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Abstract

We propose OmniLytics, a blockchain-based se-
cure data trading marketplace for machine learn-
ing applications. Utilizing OmniLytics, many dis-
tributed data owners can contribute their private
data to collectively train a ML model requested by
some model owners, and get compensated for data
contribution. OmnilLytics enables such model
training while simultaneously providing 1) model
security against curious data owners; 2) data se-
curity against curious model and data owners; 3)
resilience to malicious data owners who provide
faulty results to poison model training; and 4) re-
silience to malicious model owner who intents to
evade the payment. OmnilLytics is implemented
as a smart contract on the Ethereum blockchain
to guarantee the atomicity of payment. In Omni-
Lytics, a model owner publishes encrypted initial
model on the contract, over which the participat-
ing data owners compute gradients using their
private data, and securely aggregate the gradi-
ents through the contract. Finally, the contract
reimburses the data owners, and the model owner
decrypts the aggregated model update. We im-
plement a working prototype of OmniLytics on
Ethereum, and perform extensive experiments to
measure its gas cost and execution time under var-
ious parameter combinations, demonstrating its
high computation and cost efficiency and strong
practicality.
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1. Introduction

With the rapid development of sensing, processing, and stor-
age capabilities of computing devices (e.g., smartphones and
IoT devices), the collection and storage of data has been in-
creasingly convenient and cost-effective (Cornet & Holden,
2018; Sheng et al., 2013). On the other hand, crowdsourc-
ing big data has been shown to be extremely effective in
improving the performance of various tasks in, e.g., health-
care, smart city, and recommender systems (Al Nuaimi
et al., 2015; Hashem et al., 2016; Raghupathi & Raghupathi,
2014; Wang et al., 2018; Yin et al., 2013). The abundant
supply of data stored locally at individual nodes and the
huge demands from data-intensive applications incentivise
the development of a data market, on which data owners
can easily trade the rights of using their data with interested
consumers for monetary returns.

Conventionally, a data market is often implemented as a cen-
tralized service platform that collects data from data owners
and sells raw or processed data to the consumers (Krish-
namachari et al., 2018; MiSura & Zagar, 2016; Niu et al.,
2018a). This approach leaves the platform as a single point
of security vulnerability for the data market, and corrup-
tion on the platform servers may lead to severe security
issues including leakage of private data, faulty computa-
tion results, and manipulation of data price. A number of
recent works have proposed to leverage technologies of de-
centralized systems like blockchains and smart contracts
to tackle the weakness of the centralized implementation
(see, e.g., (Duan et al., 2019; Koutsos et al., 2020; ()zyilmaz
et al., 2018; Ramachandran et al., 2018)).

To further improve data security, more advanced crypto-
graphic techniques like homomorphic and functional en-
cryption have been utilized to generate analytics over the
raw data for consumers to purchase without revealing the
data themselves (Duan et al., 2019; Koutsos et al., 2020; Niu
et al., 2018a;b). However, we note that these approaches are
limited in the following three aspects: 1) data owners up-
load the encrypted raw data on the blockchain, which leads
to permanent loss of the data ownership to any adversarial
party with the decryption key; 2) the available analytics are
limited to simple linear combinations; 3) they still require a
(trusted or untrusted) third party other than the data owner
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and consumer acting like a broker or service provider to
maintain the utility and security of trading session.

In this paper, our goal is to build a secure, robust, and broker-
free data market for general machine learning applications.
Particularly, a model owner would like to crowdsource train-
ing data from interested data owners through the data market
for improving the quality of its ML models (e.g., a deep neu-
ral network for image classification). Moreover, we enforce
the following privacy and security requirements:

* Model privacy: the ML model is only known at the model
owner and not revealed to other parties;

* Data privacy: model owner learns nothing about data
owners’ private other than the learnt model,

* Byzantine resistance: 1) robust to malicious data owners
who intentionally provide incorrect data, and 2) robust to
malicious model owner who tries to evade paying for the
model training.

We propose a novel blockchain-based data market named
OmnilLytics, which is the first implementation of an
Ethereum smart contract (ETH) that simultaneously satis-
fies all the above security requirements. During a trading
session, the model owner deploys a smart contract with the
encrypted initial ML model, then interested data owners
retrieve the published model, compute locally the gradients
using their private data, and upload the gradients back to
the contract. During this process, the data owners hide their
local gradients with pair-wise masks generated according to
the secure aggregation protocol (Bonawitz et al., 2017) to
further protect data leakage. Moreover, OmnilLytics imple-
ments the multi-Krum algorithm (Blanchard et al., 2017a;b)
to remove faulty computation results from malicious data
owners. Finally, the model owner decrypts the aggregated
gradients from many data owners with its private key, and
uses the results to update its model. The training reward is
provided by the model owner when deploying the contract,
and is automatically distributed to honest data owners by the
contract, preventing malicious model owners from evading
payments after obtaining the trained model.

We implement an Ethereum smart contract SecGraCollect
and the off-chain application of the proposed OmnilLytics
data market. We conduct extensive experiments to measure
the gas cost and the execution time of SecGraCollect un-
der various combinations of system parameters. Within the
considered parameter range, all interaction processes be-
tween the data owner and the contract are completed within
0.8s, and all interaction processes between the model owner
and the contract are completed within 18s. This demon-
strates the high efficiency and feasibility of the proposed
OmniLytics data market.

Related works

Secure data markets. While traditional data markets are
implemented as an intermediate service platform that helps
to enforce desirable rules about data privacy, data owner-
ship, and data usage, this requires full trust on the platform
and leaves the platform the single point of failure in main-
taining these properties. To resolve this issue, implement-
ing the data market service over decentralized systems like
blockchains has been recently proposed (Banerjee & Ruj,
2018; Duan et al., 2019; Koutsos et al., 2020; Ozyilmaz
et al., 2018; Ramachandran et al., 2018). In these implemen-
tations, encrypted data are uploaded to the blockchain, on
which a smart contract with funding deposit from the con-
sumer is executed automatically, guaranteeing the atomicity
of the payment. To further enhance the data privacy and ro-
bustness to malicious behaviors, more advanced techniques
like homomorphic encryption, functional encryption, and
differential privacy have been utilized to generate simple
analytics over the raw data for sale without revealing the in-
dividual data points (Duan et al., 2019; Koutsos et al., 2020;
Niu et al., 2018b), and zero-knowledge proofs and trusted
hardware like Intel SGX have been used to guarantee the
correctness of the computations (Duan et al., 2019; Koutsos
et al., 2020; Niu et al., 2018a).

Federated learning on blockchains. Federated learning
(FL) (McMabhan et al., 2017) has recently been proposed as
a privacy-preserving framework for distributed ML where a
set of clients, instead directly uploading their private data
to the cloud, upload the gradients computed from the data,
which are aggregated at a cloud server to update a global
model. In addition, techniques of masking local gradients
like secure aggregation (Bell et al., 2020; Bonawitz et al.,
2017; So et al., 2021) and differential privacy (Geyer et al.,
2017; Wei et al., 2020) have been developed for FL to further
protect potential data leakage.

Recently, it has been proposed to execute FL tasks on
blockchains to combat server corruption and facilitate a
more fair and transparent reward distribution (see, e.g., (Kim
etal., 2019; Liu et al., 2020; Ma et al., 2020; Shayan et al.,
2020; Zhao et al., 2020)). In (Zhao et al., 2020), a FL
on blockchain system is designed for the smart appliance
manufactures to learn a ML model from customers’ data.
Differential privacy techniques are applied on the clients’
extracted features to protect data privacy from the computed
gradients that are uploaded on the blockchain. A reputation-
based incentive mechanism is designed to reward contribut-
ing customers and punish malicious ones. However, one
weakness of the design in (Zhao et al., 2020) is that the ini-
tial model of the manufacturer is revealed to public, which
may not be desirable for the model owner, especially for an
iterative training session where the initial model for an itera-
tion is learnt using customers’ data from previous iterations.
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Also, (Zhao et al., 2020) does not provide a blockchain im-
plementation of their design. In (Liu et al., 2020), a P2P
payment blockchain protocol is designed to compute and
distribute the profit in a FL session, based on evaluations
of Shapley values. The protocol in (Liu et al., 2020) is fun-
damentally different from the proposed OmniLytics data
market as FL and reward distribution are performed on two
separate systems in (Liu et al., 2020).

2. System description

We consider a network of many compute nodes (e.g., mo-
bile devices like smartphones, or institutional entities like
hospitals, banks, and companies), each of which has some
local data storage and processing power. Some node would
like to learn a machine learning model (e.g., to predict the
preference of a customer on a particular product). We call
such node the model owner, denoted by MO. However, as
the MO may not have sufficient amount of data locally to
train a good model, it intends to crowdsource data from
other nodes to improve the model quality. In return, the MO
compensates the nodes who contribute to the model training
with their local private data. We name these nodes as data
owners, denoted by DOs.

To facilitate a secure and faithful data trading process as
described above, we aim to build a secure data market that
meets the following service and security requirements:

* Symmetric sessions. Any node in the network can freely
choose to be an MO and initialize a data trading session
for local model training. Any node is also free to join
any on-going data trading session to contribute its data to
MO’s model training.

* Model and data privacy. The MO would not like to
directly reveal its model (before and after training) to the
DOs, as the model itself may leak confidential information
about the MO (e.g., the model might be pre-trained using
MOQO’s private data). On the other hand, a DO would
not like to reveal its private data directly to the MO and
other DOs, as that would lead to permanent relinquishing
control over their data.

* Byzantine resistance. The designed data market should
provide robustness to malicious behaviors of Byzantine
MO and DOs. Specifically, it should protect the quality
of the trained model from being undermined by mali-
cious DOs who might arbitrarily deviate from the training
protocol. Also, it should enforce that honest DOs who
faithfully follow the protocol get properly compensated
for their contributions to the model training.

3. Secure federated machine learning

To protect the data privacy of the DOs, we adopt the privacy-
preserving distributed machine learning framework named
federated learning (McMahan et al., 2017), where gradients
computed from private data instead of the data itself are
exchanged between participating nodes to collaboratively
train a global model. Additionally, we employ secure multi-
party computing techniques to further protect the privacy of
the MO’s model and the DOs’ data, and the security of the
training process.

3.1. Federated learning framework

A federated learning (FL) instance consists of a central
server and a group of N clients. Each client k has locally
a dataset S, = {(x1,v1),.--, (®rr,, Yns,, )} of My, data
samples. Each data sample (x;,y;) consists of an input
vector z; € R? and its label y; € RP for some input di-
mension d and output dimension p. The goal of FL is to
train a global model W (e.g., a neural network) to minimize
the objective function L(W') = Efcvzl pirLy(W). Here
Ly(W) = 31 SMe L1g; — il |3 is the empirical mean-
square loss at client k, and g; is the predicted label of x;

using W. The weight p;, £ %

The server collaborates with the clients to train the global
model using gradient descent over multiple iterations. To
start with, the server broadcasts an initial model W (® to
all clients. In each iteration ¢ of the training process, each
client & uses the global model received from the last iteration
W (:=1) and its local private data Sy to compute the gradient
GV = 2LeWCD) o d sends it to the server. The server
k oW (t—1)

aggregates the received gradients from the IV clients and
updates the model for some learning rate 7 as follows

N
W(t) — W(tfl) _ nzkal(:_l). (1)
k=1

We consider training a deep neural network W. In what fol-
lows, we describe the security mechanisms we adopt to pro-
tect the privacy of the model parameters and the clients’ pri-
vate data, for a single iteration of federated learning (hence
we will omit all iteration indices).

3.2. Privacy-preserving techniques for FL
3.2.1. GLOBAL MODEL ENCRYPTION

For a feed-forward neural network W of L layers, as de-
picted in Figure 1, we represent the model parameters in
layer I € {1,..., L} as a matrix W) € R™*"-1_ where
n; denotes the number of neurons in layer [. To protect the
privacy of model parameters, as done in (Yang et al., 2020),
the server encrypts the model parameters W into W before
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Layer L
Output
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Figure 1. Illustration of a feed-forward neural network with L lay-

ers and ReLU activation function.

distributing them to the clients such that

0 — RO ow®,
RO ow® 4+ R,

1<i<L-—1,

-1 2

where o denotes the Hadamard product. Here for each layer
1 <1 < L — 1, the multiplicative masks are generated as

Y, =1,
RY = bﬁ“”,2§l§L—L 3)
U§L”7 I=1L
for some positive noise vector () = [r%l) r£f)]
R, randomly sampled at the server. For the last

layer L of W, for some additive noise vectors (%) =
[T )T € RYE

) yT'ngp,
) =

€ R and v = [y1,...
both generated randomly at the server, we have RE;

Yi Tz(a)-

The server publishes the encrypted global model W =

—~ L
{W®},_, and the noise vector (@ for the clients to per-
form local model training.

3.2.2. LOCAL GRADIENT COMPUTATION

After receiving the encrypted global model w =

~ L
{W®},_, and the noise vector (%), each client k com-
putes the gradient over the encrypted model using its local
data in Sy, following the forward and backward approach.

During the forward propagation, for each data sample

(x,y) € Sk, the output vector of layer I, g} =
~(0) ~O1T
vy I

yeeosYny | € R™ is computed as
€T, l = Oa

g = CReLUWDgU-Dy 1<I<L-1, &
whg=1), l=1L.

After obtaining {g} %~ ,, the client performs backward prop-
agation to compute the gradient of W subject to the MSE

loss, i.e., L(ﬁv/; (z,y)) =1y — y||§ We know from

Theorem 2 of (Yang et al., 2020) that for each layer [ =
., L, the partial gradient with respect to W (") satisfies

ILW;(z,y) 1 _OL(W;(z,y))
OW O RO OW®

+ ,’,,T ) _ Uﬁ(l)’ (5)

T (x.y)

where ﬁ is the n; X n;_; matrix whose (i, j)-th entry is

—m»and r = yor(®). Here, for o = I 7 )

7LL 1 0
i
we have
~(L) A/ - T
o) =08 (3£(W7(m,y))) Do
(w,y) oW oy EY 40K
gY  _4_0a (6)
(@y) ~ Yawa
v=rlr.

Client k repeats this computation for all data points in Sk,
and computes the average gradients and the corresponding

noise terms, for each layer ! = 1,..., L:
Vﬁk(W(l)) 3 3C(ﬁ:’i(m,y)),
(wfy)esk owe
=) _ 1 O]
Ok =i, 2 Pley) )
O (z,y)ESk 0
1
k= My Z '8 x,y)’
E @ esy (z,y)
Finally, each client & computes a,(f) = diag(r(a))&]il),
where diag(r(®) is a diagonal matrix with diagonal entries
(a) (a)
T Ty

3.2.3. SECURE AGGREGATION

While the local computations in (7) are performed on en-
crypted model parameters, directly communicating them
to the server may still reveal information about the pri-
vate data in S;. To prevent data leakage, we adopt the
security aggregation protocol in (Bonawitz et al., 2017)
to mask local computation results. Specifically, for each
layer [, each client k concatenates its local computation re-

sults VL, (WO, (o lgl)l, . U}E;l)nL) and 8" into a vector

q,il) of length (ny, + 2)nyn;_1, and sends a masked vec-
tor (}{kl) = q,il) ,(Cl) with some random mask z,(gl) to the
server. The secure aggregation protocol guarantees that,
let Q. = [qk ), R q,(cL)], 1) server does not know any-
thing about each individual Qg; and 2) server can compute

the aggregation of the local computations of the NV clients

N
Zk:l Qk-
3.2.4. GRADIENT DECRYPTION

Given the aggregated computation result Zszl %Q , With
M = ZkN:1 M, the server would like to recover the gra-
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dient of model parameter W over the data batch U Sk

To do that, for each layer [, with the aggregation results

~ M,
VLW D) = Z ZEVL, (W),
k=1
N
0! Me @) .
o, = 7 Ok 1= 1,....np,
k=1 M
M,
o _ k (l)
s M
k=1

the server uses its private variables R(), ~, and v to recover
the gradient as

GV =RV o (VL‘, (W) ZV o 4+ vﬂ(l)> ®)

Theorem 1. Given the aggregation result chv 1 M" +Qr, for
eachlayerl = 1,..., L, the server can correctly reconstruct
the gradient over the data batch 1<1%J<N8k by performing

the computation in (8), i.e., GO = VE(W(”).

Proof: See Appendix A. (]

After the successful reconstruction of the gradient
VL(W D) for each layer I, the server updates the model
parameters following (1).

4. The proposed secure data market

While the above described techniques can help to protect
the privacy of model parameters and DOs’ local data in the
federated learning framework, they are still insufficient to
tackle the security challenge for which a malicious MO may
falsely claim that no training results are received from the
DOs and refuse to reimburse the DOs, or simply leave the
system without paying for the model training. We propose
to leverage blockchain technologies to resolve this problem.
Moreover, we design OmnilLytics, which is an end-to-end
solution to provide a transparent, fair, yet private and secure
data market.

Specifically, OmnilLytics implements the gradient collec-
tion and reward distribution process through a smart contract
named SecGraCollect on an underlying blockchain. Sec-
GraCollect executes a single iteration of the model update
as in (1), with the initial model from the MO, and the gradi-
ents collected over up to R rounds and from up to NV DOs
in each round. The secure federated learning techniques
described in Section 3 are employed to protect the model
privacy of the MO and the data privacy of the DOs. The
use of smart contract enforces automatic payment towards
participating DOs whose computation results are considered

valid, via some verification mechanism implemented on the
contract.

|
o
!1_suppressionDone |

Figure 2. State transition of the smart contract SecGraCollect.
The six states of SecGraCollect are represented by ovals. State
transitions are triggered by either applying a method (in a solid
box), or occurrence of an event (in a dashed box).

Gradient collection and aggregation. The MO ini-
tializes the data trading session by deploying a smart
contract SecGraCollect with training reward deposit on
the blockchain. As shown in Figure 2, SecGraCollect
transitions between six states, i.e., Setup, Register,
GradientAggregate, OutlierSuppression, Payment, and
Finished. Upon deployment, SecGraCollect is in the Setup
state with a set of DOs the MO would like to purchase data
from specified by a whitelist() method. The MO encrypts its
initial model W as described in Section 3.2.1, and issues a
transaction with the start() method specifying the following
public parameters:

* The encrypted model parameters W/;

* Minimum number of data points required for each partici-
pating DO to compute its gradient, denoted by Mj;

* Number of rounds to collect gradients, denoted by R;

* Maximum number of distinct DOs to collect gradients
from within each round, denoted by N.

Executing start() moves SecGraCollect into the Register
state, and the contract starts to register for the DOs who
are willing to participate in the gradient aggregation for the
first round. In each round r, r = 1,..., R, after NV DOs
have registered for this round, SecGraCollect moves to the
GradientAggregate state and starts to collect local compu-
tation results from the DOs. Each of the V DOs registered
for round r performs local computations on the encrypted
model W using M private data points as specified in Sec-
tion 3.2.2, and then sends the masked computation results
to the contract following the secure aggregation protocol
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in Section 3.2.3. After receiving the masked computation
results from all registered DOs in that round, the contract
aggregates them to obtain

1 Y M, <
AT:N;QIQ:M;% 9)

where Q) = [g,il), .. ,g,iL)] are the local computation

results of kth DO, and My = My forallk =1,...,N. If
otherwise the results of some DOs are still missing after
certain amount of time, the aggregation in round 7 fails and
we have A, = (.

After the aggregation process of round r, SecGraCollect
moves back to the Register state for the next round r + 1.
Only DOs whose local computation results have not been in-
corporated in the aggregation results of any previous rounds
are eligible to register. By the end of the aggregation pro-
cess the contract SecGraCollect obtains a set of results
{A,}rep, where P C {1,..., R} denotes the indices of
the rounds in which the secure aggregation had been suc-
cessfully executed. The contract transits to the OutlierSup-
pression state if R rounds of gradient aggregation have
been executed or is manually triggered by the exit() method.

Outlier suppression. During the gradient collection and ag-
gregation process, Byzantine DOs may upload maliciously
generated gradients which corrupt the aggregation results
in {A,},ep. SecGraCollect adopts Byzantine resistance
techniques to remove outliers in the OutlierSuppression
state. Specifically, we assume that the DOs’ data are i.i.d.,
and at most u < % fraction of the aggregation results
{A,},cp may be corrupted by malicious DOs. The con-
tract runs a distance-based outlier suppression algorithm
m-Krum (Blanchard et al., 2017a;b) (Algorithm 1) on
{A,}rep to select a subset P’ C P of |P'| = m aggre-
gation results that are considered computed correctly, for
some m < (1 —2u)|P| — 2.

Reward distribution. The contract enters the Payment
state after the outlier suppression and the set P’ is obtained.
The training reward deposited by the MO on the contract
are evenly distributed into accounts of the DOs whose com-
putation results from rounds in P” have been accepted.

Gradient decryption at the model owner. After the ex-
ecution of the SecGraCollect contract, the MO obtains
from the contract the selected aggregation results { A, },.cp’.
For each selected round r € P’, the MO decrypts the
plain gradient V£, (W) according to (8), for each layer
I =1,...,L,using its private variables R("), ~, and v.

Finally, the MO obtains the aggregated gradients for each
layer [
IP’|

vew®)=>"

r=1

1

L,(Ww® 10

and uses them to update its ML model.

5. Security analysis

In this section, we analyze the security properties of Om-
niLytics. Particularly, our analysis includes the following
three aspects: 1) the confidentiality of the model parameters;
2) the privacy of each DO’s data; and 3) the security of the
model update.

5.1. Confidentiality of model parameters

Given the encrypted initial model W and the additive noise
vector (%) it is clear that the DOs could not recover the
multiplicative masks (R())~_, and the additive masks R(®)
in (2). Hence, they would not be able to recover the model
parameters W.

5.2. Confidentiality of local data

While each data owner can participate in computation aggre-
gation in at most one round in the contract SecGraCollect,
its private data is only related to the aggregation result A,
for a single round r. We consider an honest-but-curious
threat model where a subset C C {1,...,N} of DO in
round 7 may collude to infer the private data of some DO in
the same round. Based on the privacy guarantee of the se-
cure aggregation protocol (Bonawitz et al., 2017) employed
by the contract, we argue that as long as the number of
colluding DOs |C| is less than some secure parameter 7',
no information about other DOs’ private data other than
the summation of their local computation results can be
inferred.

5.3. Security of model update

To combat malicious data owners uploading faulty com-
putation results to the contract, we employ the m-Krum
algorithm from (Blanchard et al., 2017b) to select the ag-
gregation results from a subset of P’ C P, which are con-
sidered to be close to the expected value with respect to the
underlying data distribution.

We note that with our construction, all the aggregation re-
sults {A;},cp from the successful rounds are indepen-
dently and identically distributed (since each data owner
performs local computations with M data points, and each
round aggregates results from N DOs). Therefore, accord-
ing to Proposition 2 and Proposition 3 in (Blanchard et al.,
2017b), as long as |P’| < (1 — 2u)|P| — 2, where p is the
maximum fraction of the aggregation results that may be
corrupted, the estimated overall gradient in (10) provides a

'Each DO’s secret keys to generate random masks are secret
shared with other DOs such that any T colluding DOs can reveal
the secret keys of any data owner.
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close approximation of the true gradient, which leads to the
convergence of the model training.

6. Experiments

We implement a working prototype of OmniLytics over
Ethereum, using Solidity (Sol) to develop the contracts,
Python for the off-chain applications and Pytorch (pyt) for
the neural network training.

For all experiments we consider training a shallow two-layer
neural network for the Boston House Price Dataset (Bos).
The network contains an input layer of dimension 13, a
hidden layer with ReLu activation of dimension 16, and an
output layer of dimension 1.

6.1. Setup and system-level optimization

We deploy the smart contract SecGraCollect via the Remix
IDE (Rem) on the local Geth Ethereum Testnet (get). We
connect the off-chain applications to the smart contracts
using the Web3py library (Web) and monitor the created
transactions using Etherscan. Each data owner is connected
to the Geth network with a unique Ethereum address. We
conduct experiments on a machine with AMD R5-5600X
CPU @3.70 GHz, Nvidia RTX3070 GPU, 32 GB of Mem-
ory and 1 TB SSD.

SecGraCollect consists of four major operations:
Register, PubKeylnteract, GradientAggregate, and
OutlierSuppression. A model owner deploys SecGraCollect
on Ethereum, and performs OutlierSuppression with the
contract after GradientAggregate. After performing their
local computations, data owner instances greedily register
with active contract to upload their results until the results
are incorporated in the final aggregation. Data owners
within the same aggregation group runs PubKeylnteract
to exchange public keys for secure aggregation as done
in (Bonawitz et al., 2017).

Data owners pay for the transaction fee to upload compu-
tation results and secure aggregation, which will be reim-
bursed by the model owner in the Payment phase.

During the secure aggregation process in each round, while
the default Pytorch data type is float32, we scale each
value by 108 and aggregate the integer part to improve the
precision of the aggregation result. We turn on automatic
mining mode and set the mining time to generate a new
block to 1 second.

Parallel group aggregation. We perform a system-level
optimization such that each round of secure aggregation is
carried out in parallel to speed up contract processing. This
means that if all the data owners in one round have submitted
their local results, the process of secure aggregation would
be performed. There is no need to wait until previous rounds

are completed. When the last round is completed, model
owner can initiate the multi-Krum process to obtain the final
result.

6.2. Gas consumption measurement

We measure the deployment cost of the SecGraCollect
contract, which depends on the size of its bytecode. We also
measure the gas cost of executing each part of SecGraCol-
lect, under various settings for number of rounds (R) and
the number of data owners in each round (V).

8 -
ContractPublish Register
7 1 m PubKeylInteract ® GradientAggregate
~ m OutlierSuppression
06
=
x
=3
2
2.4
g 4
2
§3 1
O
72} 2 i
S
1 | .
0 .

4 8 16 32
Number of data owners in each round (N)

Figure 3. Gas consumption of the SecGraCollect contract for
R = 12 aggregation rounds and . = 20% adversarial data owners,
for different number of data owners in each round.

First, we fix the number of GradientAggregate rounds
R = 12 and an estimated fraction of adversarial data own-
ers i = 20%, and measure the gas cost of the SecGra-
Collect contract for different number of DOs in each round
(N). We observe in Figure 3 that as N varies from 4 to
32, the total gas consumption of Register, PubKeylnteract,
and GradientAggregate increases linearly N. In contrast,
since the number of rounds R has not changed, the com-
putation complexity of the multi-Krum algorithm does not
change, and the gas cost of OutlierSuppression stays almost
constant.

Next, we fix the number of data owners in each round
N =16 and i = 20%, and evaluate the impact of number
of groups R on the gas consumption. As shown in Figure 4,
for fixed N, the gas costs of Register, PubKeylnteract,
and GradientAggregate increase linearly with R. The com-
putational complexity of multi-Krum scales quadratically
with R, which leads to a faster increase in the gas cost of
OutlierSuppression.

6.3. Running time measurement

We measure the running time of the contract, which
consists of executing the Register, PubKeylnteract,
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Figure 4. Gas consumption of the SecGraCollect contract for
N = 16 data owners in each aggregation round and p = 20%
adversarial data owners, with different number of rounds in the
contract.

GradientAggregate, and OutlierSuppression steps. The
measured execution time includes the time spent by data
owners to retrieve function values from the contract, and to
send transactions to the blockchain miners. We note that the
time measured here does not include the block mining time
and the time for model encryption and gradient decryption
performed at the model owner.

In general, according to the run-time breakdowns in Tables 1
and 2, the PubKeylnteract step takes the least amount of
time among the four as it simply returns a PubKey array
to each DO in a group. The Register step lasts longer as
its methods need to record the public keys of participating
DOs on the contract and return the corresponding informa-
tion to them. The GradientAggregate step costs more time
as it includes the time for the DOs to send long computa-
tion results to the contract. Finally, the execution time of
the multi-Krum algorithm in the OutlierSuppression step
dominates the entire run-time of the contract.

Impact of N. We observe in Table 1 that the running
times of the Register and PubKeylInteract steps are very
small, and vary slowly as the number of data owners in each
group increases. The running time of GradientAggregate
increases with N, as more computation results need to
be aggregated in each group. The execution time of the
OutlierSuppression step dominates the entire contract exe-
cution. However, as we perform multi-Krum across groups
after secure aggregation, increasing number of DOs within
a group does not significantly increase the execution time
of OutlierSuppression. We plot the total running time of
SecGraCollect in Figure 5. We observe that the running
time increases mildly with IV as the execution time of the
bottleneck operation OutlierSuppression is not significantly
affected by V.

Table 1. Breakdown of the SecGraCollect running time (seconds)
for different number of data owners in each round.

N 4 8 16 32
Register 0.0367 | 0.0382 | 0.0405 | 0.0392
PubKeyInteract 0.0218 | 0.0231 | 0.0250 | 0.0287
GradientAggregate | 0.2400 | 0.3295 | 0.4712 | 0.7704
OutlierSuppression | 6.1561 | 6.9003 | 7.9378 | 9.9919
Total 6.4546 | 7.2911 | 8.4745 | 10.8302
12
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Figure 5. Total running time of the SecGraCollect contract for
different number of data owners in each round.

Impact of R. We observe from Table 2 that the
GradientAggregate time remains almost constant as the
number of groups R increases. This is due to our system-
level optimization to parallelize the aggregation opera-
tions of all groups. As expected, the run-time of the
OutlierSuppression step increases significantly with R. We
observe from figure 6 that, as R increases, the execution
time of OutlierSuppression increases quadratically, which
dominates the overall execution time.

Table 2. Breakdown of the SecGraCollect running time (seconds)
for different number of aggregation rounds.

R 4 8 12 16
Register 0.0375 | 0.0392 | 0.0405 | 0.0383
PubKeyInteract 0.0234 | 0.0242 | 0.0250 | 0.0251
GradientAggregate | 0.4553 | 0.4407 | 0.4712 | 0.4614
OutlierSuppression | 0.8625 | 3.2678 | 7.9378 | 18.5000
Total 1.3786 | 3.7720 | 8.4745 | 19.0249

7. Conclusion

In this paper, we develop OmniLytics, the first Ethereum
smart contract implementation of a secure data market for
decentralized machine learning that simultaneously achieves
1) model privacy against curious data owners; 2) data pri-
vacy against curious model and data owners; 3) resilience
against Byzantine data owners who intentionally provide
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Figure 6. Total running time of the SecGraCollect contract for
different number of aggregation rounds.

faulty results; and 4) resilience to Byzantine model owner
who tries to evade payment. We develop and deploy an
Ethereum smart contract SecGraCollect, and measure
its gas consumption and run-time performance over vari-
ous system parameters. Through extensive experiments we
observe high computation and cost efficiency of SecGra-
Collect, which demonstrate the practicality of the proposed
OmnilLytics protocol as a secure data market.
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Appendix
A. Proof of Theorem 1
First we have foreachl =1,...,L,
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In addition, we have by (5) that
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B. Pseudo code of m-Krum

Algorithm 1 m-Krum

Input: {A,},cp: aggregation results of successfully ex-
ecuted rounds, u: fraction of rounds whose result are cor-
rupted

Output: {AT}TG’P/ with "Pl| =m

L T=PP =0

2: fori=1,...,mdo

3: forr &7 do

4: neighbors = | T

vectors to A,

5 S(’I“) = ZAEneighbors HA7 - A||2
6: end for
7.
8

— u|P] — 2 closest ({5 distance)

r* = argminS(r)

: T.removg(r*)
9:  Pladd(r*)
10: end for

11: return { A, },ep/




