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Abstract. Oblivious Transfer (OT) is a fundamental primitive in cryptography,
supporting protocols such as Multi-Party Computation and Private Set Intersection
(PSI), that are used in applications like contact discovery, remote diagnosis and
contact tracing. Due to its fundamental nature, it is utterly important that its
execution is secure even if arbitrarily composed with other instances of the same, or
other protocols. This property can be guaranteed by proving its security under the
Universal Composability model. Herein, a 3-round Random Oblivious Transfer (ROT)
protocol is proposed, which achieves high computational efficiency, in the Random
Oracle Model. The security of the protocol is based on the Ring Learning With
Errors assumption (for which no quantum solver is known). ROT is the basis for OT
extensions and, thus, achieves wide applicability, without the overhead of compiling
ROTs from OTs. Finally, the protocol is implemented in a server-class Intel processor
and four application-class ARM processors, all with different architectures. The usage
of vector instructions provides on average a 40% speedup. The implementation shows
that our proposal is at least one order of magnitude faster than the state-of-the-art,
and is suitable for a wide range of applications in embedded systems, IoT, desktop,
and servers. From a memory footprint perspective, there is a small increase (16%)
when compared to the state-of-the-art. This increase is marginal and should not
prevent the usage of the proposed protocol in a multitude of devices. In sum, the
proposal achieves up to 37k ROTs/s in an Intel server-class processor and up to
5k ROTs/s in an ARM application-class processor. A PSI application, using the
proposed ROT, is up to 6.6 times faster than related art.
Keywords: Oblivious Transfer, Embedded Systems, Private Set Intersection, Universal
Composability, Post-Quantum Cryptography

1 Introduction
Oblivious Transfer (OT) is one of the most fundamental primitives in cryptography. A
typical OT protocol involves two parties: a sender, which inputs two messages (m0,m1),
and a receiver, which inputs a bit b ∈ {0, 1}. At the end, the receiver outputs mb. In
terms of security, it is required that the sender learns nothing about the bit b and that
the receiver learns nothing about m1−b. In this work, we study a variant of OT, which
is called Random OT (ROT). In this variant, neither the sender nor the receiver have
any inputs. Instead, the protocol should output (m0,m1) to the sender and (b,mb) to the
receiver, where (m0,m1) are messages chosen uniformly at random and b is a uniform bit.

It is well-known that OT is complete for secure Two-Party Computation (2PC) [Yao82]
and Multiparty Computation (MPC) [GMW87]. However, the number of OTs needed to
implement these protocols scales with the size of the circuit, which turns their efficiency
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completely prohibitive for real-world applications. To overcome this problem, Ishai et
al. [IKNP03] showed how to efficiently extend a small number of base OTs into a large
number of OT correlations using only cheap symmetric-key operations. It turns out that, to
use these extension techniques, we need to use ROT instances as base OTs in the malicious
setting [OOS17]. Since compiling ROTs from OTs will introduce a significant time overhead,
it is crucial to design efficient ROT directly from basic hardness assumptions.

While ROTs are the basis for the implementation of OT extensions, most related art
has focused on the design of standard OTs [PVW08, CO15, HL17]. Also, the most efficient
implementations of base OTs are based on number theoretic assumptions [CO15, HL17].
The implementation of OT protocols from these assumptions has led to practical solutions
for this problem. While these could be adapted for the ROT setting, number theoretic
assumptions are known to be insecure in the presence of quantum adversaries. This raises
the question of whether we are still able to efficiently and securely realize 2PC and MPC
in a post-quantum world.

The main goal of this article is to design and implement an efficient ROT protocol,
based on security assumptions that are thought to be hard to break even in a post-quantum
setting. By focusing on the ROT setting instead of the standard OT definition, we design a
protocol with a reduced number of exchanged messages and better computational efficiency.
Moreover, the protocol can be plugged directly in OT extensions without having the time
overhead of compiling ROTs from OTs, which is required in the malicious setting.

We demonstrate the improvements and applicability of the proposed protocol by
implementing it in multiple processor architectures, and benchmarking them against the
current state-of-the-art. Finally, we integrate the ROT protocol as part of a state-of-the-art
Private Set Intersection (PSI) protocol.

Applications of ROT OT is a ubiquitous primitive in cryptography. Its applications
range from 2PC/MPC to zero-knowledge proof systems [PSSW09, HOSS18, KMO90].
Recently, a long line of works has used ROT to design efficient PSI protocols in a variety
of settings [PRTY19, PRTY20a]. PSI is a protocol executed between two parties: each
party inputs a list of elements, and receives as output a list of the elements that were
simultaneously present in the lists of both parties, without learning anything else about the
other party’s list. Designing a quantum-safe PSI protocol is fundamental to future-proof
its many applications, which include:

Contact discovery [DRRT18]: Most social-networking applications involve an initializa-
tion step, in which the list of contacts where the application is installed is compared with
a list of users in a centralised server, to identify which of the user’s contacts already use
the service. PSI may be used to improve both the privacy of the new user, as well as of
the users of the social-networking application.
Remote diagnosis [BPSW07]: A system may gather information about a problem and
send it to a centralised server for diagnosis. The information gathered by the system
may be sensitive. When a computer system is considered, this information might include
passwords or company-owned data; in the medical industry, this might include a patient’s
health records. The company running the diagnosis might not want to risk disclosing its
proprietary diagnostic programs. PSI may be used in this settings to guarantee the privacy
of both parties.
Contact tracing [ABC+20]: Two devices may track their users’ location. At a certain
point, the two users may wish to know if they have been in the same place, but do not
wish to disclose anything more about where they have been. This use-case may be useful
to trace the contacts of a COVID-infected person. PSI may be used to protect the privacy
of the involved parties.
Among others [ISMG20, IKN+19].
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These applications may have different computational requirements. On the one hand,
contact discovery and contact tracing are typically executed on smartphones with limited
computational power and power constraints. In this case, it is important to minimize
the number of exchanged messages and consumed memory. On the other hand, remote
diagnoses may be performed by high-performance computing platforms on very large sets.
In this case, latency should be minimized.

1.1 Contributions

ROT protocol from RLWE We start by designing a ROT protocol from the Ring Learning
with Errors (RLWE) assumption [LPR10, LPR13] in the Random Oracle Model (ROM).
The protocol runs in three rounds and we prove its security in the Universal Composability
(UC) model [Can01] in the presence of malicious adversaries.

Our new protocol is inspired by the recent work of [BDGM19], which presents an OT
protocol from the hardness of the RLWE assumption that runs in four rounds. Since
our goal is to design a ROT protocol, we can actually reduce the number of rounds
of the protocol to three while improving the efficiency of the protocol. In contrast,
adapting [BDGM19] to a ROT with a black-box approach would introduce three further
messages (cf. Section 4). Having a lower number of exchanged messages significantly
reduces the communication latency and consumed energy, which is of particular importance
for applications executing on constrained computing platforms.

ROT Protocol Implementation The ROT protocol was implemented in C++ with state-
of-the-art libraries in order to achieve the best performance [Qua, BT]. We provide
an analysis of the bottlenecks in the implementation as well as insights on how these
were improved. The computational requirements, the performance, and the memory
consumption of the new protocol are experimentally evaluated in an Intel server-class
processor and in three ARM application-class processors. The results show that our
proposal is at least one order of magnitude faster than the state-of-the-art, and is suitable
for a wide range of applications in embedded systems, IoT, desktop, and servers.

Practical PSI use-case In order to understand the impact of the proposed protocol
in a real-world application, we integrated the proposed ROT in an open-source PSI
framework [PRTY20b]. Similarly to the protocol implementation, we provide an analysis
for the server-class processor encompassing memory requirements and performance.

2 Preliminaries
As usual, N denotes the set of natural numbers, Z denotes the set of integers, Zq = Z/qZ,
for any q ∈ N, and Z[X] (resp. Zq[X]) denotes the ring of polynomials on variable X with
coefficients in Z (resp. Zq). If A is an algorithm, we denote by y ← A(x) the output of the
experiment of running A on input x. If S is a set, we denote by x←$S the experiment of
choosing uniformly at random an element x from S. If χ is a probabilistic distribution over
some set S, x←$χ denotes the experiment of sampling an element x from S according to
χ. If x and y are two binary strings, we denote by x|y their concatenation and by x⊕ y
their bit-wise XOR. If X and Y are two probability distributions, X ≈ Y means that they
are computationally indistinguishable. A negligible function negl(n) is a function such
that negl(n) < 1/poly(n) for every polynomial poly(n) and sufficiently large n. By a PPT
algorithm we mean a probabilistic polynomial-time algorithm.
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2.1 UC security and ideal functionalities
The UC framework, introduced by Canetti [Can01], ensures that the security of a protocol
does not depend on other executions of the same or other protocols. Let π be a protocol
where n parties and an adversary A are involved. We denote the output of the environment
E at the end of the real-world execution of π with adversary A by EXECπ,A,E . The output
of E at the end of the ideal-world execution of a functionality F with adversary Sim is
denoted by IDEALF,Sim,E . The following definition introduces the notion of a protocol
emulating (in a secure way) some ideal functionality.

Definition 1. We say that a protocol π UC-realizes F if, for every PPT adversary A, there
is a PPT simulator Sim, such that for all PPT environments E , IDEALF,Sim,E ≈ EXECπ,A,E ,
where F is an ideal functionality.

In this work, we consider static malicious adversaries which are adversaries that may
deviate in any way from the protocol, but the corruption of each party happens before the
beginning of the protocol.

Random oracle ideal functionality We work in the so-called FRO-hybrid model in order
to model random oracles in the UC framework.1 The random oracle ideal functionality
FRO is presented below. Let D be the range of the random oracle and L be a list, which is
initially empty. The value sid represents the session ID and the parties involved in the
protocol. Notwithstanding, we will often not explicitly specify sid (but sid is implicit) as
argument of a query (e.g. write H(q) meaning H(sid|q)) to avoid clutter in the notation.

FRO functionality

Upon receiving a query (sid|q) from a party P or from an adversary
A, FRO proceeds as follows:

• If there is a pair (q, h) ∈ L it returns (sid|h);

• Else, it chooses h←$D, stores the pair (q, h) ∈ L and returns
(sid|h).

ROT ideal functionality We now present the ideal functionality for ROT.

FROT functionality

• Upon receiving a message (sid, start) from both R and S, FROT
samples M0,M1←$ {0, 1}κ (where κ is the security parameter) and
b←$ {0, 1}. It sends (sid,M0,M1) to S and (sid, b,Mb) to R.

2.2 Ring Learning With Errors
The RLWE problem [LPR10] is the ring version of the Learning with Errors (LWE)
problem [Reg05] and it is conjectured to be hard for both classical and quantum computers.
Before presenting the problem, we define the RLWE distribution. Let q ≥ 2, Rq =
Zq[X]/〈f(X)〉 where f(X) is the nth-cyclotomic polynomial, and χ be the error distribution
(which is usually a discrete Gaussian [LPR10]) and which satisfies Pr[‖p‖ > β : p←$χ] ≤
negl(n) for some β ∈ N, where ‖p‖ = ‖p‖∞ = maxi{pi} denotes the largest coefficient of
the polynomial p = p0 + p1X + . . . pn−1X

n−1 ∈ Rq. For s ∈ Rq, the RLWE distribution
As,χ is obtained by choosing a←$Rq, e←$χ, and outputting (a, as+ e mod q).

1Recall that UC-secure OT is impossible in the plain model [CF01].
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Definition 2 (Ring Learning with Errors). Let n, q, Rq, χ and As,χ be as above. The
decision version of the RLWE problem is the following: for s←$Rq, distinguish the case
when it is given a polynomial number of samples from As,χ or when it is given uniformly
chosen at random values from Rq ×Rq.

The RLWE problem is proven to be as hard as quantumly solving a worst-case lattice
problem (the approximate Shortest Vector Problem (SVP) on ideal lattices) which is
considered to be hard for both classical and quantum computers [LPR10]. The main
advantages of using the RLWE instead of the LWE assumption are the smaller key-size
and the ability to use the Number Theoretic Transform (NTT) to enhance the speed of the
operations. Here, we use the Hermite Normal Form of the RLWE problem, usually called
HNF-RLWE, in which the secret s is sampled from the error distribution χ, instead of
being chosen uniformly at random from the ring Rq. The HNF-RLWE reduces to RLWE,
and so this version of the problem is also assumed to be hard [ACPS09].

Now, we address the reconciliation mechanisms of the Key Exchange (KE) of [DXL12].
We define the signal function Sig and the extraction function Mod2 as in [DXL12]. Both
these functions are used in the reconciliation mechanism of the KE protocol and allow the
involved parties to compute a shared key. Let σ0, σ1 : Zq → {0, 1} such that

σ0(a) =
{

0, a ∈
[
−b q4c, b

q
4c
]

1, otherwise
and σ1(a) =

{
0, a ∈

[
−b q4 + 1c, b q4 + 1c

]
1, otherwise

for a ∈ Zq. When a =
∑n−1
i=0 aiX

i ∈ Rq, then σ0(a) =
∑n−1
i=0 σ0(ai)Xi and σ1(a) =∑n−1

i=0 σ1(ai)Xi. The signal function Sig : Rq → R2 is defined as Sig(a) = σb(a) where
b←$ {0, 1}. The extraction function Mod2 : Rq ×R2 → R2 is defined as

Mod2(a, σ) =
(
a+ σ

q − 1
2 mod q

)
mod 2.

3 ROT protocol from RLWE
In this section, we present our ROT protocol which can be seen as a tweaked version of
the protocol of [BDGM19] (1-out-of-2 OT), albeit with improved round complexity and
without requiring a symmetric encryption scheme. Then, we show that the protocol is
UC-secure under the RLWE assumption in the ROM.

It is well-known that it is impossible to achieve (maliciously) UC-secure OT in the plain
model [CF01]. Hence, we use the ROM in our security proofs. We note that our security
proof holds on the hardness of RLWE, which is believed to be secure against quantum
adversaries. However, UC security using the ROM does not consider an adversary that can
query the random oracle in superposition – usually called the Quantum Random Oracle
Model (QROM).2 Since our application scenarios are OT extensions and PSI, both also
not proven secure for QROM, we leave as an open problem how to extend our proof.

Intuitively, the protocol works by partially running two KEs in parallel. First, the
receiver samples one authentic KE message for which it knows the secrets, and a fake
(but indistinguishable) one which it is forced to make uniformly random using the ROM.
Second, the sender samples its secrets and KE message, and runs the two reconciliations,
resulting in two keys which it then uses to hide the two ROT messages. Third, the receiver
runs the reconciliation for the authentic exchange and recovers one of the ROT messages.

2While there are examples of schemes that are secure in the ROM but insecure in the QROM [BDF+11],
we stress that such schemes are specially crafted so that a quantum adversary can attack them.
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Sender S Receiver R

sR, eR, e
′
R ←$χ

c←$ {0, 1}
t0, t1 ←$ {0, 1}κ

pcR ← msR + 2eR mod q

r←$ {0, 1}κ

sS, eS, e
′
S ←$χ h← H1(r)

pS ← msS + 2eS mod q p0
R ← p1

R − h mod q (if c=1)

(sid, p0
R, r,H1(t0),H1(t1))

h′ ← H1(r)
p1

R ← p0
R + h′ mod q

for i ∈ {0, 1} :

kiS ← sSp
i
R + 2e′S mod q

σi ← Sig(kiS)

skiS ← Mod2(kiS, σi)

Ki ← H2(skiS)
a←$ {0, 1}
u←$ {0, 1}κ

(sid, pS,Ka,K1−a, σ0, σ1, u)

kR ← sRpS + 2e′R mod q

skR ← Mod2(kR, σc)
Kc ← H2(skR)
b = 0 if Ka = Kc

b = 1 if K1−a = Kc

b = c if K1−a 6= Kc ∧Ka 6= Kc

(sid, t0, t1)

Abort if t0, t1 don’t match H1(t0),H1(t1)

output: output:
(M0 = H2(skaS + ta + u), (b,Mb = H2(skR + tc + u))
M1 = H2(sk1−a

S + t1−a + u))

Figure 1: 3-round ROT protocol based on the RLWE assumption.

In the following setting, let χ and q be as in Definition 2 and κ be the security parameter.
Let H1 : {0, 1}κ → Rq, H2 : R2 → {0, 1}κ be hash functions modeled as Random Oracles
(ROs). Let m←$Rq be a public uniformly chosen ring element which can be obtained by
querying a RO in some predefined input. Let Mod2 and Sig be the algorithms defined in
Section 2.2. The protocol is presented in Fig. 1, where the parties (sender S and receiver R)
have no input written on their input tape. Then, S outputs two uniform random messages
(M0,M1), and R outputs a uniform random bit and the corresponding message (b,Mb).

Theorem 1. The protocol presented in Figure 1 is correct.

Proof. Let (M0,M1) be the output of the sender and (b,M ′) be the output of the receiver.
To prove that the protocol is correct we have to show that Mb = M ′. By the correctness
of [DXL12], skcS = skR except with negligible probability.

Now if a = c, then skaS = skR and thus Ka = Kc. In this case, b is set to 0,
M0 = H2(skaS + ta + u) and M ′ = H2(skR + tc + u). So, we conclude that Mb = M ′.

Analogously, if a 6= c then 1 − a = c and sk1−a
S = skR and thus K1−a = Kc. In this

case, b is set to 1, M1 = H2(sk1−a
S + t1−a + u) and M ′ = H2(skR + tc + u). Again, we

conclude that Mb = M ′.

Intuitively, the computational security of the protocol can be derived as follows.
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A corrupt sender cannot learn the bit b, because while it holds two KE messages
from the receiver (p0

R and p1
R), only one of these was generated as an RLWE sample (pcR).

The other message (p1−c
R ) is coerced to be a uniform random element by summing or

subtracting a random value obtained from the RO, and distinguishing the two yields the
bit b but means breaking the RLWE assumption.

A corrupt receiver cannot learn both messages, as computing each message requires
computing a shared key with the sender for p0

R and p1
R. Again, only pcR was generated

as an RLWE sample, while p1−c
R is uniformly random. Therefore, only the shared key

corresponding to pcR may be computed and output, otherwise the adversary needs to break
the RLWE assumption and find the secrets for p1−c

R .
To prove UC security against one of the parties, we need to build a simulator that is

able to program the output of the protocol while not being noticed by the adversary.
For a corrupted sender, the simulator can program H1 in such a way that it is able

to recover both keys skiS obtained by the sender (this can be done by programming H1
to output an RLWE sample, which is indistinguishable from uniform output). Since the
simulator now has both keys, it can extract the value a from the malicious sender (in case
a is not fully specified by the transcript, then the simulator sets a←$ {0, 1} which goes
unnoticed to the adversary because of the third condition, b = c if K1−a 6= Kc ∧Ka 6= Kc,
in the real protocol). In the end, it can program H2 to output the right messages it received
from the ideal functionality (M0,M1).

For a corrupted receiver, to enforce the adversary to output the random message M ,
the simulator programs the oracle H2 to output M when queried on the correct input.
And, to program the random bit b output by the receiver, the sender simply needs to
extract the bit c sampled by the receiver. So, to extract the bit c from the receiver, the
simulator checks if the receiver queries H1 on sk0

S or sk1
S. When this happens, the simulator

can program the RO to set the bit a in such a way that it specifies b to be the same bit
output by the ideal functionality.

Theorem 2. The protocol UC-realizes the FROT functionality against static malicious
adversaries, given that the HNF-RLWE assumption holds.

Proof. In the proof of UC security, we analyze the four possible cases for the execution of
the ROT two-party protocol with an adversary present, by describing the step-by-step
procedure of the simulator. The simulator runs the adversary as a black-box, such that the
execution in the ideal-world mimics the real-world execution to the view of the external
environment, in order to attain security.

Security against a corrupted sender. We first describe the simulator Sim for a corrupted
sender. Let A be the adversary corrupting the sender.

1. Sim starts by receiving (M0,M1) from FROT. It answers queries to the ROs as an FRO
would, unless explicitly specified otherwise.

2. It sets c←$ {0, 1}, t0, t1←$ {0, 1}κ. It computes p0
R ← ms0

R + 2e0
R and p1

R ← ms1
R + 2e1

R,
two RLWE samples. It chooses r←$ {0, 1}κ and programs H1 such that H1(r) = p1

R− p0
R.

It sends (sid, p0
R, r,H1(t0),H1(t1)) to A.

3. Upon receiving (sid, pS,Ka,K1−a, σ0, σ1, u). It recovers the shared keys by computing
skiR ← Mod2(siRpS + 2e′R

i
, σi) for i ∈ {0, 1} and extracts a. To extract a, the Sim checks

if H2(sk0
R) = Ka and H2(sk1

R) = K1−a (in which case a = 0), or if H2(sk1
R) = Ka and

H2(sk0
R) = K1−a (in which case a = 1). Else, it sets a←$ {0, 1}.

4. The simulator sends (sid, t0, t1) as the honest receiver would. Finally, the simulator
programs H2 to output M0 on input skaS + ta + u and M1 on input sk1−a

S + t1−a + u,
since it has sk0

S, sk
1
S, a.
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We now argue that the real execution of the protocol is indistinguishable from simulated
one. The proof follows from the indistinguishability of the following hybrid distributions.

Hybrid H0. The real-world execution of the protocol. In particular, in this hybrid, the
simulator behaves exactly as the honest receiver would do.

Hybrid H1. Identical to H0, except that the simulator aborts if the adversary had already
queried H1 on r. Then, it programs H1 to output p1

R − p0
R on r, with p0

R ← ms0
R + 2e0

R and
p1

R ← ms1
R + 2e1

R (as it is described in Step 2).

Hybrid H2. Identical to H1, except that the simulator first extracts a (as described in
step 3), and then programs H2 to output M0 on input skaS + ta + u, and M1 on input
sk1−a

S + t1−a + u.

Claim 1. Hybrids H0, H1 are indistinguishable given that the RLWE assumption holds.

Proof. First, since r←$ {0, 1}κ, the probability that the simulator aborts as the adversary
queries H1 on r, before seeing r, is exponentially small in κ.

Then, the differences lie only in the values p0
R and p1

R ← p0
R + H1(r). In H0, pcR is an

RLWE sample and p1−c
R is a uniform random sample, given c. In the hybrid H1, p0

R, p
1
R

are both RLWE samples. Clearly, distinguishing both hybrids is breaking the RLWE
assumption, by distinguishing an RLWE sample from a uniform random value.

Claim 2. Hybrids H1, H2 are indistinguishable.

Proof. First, M0,M1, output in H2, are uniform random values, which come from FROT,
and, as such, they are indistinguishable from ideal outputs of FRO, output in H1. All
other queries are the same in both executions as they are answered by the simulator like
an ideal functionality FRO.

Then, the case where the simulator is not able to extract a happens only when
H2(sk0

R) 6= Ka or H2(sk1
R) 6= K1−a, and when H2(sk1

R) 6= Ka or H2(sk0
R) 6= K1−a. In this

case, the simulator sets a←$ {0, 1}. For this, the third condition stated in the real protocol,
b = c if K1−a 6= Kc ∧Ka 6= Kc, guarantees that no information about a is leaked to the
adversary. Hence, the executions remain indistinguishable for both worlds.

Finally, note that hybrid H2 describes the simulated protocol. So, the simulator
successfully simulates the real-world adversary and the execution trace is indistinguishable
from a real-world executionH0, assuming the hardness of RLWE, and except with negligible
probability in κ. This concludes the proof of security against a corrupted sender.

Security against a corrupted receiver. Then, we describe the simulator Sim for a cor-
rupted receiver. Let A be the adversary corrupting the receiver.

1. Sim first receives (b,M) from FROT. It answers queries to the ROs as an FRO would,
unless explicitly specified otherwise.

2. It waits until receiving the first message (sid, p0
R, r,H1(t0),H1(t1)), and samples a←$ {0, 1},

u←$ {0, 1}κ, Ki←$ {0, 1}κ and computes pS, skiS, σi honestly (for i ∈ {0, 1}). It sends
(sid, pS,Ka,K1−a, σ0, σ1, u) to A.

3. It programs H2 when queried on sk0
S or sk1

S (if queried on both, aborts) to answer Ka

when b = 0, and K1−a otherwise. And, it programs H2 when queried on sk0
S + t0 + u or

sk1
S + t1 + u (if queried on both, aborts) to output M .3

3Sim knows t0, t1 from observing H1. If the values were not observed, Sim answers H2 as an ideal RO.
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4. As in the honest protocol, it checks the hashes of t0, t1 and aborts if they do not match
the ones sent in the first message of the protocol.

Again, we argue the indistinguishability of the real and simulated traces by showing
the sequential indistinguishability of the hybrid distributions defined by these executions.

Hybrid H3. The real-world execution of the protocol. In particular, in this hybrid, the
simulator behaves exactly as the honest sender would do.

Hybrid H4. Identical to H3, but programming H2 when queried on sk0
S or sk1

S to answer
with Ka when b = 0, and K1−a when b = 1. Aborting if both sk0

S and sk1
S are queried.

Hybrid H5. Identical to H4, but programming H2 when queried on sk0
S + t0 + u or

sk1
S + t1 + u to output M . Aborting if both sk0

S + t0 + u and sk1
S + t1 + u are queried.

Claim 3. Hybrids H3, H4 are indistinguishable given that the RLWE assumption holds.

Proof. The oracle H2 is programmed to reply to sk0
S or sk1

S with Ka or K1−a, depending
on the input b from FROT, in order to force this b to be output by A. Since A does not
know any information about b (it comes from FROT), this is indistinguishable.

Then, there is the possibility of the simulator aborting if both sk0
S and sk1

S are queried on
the oracle. If A could get any information about sk1−c

S from only public information of the
KE (pS, σ0, σ1), then it would break its security [DXL12] since it provides a distinguisher
for the KE shared keys. So, A knowing both skR = skcS and sk1−c

S would mean that it
knew both kcR (= kR = sRpS + 2e′R) from which it reconciles skR, and k1−c

R (= s∗RpS + 2e∗R)
allowing it to reconcile also sk1−c

S . While A may compute kcR from sR, e
′
R (acting honestly),

to know k1−c
R it would need to find s∗R, e∗R such that p1−c

R = ms∗R + 2e∗R. However, p1−c
R is

uniformly random (due to summing or subtracting h), and so, computing s∗R, e∗R (which
may not even exist) is equivalent to breaking the RLWE assumption, thus the execution is
indistinguishable from H3, up to a negligible probability in κ.

Mind that the case where K1−a 6= Kc∧Ka 6= Kc never happens when the sender is hon-
est, thus the simulator will always answer Ka or K1−a when queried on skR, independently
of it being sk0

S or sk1
S. If none is asked, then the execution is also indistinguishable.

Claim 4. Hybrids H4, H5 are indistinguishable given that the RLWE assumption holds.

Proof. First, programming the oracle H2 when queried on sk0
S + t0 + u or sk1

S + t1 + u to
output M is indistinguishable from the execution of H4. Since the reply M (which comes
from FROT) from H5 is a random string of appropriate length, it is indistinguishable from
some uniform random value output by the RO from H4.

Then there is the case that the simulator aborts if both sk0
S + t0 + u and sk1

S + t1 + u
are queried to the oracle H2. As in Claim 3, A cannot know both sk0

S and sk1
S, given that

the RLWE assumption holds, up to negligible probability in κ. So, the case that here the
simulator aborts without the real-world adversary also aborting is also negligible in κ.

Certainly, H3 and H5 are indistinguishable, up to negligible probability in κ, given the
hardness of the RLWE assumption. And, since H3 represents the real-world execution of
the protocol, and H5 represents the corresponding ideal-world simulation, this ends our
proof for the security against a corrupted receiver.
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Security for the remaining cases. To conclude, we describe the simulation for the case,
when neither the sender nor the receiver are corrupted by the adversary, and when both
the sender and receiver are corrupted.

When no party is corrupted (i.e. the adversary is not corrupting any party), the
simulator has no input from the ideal functionality FROT, as the adversary being simulated
is not actually playing a party in the real-world protocol. So, the simulator generates and
honestly executes the protocol for dummy outputs (M0,M1) for the sender and (b,Mb)
for the receiver, where b←$ {0, 1} and M0,M1←$ {0, 1}κ, and forwards the messages of
honestly simulated protocol to the adversary (again, which just observes the transcript).
Now, the transcript has three messages, which the simulator generates, and which must be
shown to be indistinguishable from a real-world execution of the protocol.

1. (sid, p0
R, r,H1(t0),H1(t1)), has three uniform random values (r,H1(t0),H1(t1)), which

are statistically indistinguishable from any dummy uniform random values that the
simulator generates. As for p0

R, it is either an RLWE sample or a uniform random value
(from which p1

R could be computed), and, from the hardness of the RLWE assumption,
it is indistinguishable from any dummy RLWE sample or dummy uniform random value
generated by the simulator.

2. (sid, pS,Ka,K1−a, σ0, σ1, u), has three random values (Ka,K1−a, u) which are statis-
tically indistinguishable from dummy uniform random values from the simulation.
Regarding (pS, σ0, σ1), from the hardness of the RLWE [DXL12], these do not leak in-
formation, since only p0

R or p1
R may be known (the adversary cannot even know whether

it knows p0
R or p1

R), and so, these values are indistinguishable from the simulated ones.

3. (sid, t0, t1) has two uniform random values t0, t1, such that H1(t0),H1(t1) match the first
message. Thus, these are also statistical indistinguishable from the simulation.

Accordingly, the transcript generated by the simulator is indistinguishable from the
transcript generated by the parties during the real-world execution of the protocol, and
thus the adversary cannot distinguish the executions and tell which world it is in.

Finally, when both parties are corrupted, the simulator simply runs the adversary
internally which generates the messages for both parties.

4 Analysis and comparison with the state-of-the-art
In this section, the complexity of the proposed scheme is compared with the state-of-the-art.

The scheme in [BDGM19] is similar to the one presented here, but supports the
standard 1-out-of-2 OT definition. Similarly to the proposed scheme, it is supported on
the idea of running two key establishment protocols in parallel, such that the receiver only
knows the secret to determine one of the keys. In order to achieve UC security, a proof
of timely decryption [BDD+17] is required which introduces another message, as well as
further calls to the random oracle.

[PVW08] proposed a generic framework for OT, proved UC-secure in the Common
Reference String (CRS) model. While it can be instantiated with quantum-safe security as-
sumptions, this framework is based on dual-mode public-key encryption. When considering
post-quantum security, this is only known to be achieved under the hardness of the LWE
assumption. Therefore, it leads to large parameters that make the scheme impractical.
In contrast, it is one of the most efficient UC-secure OTs of the state-of-the-art when
instantiated with Elliptic Curve Cryptography (ECC). But, its reliance on ECC makes it
insecure in a post-quantum setting. It operates as follows. The receiver uses the CRS to
generate a pair of group elements. These elements are combined by the sender with the
CRS in two ways to generate two different public-keys that are used for the encryption



P. Branco, L. Fiolhais, M. Goulão, P. Martins, P. Mateus and L. Sousa 11

Sender S Receiver R

r0, r1 ←$ {0, 1}∗

H(r0),H(r1)

M0,M1 ←$ {0, 1}∗ OT((M0,M1),b) b←$ {0, 1}

c←$ {0, 1} c

(r0, r1)

Validate H(r0),H(r1)
M ′0 ← rc ⊕Mc b′ ← c⊕ b
M ′1 ← r1−c ⊕M1−c Mb′ ← rb ⊕Mb

Figure 2: Generic construction of ROT from OT, using a black-box approach.

of M0 and M1. Due to the way the scheme is conceived, the receiver only knows the
secret-key associated with one of the public-keys, which is used to recover Mb.

Fig. 2 depicts a protocol wherein a ROT is designed supported on a standard OT,
following a black-box approach. The security of the resulting protocol depends on the com-
posability of the considered standard OT. In particular, since both [PVW08] and [BDGM19]
are proven secure in the UC model for the standard 1-out-of-2 OT definition, this transfor-
mation is valid. The ROT is executed as follows. The receiver generates two uniformly
random strings, and sends their corresponding commitments to the sender. Then, the
base OT is executed for random messages generated by the sender and a random bit b
generated by the receiver. Afterwards, the sender generates a random bit c that is sent to
the receiver, and the receiver reveals the random strings generated at the beginning. The
sender outputs the XOR of the messages it generated and the random strings produced by
the receiver. The ordering of the messages is swapped in regards to the base OT if c = 1.
Similarly, the receiver XORs its received message with the matching string it generated at
the beginning, and assigns it the label b⊕ c. Since both the messages and their labels are
the result of applying XOR operations to values generated at random by the two parties,
it is ensured that their distribution cannot be skewed by either of them alone.

A different line of research was followed in [MR19, CO15, CSW20]. Both the protocols
in [MR19] and [CSW20] achieve weaker notions of ROT security, tailored for specific OT
extensions. The former allows for a malicious sender to choose the two output strings,
while a malicious receiver could choose one of the output strings. The latter allows
for selective failure attacks by the sender and relaxes the requirements of UC security.
While [MR19, CSW20] prove their applicability to specific OT extensions, one cannot,
in general, replace ROTs, which have a much wider applicability, with [MR19, CSW20].
As an example, the work of [PRTY19] explicitly uses ROT in its design. Replacing ROT
by [MR19, CSW20] would require new security proofs. [CO15] targets the traditional OT
setting, but fails to meet the security requirements of UC security. While this allows it to
achieve a good performance, since simulators cannot extract a corrupt receiver’s choice bit,
it is not suitable for many applications, such as OT extensions. Due to their weaker security
definitions, the transformation in Fig. 2 is not applicable to [MR19, CO15, CSW20].

A comparison between the computation and communication complexity as well as
the security assumptions of the proposed scheme and [PVW08, BDGM19, MR19, CO15,
CSW20] can be found in Table 1. Furthermore, the performance for the transformation
in Fig. 2 has been considered in the values in parenthesis for [PVW08, BDGM19]. The
table includes the number of times the NTT, Gaussian sampling, Random Oracle and
symmetric-key encryption functionalities are called. Notice that both the direct and
the inverse NTT are associated with the same label (NTT). Similarly, both symmetric-
key encryption and decryption are associated with EncDecryption. The complexity



12 ROTed: Random Oblivious Transfer for embedded devices

of [PVW08, MR19, CO15, CSW20] is evaluated by the number of EC point multiplications
required, as well as the number of times the parties need to encode or decode messages as
EC group elements.

First, by targeting ROTs instead of OTs, the proposed scheme achieves its functionality
without the aforementioned proof of timely decryption. This, in turn, reduces overall
complexity when compared with [BDGM19] as it removes entirely the need for symmetric-
key encryption. In addition, it removes the need for the last message of the protocol
in [BDGM19], and significantly reduces the number of messages when compared with
converting [BDGM19, PVW08] to ROTs using a black-box approach. This is particularly
important for applications with high-latency, where the communication delay will signifi-
cantly outweigh the computational delay. These improvements are achieved without the
need to change the security assumptions, as in [MR19, CO15, CSW20], which expands its
applicability to protocols like [PRTY19].

Second, there has been evidence that RLWE schemes compare favourably to ECC
performance-wise [dRVV15]. Indeed, operations over lattices are more likely to benefit
from Single Instruction, Multiple Data (SIMD) technologies and multiple instruction issue
execution, widely available in modern processors, since they are more regular than usual
operations for ECC. These technologies are capable of significantly improving computational
efficiency. This improvement in performance comes at the cost of relatively larger messages.
The messages of the RLWE schemes included in Table 1 are roughly log q times larger
than those of the ECC schemes, taking as reference the bit-length β of the outputted
messages. Nevertheless, the protocol herein proposed reduces the gap in communication
complexity relative to [BDGM19]. Future work will focus on closing this gap further.

5 Implementation details
In this section, we describe the techniques used to implement and optimize the performance
of the proposed protocol. It should be noted the techniques described here are in general
applicable to any protocol supported on the RLWE assumption. In particular, they can
be used to accelerate other protocols, like [BDGM19].

The implementation was designed by identifying the operations that were limiting the
attained performance, so that the number of times they were instantiated is minimized or
that the implementation of the operations themselves be optimized. First, it was identified
that Gaussian sampling was a major bottleneck in protocols relying on RLWE. We have
used the NFLlib [Qua] library for this sampling. To improve performance, we assume that
there is a shared region of memory, or a page if virtual memory is available, that the kernel
or some trusted execution environment periodically populates with random data. In this
way, the protocol only needs to read data off memory and is unburdened with generating
random numbers.

Another bottleneck was related to calls to ROs. ROs were implemented by firstly hashing
the inputs, and secondly by using the output of the hash as a seed to a pseudo-random
generator. The pseudo-random generator was implemented as a Hash-DRBG [BK12].
This generator was then used to produce the output of the RO. In the case of sampling
a polynomial, rejection sampling was used to ensure all coefficients were smaller than
the modulus q. This process requires extensive calls to an underlying hash function. We
decided to use BLAKE3 [BT] because it is currently the fastest cryptographic hashing
algorithm available. Notice that this technique is an adaptation of that employed by widely
used protocols such as [KJR16, Appendix B.2]. No fundamental security vulnerability has
been found when deploying ROs in this manner.

The final performance bottleneck in the protocol is in the polynomial domain conversion.
The NTT is ubiquitous among RLWE implementations. We are using a state-of-the-art
implementation in NFLlib [Qua], which supports vector instructions. While the original



P. Branco, L. Fiolhais, M. Goulão, P. Martins, P. Mateus and L. Sousa 13

Table 1: Theoretical comparison between the proposed scheme and related art. Values
in parenthesis refer to the operations/messages added by applying the transformation
from Fig. 2 to [BDGM19, PVW08]. Communication cost was estimated based on the
following factors. β corresponds to the cyclotomic polynomial degree underpinning RLWE
schemes, to log p for ECs defined in Fp underpinning ECC schemes, and to the bit-length
of the messages outputted by the OT protocol. No point compression is considered (i.e.
exchanged EC points comprise 2β bits). κ is a security parameter. Small constants (such
as the transmission of c in Fig. 2) were ignored.

Scheme Computation Cost (ROT
transform)

Communication Cost
(ROT transform)

Security (ROT
transform)

This work Sender
4× NTT
3× Gaussian Sampling
5× RO
Receiver
3× NTT
3× Gaussian Sampling
2× RO

3 messages
∼ 2β log q + 2β + 8κ
bits

ROT
RLWE
ROM
UC

[BDGM19] Sender
4× NTT
3× Gaussian Sampling
5× RO
4× EncDecryption
Receiver
3× NTT
3× Gaussian Sampling
5(+2)× RO
4× EncDecryption

4(+3) messages
∼ 2β log q + 6β + 9κ
(+2β + 2κ) bits

(R)OT
RLWE
ROM
UC

[PVW08] – ECC Sender
8× Point Mult.
2× Message Encoding
Receiver
3× Point Mult.
1× Message Decoding
(2× RO)

2(+3) messages
∼ 12β
(+2β + 2κ) bits

(R)OT
ECC
CRS model
(ROM)
UC

[MR19] – ECC Sender
2× Point Mult.
Receiver
2× Point Mult.
1× Point Sampling

2 messages
∼ 6β bits

Endemic OT
ECC
UC

[CO15] – ECC Sender
3× Point Mult.
2× RO
2× EncDecryption
Receiver
2× Point Mult.
1× RO
1× EncDecryption

3 messages
∼ 6β bits

OT
ECC
Standalone

[CSW20] – ECC Sender
3× Point Mult.
5× RO
Receiver
2× Point Mult.
4× RO

3 messages
∼ 4β + 3κ bits

Weak ROT
ECC
Weak UC

library only supports x86 architectures, it has been herein extended to include support for
ARM architectures with NEON SIMD extensions. Besides the usage of NFLlib [Qua] to
speedup computations in the NTT domain, we also avoid transformations in and out of the
domain. E.g. we transmit polynomials only in the NTT domain, e.g., p0

R and pS . Further,
we consider the outputs of the ROs (H1 and H2) to be already in the NTT domain.
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6 Experimental results

Prior to integrating the proposed ROT protocol in a PSI framework, the underlying ROT
protocol and its sibling OT protocol from [BDGM19] were benchmarked and optimized.

The performance of the proposed implementation of the RLWE ROT and OT protocols
is evaluated and compared with related art across several computing architectures, giving
insight on their relative scalability. The chosen architectures are four application class
ARM machines — Cortex-A7 @ 900MHz, Cortex-A53 @ 1.4GHz, Cortex-A72 @ 1.5GHz,
and Apple’s M1 @ 3.2GHz — and a server class x86_64 machine — Intel i9-10980XE
@ 3GHz. The ARM architectures were selected as they overlap with most embedded
consumer electronic devices, e.g. on smartwatches and smartphones. The Apple chip was
chosen as it is a very close approximation of the architecture found in iPhones and iPads.

The A7 and A53 are in-order (InO) architectures, while the A57 and the M1 are
out-of-order (OoO) architectures. These four devices also differ in the wideness of the issue
window. The A7 is a partial dual-issue architecture, the A53 is a dual-issue architecture,
and the A72 is a triple-issue architecture. While it is known that the M1 device features
two types of cores, its issue window architecture was not unveiled (four high power efficient
cores and four high performance cores). The results shown herein for this device are
running on the high-performance cores. All ARM architectures used in this analysis
support NEON vector instructions, and are running in 32-bit mode, with the exception
of the M1 device which is running in 64-bit mode. The server class x86_64 platform
was selected to verify the maximum performance of the protocol when using a platform
with High Performance Computing (HPC) capabilities (e.g., AVX512, and AESNI). The
selected x86_64 platform is a 64-bit OoO architecture. The heterogeneity of the devices
selected also provides insight into how the vector width impacts the speedup. All ARM
devices used support NEON instructions which are 128 bits wide. While, the x86_64
supports vectors 128 bits (SSE4), 256 bits (AVX2), and 512 bits (AVX512) wide. We
look to ascertain what is the maximum achievable performance when given a particular
point in the power-performance curve, for ROTs and OTs, in a user application scenario
by benchmarking multiple implementations in representative devices.

The RLWE ROT and OT implementations are programmed in C++ and use a modified
version of NFLlib [Qua]4 in order to support NEON’s and AVX512’s intrinsics. The
proposed OT implementation is compared with state-of-art implementations, namely the
OT protocol proposed in [PVW08], which uses OpenSSL as a backend for the elliptic curve
arithmetic using the curve NISTP256; [MR19], which also uses NISTP256, supported on
libOTe [Rin]; and [CO15], which uses the Twisted Edwards curve described in [BDL+11].
Since [CSW20] has a similar performance to [CO15] (cf. [CSW20, Table 2]), herein, we take
the experimental results of [CO15] to be representative of [CSW20] as well. Furthermore,
the implementations provided in [Rin] and [CO15] do not support non-x86 architectures.
Thus, [MR19, CO15] are not analyzed on ARM devices.

Each program was compiled with GCC 10.1.0 on the x86_64 platform, with GCC 8.3.0
on the A7, A53, and A72 ARM platforms, and with AppleClang 12.0.0 on the M1 platform.
In both instances the flags -O3, -march=native, -mtune=native and -funroll-loops
were used. The testing methodology executes 1k ROTs or OTs 1k times with 100 runs to
warm-up the caches in all systems. The parameters used for the RLWE implementation are
N = 512, q = 13313. The hash used for the ROT and OT implementations is BLAKE3 [BT]
with vector instructions. The sender and receiver are always executed in a single process
and in a single thread, and there is no communication latency. To benchmark, we fix the
clock frequency of the architecture and pin the thread to a single core.

4The code used in this section can be found on https://github.com/FutureTPM/ROTed.

https://github.com/FutureTPM/ROTed
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Figure 3: Speedup for the proposed im-
plementation of [BDGM19] and SotA im-
plementation [PVW08] in all ARM de-
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for [PVW08] is used as the baseline.
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vice, for the proposed implementation
of [BDGM19], and SotA [PVW08, MR19,
CO15]. The result for [PVW08] is used
as the baseline.

6.1 OT and ROT
Table 2 shows the number of clock cycles (CLK) as well as the time required to execute one
OT, and the number of OTs which can be processed in a second for the x86_64 and ARM
systems. It should be noted protocols attaining the 1-out-of-2 standard OT as well as
Endemic OT in both the UC and standalone models are considered. Figure 3 and Figure 4
show the speedups obtained for each architecture with and without vector instructions.
For the ARM systems the implementation from [PVW08] in the ARM A7 architecture is
used as the baseline. Similarly, in the x86 system the implementation from [PVW08] is
used as the baseline.

The equivalent tables and figures for ROT are Table 3, Fig. 5, and Fig. 6, respectively.
Only protocols attaining the same ROT definition as the protocol proposed herein are
considered. The transformation described in Fig. 2 was applied to [BDGM19, PVW08] so
that they would achieve this security definition.

Figs. 3 and 7 highlight the differences in scalability between the EC-based arithmetic
of [PVW08] and the proposed implementation techniques for RLWE-based OTs and ROTs
across a wide range of ARM devices. The slowdown in the state-of-the-art implementation
from [PVW08] stems from the large number of point multiplications. Profiling this imple-
mentation shows that almost 50% of the program is spent performing point multiplications.
Indeed, EC arithmetic is inherently sequential. In contrast, RLWE-based cryptosystems
are highly amenable to parallelism, and benefit both from the architectural developments
that allow for the issue of multiple instructions and from the use of SIMD.

The difference in the ARM architecture backends provides the most speedup to the
RLWE implementations. The A72 device, with a OoO backend and wide triple-issue, is 3x
and 2x faster than the InO architectures present in the A7 and A53, respectively. The
usage of vector instructions provides a modest speedup of 1.30 on ARM (NEON extensions
with 128 bits). Apple’s M1 outperforms all other ARM devices with a minimum speedup
of 3. Even though the M1 and the A72 share the same type of execution backend, there are
significant architectural differences between the two. M1’s backend is able to issue more
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instructions in a single clock cycle and to have more in-flight instructions than the A72.
Similarly to the other ARM devices, the usage of NEON’s vector instructions provides
a smaller speedup when compared to improving the execution backend. The speedups
obtained from using vector instruction are around 30% whereas the change of the execution
backend provides speedups larger than 100%. This suggests that the usage of an OoO
execution backend provides a greater speedup than the addition of wider vectors.

Figs. 4 and 6 provide a more detailed comparison between the performance of the
proposed implementation techniques for RLWE-based OTs and ROTs and the state-of-the-
art in a x86 device. They also allow for a deeper analysis of the impact of vectorization.
The main difference between the vector extensions to the x86 Instruction Set Architecture
(ISA) is their bit width. The AVX2 ISA supports 256-bit vectors, while the SSE4 ISA
supports 128-bit vectors. The difference in speedup between the AVX2 and the SSE4
implementations is 12%, suggesting, similarly to the ARM platforms, that the usage of
an OoO execution backend provides a greater speedup than the addition of wider vectors.
This conclusion also goes inline with the described bottlenecks in the previous subsection.
Among the bottlenecks referred in Section 5, NTT is the one that least impacts performance.
The RLWE AVX512 implementation, which employs the widest available vector unit with
512 bits, shows a slowdown when compared with the AVX2 implementation. This is
because in some cases we are not able to fill the vector, thus we need to use a smaller
vector size or use the serial implementation. Therefore, length checks had to be added in
the NTT loop in order to call the correct functions, leading to an increased number of
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Table 2: Performance evaluation of [BDGM19] using the proposed implementation tech-
niques, and state-of-the-art (SotA) implementations [PVW08, MR19, CO15].

ARM Cortex-A7 @ 900MHz Security CLK (k) Time (µs) OTs/s
SotA [PVW08] OT/UC 18226.8 20252 50

RLWE OT (Serial) OT/UC 835.47 928.3 1078
RLWE OT (NEON) OT/UC 669.33 743.7 1345

ARM Cortex-A53 @ 1.4GHz
SotA [PVW08] OT/UC 12826.8 9162 110

RLWE OT (Serial) OT/UC 575.82 411.3 2432
RLWE OT (NEON) OT/UC 442.68 316.2 3163

ARM Cortex-A72 @ 1.5GHz
SotA [PVW08] OT/UC 7368 4912 204

RLWE OT (Serial) OT/UC 368.4 245.6 4072
RLWE OT (NEON) OT/UC 97.15 198.1 5048
Apple M1 @ 3.2GHz

SotA [PVW08] OT/UC 1405.1 439.1 2278
RLWE OT (Serial) OT/UC 163.2 51 19608

RLWE OT (NEON) OT/UC 128.3 40.1 24938
Intel i9-10980XE @ 3GHz

SotA [PVW08] OT/UC 1278.6 426.2 2347
SotA [MR19] End.OT/UC 5214 1738 576
SotA [CO15] OT/Stand. 229.8 76.6 13055

RLWE OT (Serial) OT/UC 150.6 50.2 19921
RLWE OT (SSE4) OT/UC 95.7 31.9 31348
RLWE OT (AVX2) OT/UC 95.4 31.8 31447

RLWE OT (AVX512) OT/UC 101.7 33.9 29499

missed branch predictions. Even though the NTT is not a major bottleneck, it remains a
hot loop. The additional branches in the hot loop have a significant misprediction rate
which cause the slowdown.

The previous discussion shows that the proposed RLWE implementation is more
portable across devices than related art. In fact, the proposed RLWE-based implementa-
tions outperform state-of-the-art implementations across all devices in all the aforemen-
tioned figures.

The RLWE implementation for OT uses 180.4KiB, a similar amount of memory to
the [PVW08] implementation, which uses 156.5KiB. Therefore, the RLWE implementation
uses 16% (23.9KiB) more memory than the state-of-the-art implementation. The size
of the polynomials and the auxiliary data required to perform its arithmetic are major
contributors to the memory increase. This is aligned with previous results showing that,
while RLWE achieves lower latency and seems resistant to quantum computing, it requires
more memory consumption [FMS20]. Nevertheless, this difference in memory is negligible
in most of today’s devices total memory. In contrast, the Endemic OT of [MR19] uses
13.1KiB. The memory difference for the RLWE implementation is steeper, 1277% (167.3
KiB), when compared with the state-of-the-art implementation in [MR19]. Converting
an Endemic OT to a ROT would require adding further communications rounds, using a
transform similar in spirit but more complicated than the one in Fig. 2. This suggests
it might be possible to reduce memory consumption at the cost of introducing further
communication rounds, which might be necessary for IoT devices with restrictive memory
requirements. Finally, this memory consumption analysis is similar to both the ROT and
OT protocols.

A speedup comparison between the proposed ROT and the OT scheme from [BDGM19],
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Table 3: ROT from Fig. 1 implementation results for all systems.

ARM Cortex-A7 @ 900MHz CLK (k) Time (µs) ROTs/s
SotA [PVW08] ROTted 18258 20287 50

[BDGM19] ROTted (Serial) 843 936.6 1068
[BDGM19] ROTted (NEON) 666 739.7 1352

RLWE ROT (Serial) 829.08 921.2 1086
RLWE ROT (NEON) 644.94 716.6 1396

ARM Cortex-A53 @ 1.4GHz
SotA [PVW08] ROTted 12864.6 9189 109

[BDGM19] ROTted (Serial) 589.3 420.9 2376
[BDGM19] ROTted (NEON) 450 321.4 3112

RLWE ROT (Serial) 574.98 410.7 2435
RLWE ROT (NEON) 429.52 306.8 3260

ARM Cortex-A72 @ 1.5GHz
SotA [PVW08] ROTted 7378.5 4919 204

[BDGM19] ROTted (Serial) 374.6 249.7 4005
[BDGM19] ROTted (NEON) 299.4 199.6 5011

RLWE ROT (Serial) 362.7 241.8 4136
RLWE ROT (NEON) 286.5 191 5236
Apple M1 @ 3.2GHz

SotA [PVW08] ROTted 1407.7 439.9 2274
[BDGM19] ROTted (Serial) 164.8 51.5 19418

[BDGM19] ROTted (NEON) 129.6 40.5 24692
RLWE ROT (Serial) 154.6 48.3 20704

RLWE ROT (NEON) 120 37.5 26667
Intel i9-10980XE @ 3GHz
SotA [PVW08] ROTted 1310.7 436.9 2289

[BDGM19] ROTted (Serial) 151.5 50.5 19802
[BDGM19] ROTted (SSE4) 97.2 32.4 30865
[BDGM19] ROTted (AVX2) 96.3 32.1 31153

[BDGM19] ROTted (AVX512) 99.6 33.2 30121
RLWE ROT (Serial) 147 49 20409
RLWE ROT (SSE4) 91.2 30.4 32895
RLWE ROT (AVX2) 81.6 27.2 36765

RLWE ROT (AVX512) 90.3 30.1 33223

for all ARM devices and using the same optimization techniques described in section 5, is
included in Figure 7. The ROT protocol, as expected from the theoretical construction
and observed in Table 2 and Table 3, is faster than the OT protocol. In this case, since
we are not measuring the latency between parties, the difference in execution times is
due to the OT requiring symmetric encryption, which the ROT does not. If latency were
accounted for, the difference would be even greater, as the OT requires the transmission of
one more message than the ROT.

6.2 PSI with the proposed ROTs
The proposed ROT was integrated in the PaXos PSI framework [PRTY20a] to measure
the ROT impact in an application scenario. Since the framework is for x86_64, results are
only provided for that platform. The parameters used in these tests are fieldSize = 231
and hashSize = 2048, corresponding to the bit-length of the code-words of the underlying
OT extension and the cardinality of the sets being intersected, respectively. We follow
the same testing methodology as in the previous subsection, the receiver and the sender
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Figure 7: Speedup for the proposed ROT and [BDGM19] in all ARM devices. The ARM
A7 architecture result for [BDGM19] is used as the baseline.

Table 4: PSI time for the x86 server architecture.

Intel i9-10980XE @ 3GHz Time
(ms)

SotA [PVW08] ROTted 932
[BDGM19] ROTted (Serial) 328
[BDGM19] ROTted (AVX2) 304

[BDGM19] ROTted (AVX512) 318
RLWE ROT (Serial) 166
RLWE ROT (AVX2) 142

RLWE ROT (AVX512) 151

Table 5: PSI peak memory
for the x86_64 system.

Peak
Memory
(MiB)

Sender 15.5
Receiver 11.8

are running in the same machine. The only exception is that the PaXos PSI framework
communicates solely through sockets, thus the latency of setting up a TCP connection
and its protocol latency are also measured. The results in Table 4 show the time taken to
perform one PSI, Figure 8 shows the speedup between the different ROT implementations,
and Table 5 shows the peak memory usage for the sender and the receiver.

Similarly to the conclusions from the ROT result analysis, the AVX2 implementation is
the fastest and the AVX512 implementation shows a slowdown. The vector implementations
show the same speedup when compared to the serial implementation. The proposed ROT
use in a PSI provides a 6.6x speedup when compared with the ROTted version of [PVW08]
and a 2.1x speedup with the ROTted version of the sibling OT [BDGM19]. The speedup
gains are significative, however, it should be noted that the ROT transformation of the
original protocols contributed to the slowdowns. The ROT transformation adds 3 messages
to the protocol, 4 hashes, 3 random samples, and 4 XORs. In the current testing setup,
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Figure 8: PSI speedup results for the x86_64 system.
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message latency is not considered. Both the sender and receiver run in the same core
and in the same machine. Therefore, the cost of the extra messages is reflected in these
tests as additional system calls in order to provide Inter Process Communication (IPC)
between the sender and the receiver. As such, the speedup gains in the PSI using the
proposed ROT result from the compounded effect of all the optimizations performed and
the reduced number of messages.

The memory requirements by the PaXos PSI framework far exceed those of the proposed
ROT. This demand is rooted in the pseudo-random number generator (PRNG) and the
linear code used, neither having any relation to the ROT used. Therefore, the addition of
the proposed ROT to PSI protocols can be done with no associated cost of improving the
computing platform, while providing better performance and achieving greater security.

7 Conclusions
This paper proposes a UC-secure ROT protocol from the RLWE assumption in the ROM.
Not only does RLWE allow for the exploitation of efficient arithmetic supported on the
ring structure, but it was also shown that by considering ROT instead of the traditional
OT, further performance improvements are achieved. Moreover, ROT can be used to
support OT extensions with wide applicability.

Performance-wise, it is shown, through extensive experimental evaluation, that the
proposed ROT compares favourably to the state-of-the-art OTs, based on RLWE and ECC.
The arithmetic associated with lattices is more prone to parallelization than ECC, and the
usage of vector instructions provides on average a 40% speedup for the proposed protocol.
Further, from the experimental results, the proposed protocol is amenable to a high level
of instruction level parallelism, as the usage of an OoO backend provides a minimum of 2x
speedup resulting in up to 37k ROTs/s for the Intel server-class processor and up to 5k
ROTs/s in an ARM application-class processor. Therefore, our proposal is at least one
order of magnitude faster than the state-of-the-art, and is suitable for a wide range of
architectures in embedded systems, IoT, desktops and servers. Finally, it is shown that
the proposed protocol is of practical interest by integrating it in a PSI framework with
applications in contact discovery, remote diagnosis, contact tracing, among others. The
usage of the proposed ROT in a PSI application is up to 6 times faster than related art.

It is clear from the extensive performance analysis provided that there is still more room
for performance improvements. Moreover, the devices used in the experimental analysis
omit ultra-low power devices, many of which do not possess OoO execution backends,
and would benefit from the usage of Domain Specific Accelerators (DSAs). Therefore,
future work will focus on designing and implementing the proposed DSAs and performing
a thorough performance analysis of such devices, e.g., ARM Cortex-M and RISC-V.
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