, and (bij)(i,j)∈[ψ,ki−1], rb, rc, and r in their Protocol 2
as e of the extractable LinHC protocol in our Figure 3.
[ESLL19]: One-out-of-many proofs. One-out-of-many proofs is a ubiquitous tool that allows to construct
many advanced signature schemes such as group signatures and ring signatures. In the same paper as above,
Esgin et al. [ESLL19] also provided an efficient one-out-of-many proofs building on similar ideas. They first
construct a Σ-protocol to prove that a given commitment opens to a binary string and then use it as a
building block to construct a Σ-protocol for the one-out-of-many proof relation. Similarly to above, it can be
checked that both corresponding Σ-protocols provided in [ESLL19, Theorems 2 and 3] are compatible with
extractable LinHC protocols. We note this is the only protocol that we are aware of that has a response of
the form z =

∑N
i=1 βi · ei + r. All other protocols have the form z = β · e + r.

[YAZ+19]: Exact sound proofs for quadratic relations. In an independent and concurrent work
to [BLS19], Yang et al. [YAZ+19] provided an exact sound proof for the relation RQES, such that X =
(A,u,M) ∈ Zm×dq × Zmq × ([1, d]3)` and W = s ∈ Znq satisfies (X,W) ∈ RQES if and only if As = u and
sh = si · sj for (h, i, j) ∈ M. Here, M is a set of ` triples that defines quadratic constraints over s and
si denotes the i-th entry of s. They then showed that many useful relations such as possession of short
secret can be embedded into such a relation. It can be checked that the Σ-protocol for the relation RQES in
[YAZ+19, Figure 2] can be easily modified to be compatible with extractable LinHC protocols, similarly to
[BLS19]. Note that Yang et al. commits the first message sent by the prover by a hash function modeled as
a random oracle to achieve standard HVZK rather than naHVZK. However, since naHVZK is sufficient for
constructing NIZK and signatures, we can rewrite the Σ-protocol of Yang et al. so that the prover simply
sends the commitment t, c1, c2, c3, and c4 as the first message. Then, we can follow a simplified argument we
made in Sections 5.1 and 5.2 to prove quantum security of their protocol.
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[ALS20]: Product proofs for commitments. Being able to prove relationships between committed
messages is very useful. For instance, if we can prove that committed messages satisfy additive and
multiplicative relations, then we can prove satisfiability of boolean/arithmetic circuits in zero-knowledge,
which can then in turn be used to construct advanced signature schemes such as attribute-based signatures.
Recently, Attema et al. [ALS20] provided an efficient Σ-/interactive protocol for proving multiplicative
relations for commitments. We observe that the two Σ-protocols provided in [ALS20, Figures 2 and 3]
perfectly fit the description of the extractable LinHC protocol. We suspect the most general 5-round interactive
protocol provided in [ALS20, Figures 4] can be made quantum secure. However, since the scheme employs
several complex optimizations, it is not clear if it is compatible with our current formalization of extractable
LinHC protocols.

Finally, we like to elucidate one notable aspect of the recent advanced lattice-based protocols. While
conventional Σ-protocols only require 2 to 3 valid transcripts to invoke special soundness, we require as much
as 32 valid transcripts in the recent protocols, e.g., [ALS20]. Therefore, even if were able to show that the
Σ-protocol had a compatible lossy function as in the definition of [LZ19], the Fiat-Shamir transform incurs
an extremely large reduction loss. Concretely, combining [DFMS19, Lemma 29] and [LZ19, Theorem 1], a
knowledge extractor (for the Σ-protocol) that is given oracle access to a quantum adversary that outputs a
valid NIZK proof with probability ε after making Q oracle queries, is only guaranteed to succeed in extracting
a witness with probability (ε/Q2)2×32−1 = ε63/Q126. In such cases, extractable LinHC protocols can provide
a much tighter proof and a smaller set of provably secure parameters.
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A Omitted Preliminary
In this section, we provide the omitted preliminaries.

A.1 The MSIS Assumption
The (module) short integer solution problem is defined as follows.

Definition A.1 (MSIS). For integers n = n(κ),m = m(n), q = q(n) > 2, a positive real B, and a QPT
algorithm A, the advantage of the module short integer solution problem MSISn,m,B of A is defined as follows:

AdvMSISn,m,B (A) =
∣∣Pr[A← Rn×mq ,u← A(A) : Au = 0 ∧ 0 < ‖u‖2 ≤ B]

∣∣ .
A.2 Classical Lyubashevsky’s Σ-Protocol for a Basic Lattice Relation
We provide Lyubashevsky’s original Σ-protocol for the relations (RMSIS, R′MSIS) such that RMSIS ⊆ R′MSIS
[Lyu09, Lyu12] in Figure 15.

It is known that this Σ-protocol satisfies naHVZK and relaxed 2-special soundness. Roughly these two
security properties are argued as follows: For naHVZK, assume the zero-knowledge simulator ZKSim is given
a random challenge β ∈ ChSet. It then samples z← Dm

φ·Br
and returns (w = Az− β · u, z). Due to rejection

sampling, this is statistically indistinguishable from the real transcript conditioned on not aborting. Next,
for special soundness, assume we are given (w, β, β̃, z, z̃) for β 6= β̃. Then the special soundness extractor
Extractss outputs the witness z∗ = z− z̃ with approximation factor β∗ = β − β̃. It is clear that Az∗ = β∗ · u,
‖z∗‖2 ≤ 2 ·Bz. This establishes that ((A,u), z∗) ∈ R′MSIS.

A.3 Background on Signature Scheme
In this work, we consider deterministic signature schemes; schemes where the singing algorithm is deterministic.
This is without loss of generality since any randomized signing algorithm can be derandomized by deriving
message-specific randomness by a PRF.
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Prover: X = (A,u) ∈ Rn×mq ×Rnq
W = e ∈ Rmq

Verifier: X = (A,u)

r← Dm
φ·Br

w← Ar w
−−−−−−−−−−−−−−−→

β
←−−−−−−−−−−−−−−−

β ← ChSet

z← β · e + r
If Rej(z, β · e, φ,Br, err) = ⊥, abort z

−−−−−−−−−−−−−−−→
‖z‖2

?
≤ Bz

Az ?= β · u + w

Figure 15: Lyubashevsky’s Σ-protocol for the lattice relation Ae = u. The witness e satisfies e ‖e‖2 ≤ Be.
In case abort occurs, we send ⊥ as the third message.

Definition A.2 (Signature scheme in the QROM). A signature scheme ΠSig in the QROM with message
space M is a tuple of PPT algorithms ΠSig = (S.KeyGen, S.Sign, S.Verify) with oracle access to a random
oracle H defined as follows:

S.KeyGenH(1κ)→ (vk, sk) : The key generation algorithm takes as input the security parameter 1κ and outputs
a verification key vk and signing key sk.

S.SignH(vk, sk,M)→ σ : The deterministic signing algorithm takes as inputs the verification key vk, signing
key sk and message M ∈M, and outputs a signature σ.

S.VerifyH(vk,M, σ)→ > or ⊥ : The deterministic verification algorithm takes as inputs the verification key
vk, message M ∈M and signature σ, and outputs > if the signature is valid and outputs ⊥ otherwise.

Correctness. We say a signature scheme has correctness error δ if for all κ ∈ N, messages M ∈ M, we
have Pr[S.VerifyH(vk,M, σ) 6= ⊥] ≥ 1− δ, where the probability is taken over the randomness to sample H,
(vk, sk)← KeyGenH(1κ), and σ ← S.Sign(sk,M).
Security. We define the standard existential unforgeability under a chosen message attack (eu-cma) security.
The security notion is defined by the following game between an adversary A and a challenger. We assume a
random oracle H is randomly chosen prior to the game and the challenger and adversary are granted quantum
access to it.

Setup: The challenger runs (vk, sk)← S.KeyGenH(1κ) and gives vk to A. The challenger also initializes an
empty set Smsg.

Signature Query: When A submits a message M ∈ M, the challenger runs σ ← S.SignH(vk, sk,M) and
returns the signature σ to A. It further updates Smsg = Smsg ∪ {M}.

Output: Finally, A outputs a pair (M∗, σ∗). The adversary A wins if the following conditions are met:

• M∗ 6∈ Smsg,
• S.VerifyH(vk,M∗, σ∗) = >.

We say the signature scheme ΠSig is eu-cma secure if the advantage Adveu-cma(A) = Pr[A wins] is negligible
for any QPT A.

A.4 Background on Commitment Scheme
Although the usage of the commitment scheme of Baum et al. [BDL+18] is only implicit in Section 5, we
provide the detail for completeness.
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Definition A.3 (Commitment scheme). A commitment scheme is a tuple of PPT algorithms ΠCom =
(C.Setup,C.Com,C.Open) defined as follows:

C.Setup(1κ)→ pp : The setup algorithm takes as input the security parameter 1κ and outputs public parameter
pp.

C.Com(pp,M)→ (com, open) : The commitment algorithm takes as input the public parameter pp and message
M, and outputs a commitment com and an opening open.

C.Open(pp,M, com, open)→ > or ⊥: The deterministic opening algorithm takes as input the public parameter
pp, message M, commitment com and opening open, and outputs > if open is a valid opening and
outputs ⊥ otherwise.

Hiding. We say a commitment scheme is εhide-hiding if for all QPT algorithms A, the advantage Advhide(A)
defined below is less than εhide:

Advhide(A) :=

∣∣∣∣∣∣Pr

b = b′ :
pp← C.Setup(1κ), (M0,M1)← A(pp)

b← {0, 1}, (com, open)← C.Com(pp,Mb)
b′ ← A(pp, com)

− 1
2

∣∣∣∣∣∣ .
Binding. We say a commitment scheme is εbind-binding if for all QPT algorithms A, the advantage Advbind(A)
defined below is less than εbind:

Advbind(A) :=
∣∣∣∣Pr
[

M0 6= M1 ∧ v0 = v1 = >, where
vb ← C.Open(pp,Mb, com, openb) for b ∈ {0, 1} : pp← C.Setup(1κ),

(com, (Mb, openb)b∈{0,1})← A(pp)

]∣∣∣∣ .
We consider a specific commitment scheme used by [BLS19], which in particular is one instantiation of

the commitment scheme of Baum et al. [BDL+18]. Their commitment scheme allows to commit to four
different ring elements m = (m2,m3,m4,m5)> ∈ R4

q . Below, let C denote the set {0, Xi | 0 ≤ i < 2d} ⊂ Rq
and ∆C denote the set {a− b | a, b ∈ C}. The important property often used in lattice-based cryptography
is that, when d is a power of two where Rq = Zq[X]/(Xd + 1), for any element in f ∈ ∆C, (2f)−1 exists
and has ternary coefficients in {−1, 0, 1} [BCK+14]. Finally, let B be some positive real that dictates the
hardness of the MSIS problem, whose concrete value is irrelevant right now.

C.Setup(1κ): Sample a random matrix B ∈ R5×6
q of the following form and output pp = B:

B =


b>1
b>2
b>3
b>4
b>5

 =


1 b1,2 b1,3 b1,4 b1,5 b1,6
0 1 0 0 0 b2,6
0 0 1 0 0 b3,6
0 0 0 1 0 b4,6
0 0 0 0 1 b5,6

 .

C.Com(pp,m): Parse (m2,m3,m4,m5)> ←m ∈ R4
q , sample vector e← χ6n and compute

t =


t1
t2
t3
t4
t5

 = Be +


0
m2
m3
m4
m5

 .

Finally, output the commitment com = t and opening open = (1, e). Here, the noise distribution of χ is
scheme specific.
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C.Open(pp,m, com, open): Parse (f, e) ← open. Check ‖e‖2 ≤ B and f ∈ ∆C or f = 1 and output ⊥ if it

does not hold. Otherwise, further check f · t = Be + f ·
(

0
m

)
and output > if it holds and ⊥ otherwise.

In above, the opening algorithm is “relaxed” in some sense since we allow f 6= 1 that never occurs when
running the commitment algorithm honestly. However, it is known that such an opening algorithm suffices
for many situations, and in particular, we have the following.

Lemma A.4 ( [BDL+18, Lemmas 6 and 7]). Assuming the hardness of the MLWEn,5n,χ and MSISn,6n,8B
problem, the above commitment scheme ΠCom is hiding and binding, respectively.

B Omitted Details from Section 5
B.1 Recap: Exact Sound Proof by [BLS19]
We provide a minimal exposition on the work of Bootle et al. [BLS19]. For the full details we refer the readers
to the original paper. For completeness, the interactive protocol and the prover and verifier algorithms of the
NIZK protocol of Bootle et al. are provided in Figures 16 to 18, respectively. HVZK of the protocol follows
from the MLWE assumption and the fact that the underlying (implicit) commitment scheme of Baum et al.
[BDL+18] is hiding. The proof of soundness is implicit in our proof of Lemma 5.3.

We note one difference between the NIZK presented in Figure 17 and those presented in [BLS19]. In
[BLS19], it was stated that they are able to reuse the same t3,i across all repetition of i ∈ [t]. Looking at the
specifics of the underlying commitment scheme in Appendix A.4, this amounts to fixing one (e3, e6)← S2

Be
once and for all and using the same t3 = e3 + b3,6e6 + s for all ti. This has the benefit of lowering the proof
size by roughly tdlog qe as it no longer needs to recommit to the message s in the t-repetitions.

However, we were not able to prove zero-knowledge of such a scheme so we removed this optimization in
Figure 17. The main issue is that if we fix one t3 once and for all, then due to the specifics of the underlying
commitment scheme, e6 will be reused in all {t1,i, t2,i, t4,i, t5,i}i∈[t]. Then, for instance, an adversary obtains
a set {t2,i = e2,i + b2,6e6 + yi}i∈[t], where the LWE secret e6 is reused in t-samples. Although, we are not
aware of any practical attacks, the same zero-knowledge proof provided for the interactive case no longer
holds unless we assume the LWE problem that allows to reuse the secret. We note that although hardness of
such LWE problem can be shown by increasing the noise e2,i by using rerandomization techniques, we will no
longer be able to appeal to the ternary secret/noise LWE problem as used in [BLS19].

B.2 Setting the Parameter
One of the benefits of our approach is that we do not have to modify the parameters provided by the
underlying interactive proof. Specifically, the extractable LinHC protocol simply works as a wrapper around
the underlying non-quantum secure protocol. Therefore, to assess the proof size of our NIZK, we only need to
calculate the additional proof size incurred by the extractable LinHC protocol.

First, we recall the parameters used by Bootle et al. [BLS19]: (modulus size) q = 232, (dimension) d = 211,
(LWE parameter) Be = 1, (Euclidean norm of ei) Br = 183.83, (repetition time of upper half and lower half)
(t, t′) = (4, 3), (bound on Euclidean norm of z checked by verifier) Bz = φ ·

√
12× 211 · 183.83 and (rejection

sampling parameter) φ = 5. Here, we note that φ = 5 may to be too small since it results in rejecting the
transcript with probability roughly 11/12 for a single repetition. Specifically, the chance of accepting the
transcript in t′ = 3 repetition is only (1/12)3. In our parameter choice, we set a much larger φ = 30 so that
the rejection probability of a single repetition is roughly only 1/3. We note that the parameters given in
Section 5.3 is based on the original parameter choice of [BLS19].

We set the remaining parameters required by the extractable LinHC protocol according to the parameter
requirement explained in Section 5.2: (repetition time of upper half and lower half) (t, t′) = (8, 3), (rejection
sampling parameter) φ = 30, (modulus used by LinHC) (q∗, p) = (250, 222), (MLWE and DSMR parameter for
LinHC) η = 1. Following the same computation provided in Bootle et al. [BLS19, Section 4.1], we evaluate
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Prover: X = (A,u) ∈ Zm×dq × Zmq
W = s ∈ Rq

crs = B ∈ R5×6
q Verifier: X = (A,u)

y ← Rq
e← S6

Be

t←


b>1
b>2
b>3
b>4
b>5

 e +


0
y
s

y(2s− 3)
y2(s− 3)

 ∈ R5
q

w← Aŷ ∈ Zmq

(t,w)
−−−−−−−−−−−→

c
←−−−−−−−−−−−

c← Zq

z0 ← c · s+ y
r← D6

φ·Br
x0 ← b>1 r
x1 ← (b>2 + c · b>3 )r
x2 ← ((z0 − c)(z0 − 2c) · b>3

−z0 · b>4 + b>5 )r

(z0, x0, x1, x2)
−−−−−−−−−−−→

β
←−−−−−−−−−−−

β ← C

z← β · e + r
If Rej(z, β · e, φ, Br, err) = ⊥, abort z

−−−−−−−−−−−→

‖z‖2
?
≤ Bz

Aẑ0
?= c · u + w0

b>1 z ?= β · t1 + x1
(b>2 + c · b>3 )z + β · z0

?= β · (c · t3 + t2) + x1
((z0 − c)(z0 − 2c) · b>3 − z · b>4 + b>5 )z

?= β · ((z0 − c)(z0 − 2c) · t3 − z0 · t4 + t5) + x2

Figure 16: Bootle et al.’s [BLS19] exact sound public-coin interactive protocol in the CRS model. The
witness s satisfies Aŝ = u and ŝ ∈ {0, 1, 2}d. B is the public parameter of the commitment scheme ΠCom (see
Appendix A.4) and b>i denotes its row vector. In case abort occurs, we send ⊥ as the fifth message

the hardness of the primal attack and assess the difficulty of the (ternary secret) MLWE and DSMR problem
required by the extractable LinHC protocol. We observe that we would require a root Hermite factor of
at least 1.0045 for our parameters, which is believed to provide 128-bits of post-quantum security, e.g.,
[BLS19, ESLL19, ESS+19].

C Recap on Unruh’s Transform
In this section, we provide a minimal recap on the Unruh transform [Unr15]. Moreover, we provide intuition
and a concrete example on why applying the transform on lattice-based Σ-/public-coin HVZK interactive
protocols with a large challenge set may incur a large overhead compared to simply using the Fiat-Shamir
transform.

C.1 High Level Idea of Unruh’s Transform
One of the difficulties of proving security of the Fiat-Shamir transform in the QROM is largely because the
reduction algorithm cannot observe what the quantum adversary is querying to the QRO.27 The main idea

27Note that in recent years, techniques that allow observing the adversary’s queries as in the classical ROM (in some situation)
have emerged so we now know how to prove the Fiat-Shamir transform in the QROM under appropriate conditions, e.g.,
[DFMS19, LZ19].
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NIZK.ProveH(crs = B,X = (A,u),W = s)
1: for i ∈ [t] do
2: yi ← Rq
3: wi ← Aŷi ∈ Zmq
4: ei = (e1,i, e2,i, e3,i, e4,i, e5,i, e6,i)> ← S6

Be
5: t1,i ← b>1 ei
6: t2,i ← b>2 ei + yi
7: t3,i ← b>3 ei + s
8: t4,i ← b>4 ei + yi(2s− 3)
9: t5,i ← b>4 ei + y2

i (s− 3)
10: ti ← (t1,i, t2,i, t3i , t4,i, t5,i)>

11: (ci)i∈[t] ← H
(
0‖(ti,wi)i∈[t]

)
12: for i ∈ [t] do
13: z0,i ← ci · s+ yi
14: for j ∈ {(i− 1)t′ + 1, · · · , (i− 1)t′ + t′} do
15: rj ← D6

φ·Br

16: x0,j ← b>1 rj
17: x1,j ← (b>2 + cib>3 )rj
18: x2,j ←

(
(z0,i − ci)(z0,i − 2ci) · b>3 − z0,j · b>4 + b>5

)
rj

19: (βj)j∈[tt′] ← H
(
1‖((ti,wi)i∈[t]), (ci)i∈[t],

(
(z0,i)i∈[t], (x0,j , x1,j , x2,j)j∈[tt′]

))
20: for j ∈ [tt′] do
21: zj ← βj · edj/t′e + rj
22: for k ∈ [t′] do
23: z̄k ← [zk‖zt′+k‖ · · · ‖z(t−1)t′+k]
24: ēk ← [βke1‖βt′+ke2‖ · · · ‖β(t−1)t′+ket]
25: b← Rej(z̄k, ēk, φ, Br, err)
26: if b = ⊥ then
27: goto Line 1
28: return π :=

(
(ti, ci, z0,i)i∈[t], (βj , zj)j∈[tt′]

)
Figure 17: Prover algorithm of Bootle et al.’s [BLS19] exact sound NIZK for the relation RESin the CRS/ROM model.
The statement X = (A,u) ∈ Zm×dq × Zmq and witness s ∈ Rq satisfies Aŝ = u and ŝ ∈ {0, 1, 2}d. B ∈ R5×6

q is the
public parameter of the (implicit) commitment scheme ΠCom (see Appendix A.4), and b>i and bi,j denotes its i-th row
vector and (i, j)-th entry, respectively.

behind Unruh’s transform is to bypass this issue by forcing the prover to compute all the responses for each
challenge and then committing them with an extractable commitment scheme (which exists unconditionally
in the QROM).

Let us explain the construction in more detail. Assume the Σ-protocol has three moves: the prover
first sends the commitment α, the verifier outputs a random challenge β ∈ ChSet, and the prover sends the
response γ. To turn this into an NIZK, the prover first generates α and then creates the response γ for all
β ∈ ChSet. That is, it generates {(i, γi)}i∈ChSet. The prover then commits to each (i, γi) as comi using the
extractable commitment scheme and creates a new challenge ch = H(α, {comi}i∈ChSet). For this challenge
ch, the prover provides the commitment randomness randch to the commitment comch. Finally, the prover
outputs the proof π = (α, {comi}i∈ChSet, (randch, γch)). On input the proof π = (α, {comi}i∈ChSet, (rand, γ)),
the verifier computes ch′ = H(α, {comi}i∈ChSet) and checks if comch′ = Com(γ; rand) and whether (α, ch′, γ)
is a valid transcript for the underlying Σ-protocol.

So why should this be secure in the QROM? With a simple cut-and-chose argument, we can run the
above protocol several times to be sure that the adversary committed to at least two valid responses in one of
the runs. That is, there exists two comi and comj for i 6= j ∈ ChSet such that they are both commitments to
responses γi and γj where (α, i, γi) and (α, j, γj) are valid transcripts. Therefore, the reduction algorithm
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NIZK.VerifyH(crs,X, π)
1:
(
(ti, ci, z0,i)i∈[t], (βj , zj)j∈[tt′]

)
← π

2: for i ∈ [t] do
3: wi ← Aẑ0,i − ci · u
4: for j ∈ {(i− 1)t′ + 1, · · · , (i− 1)t′ + t′} do
5: x0,j ← b>1 zi − βj · t1,i
6: x1,j ← (b>2 + cib>3 )zj − βj · (ci · t3,i + t2,i)
7: x2,j ←

(
(z0,i − ci)(z0,i − 2ci) · b>3 − z · b>4 + b>5

)
zj − βj · ((z0,i − ci)(z0,i − 2ci) · t3,i − z0,i · t4,i + t5,i)

8: (c′i)i∈[t] ← H
(
0‖(ti)i∈[t], (wi)i∈[t]

)
9: (βj)j∈[tt′] ← H

(
1‖((ti,wi)i∈[t]), (ci)i∈[t],

(
(z0,i)i∈[t], (x0,j , x1,j , x2,j)j∈[tt′]

))
10: for j ∈ [tt′] do
11: if ‖zj‖2 > Bz then
12: return ⊥
13: if (ci)i∈[t] 6= (c′i)i∈[t] ∨ (βj)j∈[tt′] 6= (β′j)j∈[tt′] then
14: return ⊥
15: else
16: return >

Figure 18: Verifier algorithm of Bootle et al.’s [BLS19] exact sound NIZK for the relation RESin the CRS/ROM
model.

only needs to run the adversary once and can directly extract two valid transcripts from the proof π (using
the extractability of the commitment scheme), thus bypassing the difficulty of handling QROs. Finally,
once two valid transcripts are obtained, the reduction algorithm runs the special soundness extractor of the
underlying Σ-protocol to extract the witness.

Although the concrete analysis requires more care, Unruh showed that the above blueprint results in
a QROM secure NIZK. The upside of this transform is that it works for any Σ-protocol, it is straight-line
extractable, and the proof is tight. We next explain some of the downside.

C.2 Two Reasons for Inefficiency
There is two source of possibly inefficiency of the Unruh transform. First, notice that the above idea crucially
relies on the fact the prover can run over all the challenge set ChSet. Therefore, the Unruh transform
intrinsically requires ChSet of the underlying Σ-protocol to be polynomially small. In case the Σ-protocol
already relies on a small challenge space, e.g., [Ste94, KTX08, CDG+17], this is not so much of an issue.
However, this is clearly an issue when the Σ-protocol has a large challenge space. In such a case, we would
have to downgrade the Σ-protocol to only use a small subset of the challenge space and then perform parallel
repetition to amplify the soundness error to be negligible. For instance, consider a Σ-protocol with challenge
set size 2256 (for 128-bits of quantum security) with soundness error 2−128. Then, to apply the Unruh
transform, we first restrict the challenge set size to be small, say 28. This would increase the soundness error
to 2−4 so we need to run the underlying Σ-protocol at least 32-times to boost its soundness error to 2−128.
This leads to at least a factor of 32 blowup. As a rule of thumb, if the number of parallel repetition is T ,
then the number of challenge set can be set as 2256/T . (See [Unr15, Def. 13 and Thm. 18] for more details.)

The second source of possible ineffeciency is the additional commitments {comi}i∈ChSet that must be
sent in the proof π. Since we need the commitments to be extractable, these are at least as large as the
response γ. Combined with the above, a naive calculation shows that the resulting NIZK has proof size
around T · (|α| + 2256/T · |γ|). Rewriting this by using the challenge set size M = 2256/T instead, we get

256
logM · (|α| + (M + 1) · |γ|). In contrast, if the underlying Σ-protocol had challenge set size N , then the
transcript size is roughly 256

logN · (|α|+ |γ|). It is clear that when N is large and M is small, the overhead is
large. For example, in case |α| ≈ |γ|, N = 2256, and M = 24, the proof overhead is roughly 1000. In contrast,
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when N is already small, say N = 2 or 3, then the overhead is reasonable. For instance, starting with a
proper Σ-protocol and through optimization, the Unruh transform can lead to truly practical scheme as
demonstrated in [CDG+17].

C.3 Applying the Unruh Transform to Bootle et al’s Protocol
We provide the concrete details on the Unruh transform applied to Bootle et al’s 5-round public-coin HVZK
interactive exact sound proof [BLS19] in Section 5. We use the same concrete application of proving knowledge
of the ternary secret in LWE samples over Zq considered in Appendix B.2 to compare our QROM secure NIZK
and Bootle et al’s classical ROM secure NIZK. Here, since the Unruh transform only applies to Σ-protocols, we
rely on the extended Unruh transform proposed by Chen et al. [CHR+18] that works for 5-round public-coin
HVZK interactive protocol with the second challenge set restricted to be binary. That is, the verifier outputs
a random challenge in {0, 1} in the fourth round.

In Bootle et al’s and our protocols, the first and second challenge set sizes are q = 232 (modulus size)
and d = 211 (LWE parameter), respectively. To apply the extended Unruh transform, the second challenge
set size needs to be binary. In addition, the first challenge set size needs to be much smaller than 232

since creating 232-commitments is impractical. To provide an estimate, let us set the first challenge set
size to be M . Then, similarly to the discussion in Section 5, we perform t′ = dlogMe lower repetition
so that M = |{0, 1}|t

′
and perform t = d 256

logM e upper repetitions to reach the 128-bit of post-quantum
security level. Then, the Unruh transform requires the prover to run through the first M -challenges and
generate and commit to all the M -responses each having size |z0,i| = ddlog qe/8 bytes (see Figure 17). It
further requires the prover to run through the first M and second binary challenges and generate and
commit to all the 2M -responses each having size |zj | = 6ddlog 12φBre bytes (see Figure 17). Therefore,
asymptotically, we require a total of (6tddlog qe+ 6tt′ddlog 12φBre+ tdlog qe+ tt′dlog 2de)/8 +X bytes, where
X = tMd(dlog qe+ 12t′dlog 12φBre)/8 bytes is the additional commitments required by the Unruh transform.
Here, recall M is some polynomial larger than 3 (for the security proof), and d 256

logM e and t
′ = dlogMe. It

turns out that the total proof size is minimized when setting M = 4 and becomes 44.9 MB, which is roughly
a factor 51.8 larger than Bootle et al’s protocol that has proof size 812KB. Here, it may seem the overhead
incurred by the Unruh transform is smaller than expected. The main reason for this is that Bootle et al’s
protocol already relied on parallel repetition to obtain negligible soundness error since the first and second
challenge set sizes are only q = 232 and d = 211, respectively.
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