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Abstract. A succinct functional commitment (SFC) scheme for a circuit class CC enables, for any
circuit C ∈ CC, the committer to first succinctly commit to a vector α, and later succinctly open
the commitment to C(α,β), where the verifier chooses β at the time of opening. Unfortunately, SFC
commitment schemes are known only for severely limited function classes like the class of inner products.
By making non-black-box use of SNARK-construction techniques, we propose an SFC scheme for
the large class of semi-sparse polynomials. The new SFC scheme can be used to, say, efficiently (1)
implement sparse polynomials, and (2) aggregate various interesting SFC (e.g., vector commitment and
polynomial commitment) schemes. The new scheme is evaluation-binding under a new instantiation of
the computational uber-assumption. We provide a thorough analysis of the new assumption.
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1 Introduction

A succinct functional commitment (SFC) scheme [LRY16] for a circuit class CC enables the committer, for
any C ∈ CC, to first commit to a vector α, and later open the commitment to C(α,β), where the verifier
chooses β at the time of opening. An SFC scheme must be evaluation-binding (given a commitment, it is
intractable to open it to ξ = C(α,β) and ξ′ = C(α,β) for ξ 6= ξ′) and hiding (a commitment and possibly
many openings should not reveal any additional information about α). Succinctness means that both the
commitment and the opening have length polylog(|α|, |β|).

In particular, an SFC scheme for inner products (SIPFC) assumes that C computes the inner prod-
uct (α,β) → 〈α,β〉 [LY10,ILV11,LRY16]. As explained in [LRY16], one can use an SIPFC scheme to
construct succinct vector commitment schemes [CF13], polynomial commitment schemes [KZG10], and
accumulators [Bd94]. Each of these primitives has a large number of independent applications. Succinct
polynomial commitment schemes have recently become very popular since they can be used to construct
(updatable) SNARKs [ZGK+17,WTS+18,MBKM19,CHM+20] (a direction somewhat opposite to the one
we will pursue in the current paper). Since in several applications (e.g., in cryptocurrencies, [TAB+20]),
one has to run many instances of SFC in parallel, there is a recent surge of interest in aggregatable SFC
schemes, [BBF19,LM19,BDFG20,GRWZ20,TAB+20]. All mentioned papers propose succinct FC schemes
for limited functionalities.

Since there are no prior SFC schemes for broader classes of functions, there is a large gap between function
classes for which an SFC scheme is known and the class of all efficiently verifiable functions (e.g., poly-size
arithmetic circuits). Filling a similar gap is notoriously hard in the case of related primitives like functional
encryption, homomorphic encryption, and NIZK. A natural question to ask is whether something similar
holds in the case of functional commitment.

It is easy to construct an SFC for all poly-size circuits under non-falsifiable assumptions: given a commit-
ment to α, the opening consists of a SNARK argument [Gro10,Lip12,GGPR13,PHGR13,Lip13,Gro16] that
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C(α,β) = ξ. However, while non-falsifiable assumptions are required to construct SNARKs [GW11], they
are not needed in the case of SFC schemes. Thus, just using SNARK as a black box is not a satisfactory
solution.

Moreover, since one can construct non-succinct NIZK for NP from falsifiable assumptions, one can con-
struct a non-succinct FC (nSFC) for NP from falsifiable assumptions. Bitansky [Bit17] pursued this ap-
proach, proposing an nSFC for all circuits that uses NIZK as a black-box. Using non-interactive witness-
indistinguishable proofs in a non-black-box manner, Bitansky proposed another, non-trivial, nSFC scheme
that does not achieve zero-knowledge (the strongest form of hiding, defined in the current paper) but does
not require the CRS model. Alternatively, consider the FC scheme where the commitment consists of fully-
homomorphic encryptions Ci of individual coefficients αi, and the opening is the randomizer R of the
evaluation of the circuit C on them. The verifier can re-evaluate the circuit on Ci and her input and then
check that the result is equal to Enc(ξ;R). However, the resulting FC is not succinct since one has to encrypt
all αi individually.

Thus, the main question is to construct succinct FC schemes, under falsifiable assumptions, for a wide
variety of functionalities.

Our Contributions. We propose a falsifiable SFC scheme FCsn for the class of semi-sparse polynomials
CC = CCΣΠ∀ whose correct computation can be verified by using an arbitrary polynomial-size arithmetic
circuit that is “compilable” according to the definition, given in a few paragraphs. Notably, FCsn allows
efficient aggregation of various SFC schemes, e.g., vector commitments with inner-product commitments and
polynomial commitments. We analyze the power of CCΣΠ∀ by using techniques from algebraic complexity
theory; the name of the class will be explained in Section 4.

We prove that FCsn is secure under a new falsifiable assumption (computational span-uber-assumption in
a group G1) that is reminiscent of the well-known computational uber-assumption in G1. We then thoroughly
analyze the security of the new assumption.

Our Techniques. Next, we provide a high-level overview of our technical contributions. The construction
of FCsn consists of the following steps.
1. Compilation of the original circuit C computing the fixed function F ∈ CC to a circuit C∗ consisting of

four public subcircuits.
2. Representation of C∗ in the QAP language which SNARKs usually use.
3. Construction of SFC for the QAP representation, by using SNARK techniques in a non-black-box way.
Next we describe these steps in detail.

Circuit Compilation. Let C : Zµαp × Zµβp → Zκp be a polynomial-size arithmetic circuit that, on input (α,β),
outputs ξ = F(α,β) = (Fi(α,β))κi=1. Here, the committer’s input α is secret, and the verifier’s input is
public. We modify the circuit C to a compiled circuit C∗, see Fig. 1, that consists of the subcircuits Cφ, Cψ,
Cχ, and Cξ. In the commitment phase, the committer uses the circuit Cφ to compute several polynomials
φi(α) depending on only 1 (this allows the output polynomials to have a non-zero constant term) and α.
In the opening phase, the verifier sends β to the committer, who uses the circuit Cψ to compute several
polynomials ψi(β) depending on 1 and β. The verifier can redo this part of the computation. After that,
the committer uses the circuit Cχ to compute several polynomials χi(α,β) from the inputs and outputs of
Cφ and Cψ. Finally, the committer uses Cξ to compute the outputs Fi(α,β) of C∗. We will explain more
thoroughly this compilation in Section 3.

Intuitively, the compilation restricts the class of circuits in two ways. First, we add a small circuit Cξ
at the top of the compiled circuit to guarantee that the R1CS representation of C∗ has several all-zero
columns and rows, which helps us in the security reduction. This does, however, not restrict the circuit class
for which the SFC is defined, and it only increases the number of gates by κ. Second, Cχ is restricted to
have multiplicative depth 1, that is, it sums up products of polynomials in α with polynomials in β. This
guarantees that in a collision, the two accepted openings have a linear relation that does not depend on the
secret data α. The latter makes it possible for the reduction to break the underlying falsifiable assumption.
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Fig. 1. The compiled circuit C∗.

Thus, we are restricted to the class CCΣΠ∀ of circuits where each output can be written as
∑
i,j φi(α)ψj(β),

for efficiently computable polynomials φi and ψj , and the sum is taken over poly(λ) products.
By employing tools from the algebraic complexity theory, in Section 4, we study the class CCΣΠ∀ of

“compilable” (according to the given definition) arithmetic circuits. We say that a polynomial f ∈ CCΣΠ∀
if f has a circuit that belongs to CCΣΠ∀. The new SFC scheme can implement f iff f ∈ CCΣΠ∀. First,
we show that any sparse polynomial (over indeterminates, chosen by both the committer and the verifier)
belongs to CCΣΠ∀. Second, we construct a non-sparse polynomial f ∈ CCΣΠ∀. This relies on a result of
Ben-Or who constructed an O(n2)-size arithmetic circuit that simultaneously computes the dth symmetric
polynomial σd(X1, . . . , Xn), for d ∈ [1, n]. Third, we construct a polynomial f ∈ VP such that f 6∈ CCΣΠ∀,
where VP is the class of poly-degree polynomials that have poly-size circuits, [Val79].

R1CS/QAP Representation. Let C be an arithmetic circuit, and C∗ be its compilation. A circuit evaluation
can be verified by verifying a matrix equation, where matrices define the circuit uniquely and reflect all the
circuit constraints. SNARKs usually use QAP (Quadratic Arithmetic Program, [GGPR13]), a polynomial
version of R1CS, which allows for better efficiency.

Constructing the Underlying SNARK. Intuitively, we start constructing a SNARK for C∗ by following the
approach of Groth [Gro16] who proposed the most efficient known zk-SNARK, or more precisely, its recent
modification by Lipmaa [Lip19]. However, we modify this approach whenever it suits our goals. The new
SFC inherits the efficiency of Groth’s SNARK; this is the main reason we chose Groth’s SNARK; it may
be the case that SFCs constructed from less efficient SNARKs have other desirable properties, but this is
out of the scope of the current paper. We chose the modified version of [Lip19] due to its versatility: [Lip19]
explains sufficiently well how to construct a SNARK for QAP so that it is feasible to modify its approach
to suit the current paper.

The New SFC Scheme. In the SNARKs of [Gro16,Lip19], the argument consists of three group elements,
π = ([A]1, [B]2, [C]1). (We use the bracket additive notation, see Section 2.) Due to our restrictions on C∗,
both [A]1 and [B]2 can be written as sums of a non-functional commitment that depends only on the secret
data and a non-functional commitment that depends only on the public data. By the public data we mean
(β,F(α,β)); any other function of α is a part of the secret data. E.g., [A]1 = [As]1 + [Ap]1, where [As]1 is
computed by the committer before β becomes available, and [Ap]1 can be recomputed by the verifier since
it only depends on the public data. However, [C]1 = [Csp]1 + [Cp]1, where [Cp]1 depends only on the public
data but [Csp]1 depends both on the public and private data.
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In the new SFC commitment scheme, the functional commitment is C = ([As]1, [Bs]2) and the opening is
[Csp]1. After receiving the opening, the verifier recomputes [Ap]1, [Bp]2, and [Cp]1, and then runs the SNARK
verifier on the argument π = ([As]1 + [Ap]1, [Bs]2 + [Bp]2, [Csp]1 + [Cp]1). However, as we will see later, the
commitment also includes auxiliary elements [Baux

i ]1 needed to obtain an efficient security reduction.
We will denote the new SFC commitment scheme by FCsn. We denote by FCCsn its specialization to the

circuit C.

Applications. To demonstrate the usefulness of FCsn, we will give several applications; some of them are
well-known, and some are new. In all cases, the function of interest can be rewritten as a semi-sparse poly-
nomial in (α,β). Some of these examples are closely related to but still sufficiently different from IPFC.
In particular, [LRY16] showed how to use an efficient IPFC to construct SFC for polynomial commit-
ments [KZG10], accumulators [Bd94], and vector commitments [CF13] (See Appendix A.1.). We use FCsn to
construct subvector commitments [LM19], aggregated polynomial commitment [CHM+20,BDFG20] (one can
commit to multiple polynomials at once, each of which can be opened at a different point), and multivariate
polynomial commitments [BGH19]. Also, we outline a few seemingly new applications like the aggregated
inner product (that, in particular, can be used to implement subvector commitment) and evaluation-point
commitment schemes. (See Appendices A.2 and A.3.) All described commitment schemes are succinct.

FCsn achieves aggregation easily in a more general sense. Let Ci be some circuits for which efficient
SFC schemes exist. We can then construct an efficient SFC for the circuit that consists of the sequen-
tial composition of Ci-s. In particular, we can aggregate multiple polynomial commitment schemes, some
vector commitment schemes, and say an evaluation-point commitment scheme. Some of the referred pa-
pers [BBF19,LM19,BDFG20,TAB+20,GRWZ20] construct aggregated commitment schemes for a concrete
circuit (e.g., an aggregated polynomial commitment scheme). Importantly, FCsn allows one to aggregate
different SFC schemes.

Security. The correctness and perfect hiding proofs are straightforward. The main thing worthy of note here
is that we have three definitions of hiding (com-hiding, open-hiding, and zero-knowledge, see Section 2). For
the sake of completeness, we also give three different hiding proofs. The SFC schemes must work in the CRS
model to obtain zero knowledge. However, since zero-knowledge is stronger than the other two definitions,
the proof of zero-knowledge, which follows roughly from the zero-knowledge of the related SNARK, suffices.
Note that say [LRY16] only considered the weakest hiding notion (com-hiding).

The evaluation-binding proof differs significantly from the knowledge-soundness proofs of SNARKs. The
knowledge-soundness of SNARKs can only be proven under non-falsifiable assumptions [GW11]. In partic-
ular, Groth proved the knowledge-soundness of the SNARK from [Gro16] in the generic group model while
Lipmaa [Lip19] proved it under a tautological knowledge assumption and a known computational assump-
tion (namely, q-PDL [Lip12]). Such assumptions have very little in common with assumptions we use. As
expected, a knowledge-soundness proof that uses non-falsifiable assumptions has a very different flavor com-
pared to an evaluation-binding proof that only uses falsifiable assumptions. We emphasize it is not clear a
priori that an SFC constructed from SNARKs could rely on falsifiable assumptions.

We prove the evaluation-binding of FCsn under the new (R,S, {fi})-computational span-uber-assumption
in source group G1, where R,S ⊂ Zp[X,Y ] and fi ∈ Zp[X,Y ] with fi 6∈ span(R) are fixed by the circuit
C. This assumption states that given a commitment key ck = ([%(χ, y) : % ∈ R]1, [σ(χ, y) : σ ∈ S]2), where
χ, y are random trapdoors, it is difficult to compute (∆ 6= 0,

∑κ
i=1∆i[fi(χ, y)]1), where ∆ is adversarially

chosen. (See Definition 6 for a formal definition.) Importantly, if κ = 1 then we just have an uber-assumption
in G1. We show that (see Theorem 2), for all R and fi needed by our new SFC, fi(X,Y ) 6∈ span(R).

The full evaluation-binding proof is quite tricky and relies significantly on the structure of matrices U ,
V , W and the commitment key. Given a collision, we “almost” compute (∆,

∑
∆i[fi(χ, y)]1), where ∆ is

the component-wise difference between two claimed values of F(α,β). To eliminate “almost” in the previous
sentence, the committer outputs κ additional “helper” elements [Baux

i ]1, where extra care has to be used to
guarantee that the helper elements can be computed given the commitment key. In both cases, to succeed, we
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need to assume that the matrices (U, V,W ) satisfy some natural restrictions stated in individual theorems.
These restrictions, that hold for the compiled circuit, are collected together in Theorem 1.

Analysis of the Span-Uber-Assumption. The span-uber-assumption is falsifiable and, thus, signifi-
cantly more realistic than non-falsifiable (knowledge) assumptions needed to prove the adaptive soundness
of SNARKs. Still, it is a new assumption and thus we have written down three different proofs that it follows
from already known assumptions. (See Lemma 2 and Theorems 4 and 5.)

In Lemma 2, we prove that the span-uber-assumption in G1 holds under the known (R,S, f ′i)-
computational uber-assumption in the target group GT [BBG05]. Here, f ′i are different from but related
to fi. We also prove that f ′i 6∈ span(RS). Since fi(X,Y ) 6∈ span(R) and f ′i(X,Y ) 6∈ span(RS) (in the case
of the uber-assumption in GT ), we have an instantiation of the computational uber-assumption, known to
be secure [BBG05] in the generic group model.

Since the generic group model is very restrictive and has known weaknesses [Fis00,Den02] not shared
by well-chosen knowledge assumptions, we will use the newer methodology of [FKL18]. In Appendix B,
Theorem 5, we prove that if fi 6∈ span(R) then the (R,S, {fi})-computational span-uber-assumption in G1

holds in the algebraic group model (AGM, [FKL18]) under a PDL assumption. Since uber-assumption in
GT is not secure in the original AGM of [FKL18] (the latter only handles the case the adversary outputs
elements in source groups since the target group is non-generic), this result is orthogonal to the previous
result. As a corollary of independent interest, we get that if fi(X,Y ) 6∈ span(R) then uber-assumption in G1

holds in the AGM under a PDL assumption.
In composite-order bilinear groups, the computational uber-assumption in GT holds under a subgroup

hiding assumption [CMM16]. Thus, due to Lemma 2, a composite-order group span-uber-assumption (and
also the new SFC) is secure under a subgroup hiding assumption. In Theorem 4, we use the Déjà Q approach
of [CM14] to prove that the span-uber-assumption in Gι, ι ∈ {1, 2}, is secure under a subgroup hiding
assumption. This proof is more direct than the reduction through an uber-assumption in GT . Moreover, the
Déjà Q approach is more applicable if one is working in the source group. Whether a similar reduction holds
in the case of prime-order groups is an interesting open question.

Efficiency. It is tedious to provide a detailed efficiency comparison of our newly constructed scheme to all
the abundant existing work in all applications. FCsn is generic, works for a large class of circuits, and can
tackle scenarios, not possible with previous work, but at the same time, it can also be used to solve the much
simpler case of, e.g., inner product. We stress that FCsn, when straightforwardly specialized to the IPFC
case, is nearly as efficient as the most efficient known prior IPFC, losing ground only in the CRS length. On
the other hand, we are not aware of any previous aggregated IPFC schemes (See Appendix A.2).

This paper uses heavily a yet unpublished paper [Lip19] of the first author.

2 Preliminaries

If R = (%1(X), . . . , %n(X)) is a tuple of polynomials over Zp[X] and x is a vector of integers then R(x) :=

(%1(x), . . . , %n(x)). Let Z(≤d)
p [X] be the set of degree-≤ d polynomials over Zp. For a matrix U , let U i be

its ith row, U (j) be its jth column. Let a ◦ b denote the component-wise product of two vectors a and
b, (a ◦ b)i = aibi. Let a1// . . . //an =

(
a1
...
an

)
denote the vertical concatenation of vectors ai. λ is the

security parameter, and 1λ denotes its unary representation. PPT denotes probabilistic polynomial-time.
For an algorithm A, range(A) is the range of A, that is, the set of valid outputs of A, RNDλ(A) denotes the
random tape of A (assuming the given value of λ). Finally, r←$S denotes the uniformly random choice of
a randomizer r from the set/distribution S.

Interpolation. Assume ν is a power of two, and let ω be the νth primitive root of unity modulo p. Such ω
exists, given that ν | (p− 1). Then,
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– `(X) :=
∏ν
i=1(X − ωi−1) = Xν − 1 is the unique degree ν monic polynomial such that `(ωi−1) = 0 for

all i ∈ [1, ν].
– For i ∈ [1, ν], `i(X) is the ith Lagrange basis polynomial, that is, the unique degree ν − 1 polynomial,

such that `i(ωi−1) = 1 and `i(ω
j−1) = 0 for i 6= j. Clearly, `i(X) := `(X)/(`′(ωi−1)(X − ωi−1)) =

(Xν − 1)ωi−1/(ν(X − ωi−1)).
Moreover, (`j(ω

i−1))νi=1 = ej (the jth unit vector) and (`(ωi−1))νi=1 = 0ν .

Bilinear Pairings. Let ν be an integer parameter (the circuit size in our application). A bilinear group
generator Pgen(1λ, ν) returns (p,G1,G2,GT , ê,P1,P2), where G1,G2,GT are three additive cyclic groups of
prime order p, ê : G1×G2 → GT is a non-degenerate efficiently computable bilinear pairing, and Pι is a fixed
generator of Gι. We assume PT = ê(P1,P2). We require the bilinear pairing to be Type-3, that is, there is no
efficient isomorphism between G1 and G2. For efficient interpolation, we assume that p is such that ν | (p−1).
When emphasizing efficiency is not important, we drop the parameter ν and just write p ← Pgen(1λ). We
use additive notation together with the standard elliptic-curve “bracket” notation. Namely, we write [a]ι to
denote aPι, and [a]1 • [b]2 to denote ê([a]1, [b]2). We use freely the bracket notation together with matrix
notation, e.g., if AB = C as matrices then [A]1 • [B]2 = [C]T .

Uber-Assumption. The following assumption is a special case of the more general uber-assumption
of [BBG05,Boy08].

Definition 1 ([BBG05,Boy08]). Let p ← Pgen(1λ). Let R, S, and T be three tuples of bivariate poly-
nomials from Zp[X,Y ]. Let f be a bivariate polynomial from Zp[X,Y ]. The (R,S, T , f)-computational
uber-assumption for Pgen in group Gι, where ι ∈ {1, 2, T}, states that for any PPT adversary A,
Advuber

Pgen,R,S,T ,f,A(λ) = negl(λ), where Advuber
Pgen,R,S,T ,f,A(λ) :=

Pr

[
p← Pgen(1λ);χ, y←$Z∗p; ck← ([R(χ, y)]1, [S(χ, y)]2, [T (χ, y)]T ) :

A(ck) = [f(χ, y)]ι

]
.

[BBG05,Boy08] considered the general case of c-variate polynomials for any c. In our case, T = ∅; then, we
have an (R,S, f)-computational uber-assumption in Gι.

Importantly [BBG05,Boy08], (i) if f(X,Y ) is not in the span of {%(X,Y )} then the (R,S, T , f)-
computational uber-assumption for G1 holds in the generic group model, and (ii) if f(X,Y ) is not in the
span of {%(X,Y )σ(X,Y ) + τ(X,Y )} then the (R,S, T , f)-computational uber-assumption for GT holds in
the generic group model. We will only invoke the uber-assumption when it is secure in the generic group
model.

QAP. Let R = {(x,w)} be a relation between statements and witnesses. Quadratic Arithmetic Program
(QAP) was introduced in [GGPR13] as a language where for an input x and witness w, (x,w) ∈ R can
be verified by using a parallel quadratic check. QAP has an efficient reduction from the (either Boolean
or Arithmetic) Circuit-SAT. Thus, an efficient zk-SNARK for QAP results in an efficient zk-SNARK for
Circuit-SAT.

We consider arithmetic circuits that consist only of fan-in-2 multiplication gates, but either input of each
multiplication gate can be any weighted sum of wire values, [GGPR13]. Let µ0 < µ be a non-negative integer.
In the case of arithmetic circuits, ν is the number of multiplication gates, µ is the number of wires, and µ0

is the number of public inputs.
Let F = Zp, such that ω is the ν-th primitive root of unity modulo p. This requirement is needed for

the sake of efficiency, and we will make it implicitly throughout the paper. However, it is not needed for
the new SFC to work. Let U , V , and W be instance-dependent matrices and let a be a witness. A QAP is
characterized by the constraint Ua◦V a = Wa. Let La(X) :=

∑ν
i=1 ai`i(X) be the interpolating polynomial of

a = (a1, . . . , aν)> at points ωi−1, with La(ωi−1) = ai for i ∈ [1, ν]. For j ∈ [1, µ], define uj(X) := LU(j)(X),
vj(X) := LV (j)(X), and wj(X) := LW (j)(X) to be interpolating polynomials of the jth column of the
corresponding matrix. Thus, uj , vj , wj ∈ Z(≤ν−1)

p [X]. Let u(X) =
∑µ
j=1 ajuj(X), v(X) =

∑µ
j=1 ajvj(X),
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and w(X) =
∑µ
j=1 ajwj(X). Then Ua ◦ V a = Wa iff `(X) | u(X)v(X) − w(X) iff u(X)v(X) ≡ w(X)

(mod `(X)) iff there exists a polynomial H(X) such that u(X)v(X)− w(X) = H(X)`(X).
A QAP instance Iqap is equal to (Zp, µ0, {uj , vj , wj}µj=1). Iqap defines the following relation:

RIqap =
{

(x,w) : x = (a1, . . . , aµ0
)> ∧w = (aµ0+1, . . . , aµ)> ∧ u(X)v(X) ≡ w(X) (mod `(X))

}
, (1)

where u(X), v(X), and w(X) are as above. Alternatively, (x,w) ∈ R if there exists a (degree ≤ ν − 2)
polynomial H(X), such that the following key equation holds:

χ(X) := u(X)v(X)− w(X)−H(X)`(X) = 0 . (2)

On top of checking Eq. (2), the verifier also needs to check that u(X), v(X), and w(X) are correctly
computed: that is, (i) the first µ0 coefficients aj in u(X) are equal to the public inputs, and (ii) u(X), v(X),
and w(X) are all computed by using the same coefficients aj for j ≤ µ.

Since in a functional commitment scheme, both the committer and the verifier have inputs, we will use
a variation of QAP that handles public inputs differently (see Section 3). In particular, we will use different
parameters instead of µ0.

SNARKs. LetR be a relation generator, such thatR(1λ) returns a polynomial-time decidable binary relation
R = {(x,w)}. Here, x is a statement, and w is a witness. R also outputs the system parameters p that will
be given to the honest parties and the adversary. A non-interactive zero-knowledge (NIZK) argument system
Ψ = (Kcrs,P,V,Sim) for R consists of four PPT algorithms:
CRS generator: Kcrs is a probabilistic algorithm that, given (R, p) ∈ range(R(1λ)), outputs (crs, td) where

crs is a CRS and td is a simulation trapdoor. Otherwise, it outputs a special symbol ⊥.
Prover: P is a probabilistic algorithm that, given (R, p, crs,x,w) for (x,w) ∈ R, outputs an argument π.

Otherwise, it outputs ⊥.
Verifier: V is a probabilistic algorithm that, given (R, p, crs,x, π), returns either 0 (reject) or 1 (accept).
Simulator: Sim is a probabilistic algorithm that, given (R, p, crs, td,x), outputs an argument π.
A NIZK argument system must satisfy completeness (an honest verifier accepts an honest prover), knowledge-
soundness (if a prover makes an honest verifier accept, then one can extract from the prover the corresponding
witnessw), and zero-knowledge (there exists a simulator that, knowing the CRS trapdoor but not the witness,
can produce accepting statements with the verifier’s view being indistinguishable from the view when inter-
acting with an honest prover). See Appendix C for formal definitions. A SNARK (succinct non-interactive
argument of knowledge, [Gro10,Lip12,GGPR13,PHGR13,Lip13,Gro16]) is a NIZK argument system where
the argument is sublinear in the input size.

Functional Commitment Schemes. Let D be some domain. In a functional commitment scheme for a circuit
C : Dµα ×Dµβ → Dκ, the committer first commits to a vector α ∈ Dµα , obtaining a functional commitment
C. The goal is to allow the committer to later open C to ξ = C(α,β) ∈ Dκ, where β ∈ Dµβ is a public
input that is chosen by the verifier before the opening. We generalize the notion of functional commitment,
given in [LRY16], from inner products to arbitrary circuits. Compared to [LRY16], we also provide a stronger
hiding definition.

Let CC be a class of circuits C : Dµα × Dµβ → Dκ. A functional commitment scheme FC for CC is a
tuple of four (possibly probabilistic) polynomial-time algorithms (KC, com, open,V), where
Commitment-key generator: KC(1λ, C) is a probabilistic algorithm that, given a security parameter λ ∈

N and a circuit C ∈ CC, outputs a commitment key ck and a trapdoor key tk. We implicitly assume 1λ

and C are described by ck.
Commitment: com(ck,α; r) is a probabilistic algorithm that takes as input a commitment key ck, a message

vector α ∈ Dµα and a randomizer r. It outputs (C,D), where C is a commitment to α and D is a
decommitment information. We denote the first output C of com(ck;α; r) by com1(ck;α; r).

Opening: open(ck, C,D,β) is a deterministic algorithm that takes as input a commitment key ck, a com-
mitment C (to α), a decommitment information D, and a vector β ∈ Dµβ . Assume that the ith out-
put value of the circuit C is Fi(α,β), where Fi is a public function. It computes an opening opξ to
ξ = F(α,β) := (Fi(α,β))κi=1.

7



Verification: V(ck, C, opξ,β, ξ) is a deterministic algorithm that takes as input a commitment key ck, a
commitment C, an opening opξ, a vector β ∈ Dµβ , and ξ ∈ Dκ. It outputs 1 if opξ is a valid opening
for C being a commitment to some α ∈ Dµα such that Fi(α,β) = ξ and outputs 0 otherwise.

Security of FC. Next, we give three definitions of the hiding property for FC schemes of increasing strength.
The first definition corresponds to the definition of hiding given in [LRY16] and essentially states that
commitments do not reveal any information about α. The other two definitions seem to be novel at least in
the context of general FC. We provide all three definitions, since in some applications, a weaker definition
might be sufficient. Moreover, the third definition (zero-knowledge) makes only sense in the CRS model; in
a CRS-less model, one can rely on the open-hiding property.
Definition 2 (Perfect com-hiding). A functional commitment scheme FC = (KC, com, open,V) for cir-
cuit class CC is perfectly hiding if for any λ, C ∈ CC, (ck, tk) ← KC(1λ, C), and α1,α2 ∈ Dµα with
α1 6= α2, the two distributions δ1 and δ2 are identical, where

δb := {(ck, Cb) : r←$RNDλ(com); (Cb, Db)← com(ck,αb; r)} .

The open-hiding property is considerably stronger, stating that the commitment and the openings to-
gether do not reveal more information on α than the values C(α,βi) on queried values βi. Trivial non-succinct
FC schemes, where one uses a perfectly-hiding commitment scheme to commit to β, and then in the opening
phase, opens the whole database, are com-hiding but not open-hiding.
Definition 3 (Perfect open-hiding). A functional commitment scheme FC = (KC, com, open,V) for cir-
cuit class CC is perfectly open-hiding if for any λ, C ∈ CC, (ck, tk)← KC(1λ, C), for all α1,α2 ∈ Dµα with
α1 6= α2, and Q = poly(λ) of βi such that C(α1,βi) = C(α2,βi) for all i ≤ Q, the two distributions δ1 and
δ2 are identical, where

δb := {(ck, Cb, {open(ck, Cb, Db,βi)}) : r←$RNDλ(com); (Cb, Db)← com(ck,αb; r)} .

Finally, zero-knowledge FC schemes have simulation-based hiding. While simulation-based security is
a gold standard in cryptography, it is usually more complicated to achieve than game-based security.
In particular, one needs (at least, when not using random oracles) to have a trusted ck (and its trap-
door) to achieve zero-knowledge. We will leave it as an open problem whether one can use instead
the much weaker bare public key (BPK) model (that is, subversion-secure), by using the techniques
of [BFS16,ABLZ17,Fuc18,ALSZ20,ALSZ21]. Note that [Lip19] showed that their SNARKs are all secure
in the BPK model.
Definition 4 (Perfect zero-knowledge). An FC scheme FC = (KC, com, open,V) for CC is perfectly
zero-knowledge if there exists a PPT simulator Sim, such that for all λ, all C ∈ CC, (ck, tk) ← KC(1λ, C),
for all α ∈ Dµα , for any poly-size set of βi, δ0 and δ1 are identical, where

δ0 :={(ck, C, {open(ck, C,D,βi)}) : r←$RNDλ(com); (C,D)← com(ck,α; r)} ,
δ1 :={(ck,Sim(ck, td, {βi}, {C(α,βi)}))} .

Next, we will define evaluation-binding. Evaluation-binding can be weaker than binding, but sometimes
the two notions are equivalent. (Consider the case of the inner product when the adversary asks the committer
to open a commitment for β = ei for each i.) In the context of FC schemes, evaluation-binding is the
distinguishing security notion.
Definition 5 (Computational evaluation-binding). A functional commitment scheme FC = (KC, com,
open,V) for circuit class CC is computationally evaluation-binding if for any λ, C ∈ CC, and a non-uniform
PPT adversary A, Advbind

FC,C,A(λ) = negl(λ), where

Advbind
FC,C,A(λ) := Pr

[
(ck, tk)← KC(1λ, C); (C,β, ξ, opξ, ξ̃, õpξ)← A(ck) : β ∈ Dµβ∧

ξ 6= ξ̃ ∈ Dκ ∧ V(ck, C, opξ,β, ξ) = V(ck, C, õpξ,β, ξ̃) = 1

]
.

An FC scheme is succinct (SFC), if both the commitments and openings have length that is polylogarithmic
in |α| and |β|.

8



3 The New SFC Scheme

In this section, we will construct a succinct functional commitment (SFC) scheme for a large class of
polynomial-size arithmetic circuits by mixing techniques from SNARKs with original ideas, needed to con-
struct an SFC scheme. Let F be a fixed vector function that takes inputs from two parties, the committer
and the verifier. Let C be an arithmetic circuit that inputs α and β and computes F(α,β) = (Fi(α,β))κi=1,
where α is the private input of the committer, used in the commitment, and β is the public input of the
verifier, possibly chosen only when opening the commitment. We compile C to a circuit C∗ that consists of
four subcircuits Cφ, Cψ, Cχ and Cξ. We need the division to four subcircuits to prove evaluation-binding; we
will give more details later.

After that, we use the QAP-representation [GGPR13] (more precisely, the approach of [Lip19]) of arith-
metic circuits, obtaining polynomials A(X,Y ), B(X,Y ) (the “commitment polynomials” to all left/right
inputs of all gates of C∗, correspondingly), and C(X,Y ) (the “opening polynomial”), such that C(X,Y ) is in
the linear span of the “polynomial commitment key” ck1 = (%(X,Y ) : % ∈ R) if and only if the committer was
honest. The circuit compilation allows us to additively divide the polynomials to “private” parts (transmitted
during the commitment) and “public” parts (trasmitted during the opening), such that one can, given two
different openings for the same commitment, break a computational assumption. We then use SNARK-based
techniques to construct the SFC for C∗ with succinct commitment and opening. We postpone security proofs
to Section 5; here, we emphasize that the evaluation-binding proof is novel (in particular, not related to the
knowledge-soundness proofs of SNARKs at all).

Circuit Compilation. Let C be a polynomial-size arithmetic circuit that, on input (α,β), outputs
ξ = F(α,β) = (Fi(α,β))κi=1. We compile C to a compiled circuit C∗ that implements the same func-
tionality. C∗, see Fig. 1, consists of the public subcircuits Cφ, Cψ, Cχ, and Cξ that are combined as follows.
In the commitment phase, the committer uses the circuit Cφ to compute a number of polynomials φi(α)
depending on only 1 and α. More precisely, φ(α) = (φ1(α), . . . , φµφ(α)) denotes the set of the outputs of
all (including intermediate) gates in Cφ (the same is the case of other circuits and corresponding polynomi-
als). The commitment depends only on 1, α, and φ(α). In the opening phase, the verifier sends β to the
committer, who uses the circuit Cψ to compute some polynomials ψi(β) depending on 1 and β. This part of
the computation is public and can be redone by the verifier.

After that, the committer uses the circuit Cχ to compute a number of polynomials χi(α,β) from the
inputs and outputs of Cφ and Cψ, that is, from (1,α,β,φ(α),ψ(β)). Cχ has multiplicative depth 1, which
guarantees that each χi(α,β) is a product of some φj(α) with some ψk(β). Finally, the committer uses Cξ
to compute the outputs Fi(α,β) of C∗. We will explain the need for such compilation after Eqs. (7) and (8).
We will summarize all actual restrictions on the circuits in Theorem 1. In the introduction, we gave an
intuitive explanation of how this compilation reduces the circuit class that we can handle. See Section 4 for
an additional discussion on the power of this circuit class.

Next, let a ∈ Zµp be the value of all wires of C∗. We write

a = 1//α//φ(α)//β//ψ(β)//χ(α,β)//F(α,β) . (3)

Here, α ∈ Zµαp , φ(α) ∈ Zµφp , β ∈ Zµβp , ψ(β) ∈ Zµψp , χ(α,β) ∈ Zµχp , and F(α,β) ∈ Zκp . Thus, µ = 1 + µα +
µβ+µφ+µψ+µχ+κ. To use the RC1S approach, we construct matrices U , V , andW , such that Ua◦V a = Wa

iff C∗ is correctly computed. Let α∗ = (1//α//φ(α)) ∈ Z1+µα+µφ
p and β∗ = (1//β//ψ(β)) ∈ Z1+µβ+µψ

p .
First, we define matrices Uφ, Uψ, Uχ, Uξ, Vφ, Vψ, Vχ such that the subcircuits of C∗ and thus C∗ itself are
correctly computed iff

Uφα
∗ ◦ Vφα∗ = φ(α) , Uψβ

∗ ◦ Vψβ∗ = ψ(β) ,

Uχ

(
α∗

β
ψ(β)

)
◦ Vχ

(
α∗

β
ψ(β)

)
= χ(α,β) , Uξχ(α,β) ◦ 1 = F(α,β) .

(4)
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Here, Uφ, Vφ ∈ Zµφ×(1+µα+µφ)
p , Uψ, Vψ ∈ Zµψ×(1+µβ+µψ)

p , Uχ, Vχ ∈ Zµχ×(1+µα+µβ+µφ+µψ)
p , and Uξ ∈ Zκ×µχp .

In particular,

Fi(α,β) =

µχ∑
j=1

Uξijχj(α,β) , i ∈ [1, κ] . (5)

Next, we define U, V,W ∈ Zν×µp , as

U =



1 α φ
(α

)

β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)
Uφ

Uψ Uψ
Uχ

Uξ


, V =


1 α φ
(α

)

β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Vφ
Vψ Vψ

Vχ
1κ


, W =



1 α φ
(α

)

β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Iµφ
Iµψ

Iµχ
Iκ


. (6)

correspondingly. Clearly, ν = µφ + µψ + µχ + κ. Here, we labeled vertically each column of each matrix by
the supposed value of the corresponding coefficients of a = 1//α// . . . //F(α,β). Some submatrices (Uψ and
Vψ) are divided between non-continuous areas. The empty submatrices are all-zero in the compiled instance.
Clearly, Ua ◦ V a = Wa iff Eq. (4) holds.

QAP Representation. Recall that `i(X) ∈ Z(≤ν−1)
p [X], i ∈ [1, ν], interpolates the ν-dimensional unit

vector ei. To obtain a QAP representation of the equation Ua◦V a = Wa, we use interpolating polynomials;
e.g., uj(X) interpolates the jth column of U . (See Section 2.) To simplify notation, we introduce polynomials
like uφj(X) and uχj(X), where say uχj(X) interpolates (all ν rows of ) the jth column of the ν × (1 + µα +
µβ + µφ + µψ) submatrix of U that contains Uχ. More precisely, uχj(X) =

∑µχ
i=1 Uχij`µφ+µψ+i(X).

We divide additively the polynomials u(X) and v(X) into two polynomials: one polynomial (us, vs, resp.)
that depends on α but not on β, and another polynomial (up, vp, resp.) that depends on public values (β
and {Fi(α,β)}) but not on α otherwise. Such a division is possible due to the way C∗ is composed from the
subcircuits. Thus, u(X) =

∑µ
j=1 ajuj(X) = us(X) + up(X) and v(X) =

∑µ
j=1 ajvj(X) = vs(X) + vp(X).

By Eqs. (3) and (6), we get

us(X) =
∑µα+µφ+1
j=2 ajuj(X)

=
∑µα
j=1 αj(uφ,1+j(X) + uχ,1+j(X)) +

∑µφ
j=1 φj(α)(uφ,1+µα+j(X) + uχ,1+µα+j(X)) ,

up(X) =u1(X) +
∑µ
j=µα+µφ+2 ajuj(X)

=u1(X) +
∑µβ
j=1 βj(uψ,1+j(X) + uχ,1+µα+µφ+j(X))+∑µψ

j=1 ψj(β)(uψ,1+µβ+j(X) + uχ,1+µα+µφ+µβ+j(X)) +
∑µχ
j=1 χj(α,β)uξ,1+j(X)︸ ︷︷ ︸

=
∑κ
i=1 Fi(α,β)`ν−κ+i(X)

,

(7)

where u1(X) = uφ1(X) + uψ1(X) + uχ1(X), and

vs(X) =
∑µα+µφ+1
j=2 ajvj(X)

=
∑µα
j=1 αj(vφ,1+j(X) + vχ,1+j(X)) +

∑µφ
j=1 φj(α)(vφ,1+µα+j(X) + vχ,1+µα+j(X)) ,

vp(X) =a1v1(X) +
∑µ
j=µα+µφ+2 ajvj(X)

=v1(X) +
∑µβ
j=1 βj

(
vψ,1+j(X) + vχ,1+µα+µφ+j(X)

)
+∑µψ

j=1 ψj(β)(vψ,1+µβ+j(X) + vχ,1+µα+µφ+µβ+j(X)) ,

(8)

where v1(X) = vφ1(X) + vψ1(X) + vχ1(X) +
∑κ
i=1 `ν−κ+i(X). Recall that a1 = 1.
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In Theorems 2 and 3 (see their claims and proofs), we will need several conditions to hold. Next, we will
state and prove that all these conditions hold for C∗. One can observe directly that most of the guarantees,
given by C∗ about the shape of U, V,W , are actually required by the following conditions. Since the addition
of the circuit Cξ is essentially for free (it only means the addition of κ gates), most of the following conditions
are very easy to satisfy; we will denote such conditions by a superscript + as in (a)+. We emphasize that the
only restrictive conditions are Items i and j that basically state that Cχ must have multiplicative depth 1. (See
Remark 1 for discussion.) That is, the new SFC scheme will work for all circuits C that have a polynomial-size
compiled circuit C∗, where Cχ has multiplicative depth 1.

Theorem 1. Let C be an arithmetic circuit and let C∗ be its compiled version, so that U, V,W are defined
as in Eq. (6). Then the following holds (we will summarize the conditions in the beginning of the proof):

(a)+ For j ∈ [1, µ− κ]: if W (j) = 0 then Uν−κ+i,j = 0 for i ∈ [1, κ].
(b)+ For I ∈ [1, κ] and j ∈ [1, µ− κ], Wν−κ+I,j = 0.
(c)+ For j ∈ [2, 1 + µα + µφ], vφj(X) and vχj(X) are in the span of (`i(X))ν−κi=1 .
(d)+ v1(X)−

∑κ
i=1 `ν−κ+i(X) and vj(X), for j ∈ [2 + µα + µφ, µ], are in the span of (`i(X))ν−κi=1 .

(e)+ For j ∈ [µ− κ, µ], U (j) = 0.
(f)+ For j ∈ [µ− κ, µ], V (j) = 0.
(g)+ For i ∈ [1, κ], wµ−κ+i(X) = `ν−κ+i(X).
(h) The set of non-zero W (j), j ∈ [1, µ− κ], is linearly independent.
(i) For j ∈ [µ− µχ − κ+ 1, µ− κ], Uij = 0 if i ≤ ν − κ, while the last κ rows of this column range define a

matrix Uξ that satisfies Eq. (4).
(j) For j ∈ [µ− µχ − κ+ 1, µ− κ], V (j) = 0.

Proof. First, we summarize the requirements, denoting each submatrix of U , V , and W by the number of
condition that ascertains that this submatrix is 0 (or has a well-defined non-zero form); moreover, Item h
states that the columns of W , that contain identity matrices, are linearly independent. That is,

U =



1 α φ
(α

)

β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Uφ i e
Uψ Uψ i e

Uχ i e
a a a Uξi e


, V =



1 α φ
(α

)

β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Vφ j f
Vψ Vψ j f

Vχ j f
1κd c c d d dj df


, W =


1 α φ
(α

)

β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Iµφ g
Iµψ g

Iµχ g
b b b b b b Iκg


.

Item a: follows sinceW (j) = 0 in the columns labeled by 1, α and β, and the last rows of U in all these
columns are equal to 0, according to Eq. (6).

Item b: obvious from W in Eq. (6).
Item c: follows since the last rows of V , corresponding to columns labeled by α and β, are equal to 0.
Item d: follows since the last rows of V , corresponding to columns labeled by β, ψ(β), χ(α,β), and

F(α,β), are equal to 0, and the last rows of V (1) are equal to 1κ.
Items e to g, i and j: follows from direct observation.
Item h: follows from the fact that W (j) = 0 for some columns j, and the submatrix of W that consists

of the rest of the columns is an identity matrix. ut

Remark 1. The compiled circuit C∗ satisfies some additional conditions, not required by Theorem 1. First,
by Item h, the set of non-zeroW (j) has to be linearly independent (not necessarily an identity matrix), while
in Eq. (6), the corresponding columns constitute an identity matrix. Second, by Item a, last rows of U (j)

need to be zero only if W (j) is 0; one can insert dummy gates to C∗ such that W has no zero columns. This
essentially just corresponds to the fact that we start with an arithmetic circuit and each constraint is about
a concrete gate being correctly evaluated. Third, several submatrices of U, V,W are all-zero in our template
while there is no actual need for that. For example, Uξ can be generalized, and Uφ and Uψ can also both
depend on α and β. For the sake of simplicity, we stick to the presented compilation process, and leave the
possible generalizations to future work.
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SNARK-Related Techniques. Next, we follow [Lip19] to derive polynomials related to the SNARK,
underlying the new SFC. We simplify the derivation a bit, and refer to [Lip19] for full generality. Let
A(X,Y ) = ra + u(X)Y and B(X,Y ) = rb + v(X)Y for ra, rb←$Zp. ([Lip19] considered the general case
where A(X,Y ) = raY

α + u(X)Y β and B(X,Y ) = rbY
α + v(X)Y β for some small integers α, β to be fixed

later.) The randomizers ra and rb are needed to protect the secret information hidden by A(X,Y ) and
B(X,Y ), and we use the indeterminate Y to simplify the security proofs. As with u and w, we divide the
polynomials A,B,C into two addends: (i) a polynomial (As,Bs, Csp), where As and Bs depend on α but not
on β while Csp depends on both α and β, and (ii) a polynomial (Ap,Bp,Cp, resp.) that depends on public
values (β and {Fi(α,β)}) but not on α otherwise. (Such a division was not possible in [Lip19] since there
one did not work with a compiled circuit C∗.) Then,

As(X,Y ) =ra + us(X)Y , Ap(X,Y ) =up(X)Y ,

Bs(X,Y ) =rb + vs(X)Y , Bp(X,Y ) =vp(X)Y .
(9)

For integer constants δ and η that we will fix later, define

C(X,Y ) =(A(X,Y ) + Y δ)(B(X,Y ) + Y η)− Y δ+η

=(ra + u(X)Y + Y δ)(rb + v(X)Y + Y η)− Y δ+η

=ra(v(X)Y + Y η) + rb(A(X,Y ) + Y δ) + (u(X)v(X)− w(X))Y 2+

u(X)Y η+1 + v(X)Y δ+1 + w(X)Y 2

=ra(v(X)Y + Y η) + rb(A(X,Y ) + Y δ) +H(X)`(X)Y 2 + u(X)Y η+1 + v(X)Y δ+1 + w(X)Y 2 ,

where the last equation holds iff the committer is honest (see Eq. (2)). Intuitively, we want that a committer
must be able to compute C(X,Y ) iff he was honest.

Following [Lip19], the inclusion of Y δ and Y η in the definition of C(X,Y ) serves two goals. First, it
introduces the addend u(X)Y η+1 + v(X)Y δ+1 +w(X)Y 2 =

∑µ
j=1 aj(uj(X)Y η+1 + vj(X)Y δ+1 +wj(X)Y 2)

that makes it possible to verify that P uses the same coefficients αj when computing [A]1, [B]2, and [C]1.
Second, the coefficient of Y 2 is u(X)v(X)−w(X) that divides by `(X) iff the committer is honest. That is,
the coefficient of Y 2 is H(X)`(X) for some polynomial H(X) iff the prover is honest and thus ξ = F(α,β).

Let γ be another small integer, fixed later. Let C(X,Y ) = Csp(X,Y ) + Cp(X,Y )Y γ , where Cp(X,Y )
depends only on ξ. (In [Lip19], Csp(X,Y ) was multiplied with Y α but here α = 0.) The factor Y γ is used to
“separate” the public and the secret parts. In the honest case,

Csp(X,Y ) =ra(v(X)Y + Y η) + rb(A(X,Y )Y + Y δ) +H(X)`(X)Y 2+

µ−κ∑
j=1

aj(uj(X)Y η+1 + vj(X)Y δ+1 + wj(X)Y 2) ,

Cp(X,Y ) =

µ∑
j=µ−κ+1

aj(uj(X)Y η+1−γ + vj(X)Y δ+1−γ + wj(X)Y 2−γ)

=

κ∑
i=1

Fi(α,β)(uµ−κ+i(X)Y η+1−γ + vµ−κ+i(X)Y δ+1−γ + wµ−κ+i(X)Y 2−γ) .

(10)

Intuitively, the verifier checks that Csp(X,Y ) is correctly computed by checking that V(X,Y ) = 0, where

V(X,Y ) :=(As(X,Y ) + Ap(X,Y ) + Y δ)(Bs(X,Y ) + Bp(X,Y ) + Y η)−
(Csp(X,Y ) + Cp(X,Y )Y γ)− Y δ+η .

Here, (As,Bs) (the part of (A,B) that only depends on private information) is the functional commitment,
Csp is the opening, and Ap, Bp, and Cp can be recomputed by the verifier given public information.
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KC(1λ, C): p ← Pgen(1λ, ν); Let C∗ be the compiled arithmetic circuit; C∗ defines ν, µ, and other parameters.
For tk = (χ, y)←$ (Z∗p)2 such that χν 6= 1,

ck =


[1, (χiy)ν−1

i=0 , y
η, (χi`(χ)y2)ν−2

i=0 , (uj(χ)y
η+1 + vj(χ)y

δ+1 + wj(χ)y
2)µ−κj=1 ]1,

[(uµ−κ+i(χ)y
η+1−γ + vµ−κ+i(χ)y

δ+1−γ + wµ−κ+i(χ)y
2−γ)κi=1, y

δ]1,

[1, (χiy)ν−1
i=0 , y

γ , yη]2, [y
δ+η]T

 .

Return (ck, tk);
com(ck;α; ra, rb): // ra, rb ←$Zp;

Compute (aj)
µα+µφ+1

j=2 from α;
Let As(X,Y )← ra +

∑ν−1
i=0 AiX

iY be as in Eq. (9);
Let Bs(X,Y )← rb +

∑ν−1
i=0 BiX

iY be as in Eq. (9);
For i ∈ [1, κ]: Baux

i (X,Y )← `ν−κ+i(X)Bs(X,Y )Y ;
[As]1 ← ra[1]1 +

∑ν−1
i=0 Ai[χ

iy]1; [Bs]2 ← rb[1]2 +
∑ν−1
i=0 Bi[χ

iy]2;
For i ∈ [1, κ]: [Baux

i ]1 ← [Baux
i (χ, y)]1;

C ← ([As, {Baux
i }κi=1]1, [Bs]2); D ← (α, ra, rb); return (C,D);

open(ck;C = ([As, {Baux
i }κi=1]1, [Bs]2), D = (α, ra, rb),β):

Compute [(`j(χ)y)
ν
j=1]1 from [(χiy)ν−1

i=0 ]1; // Needs to be done once
Compute [(uj(χ)y, vj(χ)y)

µ
j=1]1 from [(χiy)ν−1

i=0 ]1; // Needs to be done once

Compute [(wj(χ)y)
µ
j=1]1 from [(χiy)ν−1

i=0 ]1; // Needs to be done once
Compute a from α and β;
u(X)←

∑µ
j=1 ajuj(X); v(X)←

∑µ
j=1 ajvj(X); w(X)←

∑µ
j=1 ajwj(X);

H(X)← (u(X)v(X)− w(X))/`(X);
[Ap]1 ← [Ap(χ, y)]1 where Ap(X,Y ) is as in Eq. (9);
[Csp]1 ← ra([v(χ)y]1 + [yη]1) + rb([As]1 + [Ap]1 + [yδ]1)+∑ν−2

i=0 Hi[χ
i`(χ)y2]1 +

∑µ−κ
j=1 aj [uj(χ)y

η+1 + vj(χ)y
δ+1 + wj(χ)y

2]1;
return opξ ← [Csp]1;

V(ck, C = ([As, {Baux
i }κi=1]1, [Bs]2), [Csp]1,β, {ξi}κi=1): // ξi =? Fi(α,β)

Compute [(`ν−κ+i(χ)y)
κ
i=1]1 from [(χiy)ν−1

i=0 ]1; // Needs to be done once
Compute [(`ν−κ+i(χ)y

2−γ)κi=1]1 from [(χiy2−γ)ν−1
i=0 ]1; // Needs to be done once

Compute [(`ν−κ+i(χ)y)
κ
i=1]2 from [(χiy)ν−1

i=0 ]2; // Needs to be done once
Compute needed [uj(χ)y]1 from [(χiy)ν−1

i=0 ]2; // Needs to be done once
Compute needed [vj(χ)y]2 from [(χiy)ν−1

i=0 ]2; // Needs to be done once
[Ap]1 ← [Ap(χ, y)]1 where Ap(X,Y ) is as in Eq. (9);
[Bp]2 ← [Bp(χ, y)]2 where Bp(X,Y ) is as in Eq. (9);
[Cp]1 ←

∑κ
i=1 ξi[`ν−κ+i(χ)y

2−γ ]1;
Check ([As]1 + [Ap]1 + [yδ]1) • ([Bs]2 + [Bp]2 + [yη]2) = [Csp]1 • [1]2 + [Cp]1 • [yγ ]2 + [yδ+η]T ;
For i ∈ [1, κ]: check [`ν−κ+i(χ)y]1 • [Bs]2 = [Baux

i ]1 • [1]2;

Fig. 2. SNARK-based SFC scheme FCCsn for arithmetic circuit C

The New SFC Scheme FCsn: Details. We are now ready to describe the new succinct functional com-
mitment scheme FCsn, see Fig. 2. Here, instead of operating with bivariate polynomials like A(X,Y ), one
operates with their encodings like [As(χ, y)]ι in the source groups, where χ and y are secret trapdoors. The
commitment key of the SFC scheme contains the minimal amount of information needed to perform com-
mitment, opening, and verification by honest parties. The expression of ck in KC has a generic form; one can
replace the polynomials uj(X), vj(X), wj(X) with their values evident from Eq. (6). Finally, `j(X) (and
thus also uj(X), vj(X), and wj(X)) has degree ν − 1 and can thus be computed from (Xi)ν−1

i=0 , while `(X)
has degree ν. Here, [Baux

i (χ, y)]1 are additional elements needed to prove evaluation-binding. We explain in
the correctness proof of Theorem 3 how to compute [Baux

i (χ, y)]1.
Note that FCsn can also be seen as a SNARK proving that F(α,β) = ξ, if we let the prover to compute

[Ap]1, [Bp]2, and [Cp]1.
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Instantiation. Let C be a fixed circuit. Let R and S be two sets of bivariate polynomials, such that the
commitment key of FCCsn is equal to ck = ([R(χ, y)]1, [S(χ, y)]2). Similarly to [Lip19], let

Mon1 = {0, 1, 2, 2− γ, δ, δ + 1, δ + 1− γ, η, η + 1, η + 1− γ} (11)

be the set of exponents of Y in all polynomials from R. Let

Crit = {2, η + 1} (12)

and Crit = Mon1 \ Crit. For the evaluation-binding proof to hold, we need to fix values of γ, δ, η ∈ Zp, such
that the coefficients from Crit are unique, that is,

2, η + 1 6∈ {0, 1, 2− γ, δ, δ + 1, δ + 1− γ, η, η + 1− γ} and η + 1 6= 2 . (13)

That is, Crit ∩ Crit = ∅ and |Crit| = 2. It follows from Theorem 1 that the polynomial fi(X,Y ) :=
`ν−κ+i(X)Y η+1, i ∈ [1, κ], does not belong to span(R).

We will later consider two different evaluations for γ, δ, and η. Replacing γ, δ, and η with 1, 0, and 3
guarantees that Eq. (13) holds (see Theorem 2, Item 1, for more). Then,

ck =

[1, (χiy)ν−1
i=0 , y

3, (χi`(χ)y2)ν−2
i=0 , (uj(χ)y4 + vj(χ)y1 + wj(χ)y2)µ−κj=1 ]1,

[(uµ−κ+i(χ)y3 + vµ−κ+i(χ)y0 + wµ−κ+i(χ)y1)κi=1, y
0]1,

[1, (χiy)ν−1
i=0 , y

1, y3]2, [y
3]T

 .

In this case, the ck has one element (namely, [1]1) twice, and thus ck can be shortened by one element.
Alternatively, replacing γ, δ, and η with 4, 0, and 7 (this choice is sufficient for the evaluation-binding

reduction to uber-assumption in GT to work and will be explained in Theorem 2, Item 2), we get

ck =

[1, (χiy)ν−1
i=0 , y

7, (χi`(χ)y2)ν−2
i=0 , (uj(χ)y8 + vj(χ)y1 + wj(χ)y2)µ−κj=1 ]1,

[(uµ−κ+i(χ)y4 + vµ−κ+i(χ)y−3 + wµ−κ+i(χ)y−2)κi=1, y
0]1,

[1, (χiy)ν−1
i=0 , y

4, y7]2, [y
7]T

 .

Then, ck has one element ([1]1) twice, and thus it can be shortened.

Efficiency. The CRS length is 1 + ν + 1 + (ν − 1) + (µ− κ) + κ+ 1 = 2ν + µ+ 2 elements from G1, ν + 3
elements from G2, and 1 element from GT . In the case of fixed γ, δ and η in the previous two paragraphs,
the CRS length will shorten by 1 element of G1.

The functional commitment takes (ν + 1) + κ(ν + 1) = (κ + 1)(ν + 1) exponentiations in G1 and ν + 1
exponentiations in G2. The length of the functional commitment is κ + 1 elements of G1 and 1 element of
G2.

The opening takes µβ + µψ + κ (to compute [Ap]1; note that u1(X) and other simular polynomials are
precomputed), µα + µβ + µφ + µψ (to compute [v(χ)y]1), and 2 + (ν − 1) + (µ − κ) = ν + µ − κ + 1 (to
compute [Csp]1) exponentiations in G1; in total, ν + µ + µα + 2µβ + µφ + 2µψ + 1 exponentiations in G1.
The length of the opening is 1 element of G1.

The verification takes (µβ + µψ + κ) + κ = µβ + µψ + 2κ (to compute [Ap,Cp]1) exponentiations in G1,
µβ +µψ (to compute [Bp]2) exponentiations in G2, and 2κ+ 3 pairings. Here, we do not count computations
(e.g., computation of [`ν−κ+i(χ)y]1 from [(χiy)ν−1

i=0 ]1) that are only done once per the circuit.
The real efficiency depends of course significantly on the concrete application. We will give some detailed

examples in Appendix A.2.
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4 On the Circuit Class and Example Applications

Next, we study the power of the implementable circuit class CCΣΠ∀, and we show that many known functional
commitment schemes are for functionalities that belong to this class, and thus can be implemented by FCsn.

In this section, we assume basic knowledge of the algebraic complexity theory. See [SY10] for necessary
background. VP is the class of polynomial families {fn}, where fn is an univariate polynomial of poly(n)
variables of poly(n) degree that has an arithmetic circuit of poly(n) size [Val79]. ΣΠΣ (resp., ΣΠΣΠ) is the
class of depth-3 (resp., depth-4) circuits composed of alternating levels of sum and product gates with a
sum gate at the top [SY10, Section 3.5]. Sparse polynomials are n-variate polynomials that have poly(n)
monomials.

Recall that a compiled circuit C∗ can evaluate a vector polynomial f(α,β) = (fi(α,β))κi=1 iff κ ∈ poly(λ)
and each fi can be written as

fi(α,β) =
∑

φj(α)ψk(β) , (14)

where all polynomials φj and ψk are in the complexity class VP, and there are a polynomial number of
additions in the representation Eq. (14) (thus, also a polynomial number of polynomials φj and ψk). We
call such representation an efficient ΣΠ∀-representation (here, ∀ denotes “any”) of f , and we denote by
CCΣΠ∀ the class of circuits (or vector polynomials) that have an efficient ΣΠ∀-presentation. Clearly, FCsn

can implement f iff f ∈ CCΣΠ∀.
It is clear that all sparse polynomials in VP have an efficient ΣΠ∀-representation, and thus FCsn can

implement all sparse polynomials. However, we can do more. For example, consider the polynomial f ′(α,β) =∏n
i=1(α + βi) for n = poly(λ). Since f ′ has 2n monomials, it is not sparse. However, we can rewrite f ′ as

f ′(α,β) =
∑n
d=0 α

dσn−d(β), where σn−d(β) =
∑
T⊆[1,n],|T |=d

∏
i∈T βi is the (n−d)th symmetric polynomial.

There exists a ΣΠΣ circuit of size O(n2), due to Ben-Or (see [SY10, Section 3.5]), that computes all n
symmetric polynomials in parallel. Thus, f has an efficient ΣΠ∀ -representation, and thus FCsn can implement
at least one non-sparse polynomial.

On the other hand, CCΣΠ∀ ⊆ VP. To see that CCΣΠ∀ ( VP, consider the polynomial f ′′(α,β) =∏n
i=1(αi+βi) for n = poly(λ). Since f ′′ has 2n monomials, it is not sparse. Considering βi as coefficients, it also

has 2n monomials in α (the case of considering αi as coefficients is dual), and thus any ΣΠ∀-representation
of f ′′ requires at least 2n addition gates. Since f ′′ can be implemented by a ΠΣ circuit [SY10], it means
ΠΣ 6⊂ CCΣΠ∀; however, clearly, CCΣΠ∀ 6⊂ ΠΣ so CCΣΠ∀ is incomparable to ΠΣ. Thus

the class of sparse polynomials ( CCΣΠ∀ ( VP

Motivated by our analysis of α′′, it seems we can implement all polynomials f(α,β), where either the
dimension µα of α or the dimension µβ of β is logarithmic in λ. Really, if µα = O(log λ) then there are at
most 2µα = poly(λ) possible monomials φi(α) in α, and thus there exists an efficient ΣΠ∀-representation of
f .

It is an interesting open problem to characterize CCΣΠ∀.

Known Types of SFCs as (Semi-)Sparse Polynomials. In Table 1, we write down the functionalities
of several previous known types of SFCs. This shows that in all such cases, one has a sparse polynomial and
thus can use FCsn to implement them. In the case of the vector commitment scheme (resp., accumulator),
one implements the inner-product scheme with β = eI (resp., χα(X) =

∏
(X − αi)). In the case of say the

polynomial commitment scheme, β = (1, β, . . . , βn−1) and thus µβ = n.
In none of these cases, one needs the power of non-sparse semi-sparse polynomials, and we leave it as

another open question to find an application where such power is needed.

Aggregation. The next lemma is straightforward.

Lemma 1. Assume that Ci ∈ CCΣΠ∀, where i ∈ [1, Q], and Q = poly(λ). Then their parallel composition
C‖ = (C1‖ . . . ‖CQ) ∈ CCΣΠ∀.
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Table 1. Rewriting the functionalites of various SFC as sparse polynomials

Type µα µβ fi

Inner-product commitment [ILV11,LRY16] n n
∑n
j=1 αjβj

Polynomial commitment [KZG10] n n
∑n−1
j=0 αjβ

j

Vector commitment [CF13] n 1 αI =
∑n
j=1 αjeIj

Accumulator [Bd94,BP97] 1 n
∑µα−1
j=0 χαjβ

j

Evaluation-point commitment 1 n
∑n−1
j=0 α

jβj

c-variate polynomial commitment [PST13,BGH19]
(
n+c
c

)
c
∑
αj
∏c
k=1 β

jk
k

Proof. Obvious since we can just “parallelize” the representation in Eq. (14). ut

In practice, Lemma 1 is very important since it means that FCsn allows to aggregate a polynomial number
of SFCs for which FCsn is efficient. It just results in a larger circuit C‖ and thus larger parameters like µ
and κ. However, as the length of the commitment in FCsn depends on κ, it means that the commitment
stays succinct when Q < |w|. On the other hand, the length of the opening will be one group element,
independently of Q.

As a corollary of Lemma 1, we can construct succinct aggregated inner-product SFCs, accumulators,
(multi-point / multi-polynomial) polynomial commitment schemes, vector commitment schemes (including
subvector commitment schmes), but also aggregate all these SFC variants with each other. We will give more
details and examples in Appendix A.

Example: Aggregated Succinct Inner-Product Functional Commitment. In an aggregated SIPFC,
the committer commits to α and then opens it simultaneously to 〈α,βi〉 =

∑n
j=1 αjβij for κ different

verifier-provided vectors βi, where i ∈ [1, κ]. Assume α and each βi are n-dimensional vectors. There is no
circuit Cφ or Cψ. Given α and βi, Cχ computes κn products χij(α,β) = αjβij , i ∈ [1, κ] and j ∈ [1, n], and
Cξ sums them together to obtain κ outputs Fi(α,β) =

∑n
j=1 αjβij . Thus, Uχ = 1κ⊗ In ∈ Zκn×np , Vχ = Iκn,

Uξ = In ⊗ 1>κ ∈ Zn×κnp (note that Cχ does not take 1 as an input), and

U =

 1 α β χ
(α
,β

)

F
(α
,β

)

Uχ
Uξ

 , V =

 1 α β χ
(α
,β

)

F
(α
,β

)

Vχ
1

 , W =

 1 α β χ
(α
,β

)

F
(α
,β

)

Iκn
Iκ

 .

Here, ν = κ(n + 1), µ = 1 + n + κn + κn + κ = (κ + 1)n + κ + 1, As(X,Y ) = ra +
∑n
j=1 αjuχj(X)Y ,

Ap(X,Y ) =
∑κ
i=1 〈α,βi〉 `ν−κ+i(X)Y . Importantly, Bs(X,Y ) = 0 (since there is nothing to hide, one can set

rb ← 0; hence, also Baux
i (X,Y ) = 0; thus the commitment is only one group element, [As]1), and Bp(X,Y ) =∑κ

i=1 `ν−κ+i(X)Y +
∑κ
i=1

∑n
j=1 βijvχ,n(i−1)+j(X)Y . The verifier has to execute 2κ exponentiations in G1

to compute [Ap]1 and [Cp]1, κn exponentiations in G2 to compute [Bp]2, and 3 pairings. We emphasize that
here, both the functional commitment and the opening will consist of a single group element. One obtains
IPFC by setting κ← 1; in this case, the verification executes 2 exponentiations in G1, n exponentiations in
G2, and 3 pairings.

Let us briefly compare the resulting non-aggregated IPFC with the IPFC of [ILV11]. Interestingly, while
the presented IPFC is a simple specialization of the general SFC scheme, it is only slightly less efficient
than [ILV11]. Let gι denote the bitlength of an element of the group Gι. The CRS length is 2ng1 + (n+ 1)g2

in [ILV11], and (3(κ+ 1) + (4κ+ 1)n)g1 + (κ+κn+ 3)g2 + 1gT (this shortens to (5n+ 6)g1 + (n+ 4)g2 + 1gT
when κ = 1) in our case. The commitment takes n+ 1 exponentiations in [ILV11], and n+ 2 in our case. A
straightforward [ILV11] opening takes Θ(n2) multiplications (this can be probably optimized), while in our
case it takes Θ(n log n) multiplications. The verifier takes n exponentiations in [ILV11], and n+ 3 here. The
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commitment and opening are 1 group elements in both schemes. Thus, our generic, unoptimized scheme is
essentially as efficient as the most efficient known prior IPFC, losing ground only in the CRS length. On the
other hand, we are not aware of any previous aggregated IPFC schemes.

5 Security of FCsn

Next, we prove the security of FCsn. While its correctness and hiding proofs are straightforward, the
evaluation-binding proof is far from it. As before, for a fixed C, let R and S be two sets of bivariate polyno-
mials, such that ck = ([R(χ, y)]1, [S(χ, y)]2). For a fixed C, in Theorem 3, we will reduce evaluation-binding
of FCCsn to a (R,S, {fi})-span-uber-assumption in G1, a new assumption that states that it is difficult to
output an element

∑
∆i[fi(χ, y)]1 together with the coefficient vector ∆ 6= 0, where fi 6∈ span(R). Thus,

it is a generalization of the (R,S, ·)-computational uber-assumption in G1. Importantly, if κ = 1, then it is
equivalent to the latter. To motivate the span-uber-assumption, we will show that it follows from the more
conventional (R,S, f ′I)-computational uber-assumption (for a related set of polynomials f ′i) in GT [BBG05];
see Lemma 2. Thus, for the concrete parameters R,S, {fi}, and {f ′i},

uber-assumption in GT ⇒ span-uber-assumption in G1 ⇒ uber-assumption in G1

For the algebraic group model [FKL18] reduction to the PDL in Appendix B to work, we also prove that
fi 6∈ span(R) and f ′i 6∈ span(RS); see Theorem 2. (Otherwise, the span-uber-assumption will be trivially
insecure in the generic model.) Each concrete proof (e.g., the proof of correctness, the proof of evaluation-
binding, and the proofs that fi 6∈ span(R) and f ′i 6∈ span(RS)) puts some simple restrictions on the matrices
U , V , W . Those restrictions are satisfied in all-but-one examples in Appendix A.2. They can usually be
satisfied by slightly modifying the underlying arithmetic circuit.

Definition 6. Let R, S, and T be three tuples of bivariate polynomials over Zp[X,Y ]. Let fi, i ∈ [1, κ], be
bivariate polynomials over Zp[X,Y ]. The (R,S, T , {fi}κi=1) computational span-uber-assumption for Pgen

in group Gι, where ι ∈ {1, 2, T}, states that for any PPT adversary A, Advspanuber
Pgen,R,S,T ,{fi},A(λ) = negl(λ),

where

Advspanuber
Pgen,R,S,T ,{fi},A(λ) := Pr

p← Pgen(1λ);χ, y←$Z∗p; ck← ([R(χ, y)]1, [S(χ, y)]2, [T (χ, y)]T );

(∆ ∈ Zκp , [z]ι)← A(ck) : ∆ 6= 0 ∧ [z]ι =

κ∑
i=1

∆i[fi(χ, y)]ι

 .

If κ = 1 then the (R,S, T , {f}) span-uber-assumption is the same as the (R,S, T , f1) uber-assumption: in
this case the adversary is tasked to output Zp 3 ∆ 6= 0 and ∆[f1(χ, y)]ι which is equivalent to outputting
[f1(χ, y)]ι.

We will now show that the polynomials used in what follows are linearly independent.

Theorem 2. Write ck = ([%(X,Y ) : % ∈ R]1, [σ(X,Y ) : σ ∈ S]2) as in Fig. 2. For I ∈ [1, κ], let fI(X,Y ) :=
`ν−κ+I(X)Y η+1 and f ′I(X,Y ) := (`ν−κ+I(X))2Y η+2.

1. Assume γ = 1, δ = 0, and η = 3. Assume Items a and h of Theorem 1 hold. Then fI(X,Y ) 6∈ span(R)
for I ∈ [1, κ].

2. Assume γ = 4, δ = 0, η = 7, and that Items a, b and h of Theorem 1 hold. Then f ′I(X,Y ) 6∈ span(RS)
for I ∈ [1, κ]. As an obvious corollary, thus also f ′I(X,Y ) 6∈ span(R) for I ∈ [1, κ].

Proof. (1: fI 6∈ span(R)). Let Mon1 be as in Eq. (11) and Crit = {2, η + 1} as in Eq. (12). For the rest of
the proof to make sense, as we will see in a few paragraphs, we need to fix γ, δ, and η so that the coefficients
in Mon1 and in Mon1 \ Crit are different (in particular, the coefficients in Crit are different from each other).
A small exhaustive search shows that one can define γ = 1, δ = 0, η = 3, as in the claim. This setting
can be easily manually verified, by noticing that then Mon1 = {0, 1, 2, 3, 4} and Crit = {2, 4}, and thus
Mon1 \ Crit = {0, 1, 3}.
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Assume that, for some I ∈ [1, κ], fI(X,Y ) = `ν−κ+I(X)Y η+1 belongs to the span of R. We consider
the coefficients of Y i, for i ∈ Crit, in the resulting equality (for some unknown coefficients in front of the
polynomials from R), and derive a contradiction from this. We write down an arbitrary linear combination of
polynomials in R as a linear combination of uj(X)Y η+1 + vj(X)Y δ+1 +wj(X)Y 2, Xi`(X)Y 2, and T (X,Y ),
where T (X,Y ) is some polynomial with monomials that do not have Y i for i ∈ Crit. That is,

`ν−κ+I(X)Y η+1 =

µ−κ∑
j=1

t′j(uj(X)Y η+1 + vj(X)Y δ+1 + wj(X)Y 2) + t(X)`(X)Y 2 + T (X,Y ) (15)

for some t(X) ∈ Zp[X] (thus t(X)`(X)Y 2 encompasses all Xi`(X)Y 2) and integers t′j .
First, considering only the coefficient of Y 2 in both the left-hand side and the right-hand side of Eq. (15),

µ−κ∑
j=1

t′jwj(X) + t(X)`(X) = 0 .

Due to Item h of Theorem 1 (the set of non-zero wj(X) is linearly independent), either wj(X) = 0 or t′j = 0
for j ∈ [1, µ− κ]. Let J ⊂ [1, µ− κ] be the set of indices j ∈ [1, µ− κ] so that wj(X) = 0. Thus, t′j = 0 for
j 6∈ J .

Second, considering only the coefficient of Y η+1 in Eq. (15),

`ν−κ+I(X) =

µ−κ∑
j=1

t′juj(X) =
∑
j∈J

t′juj(X) .

Due to Item a of Theorem 1, `ν−κ+I(X) is linearly independent of (the non-zero elements of) {uj(X)}j∈J ,
a contradiction. Hence, fI(X,Y ) 6∈ span(R).

(Item 2: f ′I 6∈ span(RS)). For the proof to make sense, as we will see in a few paragraphs, we need that
the set of critical coefficients Crit′ := {3, η + 2} (that is different from Crit above) is different from the set
Mon′ \ Crit′ all other coefficients in RS, where Mon′ :=

0, 1, 2, 3, 2− γ, 3− γ, γ, γ + 1, γ + 2, δ, 1 + δ, 2 + δ, 1− γ + δ, 2− γ + δ,

γ + δ, 1 + γ + δ, η, 2η, η + 1, η + 2,−γ + η + 1,−γ + η + 2, γ + η,

γ + η + 1, δ + η, 1 + δ + η, 1− γ + δ + η, 1 + 2η, 1− γ + 2η

 .

is defined by Mon′ = Mon1 + Mon2, where Mon1 is as in Eq. (11) and Mon2 = {0, 1, γ, η} is the set of
exponents of Y in all polynomials from S. A small exhaustive search, performed by using computer algebra,
shows that one can define γ = 4, δ = 0, η = 7, as in the claim. This setting can be easily manually verified,
by noticing that Mon′ \ Crit′ = {−3,−2,−1, 0, 1, 2, 4, 5, 6, 7, 8, 11, 12, 14, 15} and Crit′ = {3, 9}.

Assume now in contrary that f ′I ∈ span(RS). Then, as in Item 1, (`ν−κ+I(X))2Y η+2 is in the span of the
polynomials containing Y i for i ∈ Crit′ (and we need to quantify the coefficients of these polynomials) and of
all other polynomials. Clearly, the first type of polynomials are in the span of Xi`(X)Y 2 times Y η, Xi`(X)Y 2

times XkY , uj(X)Y η+1 + vj(X)Y δ+1 +wj(X)Y 2 times Y η, and uj(X)Y η+1 + vj(X)Y δ+1 +wj(X)Y 2 times
XkY , for properly chosen i, j, and k. Thus,

(`ν−κ+I(X))2Y η+2 =t(X)`(X)Y η+2 + t′′(X)`(X)Y 3+

µ−κ∑
j=1

t′j(X)(uj(X)Y 2η+1 + vj(X)Y δ+η+1 + wj(X)Y η+2)+

µ−κ∑
j=1

t∗j (X)(uj(X)Y η+2 + vj(X)Y δ+2 + wj(X)Y 3) + T (X,Y ) ,
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where t′j(X), t∗j (X), t(X) and t′′(X) are univariate polynomials, and T (X,Y ) is a polynomial that does not
contain monomials with Y i, i ∈ Crit′. We now consider separately the coefficients of Y i in this equation for
each i ∈ Crit′ and derive a contradiction.

First, considering the coefficients of Y 3, we get
∑µ−κ
j=1 t

∗
j (X)wj(X) + t′′(X)`(X) = 0. Due to Item h of

Theorem 1, either t∗j (X) = 0 or wj(X) = 0 for 1 ≤ j ≤ µ − κ. Let J ⊂ [1, µ − κ] be the set of indices j so
that wj(X) = 0.

Second, the coefficients of Y η+2 give us

(`ν−κ+I(X))2 =

µ−κ∑
j=1

t∗j (X)uj(X) +

µ−κ∑
j=µα+2

t′j(X)wj(X) + t(X)`(X)

=
∑
j∈J

t∗j (X)uj(X) +
∑
j 6∈J

t′j(X)wj(X) + t(X)`(X) .

Due to Items a, b and h of Theorem 1 (and of the fact that (`ν−κ+i(X))2 has degree 2ν), {(`ν−κ+I(X))2} ∪
{uj(X)}j∈J ∪ {wj(X)}j 6∈J ∪ {Xi`(X)}ν−2

i=0 is linearly independent. Contradiction, and thus f ′I(X,Y ) 6∈
span(RS). ut

Next, we show that for the concrete choice of the parameters R, S, fi, and f ′i , the span-uber-assumption
in G1 is at least as strong as the uber-assumption in GT . The new assumption may be weaker since the latter
assumption argues about elements in GT , which may not always be possible [JR10]. However, the proof of
Lemma 2 depends crucially on the concrete parameters.

Lemma 2 (Uber-assumption in GT ⇒ span-uber-assumption in G1). Assume γ = 4, δ = 0, and
η = 7. Let FCCsn be the SFC scheme for arithmetic circuits in Fig. 2. Write ck = ([%(X,Y ) : % ∈ R]1, [σ(X,Y ) :
σ ∈ S]2) as in Fig. 2. For i ∈ [1, κ], let fi(X,Y ) := `ν−κ+i(X)Y η+1 and f ′i(X,Y ) := (`ν−κ+i(X))2Y η+2.
If the (R,S, f ′I) computational uber-assumption holds in GT for each I ∈ [1, κ] then the (R,S, {fi}κi=1)
computational span-uber-assumption holds in G1.

Proof (Sketch). Assume A is an adversary against the (R,S, {fi}κi=1) computational span-uber-assumption
that has successfully output ∆ 6= 0 and [z]1 =

∑κ
i=1∆i[fi(χ, y)]1 =

∑κ
i=1∆i[`ν−κ+i(X)Y η+1]1.

Since ∆ 6= 0, then there exists at least one coordinate I such that ∆I 6= 0. Let B be the following
adversary against the (R,S, f ′I) computational uber-assumption in GT . Given ck, ∆, and [z]1, B computes

1/∆I · [z]1 • [`ν−κ+I(χ)y]2 =

κ∑
i=1

∆i/∆I · [`ν−κ+i(χ)yη+1]1 • [`ν−κ+I(χ)y]2 .

For i ∈ [1, κ], let di(X) be the rational function satisfying di(X)`(X) = `ν−κ+i(X)`ν−κ+I(X). Clearly, di(X)
is a polynomial for i 6= I. Thus, d(X) :=

∑
i 6=I ∆i/∆I · di(X) is a polynomial of degree ≤ ν − 2. Since [yη]2

is a part of the commitment key, B can efficiently compute∑
i6=I

∆i/∆I · [`ν−κ+i(χ)yη+1]1 • [`ν−κ+I(χ)y]2 =
∑
i6=I

∆i/∆I · [di(χ)`(χ)y2]1 • [yη]2 = [d(χ)`(χ)y2]1 • [yη]2 .

Thus, B can compute

[z∗]T =[f ′I(χ, y)]T ← [`ν−κ+I(χ)yη+1]1 • [`ν−κ+I(χ)y]2 = 1/∆I · [z]1 • [`ν−κ+I(χ)y]2 − [d(χ)`(χ)y2]1 • [yη]2

and break the (R,S, f ′I)-computational uber-assumption in GT . ut

Theorem 3 (Security of FCsn). Let C be a fixed circuit and let FCCsn be the SFC scheme in Fig. 2. Let
ck = ([%(X,Y ) : % ∈ R]1, [σ(X,Y ) : σ ∈ S]2) as in Fig. 2. For i ∈ [1, κ], let fi(X,Y ) := `ν−κ+i(X)Y η+1.
1. Assume Item c of Theorem 1 holds. Then FCCsn is correct.
2. FCCsn is perfectly com-hiding.
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3. FCCsn is perfectly open-hiding.
4. FCCsn is perfectly zero-knowledge.
5. Assume that either γ = 1, δ = 0, and η = 3 or γ = 4, δ = 0, and η = 7. Assume that Items d to g,

i and j of Theorem 1 hold. If the (R,S, {fi})-computational span-uber-assumption holds in G1 then the
SFC scheme FCCsn is computationally evaluation-binding.

Proof. (1: correctness). We first show that the prover can compute [Baux
i (χ, y)]1, and then that the ver-

ification equation holds. Recall that for i ∈ [1, κ], Baux
i (X,Y ) = `ν−κ+i(X)Bs(X,Y )Y = `ν−κ+i(X)(rb +

vs(X,Y )Y )Y , where vs(X) is as in Eq. (8). First, the addend rb`ν−κ+i(X)Y belongs to the span of
(XiY )ν−1

i=0 ⊂ R. Second, due to Item c of Theorem 1, for all j ∈ [2, 1 + µα + µφ],

`(X) | `ν−κ+i(X)vφj(X) and `(X) | `ν−κ+i(X)vχj(X) ,

and thus Baux
i (X,Y ) − rb`ν−κ+i(X)Y is equal to b′i(X)`(X)Y 2 for some polynomial b′i(X) ∈ Z(≤ν−2)

p [X].
Thus, Baux

i (X) ∈ span(R) and the committer can compute [`ν−κ+i(χ)Bsy]1 = [Baux
i (χ, y)]1.

Assume that ck ← KC(1λ, C), ([As, {Baux
i }κi=1]1, [Bs]2) ← com(ck;α; ra, rb) and [Csp]1 ← open(ck;

([As, {Baux
i }κi=1]1, [Bs]2), (α, ra, rb),β). It is clear that then the verifier accepts.

(2: perfect com-hiding). Follows from the fact that ([As]1, [Bs]2) is perfectly masked by uniformly
random ra, rb←$Zp. Moreover, [Baux

i ]1 are publicly verifiable deterministic functions of [Bs]2.
(3: perfect open-hiding). Due to com-hiding and the fact that [Ap]1, [Bp]2, and [Cp]1 only depend on

(β, {Fi(α,β)}) (and not on α otherwise), the distribution of all elements in the opening (except possibly
[Csp]1) is the same for any two vectors α1 and α2 that satisfy Fi(α1,β) = Fi(α2,β) for all i. Since [Csp]1
is the unique element that makes the verifier accept, this means that the same claim holds for the whole
opening, and FCCsn is open-hiding.

(4: perfect zero-knowledge). We construct Sim as follows. It has (χ, y) as the trapdoor. It samples
random As,Bs←$Zp, and then sets [Baux

i ]1 ← [`ν−κ+i(χ)Bsy]1 for all i. It computes Bp (by using the
trapdoors), [Ap]1, and [Cp]1. It then computes the unique [Csp]1 that makes the verifier accept,

[Csp]1 ← ((As + yδ)(Bs + Bp) + Asy
η)[1]1 + (Bs + Bp + yη)[Ap]1 − yγ [Cp]1 .

(5: evaluation-binding). Assume that A is an evaluation-binding adversary that, with probability εA
and in time τA, returns a collision

(([As, {Baux
i }κi=1]1, [Bs]2);β; ξ, [Csp]1, ξ̃, [C̃sp]1) (16)

with ξ 6= ξ̃, such that (here, [Ap,Cp]1 / [Ãp, C̃p]1 is the opening in the collision),

[As + Ap + yδ]1 • [Bs + Bp + yη]2 = [Csp]1 • [1]2 + [Cp]1 • [yγ ]2 + [yδ+η]T ,

[As + Ãp + yδ]1 • [Bs + Bp + yη]2 = [C̃sp]1 • [1]2 + [C̃p]1 • [yγ ]2 + [yδ+η]T ,

and [`ν−κ+i(χ)y]1•[Bs]2 = [Baux
i ]1•[1]2 for i ∈ [1, κ]. Here we used the fact that by Items f and j of Theorem 1

(see also the definition of up(X) and vp(X) in Eqs. (7) and (8)), the value of [Bp]2 stays the same in both
openings. The latter makes it possible to finish the reduction.

We now construct an adversary B against the computational uber-assumption in G1. From the collision,
by subtracting the second equation from the first equation, we get

[Ap − Ãp]1 • [Bs + Bp + yη]2 = [Csp − C̃sp]1 • [1]2 + [Cp − C̃p]1 • [yγ ]2 .

Due to the properties of the pairing, this is equivalent to

[(Ap − Ãp)(Bs + Bp + yη)]1 = [Csp]1 − [C̃sp]1 + [(Cp − C̃p)y
γ ]1 . (17)

Denote ∆i := ξi − ξ̃i. By Eq. (9), Ap(X) − Ãp(X) = (up(X) − ũp(X))Y . By the definition (see Eq. (7))
of us(X), us(X) =

∑µα+µφ+1
j=2 ajuj(X) for some witness a. After taking into account Items a, e and i of
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Theorem 1, we get that up(X) = u1(X) + . . . +
∑κ
i=1 ξi`ν−κ+i(X) as in Eq. (7) with ξi being the claimed

value of Fi(α,β). We get a similar formula for ũp. Since the same β is used in the case of up(X) and ũp(X),
ũp(X) differs from up(X) just by having different output values ξ̃i. Thus,

up(X)− ũp(X) =

κ∑
i=1

∆i`ν−κ+i(X) .

(In fact, Item a is not important to get this equality since the corresponding elements in up(X) and ũp(X)

cancel out after substraction.) Thus, Ap(X)− Ãp(X) = (up(X)− ũp(X))Y = (
∑κ
i=1∆i`ν−κ+i(X))Y .

On the other hand, by Eq. (10), Cp − C̃p =
∑κ
i=1∆i(uµ−κ+i(χ)yη+1 + vµ−κ+i(χ)yδ+1 + wµ−κ+i(χ)y2).

Hence, Eq. (17) is equivalent to(
κ∑
i=1

∆i`ν−κ+i(χ)y

)
(Bs + Bp + yη)

= (Csp − C̃sp) +

κ∑
i=1

∆i

(
uµ−κ+i(χ)yη+1 + vµ−κ+i(χ)yδ+1 + wµ−κ+i(χ)y2

)
.

According to Items f and g of Theorem 1, vµ−κ+i(χ) = 0 while wµ−κ+i(X) = `ν−κ+i(χ). Thus, the right-hand
side of Eq. (17) is equal to (Csp − C̃sp) +

∑κ
i=1∆i`ν−κ+i(χ)y2. Going back to the group-based notation,

κ∑
i=1

∆i [`ν−κ+i(χ)y(Bs + Bp + yη)]1 = [Csp]1 − [C̃sp]1 +

κ∑
i=1

∆i[`ν−κ+i(χ)y2]1 . (18)

Now, let

[z]1 :=

κ∑
i=1

∆i[`ν−κ+i(χ)yη+1]1 (=

κ∑
i=1

∆i[fi(χ, y)]1) .

In what follows, we show that B can compute [z]1 and thus break the span-uber-assumption. Eq. (18) is
equivalent to

[z]1 +

κ∑
i=1

∆i[`ν−κ+i(χ)(Bp − y)y]1 =[Csp]1 − [C̃sp]1 −
κ∑
i=1

∆i[`ν−κ+i(χ)Bsy]1

=[Csp]1 − [C̃sp]1 −
κ∑
i=1

∆i[B
aux
i ]1 .

That the last equation holds is guaranteed by [`ν−κ+i(χ)y]1 • [Bs]2 = [Baux
i ]1 • [1]2. Note that this is the place

where we need the prover to help the verifier by computing the elements [Baux
i ]1.

Next, we show how to efficiently compute [`ν−κ+i(χ)(Bp − y)y]1. Define

t(X) := vp(X)−
κ∑
i=1

`ν−κ+i(X) .

Recall Bp(X,Y ) = vp(X)Y . Let h′i(X) be the rational function that satisfies

h′i(X)`(X) =`ν−κ+i(X) (Bp(X,Y )/Y − 1)

=`ν−κ+i(X)

(
t(X) +

κ∑
i=1

`ν−κ+i(X)− 1

)
=`ν−κ+i(X)(t(X) +

∑
j 6=i

`ν−κ+j(X)) + `ν−κ+i(X)(`ν−κ+i(X)− 1) .

(19)
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Due to Item d of Theorem 1 and the definition of t(X) (see also Eqs. (7) and (8)),

`(X) | `ν−κ+i(X)t(X) .

Moreover, `(X) | `ν−κ+i(X)`ν−κ+j(X), for i 6= j, and `(X) | `ν−κ+i(X)(`ν−κ+i(X)−1). Thus, the polynomial
on the right-hand side of Eq. (19) divides by `(X). Thus, h′i(X) is a polynomial of degree ≤ ν − 2 and thus
B can compute efficiently

[`ν−κ+i(χ)(Bp − y)y]1 =[`ν−κ+i(χ)(Bp/y − 1)y2]1 = [h′i(χ)`(χ)y2]1 ,

and then

[z]1 =

κ∑
i=1

∆i[`ν−κ+i(χ)yη+1]1 ← ([Csp]1 − [C̃sp]1)−
κ∑
i=1

∆i

(
[Baux
i ]1 + [h′i(χ)`(χ)y2]1

)
.

Thus, given the collision Eq. (16), B can compute and output (∆, [z]1 =
∑
∆i[fi(χ, y)]1) for fi(X,Y ) 6∈

span(R). Thus, B breaks (with probability εA and time close to tA) the (R,S, {fi})-computational span-
uber-assumption in G1 in the case fi 6∈ span(R). ut

The following Corollary follows from Item 5 in Theorem 3 and Lemma 2.

Corollary 1. Let C be a fixed circuit. Let γ = 4, δ = 0, and η = 7. Let f ′I(X,Y ) := (`ν−κ+I(X))2Y η+2

for I ∈ [1, κ]. If the (R,S, f ′I)-computational uber-assumption holds in GT for all I ∈ [1, κ] then FCCsn is
computationally evaluation-binding.

Remark 2. The indeterminate Y is crucial in establishing the independence of fi from R. Consider the
following example of why this is important. Let R∗ := {(Xi)ν−1

i=0 , (X
i`(X))ν−2

i=0 }, S∗ := {(Xi)ν−1
i=0 }, and

f∗i := `ν−κ+i(X). One can establish that FCCsn is evaluation-binding under the (R∗,S∗, {f∗i })-computational
span-uber-assumption in G1. Really, consider the following (R∗,S∗, {f∗i })-span-uber-assumption adversary
B∗ that will create y herself, generate a new ck based on her input and y, and then use B in Theorem 3 to
break the (R∗,S∗, {f∗i })-computational span-uber-assumption. B∗ will have similar success as B. However,
f∗i ∈ span(R∗) and thus the (R∗,S∗, {f∗i })-computational span-uber-assumption itself is not secure.

On the Security of the Span-Uber-Assumption. It is known that in composite-order bilinear groups,
the computational uber-assumption in GT holds under appropriate subgroup hiding assumptions [CMM16].
Hence, a composite-order group version of the span-uber-assumption (and also of the new SFC) is secure
under a subgroup hiding assumption. In Appendix D, we will use the Déjà Q approach of [CM14] directly to
prove that the span-uber-assumption in Gι, ι ∈ {1, 2}, is secure under a subgroup hiding assumption. More
precisely, we establish the following corollary. (See Appendix D for the definition of subgroup hiding and
extended adaptive parameter hiding.)

Theorem 4. The (R,S, {fi}κi=1)-computational span-uber-assumption holds in the source group G1 with all
but negligible probability if
1. subgroup hiding holds in G1 with respect to µ = {P2

1,P
1
2},

2. subgroup hiding holds in G2 with respect to µ = {P1
1},

3. extended adaptive parameter hiding holds with respect to R ∪ {fi}κi=1 and aux = {P1
2
σ(·)}σ∈S for any

P1
2 ∈ G2.

4. the polynomials in R have maximum degree poly(λ).

Here, G1,G2,GT are additive groups of composite order N = p1p2 (p1 6= p2) and P1
ι ∈ Gι,p1 , P2

ι ∈ Gι,p2
are randomly sampled subgroup generators, where Gι,pj is the subgroup of Gι of order pj and Pι ∈ Gι =
Gι,p1 ⊕Gι,p2 .

The direct proof in Appendix D is simpler than the mentioned two-step proof since it does not rely on
the intermediate step of reducing the span-uber-assumption to a uber-assumption in GT . Moreover, the Déjà
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Q approach is more straightforward in case one works in the source group. We will leave it up to future work
to reduce prime-order span-uber-assumption to a simpler assumption; there has been almost no prior work
on reducing prime-order assumptions.

Finally, in Appendix B, we will prove that the span-uber-assumption is secure in the algebraic group
model [FKL18] under the well-known PDL assumption [Lip12].1 Following the semi-generic-group model
of [JR10], the original AGM of [FKL18] (though later extensions exist) is defined only in the case when the
adversary outputs elements in the source groups (but not in GT ), and thus one cannot prove the security of
the computational uber-assumption in GT using the approach of [Lip19]. Thus, in a well-defined sense, the
span-uber-assumption is weaker than the uber-assumption in GT .
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A Applications and Efficiency Comparison

A.1 Applications of Succinct IPFC

The following applications of inner-product functional commitment were mentioned in [LRY16].

Succinct Polynomial Commitment. Let n be a fixed integer. In a polynomial commitment
scheme [KZG10], the committer commits to a polynomial α(X) ∈ Z(≤n)

p [X] of degree ≤ n. Later, after getting
an evaluation point β, he opens the functional commitment to α(β). A polynomial commitment scheme is
evaluation-binding if it is hard to open the same commitment to two different evaluations of the same polyno-
mial. Another essential property of polynomial commitment schemes is extractability: namely, it is required
that the commitment corresponds to some polynomial of degree ≤ n that can be extracted [CHM+20]. A
succinct polynomial commitment scheme can be implemented as a special case of the succinct IPFC, with α
being the vector of coefficients of α(X) and β = (1, β, β2, . . . , βn−1) for some β ∈ Zp. We leave it as an open
question whether such a commitment scheme would be extractable but it seems likely due to its relation to
SNARKs.

Succinct Accumulator. In an accumulator [Bd94,BP97], the committer commits to a set α = (α1, . . . , αn)
and later opens the set to any of its elements αi. One can implement a succinct accumulator by defining
a polynomial χα(X) :=

∏
(X − αi) and then using a succinct polynomial commitment scheme for this

polynomial. The committer opens to β = αi as in the polynomial commitment scheme.

Succinct Vector Commitment. Vector commitment [CF13] is a special case of the functional commit-
ment, where given I ∈ [1, n], the committer opens the commitment to αI . One can implement succinct vector
commitment as a succinct IPFC by letting β = eI to be the Ith unit vector. This only changes the opening
and verification procedures, see Fig. 3. Here, the opening consists of 1 + (n − 1) + n + 1 = 2n + 1 = µ
exponentiations in G1 and the verifier has to execute 2 exponentiations in G1 and 3 pairings.

open(ck; [As]1, (α, ra), I): ξ ← αI ; u(X)←
∑n
j=1 αj`j(X)+ξ`ν(X); v(X)← `I(X)+`ν(X); w(X)← αI`I(X)+

ξ`ν(X); H(X) =
∑n−2
i=0 HiX

i ← (u(X)v(X)− w(X))/`(X);

return [Csp]1 ←ra([`I(χ)y]1 + [`ν(χ)y]1 + [yη]1) +
∑n−2
i=0 Hi[χ

i`(χ)y2]1+∑n
j=1 αj

[
`j(χ)y

η+1
]
1
+ αI

[
`ν(χ)y

η+1 + `I(χ)y
2
]
1

;

V(ck; [As]1, [Csp]1, I, ξ): [Ap]1 ← ξ[`ν(χ)y]1; [Cp]1 ← ξ[`ν(χ)y
2−γ ]1; [Bp]2 ← [`I(χ)y]2 + [`ν(χ)y]2;

check that ([As]1 + [Ap]1) • [Bp + yη]2 = [Csp]1 • [1]2 + [Cp]1 • [yγ ]2;

Fig. 3. open and V for a VC scheme FCvc
sn based on FCip

sn

A.2 Aggregated IPFC, PC and VC from the New SFC

Aggregation. In many applications (see, e.g., [LM19,BDFG20,TAB+20]), one needs to use an SFC scheme
several times in parallel. Sometimes, the SFC is used for the same circuit C but on different public data (e.g.,
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in the subvector commitment [LM19]). Sometimes, one needs to do it for the same circuit C but on different
private and public data (e.g., in [BDFG20], one needs to commit to different polynomials and open each
of them evaluated at a different point). Sometimes, one needs to do it for different circuits (e.g., aggregate
vector commitments together with polynomial commitments). Up to now, the best general solution for this is
to design a separate aggregated (say) vector commitment and an aggregated (say) polynomial commitment
scheme and then run them in parallel. In this section, we will give examples of aggregations of each type.

One can use FCsn to arbitrarily aggregate a polynomial number of SFC runs, assuming that each SFC
by itself can be implemented by a poly-size compiled circuit. We will not provide general definitions of
aggregation (see, e.g., [TAB+20] for detailed definitions of aggregated subvector commitments) or give a
detailed construction of general aggregation. However, the underlying aggregation idea is simple: let α be
the private data of the committer and let β be the private data of the verifier (in all runs of the SFC).
Compile the circuit C that computes all output of all SFC runs to a circuit C∗. Apply then our template to
that circuit. Obviously, the aggregated version is just equal to FCsn and has its efficiency properties (e.g., it
has the opening that of one group element). The CRS has to be extended to C, but the communication will
not change significantly.

We emphasize that this means that the prover can aggregate several SFCs into one, while aggregating
several SFC commitments and openings by say the verifier is a completely different question.

Next, we will detail some applications of FCsn. In each case, we will show how to design U , V , W , and
the witness vector a, such that FCsn works for the desired functions Fi.

Succinct Aggregated Inner Product (aIP). Assume that the committer commits to α ∈ Znp and then
opens it simultaneously to 〈α,βi〉 =

∑n
j=1 αjβij for κ different verifier-provided vectors βi ∈ Znp , where

i ∈ [1, κ]. Thus, β ∈ Zκnp . The circuits Cφ or Cψ are dummy (they have no gates). Given α and βi, Cχ
computes κn products χij(α,β) = αjβij , i ∈ [1, κ] and j ∈ [1, n], and Cξ sums them together to obtain κ
outputs Fi(α,β) =

∑n
j=1 αjβij . Thus,

a = (1, α1, . . . , αn, β11 . . . , βκn, α1β11, . . . , αnβnκ,
∑n
j=1 αjβ1j , . . . ,

∑n
j=1 αjβκj) ,

and Uχ = 1κ ⊗ In ∈ Zκn×np , Vχ = Iκn, Uξ = 1>n ⊗ Iκ ∈ Zκ×κnp (note that Cχ does not take 1 as an input),
and

U =

 1 α β χ
(α
,β

)

F
(α
,β

)

Uχ
Uξ

 , V =

 1 α β χ
(α
,β

)

F
(α
,β

)

Vχ
1κ

 , W =

 1 α β χ
(α
,β

)

F
(α
,β

)

Iκn
Iκ

 .

Here, ν = κn + κ, µ = 1 + n + κn + κn + κ = 2κ + n + κ + 1, As(X,Y ) = ra +
∑n
j=1 αjuχj(X)Y ,

Ap(X,Y ) =
∑κ
i=1 〈α,βi〉 `ν−κ+i(X)Y . Importantly, Bs(X,Y ) = 0 (since there is nothing to hide, one can

set rb ← 0; hence, also Baux
i (X,Y ) = 0; thus the commitment is only one group element, [As]1), and

Bp(X,Y ) =
∑κ
i=1 `ν−κ+i(X)Y +

∑κ
i=1

∑n
j=1 βijvχ,n(i−1)+j(X)Y .

We will briefly compare the resulting aggregated IPFC with the (non-aggregated) IPFCs
of [ILV11,LRY16]. In all cases, both the functional commitment and the opening consist of a single group
element. Interestingly, a straightforward [ILV11] opening takes Θ(n2) multiplications (this can be probably
optimized 2), while in our case it takes Θ(n log n) multiplications.

Summarizing, while the presented non-aggregated IPFC is just a simple specialization of a much more
general SFC scheme, it is only slightly less efficient than [ILV11].

2 One can optimize our IPFC scheme even further, because here, one uses disjoint witnesses a =
α//χ(α,β)//F(α,β) and b = 1//β in the R1CS key equation Ua ◦ V b = Wa. That is, one does not need
to prove that the witnesses a and b are the same. Essentially, it means that one can omit the added Y δ when
defining the polynomial C(X,Y ). We omit further discussion.
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Succinct Aggregated Polynomial Commitment (aPC) [CHM+20,BDFG20]. Assume that the
committer commits to the κ polynomials αi ∈ Z(≤n)

p [X] (thus, α ∈ Zκ(n+1)
p ) and later opens the

commitment to the evaluation of each polynomial at a different point βi ∈ Zp, i ∈ [1, κ]. That is,
F(α,β) = (αi(βi))

κ
i=1 = (

∑n
j=0 αijβ

j
i )
κ
i=1. Here, Cφ is an empty circuit, Cψ computes all the evaluations of

monomials ψ(β) = (β1+j
i )i≤κ,1≤j≤n−1 ∈ Zκ(n−1)

p , Cχ computes products χ(β) = (αijβ
j
i )i≤κ,0≤j≤n ∈ Zκ(n+1)

p ,
and Cξ computes F(α,β) ∈ Zκp .

Thus, Uψ = (Iκ(n−1),0κ(n−1)×κ) ∈ Zκ(n−1)×κn
p (that is, the columns labeled by βni are all-zero), Vψ =

1n−1 ⊗ Iκ ∈ Zκ(n−1)×κ
p , Wψ = Iκ(n−1) ∈ Zκ(n−1)×κ(n−1)

p , and

Uψ

(
β

ψ(β)

)
◦ Vψβ = ψ(β)

as in 4. Also, Uχ = Iκ(n+1) ∈ Zκ(n+1)×κ(n+1)
p ,

Vχ =
(

1κ−1,0κ−1,κn

I(κn+1)

)
∈ Zκ(n+1)×(κn+1)

p

(that is, the first κ− 1 rows of Vχ are each equal to e>1 ), Wχ = Iκ(n+1) ∈ Zκ(n+1)×κ(n+1)
p , and

Uχα ◦ Vχ
(

1
β

ψ(β)

)
= χ(α,β)

as in 4. Finally, Uξ = 1>n+1 ⊗ Iκ ∈ Zκ×κ(n+1)
p and Uξχ(α,β) ◦ 1 = F(α,β) as in 4. Altogether,

U =



1 α β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Uψ
Uχ

Uξ

 , V =



1 α β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Vψ
Vχ Vχ
1κ

 , W =


1 α β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Iκ(n−1)

Iκ(n+1)

Iκ

 .

Thus, ν = κ(n−1)+κ(n+1)+κ = κ(2n+1) and µ = 1+κ(n+1)+κ+κ(n−1)+κ(n+1)+κ = 3κ(n+1)+1.

Succinct Subvector Commitment Scheme (SVC). Let α = (αi)
n
i=1 ∈ Znp . An SVC [LM19] is a

generalization of vector commitment, where β = S = (Si)
κ
i=1 is a set of indexes Si ∈ [1, n]. One opens to

F(α,β) = (αSi)
κ
i=1 for all i ∈ β. One can construct a SVC scheme based on an SFC for multi-output inner

product (see the previous example), by setting βi = eSi .
Essentially, here we have the same example as in the case of aggregated inner product, except that βi = eI

for some index I ∈ [1, n]. Here, As(X,Y ) = ra+
∑n
j=1 αjuχj(X)Y , Ap(X,Y ) =

∑κ
i=1 αSi(α,β)`ν−κ+i(X)Y ,

Bs(X,Y ) = 0 (again, since there is nothing to hide, one can set rb ← 0; this means that also Baux
i (X,Y ) = 0),

and Bp(X,Y ) =
∑κ
i=1 `ν−κ+i(X)Y +

∑κ
i=1 vχ,Si(X)Y . One obtains a vector commitment scheme from this

when κ = 1.

A.3 Other applications of SFC

Succinct Evaluation-Point Commitment. Let α be a point from Zp and βi(X) =
∑n
j=0 βijX

j ∈
Z(≤n)
p [X] for i ∈ [1, κ], e.g., β ∈ Zκ(n+1)

p . Then F(α,β) = (βi(α))κi=1 = (
∑n
j=0 βijα

j)κi=1 and SFC commits
to an evaluation point α and then open it to the evaluation of κ different public polynomials of degree ≤ n
at α.

In this case, Cφ computes n − 1 different exponents φj(α) = α1+j for j ∈ [1, n − 1], Cψ is an empty
circuit since no computation is needed over the polynomial βi coefficients to be done, Cχ computes κ(n+ 1)
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products χij(α,β) = βijα
j for i ∈ [1, κ], j ∈ [0, n], and Cξ sums up them together to obtain κ outputs

Fi(α,β) =
∑n
j=0 χij(α,β).

Thus, here a = 1//α//φ(α)//β//χ(α,β)//F(α,β), Uφ = 1n−1 ∈ Z(n−1)×1
p , α∗ = α, Vφ = (In−1,0n−1)

(the last column of Vφ, labeled by αn, is all-zero), β∗ = (α, φ(α)), and

Uφα ◦ Vφ
( α
φ(α)

)
= φ(α) .

Also Uχ = Vχ = 1κ ⊗ In+1 ∈ Zκ(n+1)×(n+1)
p , and

Uχ

(
1
α
φ(α)

)
◦ Vχβ = χ(α,β) .

Finally, Uξ = 1>κ ⊗ In+1 ∈ Z(n+1)×κ(n+1)
p , Uξχ(α,β) ◦ 1κ = F(α,β), and

U =



1 α φ
(α

)

β χ
(α
,β

)

F
(α
,β

)

Uφ
Uχ

Uξ

 , V =


1 α φ
(α

)

β χ
(α
,β

)

F
(α
,β

)

Vφ
Vχ

1κ

 , W =



1 α φ
(α

)

β χ
(α
,β

)

F
(α
,β

)

In−1

Iκ(n+1)

Iκ

 .

Thus, µ = 1 + 1 + (n− 1) +κ(n+ 1) +κ(n+ 1) +κ = (2κ+ 1)n+ 3κ+n+ 1 and ν = (n− 1) +κ(n+ 1) +κ =
(κ+ 1)n+ 2κ− 1.

Since Uφ consists of one column uφ, there is only one polynomial uφ(X) = us(X). Thus As(X,Y ) =
ra + αuφ(X)Y and its computation has very low costs. Ap(X,Y ) = u1(X) +

∑µ
j=n+2 ajuj(X), Bs(X,Y ) =

rb +
∑n+1
j=2 ajvj(X), Bp(X,Y ) = v1(X) +

∑µ
j=n+2 ajvj(X). Small As(X,Y ) makes smaller computational

costs of the commitment and shortens the CRS length (in comparison with the general SFC). The CRS
length is then shortened by ν and the commitment takes less (by ν) exponentiations in G1. Otherwise, the
length of the commitment is κ+ 1 elements of G1 and 1 element of G2. The length of opening is 1 element
of G1.

We are not aware of any previous works on the construction of evaluation-point commitment schemes.

Succinct Multivariate Polynomial Commitment [PST13,BGH19]. Assume F(α,β) = α(β), where
α(X) ∈ Zp[X] is a secret c-variate polynomial of total degree d and β ∈ Zcp is an evaluation point. Thus,
α(β) =

∑
j αj

∏c
k=1 β

jk
k , where the sum is taken over each j = (j1, . . . , jc) with

∑
jc ≤ d.

Here, α = (αj)∑ jk≤d ∈ Zµαp for µα =
(
d+c
c

)
(the number of monomials of a c-variate polynomial of

degree ≤ d), β ∈ Zcp (thus, µβ = c), Cφ is an empty circuit, Cψ computes ψj(β) =
∏c
k=1 β

jk
k for all j

with 1 <
∑
jk ≤ d (thus µψ = µα − 1 − c =

(
d+c
c

)
− 1 − c), Cχ computes χj(α,β) = αj

∏c
k=1 β

jk
k (thus

µχ = µα =
(
d+c
c

)
), and Cξ computes

∑
j αj

∏c
k=1 β

jk
k . Thus,

U =



1 α β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Uψ Uψ
Uχ
Uξ Uξ

 , V =



1 α β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Vψ Vψ
Vχ Vχ
1

 , W =



1 α β ψ
(β

)

χ
(α
,β

)

F
(α
,β

)

Iµψ
Iµχ

1

 .

Thus, ν = µψ + µχ + 1 = 2
(
d+c
c

)
− c and µ = 1 + µα + µβ + µψ + µχ + 1 = 3

(
d+c
c

)
+ 1.

This scheme is not very efficient if c is large, with the matrix dimensions having size Θ((d+ c)!/d!/c!) =
Θ(dc) if d is large and c is small. However, if hiding the polynomials α(X) were not a part of the task, then
one could optimize the matrices depending on the polynomials.
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Succinct Multilinear Polynomial Commitment [Set20]. A multilinear polynomial is a multivariate
polynomial that is linear in each of its variables. Assuming the number of α-monomials with β being the
coefficients is poly(λ) (or, the other way around), we can clearly use our techniques. Note that we do not
require the total number of monomials to be poly(λ). Moreover, here we do not use in any way the fact that
the polynomial is multilinear: we can equally well handle the non-multilinear case assuming that the number
of (say) α-monomials is poly(λ).

B Security of Span-Uber-Assumption in the AGM

We will next prove that if fi 6∈ span(R) then (R,S, {fi})-computational span-uber-assumption holds in the
AGM [FKL18] under a PDL assumption [Lip12]. As with other AGM proofs, this can be seen as a heuristic
support to the computational span-uber-assumption when fi 6∈ span(R) (as in our case). While a similar
result can be possibly derived in the generic group model by following [BBG05], the generic model is known
to have problems [Fis00,Den02] not shared with the AGM and thus using the AGM can be seen as a stronger
validation.

Let d1(ν), d2(ν) ∈ poly(λ). Then, Pgen is (d1(ν), d2(ν))-PDL (Power Discrete Logarithm, [Lip12] secure
if for any non-uniform PPT adversary A, Advpdl

d1,d2,Pgen,A(λ) = negl(λ), where

Advpdl
d1,d2,Pgen,A(λ) := Pr

[
p← Pgen(1λ, ν), x←$Z∗p : A

(
p; [(xi)

d1(ν)
i=0 ]1, [(x

i)
d2(ν)
i=0 ]2

)
= x

]
.

The q-PDL assumption in G1 (resp., G2) is equal to the (q, 0)-PDL (resp., (0, q)-PDL) assumption.

B.1 Algebraic Group Model: Preliminaries

AGM is a new model [FKL18] used to prove the security of a cryptographic assumption, protocol, or a prim-
itive. Essentially, in the AGM, one assumes that each PPT algorithm A is algebraic in the following sense.
Assume A’s input includes [xι]ι and no other elements from the group Gι. Moreover, assume A has an access
to an oracle O, such that O(ι) samples and outputs a random element [qιk]ι from Gι, ι ∈ {1, 2}. The oracle ac-
cess models the ability of A to create random group elements without knowing their discrete logarithms. Such
an oracle is not always included to the AGM but it is necessary since it is usually trivial for the adversary to
sample random group elements without knowing their discrete logarithms, [Bro01,BFS16,ABLZ17,ALSZ21].
We assume that if A outputs group elements [yι]ι, then A knows matrices N ι, such that yι = N ι(

xι
qι ).

More precisely, a PPT algorithm A is (Pgen-)algebraic if there exists an efficient extractor ExtA, such
that for any PPT sampleable distribution D,

Advagm
Pgen,D,A,ExtA(λ) := Pr

p←$Pgen(1λ);x = ([x1]1, [x2]2)←$D; r←$RNDλ(A);

([y1]1, [y2]2)←$AO(x; r); (N1,N2)← ExtA(x; r) :

(y1 6= N1( x1
q1 ) ∨ y2 6= N2( x2

q2 ))

 = negl(λ) .

O is an oracle, that given ι ∈ {1, 2} as an input, samples and returns a random element from Gι. [qι]ι is the list
of all elements output by O(ι). The AGM states that Advagm

Pgen,D,A,ExtA(λ) = negl(λ) for any PPT-sampleable
D and PPT algebraic A.

B.2 Our Contribution

Theorem 5. Let R = Iqap = (Zp, µ0, {uj , vj , wj}µ0

j=0) be a QAP instance. Let FCCsn be the SFC scheme
in Fig. 2 such that ck = ([R(χ, y)]1, [S(χ, y)]2). Let fi(X,Y ) 6∈ span(R) have degree poly(λ). Let d′ =
maxh∈{fi}∪R(deg h) and d∗ = maxh∈S(deg h). If the (d′, d∗)-PDL assumption holds, then the (R,S, {fi})-
computational span-uber-assumption holds in G1 in the AGM.
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Proof. Assume A(p,R, ck; r) outputs ∆ 6= 0 and
∑
∆i[fi(χ, y)]1. (Here, r is the random tape of A.) Denote

Γ := {R(χ, y)}. Since we work in the AGM, there exists an extractor ExtA that on the input (p,R, ck; r),
with probability Advagm

Pgen,D,A,ExtA(λ) = 1−negl(λ), returnsN and [q]1, such that
∑
i∆i[fi(χ, y)]1 = N

[
Γ
q

]
1
.

We abort if the extractor does not succeed.
Taking into account that elements of Γ are known polynomials of X and Y , given N and [q]1, we

can efficiently compute the coefficients of the polynomial V(X,Y ) :=
∑
i∆ifi(X,Y ) −N

(
%(X,Y )
Q

)
. The

verification equation guarantees that V(χ, y) = 0. As common in the AGM proofs, we have to consider the
next two cases.

First, assume that V(X,Y ) = 0 as a polynomial, that is,
∑
i∆ifi(X,Y ) = N

(
%(X,Y )
Q

)
. Since∑

i∆ifi(X,Y ) does not depend on Qi, it means that
∑
∆ifi(X,Y ) is in span(R), contradiction.

Second, assume that V(X,Y ) 6= 0 as a polynomial, but V(χ, y) = 0. Assume that A is a span-
uber-assumption adversary that succeeds with probability εuber := Advuber

R,A(λ), where εuber > εagm :=
Advagm

Pgen,D,A,ExtA(λ). Note that εagm = negl(λ). We construct the following PDL adversary B.

1. The PDL challenger C samples χ←$Z∗p and gives x = ([1, χ, . . . , χd
′
]1, [1, χ, . . . , χ

d∗ ]2) as an input to B.
2. B samples y←$Z∗p, and uses it together with (p,R) and x to create a correctly distributed ck.
3. B plays the challenger in the span-uber-assumption game with A: after sending ck and r←$RNDλ(A)

to A, B obtains ∆ and
∑
∆i[fi]1 from A.

When A asks for the jth O query in Gι, B simulates it by sampling and storing random sιj , tιj ←$Zp,
and returning [qιj ]ι ← [sιjχ+ tιj ]ι to A.

4. B runs the extractor ExtA, that is guaranteed by the AGM to succeed with probability 1 − negl(λ), to
obtain matrix N and [q]ι (the latter is empty in the non-hashing case).

5. From N , she computes the coefficients of V(X,Y ).

Now,
∑
i∆i[fi]1 =

∑
i∆i[fi(χ, y)]1. Since the verifier accepts, V(χ, y) = 0; however, V(X,Y ) 6= 0 as a

polynomial. (Since qιj are affine functions of χ, they are not separate indeterminates. Due to their inclusion,
however, V changes slightly to incorporate additional terms. Since this is standard in the AGM, [FKL18],
we will not add additional discussion.) For the fixed value of y ∈ Z∗p, let V∗(X) := V(X, y). Finally, B does
the following:

6. Use an efficient polynomial factorization algorithm to obtain up to d′ roots χi of V∗(X).
7. Return the root χi that satisfies [χjiy

k]1 = [χjyk]1 for some fixed monomial [χjyk]1 given in the commit-
ment key, where j 6= 0. (E.g., j = 1 and k = 1.)

Clearly, B has broken the (d′, d∗)-PDL assumption with probability εpdl = Advpdl
d′,d∗,Pgen,B(λ) ≥ εuber − εagm.

Thus,
εuber ≤ Advpdl

d′,d∗,Pgen,B(λ) + Advagm
Pgen,D,A,ExtA(λ) .

Moreover, B’s running time is dominated by the running time of A and the time to perform polynomial
factorization. ut

Since in the case κ = 1, span-uber-assumption is the same as the (R,S, T , f1) uber-assumption, from The-
orem 5, we get the following corollary that is potentially of independent interest.

Corollary 2. Let ck = ([R(χ, y)]1, [S(χ, y)]2) be two sets of bivariate polynomials R and S. Let D be the
distribution of ck for χ, y←$Z∗p. Let f(X,Y ) 6∈ span(R) have degree poly(λ). Let d′ = maxh∈{f}∪R(deg h)
and d∗ = maxh∈S(deg h). If the (d′, d∗)-PDL assumption holds, then the (R,S, {fi})-computational uber-
assumption holds in G1 in the AGM.

We note that the security of the computational uber-assumption in the AGM was independently also proven
in [BFL20, Theorem 3.5].
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C SNARK Zero-Knowledge: Formal Security Definitions

Let R be a relation generator, such that R(1λ) returns a polynomial-time decidable binary relation R =
{(x,w)}. Here, x is the statement, and w is the witness. We assume that λ is explicitly deductible from the
description of R. The relation generator also outputs auxiliary information p← Pgen(1λ, n) for a well-defined
n. Because of this, we give p as an input to all (including honest or adversarial) parties.

As in [Gro16], we define all security notions against a non-uniform adversary. However, since our security
reductions are uniform, it is a simple matter to consider only uniform adversaries.

Definition 7 (Perfect Completeness). A non-interactive argument Ψ is perfectly complete for R, if for
all λ, all (p,R) ∈ range(R(1λ)), and (x,w) ∈ R,

Pr [(crs, td)← Kcrs(p,R) : V(p,R, crsV,x,P(p,R, crsP,x,w)) = 1] = 1 .

Definition 8 (Computational Knowledge-Soundness). Ψ is computationally (adaptively) knowledge-
sound for R, if for every non-uniform PPT A, there exists a non-uniform PPT extractor ExtA, such that

Advsnd
R,A(λ) := Pr

(p,R)← R(1λ); (crs, td)← Kcrs(p,R); r←$RNDλ(A);

(x, π)← A(p,R, crs; r);w← ExtA(p,R, crs; r) :

(x,w) 6∈ R ∧ V(p,R, crsV,x, π) = 1

 ≈λ 0 .

A knowledge-sound argument system is called an argument of knowledge.

Definition 9 (Statistically Unbounded ZK). Ψ is statistically unbounded Sub-ZK for R, if for all λ,
all (p,R) ∈ range(R(1λ)), and all computationally unbounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr[(crs, td)← Kcrs(p,R) : AOb(·,·)(p,R, crs) = 1] .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns P(p,R, crsP,x,w).
Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns Sim(p,R, crs, td,x). Ψ is
perfectly unbounded ZK for R if one requires that εunb0 = εunb1 .

D Subroup Hiding ⇒ Span-Uber-Assumption

In Lemma 2, we proved that, for concrete parameters, span-uber-assumption is implied by a computational
uber-assumption in GT . In this section, we prove that in general, the span-uber-assumption in G1 holds
under subgroup hiding in composite-order bilinear groups.

Bilinear Composite-Order Groups: Notation. Let c be the number of indeterminates, X =
(X1, . . . , Xc). Let p = (N,G1,G2,GT , ê,P1,P2) be a composite-order bilinear group and let auxp :=
{P1

1,P
2
1,P

1
2,P

2
2} be auxiliary information about subgroup generators. Here, G1,G2,GT are additive groups of

composite order N = p1p2 (p1 6= p2) and P1
ι ∈ Gι,p1 , P2

ι ∈ Gι,p2 are randomly sampled subgroup generators,
where Gι,pj is the subgroup of Gι of order pj and Pι ∈ Gι = Gι,p1 ⊕ Gι,p2 . We use (p, auxp) ← Pgen(1λ, 2)
to denote the algorithm that generates composite-order bilinear groups with two cyclic subgroups and their
generates. As explained later, not the whole auxp is made public to the adversary A; we specify in each
assumption separately which subset µ ⊆ auxp is given to A. Differently from the prime-order case, we denote
scalar multiplication of an elliptic curve point P by an integer a as [a]P and the pairing of two points P1 and
P2 by ê(P1,P2).

The following definition of the computational uber-assumption in composite-order group source group
Gι is from [CM14] (Assumption 4.1). It is essentially the same as Definition 10 but for composite-order
groups (and somewhat more general: Definition 10 only considered c = 2 and T = ∅). Chase et al. [CMM16]
(Assumption 3.1) defined the computational uber-assumption in composite-order group GT ; however, it is
not needed in the current paper.
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Definition 10 (Uber-assumption [CM14] in composite-order groups). Let (p, auxp)← Pgen(1λ, 2).
Let R, S, and T be three tuples of c-variate polynomials over ZN [X]. Let f be a c-variate polynomial over
ZN [X]. The (R,S, T , f)-computational uber-assumption for Pgen in a composite-order group Gι, ι ∈ {1, 2},
states that for any PPT adversary A, Advuber

Pgen,R,S,T ,f,A(λ) = negl(λ), where Advuber
Pgen,R,S,T ,f,A(λ) :=

Pr

(p, auxp)←$Pgen(1λ, 2);PT ← ê(P1,P2);x←$ (Z∗N )c;

ck← ({[%(x)]P1}r∈R, {[σ(x)]P2}σ∈S , {[τ(x)]PT }τ∈T ) ;

A(p, ck) = [f(x)]Pι

 .

D.1 Preliminaries on Dèjá Q and Parameter Hiding

We will next give a comprehensive overview of the techniques used in the Dèj’a Q framework. A knowledgeable
reader might want to skip to the next subsection.

Two structural properties of composite-order bilinear groups are exploited in the Déjá Q framework,
subgroup hiding and parameter hiding. Subgroup hiding is a computational assumption that requires that,
if G1 (respectively G2) decomposes into two subgroups, then no PPT adversary has a non-negligible chance
of distinguishing a random element of one of the subgroups from a random element of the full group.

Definition 11 (Subgroup Hiding in Gι, ι ∈ {1, 2}, with respect to µ [BGN05,CM14,CMM16]).
For µ ⊆ auxp, define Advsh

Gι,µ,A(λ) = 2εshGι,µ,A(λ)− 1, where

εshGι,µ,A(λ) := Pr

[
(p, auxp)←$Pgen(1κ, 2); b←$ {0, 1};W0←$Gι;
W1←$Gι,p1 : A(p, µ,Wb) = b

]
.

The subgroup hiding in Gι holds with respect to the auxiliary information µ if for all PPT adversaries A,
Advsh

Gι,µ,A(λ) = negl(λ).

The auxiliary information µ captures subgroup generators (i.e., generators of Gι, ι ∈ {1, 2} or its subgroups)
that can be given to the adversary. Recall that a cancelling pairing [Fre10] is a pairing ê : G1 × G2 → GT ,
such that ê(G1,p1 ,G2,p2) = ê(G1,p2 ,G2,p1) = 1. By using a cancelling pairing, an adversary A, who has access
to P2

2, can distinguish between T = [r]P1
1 and T = [r]P1, for r←$ZN , by checking whether ê(T,P2

2) = 1.
Thus, if P2

2 ∈ µ, then distinguishing between random elements of G1,p1 and G1 is easy. Analogously, if P1
2 ∈ µ

then distinguishing between G1,p2 and G1 is easy.
Parameter hiding is a statistical property of a group that allows certain distributions across subgroups to

be independent. Hence, it allows to information-theoretically hide from the adversary some useful information
even after the public parameters are revealed. More precisely, parameter hiding in G1 holds with respect to
a family of functions F if for all P1

1 ∈ G1,p1 and P2
1 ∈ G1,p2 , the distributions {[f(x)]P1

1 + [f(x)]P2
1}f∈F and

{[f(x)]P1
1 + [f(x′)]P2

1}f∈F are identical, where x,x′←$ZnN [CM14].
In composite-order groups, parameter hiding takes several different forms depending on the aim of us-

ing. First of all, in the original Déjá Q framework [CM14], the proof strategy for the computational uber-
assumpion in the source group (as opposed to the proof for the correspondent assumption in the target group)
requires only one type of subgroup hiding, namely subgroup hiding between G1,p1 and G1. This means that
the subgroup generators P1

2 and P2
2 on the other side of pairing can be revealed.

In addition, it is desirable to have parameter hiding even if some meaningful information about x is leaked
in the group G2 as well as in G1. We have to take this into account, extending the definition of parameter
hiding to allow the case where some additional information aux about x is revealed.

Definition 12 (Extended parameter hiding, [CM14,CMM16]). For (p, auxp)←$Pgen(1λ, 2), ex-
tended parameter hiding holds in Gι, ι ∈ {1, 2} with respect to a family of functions F , and auxiliary
information aux, if for all P1

ι ∈ Gι,p1 and P2
ι ∈ Gι,p2 , the distributions

{[f(x)]P1
ι + [f(x)]P2

ι , a(x)}f∈F,a∈aux and {[f(x)]P1
ι + [f(x′)]P2

ι , a(x)}f∈F,a∈aux

are identical, for x,x′←$ZnN .
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For our purposes, we need extended parameter hiding to hold for aux = {[σ(·)]P1
2}σ∈R.

For the sake of completeness, next, we replicate the proof that extended parameter hiding holds in
composite-order subgroups with n > 2 subgroups with respect to all polynomial functions.

Lemma 3 ([CMM16], Lemma 2.3). For all m,n ∈ N, (p, auxp) ∈ Pgen(1λ, n), where N = p1 · . . . · pn,
(i1, i2) such that 1 ≤ i1, i2 ≤ n, and for the class of all polynomials f(·) over ZN , if gcd(pi1 , pi2) = 1
and if for all a ∈ aux, a(·) ∈ A such that gcd(|A|, pi2) = 1, then the distributions {[f(x)]P1

1,i1
+

[f(x)]P1
1,i2

, a(x)}f∈F,a∈aux and {[f(x)]P1
1,i1

+[f(x′)]P1
1,i2

, a(x)}f∈F,a∈aux are identical for x,x′←$ZmN . Here,
P1

1,i ∈ G1,pi .

Proof. For any polynomial f , one can compute [f(x)]P1
i1

knowing just the value of xj (mod pi1), for all j,
1 ≤ j ≤ m, and [f(x)]P1

i2
knowing just the value of xj (mod pi2), for all j, 1 ≤ j ≤ m. If gcd(pi1 , pi2) = 1

and the functions in aux reveal no information about xj (mod pi2), then by the Chinese Remainder theorem
the values of xj (mod pi2) are independent of all the other values, so this is identical to using an independent
x′j for the P1

i2
values. ut

For a more interactive setting, in which some of the inputs might be provided by an adversary, we
can no longer model all inputs to the function f ∈ F as uniformly random. For example, the q-SDH
assumption asks the adversary to compute a pair (c, [1/(x+c)]Pι) with c ∈ Z∗p being chosen by the adversary.
Since for certain classes of functions, an unbounded adversary might be able to easily distinguish the two
distributions if allowed to query on all possible adversarial inputs, a new definition is required. Informally,
this property (of adaptive parameter hiding in G1) ensures that any unbounded adversary who makes only
polynomial number of queries cannot statistically distinguish between the distributions {[f(x)]P1

1 +[f(x)]P2
1}

and {[f(x)]P1
1 + [f ′(x)]P2

1}, for any f, f ′ from a family of functions F .
Let A be a computationally unbounded adversary that is allowed to see only polynomially many eval-

uations on inputs that it can choose adaptively. Next, in contrary to the extended parameter hiding, we
consider not all functions f and uniformly random inputs, but randomly sampled functions f and f ′ (with
potentially different but overlapping domains dom(f) and dom(f ′)) applied to adversarially chosen inputs
x, and require the values [f(x)]P1

1 + [f(x)]P2
2 and [f(x)]P1

1 + [f ′(x)]P2
2 to be statistically indistinguishable.

Definition 13 (Adaptive parameter hiding, [CM14]). For a group Gι = Gι,p1 ⊕Gι,p2 , ι ∈ {1, 2}, and
functions f , f ′ in a family F , let O(·) return [f(x)]P1

ι + [f(x)]P2
ι if the input is in dom(f) and 1 otherwise,

and let O′(·) return [f(x)]P1
ι + [f ′(x)]P2

ι if the input is in dom(f) ∩ dom(f ′) and 1 otherwise.
Then adaptive parameter hiding holds in Gι with respect to F if for all λ ∈ N, P1

ι ∈ Gι,p1 , and P2
ι ∈ Gι,p2 ,

the oracles O and O′ are statistically indistinguishable if they are queried polynomially many times; i.e., for
any (potentially unbounded) distinguisher D makes poly(λ) queries,

Pr[f ←$F : DO(·) = 1]− Pr[f, f ′←$F : DO
′(·) = 1] = negl(λ) .

In the case of the span-uber-assumption, since the adversary chooses coefficients∆ of the challenge term,
we cannot anymore model all inputs to the function as uniformly random. We have the family of functions
{
∑κ
i=1∆i[fi(X)]}∆=(∆1,...,∆κ)∈Zκp , where∆ is chosen by adversary. Thus, we need to use adaptive parameter

hiding property. Since in the new span-uber assumption S 6= {1}, we need as well the extended parameter
hiding property. Altogether, we make use of the extended adaptive parameter hiding from [CK18].

Definition 14 (Extended adaptive parameter hiding, [CK18]). For a group Gι = Gι,p1 ⊕ Gι,p2 ,
ι ∈ {1, 2} and functions f , f ′ chosen at random from a family of functions F , let aux denote the auxiliary
information, O(·) be the oracle that returns [f(·)]P1

1 + [f(·)]P2
1 if the input is in the domain dom(f) and

1 otherwise. Similarly, let O′(·) be the oracle that returns [f(·)]P1
1 + [f ′(·)]P2

1 if the input is in the domain
dom(f) ∩ dom(f) and 1 otherwise.

The extended adaptive parameter hiding holds in Gι with respect to F and aux if for all
(p, auxp)←$Pgen(1λ), with µ = {P1

1,P
2
1}, the oracles O and O′ are statistically indistinguishable, if they

are given with auxiliary information aux and queried polynomially many times. That is, for any unbounded
A that makes poly(λ) queries,

Pr[f ←$F : AO(·)(p, aux) = 1]− Pr[f, f ′←$F : AO
′(·)(p, aux) = 1] = negl(λ) .
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D.2 Security of Uber-Span-Assumption

Next we prove the security of the uber-span-assumption under the subgroup hiding.
First, we modify Definition 10 to cover span-uber-assumptions in composite-order groups.

Definition 15 (Span-uber-assumption in composite order groups). Let (p, auxp) ← Pgen(1λ, 2).
Let R, S, and T be three tuples of c-variate polynomials over ZN [X]. Let fi be c-variate polynomials over
ZN [X] for i ∈ [1, κ]. The (R,S, T , {fi}κi=1)-computational span-uber-assumption for Pgen in a composite-
order group Gι, ι ∈ {1, 2}, states that for any PPT adversary A, Advspanuber

Pgen,R,S,T ,{fi},A(λ) = negl(λ), where

Advspanuber
Pgen,R,S,T ,{fi},A(λ) := Pr

(p, auxp)←$Pgen(1λ, 2);PT ← ê(P1,P2);x←$ (Z∗N )c;

ck← ({[%(x)]P1}r∈R, {[σ(x)]P2}σ∈S , {[τ(x)]PT }τ∈T ) ;

A(p, ck) = (∆ ∈ ZκN ,
∑κ
i=1∆i[fi(x)]Pι) ∧∆ 6= 0κ

 .

We denote r := |R|, s := |S|, and t := |T |.
Further, applying the Déjá Q framework of Chase and Meiklejohn [CM14], we show that the

(R,S, {fi}κi=1)-computational span-uber-assumption is equivalent (under subgroup and parameter hiding)
to the following transitioned q-assumption.

Definition 16 (Transitioned span-uber-assumption). Let (p, auxp) ← Pgen(1λ, 2). Let R, S, T be
three tuples of c-variate polynomials over ZN [X]. Let fi, i ∈ [1, κ] be c-variate polynomials over ZN [X]. The
transitioned (R,S, T , {fi}κi=1)-computational span-uber-assumption3 for Pgen in group Gι, ι ∈ {1, 2}, states
that for any PPT adversary, Advspantrans

Pgen,R,S,T ,{fi},A(λ) = negl(λ), where

Advspantrans
Pgen,R,S,T ,{fi},A(λ) := Pr



(p, auxp)←$Pgen(1λ, 2);P1
T ← ê(P1

1,P
1
2);

r1, . . . , r`←$Z∗N ; x,x1, . . . ,x`←$ (Z∗N )c;

ck←
(

([%(x)]P1
1 + [

∑`
j=1 rj%(xj)]P

2
1)%∈R,

(
[σ(x)]P1

2

)
σ∈S ,P

1
T

)
:

A(p, ck) =
(
∆ ∈ Zκp1 ,

∑κ
i=1∆i([fi(x)]P1

1 + [
∑`
j=1 rjfi(xj)]P

2
1)
)
∧

∆ 6= 0


.

Here, ` = poly(λ) is the number of transitions conducted by using the Déjá Q framework; ` is tied to the
number of queries that A makes to the oracle.

Theorem 6. Let (p, auxp)← Pgen(1λ, 2). If

1. the subgroup hiding holds in G1 with respect to µ = {P2
1,P

1
2} and in G2 with respect to µ = {P1

1}, and
2. the extended adaptive parameter hiding holds in G1 with respect to R∪{fi}κi=1 and aux = {[σ(·)]P1

2}σ∈S
for any P1

2 ∈ G2,p1 ,

the (R,S, {fi}κi=1)-computational span-uber-assumption in G1 is implied by the transitioned (R,S, {fi}κi=1)-
computational span-uber-assumption from Definition 16.

Proof. Let A be a PPT adversary playing the span-uber-assumption game SUAAc,R,S,{fi}κi=1
(λ) (specified in

Fig. 4), and let Advfinal
A (λ) denote its advantage in the final game specified in the statement of the current

theorem. We define PPT adversaries B0, C0 and a family of PPT adversaries Bj for all j, 1 ≤ j ≤ `, such
that

Advsu
c,R,S,{fi}κi=1,A(λ) ≤Advsh

G1,∅,B0
(λ) + Advsh

G2,{P1
1},C0

(λ)+∑`
j=1 Adv

sh
G1,{P2

1,P
1
2},Bj

(λ)+Advfinal
A (λ) .

(20)

3 This assumption is based on assumption in Theorem 4.8 of [CM14].
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for all λ, from which the theorem follows. To do this, we construct B0, C0 and Bj for all j, 1 ≤ j ≤ `, such
that

Pr[SUAAc,R,S,{fi}κi=1
(λ)]− Pr[GA0 (λ)] ≤Advsh

G1,∅,B0
(λ) , (21)

Pr[GA0 (λ)]− Pr[GA1 (λ)] ≤Advsh
G2,{P1

1},C0
(λ) , (22)

Pr[GAj (λ)]− Pr[GAj,1(λ)] ≤Advsh
G1,{P2

1,P
1
2},Bj

(λ) , j ∈ [1, `] (23)

Pr[GAj,1(λ)]− Pr[GAj+1(λ)] =0 , // ext. adaptive parameter hiding (24)

Pr[GA` (λ)] ≤Advfinal
A (λ) , (25)

where the various games are depicted in Fig. 4. (We presented the games in a slightly compressed form since
it seems to us that it is easier to compare them when they fit to the same page.) In each game, we will
highlight the part of game that is changed compared to the previous one.

The game SUAAc,R,S,T ,{fi}(λ) is the original game of the span-uber-assumption. Next, in the game
GA0 (λ), all G1 elements are shifted to the setting in which they exist only in the subgroup G1,p1 , operating
over the original set of variables x; this goes unnoticed by the subgroup hiding in G1 with µ = ∅. More
precisely, to see that Eq. (21) holds, consider the adversary B0 in Fig. 5. If W←$G1 then the output of B0

is identical to that in SUAAc,R,S,T ,{fi}(λ). If instead W←$G1,p1 then the output of B0 is identical to that
of GA0 (λ).

In the game GA1 (λ), all G2 elements are shifted to a setting in which they exist only in the subgroup
G2,p1 ; this goes unnoticed by the subgroup hiding in group G2 with µ = {P1

1}. More precisely, to see that
Eq. (22) holds, consider the adversary C0 in Fig. 5. If W←$G2, then the output of C0 is identical to that in
GA0 (λ). If instead W←$G2,p1 , then the output of C0 is identical to that of GA1 (λ).

For j ≥ 1, compared to GAj (λ), in GAj,1(λ), a shadow copy of these elements is added into the subgroup
G1,p2 , which goes unnoticed by the subgroup hiding in G1 with µ = {P2

1,P
1
2}. More precisely, to see that

Eq. (23) holds, consider the adversary Bj in Fig. 5. If W = P1
1←$G1,p1 then

Vk ←[%k(x)]P1
1 + [

∑j
u=1 ru%k(xu)]P2

1 ,

A←
∑κ
i=1∆i([fi(x)]P1

1 + [
∑j
u=1 rufi(xu)]P2

1) ,

which is identical to the values in GAj (λ). If instead W←$G1, then W = P1
1 + [rj+1]P2

1 for uniformly
distributed P1

1 ∈ G1,p1 , for rj+1 ∈ Z∗N , and

Vk ←[%k(x)]P1
1 + [rj+1%k(x) +

∑j
u=1 ru%k(xu)]P2

1

A←
∑κ
i=1∆i([fi(x)]P1

1 + [(rj+1fi(x) +
∑j
u=1 rufi(xu))]P2

1) ,

which is identical to the values in GAj,1(λ).
After GAj,1(λ), we move on to GAj+1(λ). In the game GAj+1(λ), the shadow copy of [rj+1%k(x)]P2

1 is switched
to operate over a new set of variables xj+1. The output of this game is identical to the output of GAj,1(λ)

by the extended adaptive parameter hiding holding in G1 with respect to R∪ {fi}κi=1 and aux = {[σ(·)]P1
2}

for any σ ∈ S and P1
2 ∈ G2,p1 . More precisely, to see that Eq. (24) holds, consider the following. If we define

C = [
∑j
u=1 ru%k(xu)]P2

1, then C is independent from x and xj+1. We use the extended adaptive parameter
hiding property with respect to functions R∪ {fi}κi=1. The distributions

(∆,

κ∑
i=1

∆i([fi(x)]P1
1 + [rj+1fi(x) +

j∑
u=1

rufi(xu)]P2
1))

and (
∆′,

κ∑
i=1

∆′i([fi(x)]P1
1 +

j+1∑
u=1

rufi(xu))P2
1

)

36



SUAAc,R,S,T ,{fi}(λ)

(p, auxp)← Pgen(1λ, 2);P1 ←$G1;P2 ←$G2;x←$ (Z∗N )c;
for k ∈ [1, r] do Vk ← [%k(x)]P1; endfor ; for k ∈ [1, s] do Yk ← [σk(x)]P2; endfor
Z← ê(P1,P2); (∆,B)←$A(p,V,Y,Z);A←

∑κ
i=1∆i[fi(x)]P1;

if B = A ∧∆ 6= 0 then return 1; else return 0;fi

GA0 (λ)

(p, auxp)← Pgen(1λ, 2); P1
1 ←$G1,p1 ;P2 ←$G2;x←$ (Z∗N )c;

for k ∈ [1, r] do Vk ← [%k(x)]P
1
1 ; endfor ; for k ∈ [1, s] do Yk ← [σk(x)]P2; endfor

Z← ê(P1
1 ,P2); (∆,B)←$A(p,V,Y,Z);A←

∑κ
i=1∆i[fi(x)]P

1
1 ;

if B = A ∧∆ 6= 0 then return 1; else return 0;fi

GA1 (λ)

(p, auxp)← Pgen(1λ, 2);P1
1 ←$G1,p1 ; P

1
2 ←$G2,p1 ;x←$ (Z∗N )c;

for k ∈ [1, r] do Vk ← [%k(x)]P
1
1; endfor ; for k ∈ [1, s] do Yk ← [σk(x)]P

1
2 ; endfor

Z← ê(P1
1, P

1
2 ); (∆,B)←$A(p,V,Y,Z);A←

∑κ
i=1∆i[fi(x)]P

1
1;

if B = A ∧∆ 6= 0 then return 1; else return 0;fi ;

GAj (λ)

(p, auxp)← Pgen(1λ, 2);P1
1 ←$G1,p1 ; P

2
1 ←$G1,p2 ;P

1
2 ←$G2,p1 ;x←$ (Z∗N )c;

for u ∈ [1, j] do xu ←$ (Z∗N )c; ru ←$Z∗N ; endfor

for k ∈ [1, r] do Vk ← [%k(x)]P
1
1 + [

∑j
u=1 ru%k(xu)]P

2
1 ; endfor

for k ∈ [1, s] do Yk ← [σk(x)]P
1
2; endfor ;Z← ê(P1

1,P
1
2);

(∆,B)← A(p,V,Y,Z);A←
∑κ
i=1∆i([fi(x)]P

1
1 + [

∑j
u=1 rufi(xu)]P

2
1 );

if B = A ∧∆ 6= 0 then return 1; else return 0;fi ;

GAj,1(λ)

(p, auxp)← Pgen(1λ, 2),P1
1 ←$G1,p1 ,P

2
1 ←$G1,p2 ,P

1
2 ←$G2,p1 ;x←$ (Z∗N )c;

for u ∈ [1, j] do xu ←$ (Z∗N )c; ru ←$Z∗N ; endfor ; rj+1 ←$Z∗N ;

for k ∈ [1..r] do Vk ← [%k(x)]P
1
1 + [rj+1%k(x) +

∑j
u=1 ru%k(xu)]P

2
1; endfor

for k ∈ [1, s] do Yk ← [σk(x)]P
1
2; endfor ;Z← ê(P1

1,P
1
2);

(∆,B)← A(p,V,Y,Z);A←
∑κ
i=1∆i([fi(x)]P

1
1 + [rj+1fi(x) +

∑j
u=1 rufi(xu)]P

2
1);

if B = A ∧∆ 6= 0 then return 1; else return 0;fi ;

GAj+1(λ)

(p, auxp)← Pgen(1λ, 2);P1
1 ←$G1,p1 ,P

2
1 ←$G1,p2 ,P

1
2 ←$G2,p1 ;x←$ (Z∗N )c;

for t ∈ [1, j+1] do xt ←$ (Z∗N )c; rt ←$Z∗N ; endfor

for k ∈ [1..r] do Vk ← [%k(x)]P
1
1 + [

∑j + 1
u=1 ru%k(xu)]P

2
1; endfor ;

for k ∈ [1, s] do Yk ← [σk(x)]P
1
2; endfor ;Z← ê(P1

1,P
1
2);

(∆,B)←$A(p,V,Y,Z);A←
∑κ
i=1∆i([fi(x)]P

1
1 + [

∑j + 1
u=1 rufi(xu)]P

2
1);

if B = A ∧∆ 6= 0 then return 1; else return 0;fi ;

Fig. 4. Games in the proof of Theorem 6

are identical. The auxiliary information aux contains the elements {[σ(·)]P1
2}σ∈S and these elements do not

affect the above distribution as they are defined in different subgroup of G2 and GT .

We repeat the process of adding and re-randomizing the original set of variables into the subgroup G1,p2

polynomially many (say `) times to get Eq. (20).
Equation (25) follows by definition, as the R, S and {fi} values have now changed to the form specified

in the dual-system assumption. ut
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B0(p, ∅,W)

x←$ (Z∗N )c; for k ∈ [1..r] do Vk ← [%k(x)]W; endfor
for k ∈ [1..s] do Yk ← [σk(x)]P2; endfor ;Z← ê(W,P2);
A←

∑κ
i=1∆i[fi(x)]W;B←$A(p,V,Y,Z); return B = (∆,A);

C0(p, {P1
1},W)

x←$ (Z∗N )c; for k ∈ [1..r] do Vk ← [%k(x)]P
1
1; endfor

for k ∈ [1..s] do Yk ← [σk(x)]W; endfor ;Z← ê(P1
1,W);

A←
∑κ
i=1∆i[fi(x)]P

1
1;B←$A(p,V,Y,Z); return B = (∆,A);

Bj(p, {P2
1,P

1
2},W)

x,x1, . . . ,xj ,xj+1 ←$ (Z∗N )c; r1, . . . , rj ← Z∗N ;

for k ∈ [1..r] do Vk ← [%k(x)]W + [
∑j
t=1 rt%k(xt)]P

2
1; endfor

for k ∈ [1..s] do Yk ← [σk(x)]P
1
2; endfor ;Z← ê(W,P1

2);

A←
∑κ
i=1∆i[fi(x)]W + [

∑j
u=1 rufi(xu)]P

2
1;B←$A(p,V,Y,Z); return B = (∆,A);

Fig. 5. Adversaries B0, C0,Bj

Remark 3 (Tightness of the reduction). The papers [CM14] and [CMM16] present different reductions from
uber-assumptions to subgroup hiding. The newer reduction of [CMM16] requires adding one additional prime
to the factorization of N , but it achieves logarithmic — rather than linear — tightness. We chose not to
give the corresponding tight reduction proof, as it does not improve the efficiency of our scheme (the gain
in tightness means the use of smaller security parameter; however, this is offset by the use of a larger N);
one can clearly combine the techniques of [CMM16] with the current proof to obtain such reduction for
span-uber-assumptions. We leave it as an open question whether it is possible to have a reduction which
would decrease the number of queries to the oracle without adding another prime factor to N .

Theorem 6 states that the original (R,S, {fi}κi=1)-span-uber-assumption is equivalent to a span-uber-
assumption in different form in which adversary is given ([%(x)]P1

1 + [
∑`
j=1 rj%(xj)]P

2
1)%∈R, ([σ(x)]P1

2)σ∈S ,
and ê(P1

1,P
1
2) and asked to compute ∆ and

∑κ
i=1∆i([fi(x)]P1

1 +[
∑`
j=1 rjfi(xj)]P

2
1). Assume, for the sake of

simplicity, that P1
1 and x are public, so A can compute the G1,p1 component of this target, and all she needs

to compute is
∑κ
i=1∆i(Fi(x)+[

∑`
j=1 rjfi(xj)]P

2
1), where Fi(x) = [fi(x)]P1

1. Clearly, [S(x)]P1
2 and ê(P1

1,P
1
2)

provide no advantage, as they operate in different groups over a completely independent set of variables.
Next, in their reasoning, [CM14] and [CMM16] use the so-called bijection argument. Its core is the Lemma

that relates the linear independence of polynomials R with the invertibility of a matrix composed of the
adversary’s view. (See Lemma 4.4 [CM14].)

We explain the details for our case. In the (R,S, T , {fi}κi=1)-computational span-uber-assumption, the
adversary sees values with exponent of the form Y = rV , where V is the next matrix:

%1(x1) %2(x1) . . . %q(x1)
∑κ
i=1∆i

∑`
j=1 rjfi(x1)

%1(x2) %2(x2) . . . %q(x2)
∑κ
i=1∆i

∑`
j=1 rjfi(x2)

. . . . . . . . . . . . . . .

%1(x`) %2(x`) . . . %q(x`)
∑κ
i=1∆i

∑`
j=1 rjfi(x`)


According to Lemma 4.4 [CM14], V is invertible with all but negligible probability if the functions in R are
linearly independent and of maximum degree poly(λ) and ` = q + 1 for q = poly(λ).

Since r and Y = V r are both members of the set S containing all sets of size q + 1 over ZN , so
multiplication by V maps S to itself. As V is invertible, the map is invertible as well and is thus a permutation
over S. Sampling r uniformly by random and then multiplying by V thus yields a vector Y that is distributed
uniformly at random over ZN . When V is invertible, an adversary A thus has no advantage in distinguishing
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between Y and a uniformly random vector in S, as the distributions over the two are identical, and thus has
a negligible overall advantage in the new form of the uber-assumption.

By now, we have proven Theorem 4, which indicates conditions under which the uber-span-assumption
is implied by the subgroup hiding.
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