
CRYPTOLOGY EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 1

SecretStore: A Secrecy as a Service model to
enable the Cloud Storage to store user’s secret data

Ripon Patgiri, Senior Member, IEEE, Malaya Dutta Borah, Member, IEEE and Laiphrakpam Dolendro Singh
National Institute of Technology Silchar

Abstract—Data secrecy is a major concern in many domains.
Nowadays, the data are kept in tight security with high privacy.
Users do not want to share their secret information with anyone;
however, the users’ confidential data are not protected from the
administrators. Administrators can read the users’ data. Why
should any Administrator read users’ data? To address this
issue, we propose a new secrecy protocol to store data secretly,
named Secret Cloud Storage, SecretStore for short, to enable
Secrecy as a Service model over the Cloud Computing paradigm.
This article demonstrates how to protect users’ data from any
unintended users, including the data administrators. Moreover,
we introduce tight security using the client-side symmetric
cryptography method. In addition, we devise a forgetful private
key to generate or regenerate a private key to encrypt or decrypt
based on a secret word. We also show how to strengthen the weak
password. Finally, we demonstrate how to implement the Secrecy
as a Service model in Cloud Storage using highly unpredictable
private keys.

Index Terms—Cloud Storage, Secret store, Security, Privacy,
Secrecy, Encryption, Cryptography, Cloud Service, Random
Number.

I. INTRODUCTION

Security and privacy are getting much attention due to
emerging technologies [1], [2], for instance, Cloud Computing
[3], [4], IoT [5], Big Data [6], Healthcare [7] etc., and
these emerging technologies pose new challenges to overcome.
Wang et al. [8] presents an empirical study on data security
in Cloud Computing. Huang et al. [9] presents a framework,
called SSTreasury+, to store encrypted data. Similarly, Wei et
al. [10] provable and secure cloud storage techniques. More-
over, Itani et al. [11] presents privacy as a service model. Secu-
rity, secrecy, and privacy (see Figure 2) become the paramount
concern for users, vendors, and countries. Moreover, there are
numerous issues in cloud security, and privacy [4]. However,
secrecy is a prominent issue in cloud computing. Secrecy on
password raises a question: “why should someone see any
password in raw form or encrypted form [12]?” PassDB [12]
suggests that a strict privacy protocol is required to implement
in identity management systems [12]. The identity manager
should not map user ID and password together [12]. Thus, an
identity manager establishes secrecy. A similar question arises:
why should others, including administrators read the clients’
data? This question poses a new direction on data privacy. The
cloud service providers store the clients’ data, and the clients

Ripon Patgiri, Department of Computer Science & Engineering, Na-
tional Institute of Technology Silchar, Assam-788010, India, e-mail:
ripon@cse.nits.ac.in and URL: http://cs.nits.ac.in/rp/

Manuscript received Month XX, 20XX; revised Month XX, 20XX.

trust the cloud service providers. Figure 1 demonstrates the
conventional Cloud Storage architecture, where the Storage as
a Service model runs on users’ trust. For instance, the cloud
administrator can read the users’ data, for instance, Google
Drive, OneDrive, Dropbox, iCloud, to name a few. Therefore,
it demands a new cloud computing model where user can store
their secret data, and those secret data remains secret after
uploading into the cloud storage. Moreover, it demands secure
storage even if the attackers hack the cloud storage server.

Fig. 1. Conventional Cloud Storage Architecture. User uploads the data and
Server store its data. Server can decrypt the data if necessary.

Secrecy is maintaining secret information with intended
users. It is classified into two categories: hard secrecy and
soft secrecy. Hard secrecy ensures the users’ data protection
because they do not want to share the information with anyone
as defined in Definition 1. In contrast, soft secrecy shares the
user’s secrecy with its intended users but not the administrator.
as defined in Definition 2. Detailed description is given in
Section II.

In this article, we address hard secrecy, which implements
the "only me" philosophy to implement Secret Cloud Storage.
We propose a novel Cloud Service model, called Secret Cloud
Storage, SecretStore for short, which implements Secrecy as
a Service and follows hard secrecy. It enables the users’ to
store their most sensitive data in Cloud without worrying
about data secrecy and data privacy. Our proposed system,
SecretStore, is a cloud storage model where data are stored
at the server-side. SecretStore uses the existing cryptography
technology for communication. The client converts its data
to cipher form for storing at the server-side. The client uses

CRYPTOLOGY EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 2

symmetric cryptography, which is described in later sections.
The client’s ciphered data is encrypted using the shared secret
key between the client and server, and the encrypted data are
sent to the server over insecure media. The server decrypts
the data using the shared secret key. The server decrypts
the encrypted data and retrieved ciphertext to store in its
database. The server cannot retrieve the original data from
the ciphertext because it is encrypted by the user’s private
key, which is not known by the server. Thus, the server stores
encrypted data in its database, and the data are not allowed
to access by anyone except the data owner itself. However,
there is a significant challenge in maintaining private keys
in our proposed system. A user cannot maintain its private
keys permanently, like a server. A user can switch its platform
frequently. Moreover, a user’s device can be damaged or lost
at any time. Therefore, we propose a regenerative private key
method. A private key can be generated or regenerated using a
secret word (password). However, the password-based solution
has a weakness of weak passwords. Therefore, we demonstrate
how to strengthen the weak password using a secret word
and a number. This method provides highly unpredictable
and cryptographically secured private keys. We illustrate the
randomness of the generated private keys using the NIST SP
800-22 statistical test suite. Thus, our major challenge has been
achieved to implement SecretStore. Therefore, SecretStore
presents "Secret as a Service", "Secrecy as a Service" (SaaS),
or “User Secrecy as a Service” (USaaS). To the best of our
knowledge, there is no cloud storage available to store the
users’ secret data and protect it from all users, including
administrators and attackers. Therefore, SecretStore is the first
model to provide SaaS or USaaS, which prevents accessing the
users’ data from the administrators and the attacks. There are
diverse data privacy works have been proposed; however, the
data are controlled by the Cloud administrators. Therefore, it
distinguishes state-of-the-art Cloud Storage service with our
proposed model.

In this article, we discuss the essential techniques in Section
II for our proposed systems, and Section III establishes the
proposed method. Section IV presents the detailed analysis of
our proposed system. Section V demonstrates the experimental
evaluation of the proposed regenerative private key. Finally, we
conclude the article in Section VII.

II. PRELIMINARY

Client’s data are compromised even if the service provider
ensures the highest level of security in Cloud Computing.
There are no security, privacy, and secrecy in client’s data for
administrators. Alternatively, the administrators are the valid
“adversaries” [13]. Administrators can do what they want to
do with client’s data. These data have no security at all at the
administrator-side. For example, Alice and Bob are chatting
on a chat platform, and the administrator is recording their
conversation. Here, the administrators are the valid Mallory
while there is no valid or invalid Mallory. Mallory is an
adversary at all. The cloud storage claims that the data are
highly secured but only for communications and other users.
It does not include the “valid and employed” Mallory at the
server-side [13].

A. Secrecy

Definition 1. Secrecy is data hiding from other users those
who need not know.

Definition 2. Absolute security or hard secrecy is a security
protocol that follows the “only me” philosophy, and the data
are protected from adversaries, administrators, and any other
entity.

Definition 3. Soft secrecy is a security protocol designed to
maintain secrecy in a intended groups. It excludes adversaries,
administrators, and any other entity from the intended parties.

Secrecy → ← Privacy → ← Security

Fig. 2. The relation among security, privacy, and secrecy.

Secrecy is a state of being not shared any information with
anyone [13]. Secrecy is classified into two key categories,
namely, soft and hard secrecy which are defined in Definition
1, 2 and 3. Figure 2 shows the relation among security, privacy,
and secrecy. The dark blue color represents hard secrecy
on the left side of the bar, while the light color represents
security without ensuring privacy and secrecy on the right
side. In the middle of the bar, it represents privacy. The
darkest shade of the secrecy represents the hard secrecy, and
the lighter color toward the right side represents soft secrecy.
Similarly, the darkest shade represents the highest security,
and the lightest shade represents security without privacy and
secrecy. Therefore, the lighter color of secrecy is equivalent
to privacy, and the lighter color of privacy is equal to security.
Alternatively, the darker color of privacy is secrecy.

Security

Privacy

Secrecy

Fig. 3. Representation of the relation among Security, Secrecy, and Privacy
using Venn diagram.

Figure 3 represents the relation among security, privacy,
and secrecy using a Venn diagram. Secrecy is a proper
subset of privacy and security. Likewise, privacy is a proper
subset of security. Therefore, secrecy is the hardest security.
Secrecy is classified into two categories, namely, soft and
hard secrecy. Soft secrecy maintains information secret within
a few members. A user decides who can see the data but
not administrators. On the contrary, hard secrecy follows the
philosophy of “only me” or “only by my choice”. Hard secrecy

CRYPTOLOGY EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 3

never allows any unintended users to read its data, for instance,
password data or other sensitive data. Therefore, secrecy is
another challenge for SecretStore to establish between sender
and receiver.

III. SECRETSTORE- THE PROPOSED SYSTEM

Fig. 4. The architecture of SecretStore. User uploads data using two-layered
encryption where the server decrypts the first layer but cannot decrypts the
second layer encryption. Therefore, the server stores the cipher data in its
database.

People store their data in cloud storage for secure and
permanent storage purposes. Cloud storage ensures that data
are available even if a disaster happens, and thus, cloud storage
is the safest place to store clients’ data. It also protects the data
from attackers. However, the data are unprotected from the
administrators as shown in Figure 1. Therefore, our proposed
system, SecretStore, provides Secrecy as a Service (SaaS)
or User Secret as a Service (USaaS) model. User (here, we
analogously use user and client) can upload their data to the
cloud for secure and permanent storage purposes. The data
are encrypted at the client-side to ensure hard secrecy. The
server stores the users’ encrypted data, but the server cannot
decrypt the raw data which is depicted in Figure 4. Therefore,
the server stores the encrypted data in its database. Moreover,
the server cannot scan viruses due to encrypted data by the
user. The key objective of the proposed system is to provide
tight security by applying access restrictions to all other users,
including administrators and attackers. Therefore, a user can
store the most sensitive data at SecretStore. It provides full
secrecy with tight security on the data. Data can be accessed
exclusively by the owner, and all other users (including the
administrators and attackers) are restricted from accessing
the data. Thus, we require a new methodology to store the
encrypted data because encryption requires a private key at
the client-side, and a user cannot maintain the private key
permanently. Therefore, we propose a regenerative private key
technique to encrypt the data at the client-side and upload the
encrypted data in cloud storage.

A. Our assumptions
The server maintains the identity of its users through LDAP.

However, LDAP maintains no secrecy. Therefore, recent work

suggested that LDAP can be implemented by maintaining
full anonymity [12]. User identity data are the most sensitive
information, and these data should be taken utmost care to
provide full confidentiality. We assume an identity manage-
ment system, and these identity management systems ensure
a user’s validness. Therefore, we omit the detailed analysis of
identity management systems and omit the detailed analysis
of the connection between user and server. Our proposed
system relies on the Elliptic-curve Diffie-Hellman (ECDH) key
exchange protocol [14], and it is already a well-established
protocol. Therefore, we omit the detailed analysis of the key
exchange protocol. For symmetric cryptography, we use AES
[15] and the detailed analysis is also omitted.

B. Generation of private key

The key storage is the grand challenge for the user because
a user cannot store its key permanently in its own devices.
The device may be damaged or lost at any time, and it is
highly unpredictable. Even a user can switch its platform
frequently. Thus, a user requires a regenerative private key.
Therefore, the necessary condition for a private key is that it
should be reproducible, unpredictable, and cryptographically
secure. Initially, a user needs to compute its private keys using
Algorithm 1 and convert it into a prime number. The ISPRIME
invokes AKS [16] algorithm to check whether a given number
is prime or not. The primality check walks towards the nearest
prime number using AKS algorithm. This requires a time
complexity of $ (;>66=) since prime numbers are not rare.
A user would like to encrypt its data using two keys; then,
the user needs to generate two private keys, i.e., a user can
choose its level of encryption C.

Algorithm 1 Algorithm to generate pseudo-random key based
on initial input.

1: procedure GENKEY(:4H, V, B443)
2: 9 = LENGTH(:4H)
3: while 8 ≥ V do
4: 3 = MURMUR2(:4H, 9 , B443)
5: B443 = 3

6: 4 = MURMUR2(:4H, 9 , B443)
7: B443 = 4

8: 18=[8] = (3 ∧ 1)
9: end while

10: % = CONVERTTODECIMAL(18=, V)
11: 5 ;06 = 5 0;B4

12: while 5 ;06 = 5 0;B4 do
13: 5 ;06 = ISPRIME(%)
14: % = % + 1
15: end while
16: end procedure

Algorithm 1 can reproduce a previously generated private
key for correct input. It generates an unpredictable and cryp-
tographically secure random number. Therefore, Algorithm 1
takes three inputs, specifically, :4H, V and B443 where the :4H
is a secret word, V is the bit length of the private key to be
generated, and B443 is the initial value for the hash function.

CRYPTOLOGY EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 4

Algorithm 1 iterates V times to generate a random number
based on the initial input. The least significant bit (LSB) is
extracted in each iteration. The LSB bits are recorded and
used to produce a key. The key size may vary depending on
the requirements, for instance, 16 ≤ V ≤ 2048.

C. Insertion

Fig. 5. Insertion process of SecretStore as client-server model.

Figure 5 demonstrates the uploading of user data through
a network. A user is asked to input C, depending on the C ≥
1 the private keys are generated. The message is converted
into integer < for encryption. Let the private key be the PK 8

generated by Algorithm 1 where 1 ≤ 8 ≤ C. The user encrypts
the message using C private keys as given in Equation (1).

Z1 = �=2PK1 (<)
Z2 = �=2PK2 (Z1)
Z3 = �=2PK3 (Z2)
...

ZC = �=2
PKC (Z (C−1))

(1)

Equation (1) converts the raw message to ciphertext. Now,
the user and server compute the shared secret key using ECDH
[14], and let it be SK. The user’s ciphertexts are encrypted
using a shared secret key as given in (2). Therefore, the client
encrypts the message using a shared secret key to send it to
the server.

Z = �=2SK (ZC) (2)

The encrypted message Z in Equation (2) is sent to the server.
The server receives the encrypted message Z and decrypts
using shared secret SK as given in Equation (3).

ZC = �42
SK (Z) (3)

The server decrypts the data Z , and retrieves ZC , which is also
encrypted using several private keys. These encrypted data are

stored in the server’s database. The server cannot decrypt the
ZC because the server does not have the private keys. Thus, the
administrators cannot retrieve the original (raw) message.

D. Retrieval

Fig. 6. Retrieval process of SecretStore as client-server model.

Figure 6 demonstrates the retrieval process (downloading)
of data from a server by a client. A client stores its data in
cloud storage, and the client issues a retrieval message on the
data to read. Therefore, the user and server need to compute
the shared secret key using ECDH. The server encrypts the
data using the shared secret key given in Equation (4).

Z = �=2SK (ZC) (4)

The server sent the encrypted message Z of Equation (4) to
the client. The client receives Z from the server and decrypts
the encrypted code Z using a shared secret key as given in
Equation (5).

ZC = �42
SK (Z) (5)

Now, the user needs to decrypt the message using its private
keys. Before decrypts, the client lookup the private keys in
cache (local storage). If private keys are found, the client
decrypts the message as given in Equation (6). Otherwise, the
client regenerates all C private keys using Algorithm 1, and
then the client can decrypt the incoming messages.

Z (C−1) = �42
PKC (ZC)

Z (C−2) = �42
PK (C−1) (Z (C−1))

Z (C−3) = �42
PK (C−2) (Z (C−2))

...

< = �42PK1 (Z1)

(6)

Thus, a user decrypts the raw message using its private keys.
However, we suggest that C should not be too large. The large
value of C slows down the cryptography process. The ideal
value of C is 2; however, it can be increased to more than 2 if
the security requirement is high.

CRYPTOLOGY EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 5

Algorithm 2 Generating a strong password using user pass-
word and a secret number.

procedure GENPASSWORD(?0BBF>A3, [)
�;?ℎ0[23], (H<1>; [13], 9 = 0
for ?0BBF>A3 0=3 [do

#4F%0BBF>A3 = (H<1>; [?0BBF>A3 [9]%13]
#4F%0BBF>A3 = �;ℎ?0[?0BBF>A3 [9]%23] + 32
#4F%0BBF>A3 = (H<1>; [[%10]
[=

[

10
#4F%0BBF>A3 = �;ℎ?0[?0BBF>A3 [9]%23]
#4F%0BBF>A3 = ?0BBF>A3 [9]

end for
end procedure

1) Issue of a weak password: Password-based solutions
have an issue of weak passwords that the attacker can easily
guess; however, most of the modern password-based solution
asks for a combination of alphabet, number, and symbols for
a new password. So, SecretStore follows the same rules for
creating a new password with length of 8-32 which must have
at least an alphabet, a special symbol, and a number. Still,
there is a chance of creating a weak password, for instance,
abc@1234. Therefore, we present a method to strengthen the
weak password by Algorithm 2. Algorithm 2 uses two arrays,
specifically, symbol array and alphabet array. For both the
array, the size should be a prime number due to hashing. For
instance, the size of the alphabet and symbol array can be
11, 13, 17, 19, and 23, but both the array’s size should not be
equal. In the algorithm, we assume that a user remembers its
password and a number [. The necessary condition for pass-
word length is 8 ≤ ; ≤ 32 and number size is 4 ≤ X ≤ 10 dig-
its. Therefore, a user needs to enter a password and a number.
A user can enter the date of birth (eg., ddmmyyyy, mmddyyyy,
yyyymmdd, ddmmyy, mmddyy, yyddmm, yymmdd, etc.), zip
code, mobile number, year, or any number which is greater
than three digits and easy to remember. Thus, the output
of Algorithm 2 is “:p1EI:g0AE@t1AE!l0AE!i3@m6*t9@b1”
“IEEE” and “19630101”. Also, it produce a output
“*u1AE_s2Ql_u0As#c2Je” for the input “Elsevier” and
“2021”. Similarly, for the input “ACM” and “1947”, the output
of Algorithm 2 is “:p7TA?k4VC*t9IM@b1”. The output of
Algorithm 2 is input into Algorithm 1 for generating the
private keys. This procedure removes the weakness of the
password-based solution. Most of the sensitive users use high
quality secret word, for instance, “TIFS@!EEE:2o21” which
makes easy to remember but difficult for adversaries.

IV. ANALYSIS

Our proposed system works on regenerative private keys.
Unlike a server, a user cannot maintain its private key because
the user can change its platform. Moreover, a user device can
be damaged or lost at any time, and therefore, it requires a
regenerative private key which is highly unpredictable for its
adversaries. We assume that a user can remember its secret
word to generate or regenerate the private keys. Table I demon-
strates the statistical tests on “IEEE2021” for key generation.
If a user lost its private keys, the user can regenerate the private

keys using the secret word. Now, a user wants more than
one private keys to be generated by the Algorithm 1. Then,
Algorithm 1 iterates V times to generate the first private key.
The algorithm continues with the same key with different seed
values for the second private key, and it iterates for another
V times. Similarly, it continues for the third private key too.
Thus, it is not required to maintain the private keys by the
users; however, the private keys can be cached in the user’s
devices for faster processing.

A. Assurance of Tight Security

SecretStore provides tighter security than any state-of-the-
art security protocol. The user encrypts the data before storing
it in the cloud and then encrypted the ciphered data using a
shared secret key to upload in the cloud. Therefore, Secret-
Store ensures its security even if the first layer of security is
compromised, but the adversary cannot extract the raw data
from the user. In any condition, the security is intact. Suppose
an adversary gains access to the server and retrieves all the
data from SecretStore. The adversary cannot retrieve the raw
data even if the adversary can access the server. Moreover,
the administrators cannot decrypt the stored data to misuse.
Thus, hard secrecy is strictly maintained by SecretStore. In a
conventional system, if an adversary is able to gain access
to the server, then the adversary can easily read all those
data from the server, for instance, wikileaks.org. Our proposed
method prevents such kinds of attacks.

B. Analysis on weak password

Algorithm 2 is designed to strengthen the weak password. A
user needs to input two secret codes; particularly, a password
and a number. A user requires to remember both password and
the number for later usage. The number must be greater than
three digits. Therefore, a user can enter the date of birth in
any format, zip code, mobile number, year, or any number to
Algorithm 2 that can be easy to remember by the user. Let us
assume that the password is easy to be guessed the attacker. In
that case, the number plays a critical role where the attacker
cannot guess the number. An attacker needs to uncover both
password and a number for a particular user.

Theorem 1. The probability of breaking the password and the
secret number by Brute-force attacker is (1

26; ×
1

10X) ≈ 0.

Proof. Let us assume that the password length is ;. The
probability of breaking the password using Brute-force (BF)
attacker is 1

26; where 8 ≤ ; ≤ 32. Let the digit X represents
the digits in the number. Now, the probability of breaking the
number using BF attacker is as low as 1

10X where 4 ≤ X ≤ 10.
Then the total probability of breaking the secret code is given
in Equation (7).

%A (��) = %A (?0BBF>A3) ∩ %A ([) (7)

The secret number and the password are independent events;
therefore, the probability is given in Equation (8).

%A (��) = %A (?0BBF>A3)%A ([)

=
1

26;
× 1

10X

(8)

CRYPTOLOGY EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 6

For the lowest case, the password’s size is ; = 8 and secret
number size is X = 4, then the probability becomes 1

268×104 ≈ 0.
Similarly, the highest case, the probability becomes 1

2632×1010 ≈
0. �

Corollary 1. The probability of not able to break the secret
code of SecretStore is (1 − 1

26; ×
1

10X) ≈ 1

A dictionary attack is another issue in password-based
solutions. The attacker collects a massive amount of possi-
ble passwords to break the security. Similarly, a dictionary
attacker has to constructs an enormous amount of most used
numbers to break the security of Algorithm 2. Thus, it adds
another complexity for the attackers to break the Algorithm
2. However, most of the users may use year. An attacker
may construct a dictionary of the user’s date of birth, phone
number, year (1950-2021), and zip code, since these are the
most common to use in Algorithm 2 but a user may pick
any number. Moreover, birthday attack is also an issue of
password-based solutions. Birthday attackers try to find two
password collisions; however, the secret number can create
a strong deterrence to such kinds of attacks. Therefore, our
proposed solution provides a good defense on such kind
attacks even if a user chooses a weak password or a weak
number.

1) Brute-force attacks: A brute-force attack is the most
common attack which accomplishes the attack by performing
an exhaustive search in the keyspace. It can break almost any
kind of security, but it may take many years; however, it is a
severe attack. Therefore, we propose many levels of encryption
to defeat such kinds of attacks. For instance, a client encrypts
two times by its private key at C = 2 and encrypts it again using
a shared secret key. Therefore, it is not possible to attack our
proposed system by the brute-force attack since the attacker
has to break three security layers at C = 2.

2) Cryptanalysis attacks: There are various attacks in com-
puter networking, for instance, DDoS. However, our proposed
system follows a symmetric communication protocol; there-
fore, we do not consider many attacks which are not applicable
in our proposed system; for instance, MITM and DDoS attacks
are out of the scope of the proposed system.

A cryptanalysis attack is an attack based on the ciphertext
analysis and reveals the secret keys or retrieves the plaintext.
It applies in most symmetric cryptography protocols where
studying the ciphertext gives a secret key or plaintext pattern.
Therefore, it is essential to protect against such kinds of
attacks. There are many kinds of Cryptanalysis attacks, partic-
ularly ciphertext-only, known-plaintext, chosen-ciphertext or
chosen-plaintext, adaptive chosen-plaintext, related-key attack,
frequency analysis, index of coincidence, Boomerang, differ-
ential cryptanalysis, linear cryptanalysis, etc. attacks, which
are the most commonly known in symmetric cryptography.
These attacks are possible one-keyed symmetric cryptography;
however, it also takes many years to break the one-keyed cryp-
tography. Our proposed system depends on C key to encrypt
before being sent to the receiver, and then, the ciphertext is
encrypted using a shared secret key. The attacker has to break
the first layer of security, and then the attacker can break the
C layer of encryption. This system provides a tight coating

over a plaintext such that the adversaries cannot retrieve the
original message even if the attacker can break the first layer
of security.

3) Dictionary attacks: Diction attacks is accomplished by
creating dictionary, i.e., collecting huge set of text to capture
the communication. The collected text are used build dictio-
nary of ciphertext, and therefore, it becomes easy to break the
password-based security. However, it is almost impossible to
attack our proposed system using dictionary based attack. On
the contrary, our proposed system relies on password-based
private-key generation as shown in Algorithm 1. Therefore, it
is wise-way to attack the private key generation system rather
than the direct attacking on the ciphertext.

4) Probability: Let ; be the length of the password, V
be the length of private keys, and W be the length of a
shared secret key. The probability of breaking guessing the
correct password is 1

62; where the total sample space is 62
characters, including the upper and lowercase letters and ten
digits excluding special symbols. Therefore, the probability of
not getting correct password is (1− 1

62;). It is a probability of
a brute-force attack. However, the dictionary-based password
attack is much simpler, and it is the weakness of all password-
based solutions. Therefore, the password is strictly composed
using at least a capital letter, a small letter, a digit and a special
symbol, and a length of at least eight. This restriction makes it
difficult for dictionary-based attackers. Let us assume that the
probability of guessing a password is 1. Thus, an adversary can
generate the private keys; however, the adversary has to break
the security of shared secret key encryption. The probability
of breaking the shared secret key is 1

2W . The total probability
of breaking the entire security is given in Equation (9).

)>C0; ?A>1018;8CH = %A (%0BBF>A3) ∩ %A ((42A4C 4H)

=
1

62;
× 1

2W
(9)

Since the password breaking and encrypting the code using
the shared secret keys are independent events. The probability
of getting entire private keys without knowing the password
is given in Equation (10).

)>C0; ?A>1018;8CH =
1
2V

(10)

Since the private keys are dependent on each other, and if an
adversary gets the first private key, it is easy to capture entire
private keys. However, if an adversary wishes to break security
directly from the ciphertext, then the total probability is given
in Equation (11).

)>C0; ?A>1018;8CH =
1

62;
× 1

2W
× 1

2V
(11)

Equation (11) gives the complexity to break our proposed solu-
tions. Now, the adversary is attacking the private keys without
any order, then, Equation (12) gives the total probability.

)>C0; ?A>1018;8CH =
1

62;
× 1

2W
× 1

2VC
(12)

Therefore, the total probability of breaking the proposed
security is given in Equation (12). The total probability of

CRYPTOLOGY EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 7

not breaking the security of the proposed system is given in
Equation (13).

)>C0; ?A>1018;8CH = 1 − (1
62;
× 1

2W
× 1

2VC
) (13)

Thus, Equation (13) gives the security tightness of our pro-
posed system. Above analysis shows that it is quite difficult to
break the security of our proposed solution for the adversaries
due to multiple layer of encryption.

V. EXPERIMENTAL RESULTS

We have conducted a series of rigorous tests to validate the
randomness of the generated number in the Ubuntu desktop
computer. The computer configuration is as follows- Intel Core
i7-7700 CPU @ 3.60GHz × 8, Ubuntu 18.04.5 LTS, 8GB
RAM, 1TB HDD, and GCC Version 7.5.0. This experimen-
tation is essential analysis is required to test the randomness
of the generated private keys. The generated private keys are
reproducible and highly random, as shown in Table I. In the
experimental evaluation, we have used “IEEE2021” as a secret
word and input it into Algorithm 1. The output is tested
in NIST SP 800-22 statistically tests for the approximation
entropy, frequency, block frequency, cumulative sums, runs,
longest runs, rank, FFT, non-overlapping template, overlap-
ping template, random excursions, random excursions variant,
serial, universal, and linear complexity tests [17], [18].

We have generated 10M random bits and tested 32bits, 64
bits and 128 bits stream at NIST SP 800-22 test suite. The
test results are drawn in Table. The necessary condition for P-
value is ≥ 0.01 to be accepted as random; otherwise, it cannot
be accepted as random. The pass rate of the test indicates
the successful test percentage. In this test, the P-value and
pass rate are equally important to consider for randomness.
Higher P-value and pass rate ensure high randomness in
generated private keys. It indicates that there are no patterns
in the generated bits. Moreover, it also indicates that it is
cryptographically secure due to highly randomness of the
generated bits.

The highest P-value of 32bits, 64 bits and 128 bits stream
for the secret word for “IEEE2021” are 0.976060, 0.985035
and 0.985035, respectively, with a 100% success rate. The
lowest P-value of 32 bits, 64 bits and 128 bits stream for
the secret word for “IEEE2021” are 0.066882, 0.018879 and
0.031497, respectively. The lowest success rates of 32 bits, 64
bits, and 128 bits stream for the secret word for “IEEE2021”
are 0.96875, 0.96875, and 0.984375, respectively. Thus, this
statistical test proves the randomness of proposed private keys.

VI. DISCUSSION

Secrecy is an urgent requirement to be implemented. Cur-
rent state-of-the-art cloud storage technology does not im-
plement hard secrecy. On the contrary, the administrator can
easily read the users’ data and misuse their data. Users’ data
are not safe from the administrators, and thus, it is required to
remove the administrators from the valid and intended users
list. However, administrators are valid and intended users by
default, but it should be valid and intended users. There is
no difference between the administrators and the attackers

if they read the users’ data without permission. Moreover,
administrators should not read any data of users. Why should
they read the data of a user? There is no sufficient reason
for reading the users’ data by the administrators except the
recommender systems. Therefore, it is time to remove the
administrators from the list of the valid and intended users.

The key weakness of our proposed system lies within
the password-based solution. Even though we provide the
strengthen mechanism of users’ passwords, users may create
a weak password that will be easy for adversaries to guess.
However, there is another layer of security to protect, i.e.,
shared secret keys. Our proposed system is quite valuable for
storing the most sensitive data in Cloud Storage. Moreover,
many users do not want their data to be read by anyone
except themselves. It applies to everyone. Many people have
secret data to store permanently, but they cannot store it due
to valid and employed Mallory in the cloud. Moreover, there
is a chance of data leakage, such as WikiLeaks [19], [20].
Also, there are many techniques available on data leakage
prevention, but these works do not consider administrators as a
Mallory. Therefore, it creates a difference between SecretStore
and state-of-the-art data leakage prevention techniques. Our
proposed system ensures tight security against data leakage.
Another weakness of our proposed system is the many layers
of encryption. It slows down the cryptography process. People
use low-powered computing devices; therefore, multiple en-
cryptions create computation overhead on such devices. The
computation overhead is justifiable when it comes to sensitive
data.

VII. CONCLUSION

This article has presented a novel cloud storage called
SecretStore to protect users’ data from unintended users. It
features “Secret as a Service” or “User Secrecy as a Service”.
We have also demonstrated how to prevent administrators
from accessing users’ data. This process ensures that a user
can store its most sensitive data in the cloud. There are no
possibilities of data leakage. We have mathematically analyzed
the probability of breaking the security of the proposed system.
Our proposed solution provides client-side cryptography, and
thus, a user encrypts its data using forgetful private keys. The
encrypted user data is encrypted again using shared secret keys
to transmit over the public media. We have demonstrated how
to generate a private key or regenerate a private key using
secret words. Also, we have demonstrated how to strengthen
the weak password for generating private keys to create a
strong deterrence against password attackers. We use ECDH
to compute a shared secret key between user and server
to transmit the encrypted message. The server receives the
encrypted message and decrypts ciphertext. This ciphertext is
stored in the server’s database. Thus, we have proved that
the user’s data cannot be read by the administrator, preventing
data misuse. Moreover, we have demonstrated the randomness
of generated private keys experimentally using NIST SP 800-
22 statistical test suites. To the best of our knowledge, this
is the first system that provides strict secrecy of users’ data
and protects access from any unintended users, including
administrators and attackers.

CRYPTOLOGY EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 8

TABLE I
P-VALUES AND SUCCESS RATES OF ALGORITHMS 1 FOR 32, 64 AND 128 BITS STREAM FOR THE WORD “IEEE2021” IN NIST SP 800-22 STATISTICAL

TESTS.

Test name 32 bits 64 bits 128 bits
P-value Pass rate P-value Pass rate P-value Pass rate

Approximate
Entropy

0.066882 32/32 0.232760 64/64 0.031497 128/128

Frequency 0.602458 32/32 0.299251 62/64 0.311542 126/128
Block Frequency 0.602458 32/32 0.048716 64/64 0.804337
Cumulative sums 0.804337 32/32 0.213309 63/64 0.324180 127/128
Runs 0.949602 32/32 0.804337 64/64 0.095617 128/128
Longest runs 0.350485 31/32 0.888137 63/64 0.162606 126/128
Rank 0.407091 32/32 0.437274 63/64 0.253551 126/128
FFT 0.739918 32/32 0.253551 64/64 0.602458 127/128
Non-overlapping
Template

0.976060 32/32 0.985035 64/64 0.985035 128/128

Overlapping
Template

0.407091 31/32 0.468595 64/64 0.287306 126/128

Random Excursions 0.162606 15/15 0.534146 16/16 0.637119 13/13
Random Excursions
Variant

0.637119 15/15 0.066882 16/16 0.437274 13/13

Serial 0.976060 32/32 0.253551 64/64 0.819544 126/128
Linear complexity 0.468595 32/32 0.500934 63/64 0.500934 127/128
Universal 0.178278 32/32 0.018879 64/64 0.534146 126/128

REFERENCES

[1] X. Shu, D. Yao, and E. Bertino, “Privacy-preserving detection of
sensitive data exposure,” IEEE Transactions on Information Forensics
and Security, vol. 10, no. 5, pp. 1092–1103, 2015.

[2] B. Jiang, M. Seif, R. Tandon, and M. Li, “Context-aware local informa-
tion privacy,” IEEE Transactions on Information Forensics and Security,
pp. 1–1, 2021.

[3] M. Du, Q. Wang, M. He, and J. Weng, “Privacy-preserving indexing and
query processing for secure dynamic cloud storage,” IEEE Transactions
on Information Forensics and Security, vol. 13, no. 9, pp. 2320–2332,
2018.

[4] Z. Xiao and Y. Xiao, “Security and privacy in cloud computing,” IEEE
Communications Surveys Tutorials, vol. 15, no. 2, pp. 843–859, 2013.

[5] M. Sun and W. P. Tay, “On the relationship between inference and
data privacy in decentralized iot networks,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 852–866, 2020.

[6] Y. Sun, Q. Liu, X. Chen, and X. Du, “An adaptive authenticated data
structure with privacy-preserving for big data stream in cloud,” IEEE
Transactions on Information Forensics and Security, vol. 15, pp. 3295–
3310, 2020.

[7] L. Rajabion, A. A. Shaltooki, M. Taghikhah, A. Ghasemi, and
A. Badfar, “Healthcare big data processing mechanisms: The
role of cloud computing,” International Journal of Information
Management, vol. 49, pp. 271–289, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0268401217304917

[8] Z. Wang, N. Wang, X. Su, and S. Ge, “An empirical study
on business analytics affordances enhancing the management of
cloud computing data security,” International Journal of Information
Management, vol. 50, pp. 387–394, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0268401218302603

[9] K.-Y. Huang, G.-H. Luo, and S.-M. Yuan, “Sstreasury+: A secure
and elastic cloud data encryption system,” in 2012 Sixth International
Conference on Genetic and Evolutionary Computing, 2012, pp. 518–
521.

[10] L. Wei, H. Zhu, Z. Cao, X. Dong, W. Jia, Y. Chen, and A. V. Vasilakos,
“Security and privacy for storage and computation in cloud computing,”
Information Sciences, vol. 258, pp. 371–386, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025513003320

[11] W. Itani, A. Kayssi, and A. Chehab, “Privacy as a service: Privacy-aware
data storage and processing in cloud computing architectures,” in 2009
Eighth IEEE International Conference on Dependable, Autonomic and
Secure Computing, 2009, pp. 711–716.

[12] R. Patgiri, S. Nayak, and S. K. Borgohain, “Passdb: A password database
with strict privacy protocol using 3d bloom filter,” Information Sciences,
vol. 539, pp. 157 – 176, 2020.

[13] R. Patgiri, “Whisper: A curious case of valid and employed mallory in
cloud computing,” in To be appeared in the confernece proceedings of
the 8th IEEE International Conference on Cyber Security and Cloud

Computing (IEEE CSCloud 2021), June 26-28, Washington DC, USA,
2021, pp. 1–6.

[14] R. for Pair-Wise Key Establishment Schemes UsingDiscrete Loga-
rithm Cryptography, “Elaine barker and lily chen and allen roginsky
and miles smid,” Accessed on January 2021 from https://nvlpubs.nist.
gov/nistpubs/Legacy/SP/nistspecialpublication800-56ar.pdf, 2007.

[15] FIPS, “Specification for the advanced encryption standard (aes),” Federal
Information Processing Standards Publication 197, 2001. [Online].
Available: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[16] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES Is in P,” Ann. Of
Math., vol. 160, no. 2, pp. 781–793, Sep 2004. [Online]. Available:
http://www.jstor.org/stable/3597229

[17] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statistical
test suite for random and pseudorandom number generators for cryp-
tographic applications,” Booz-allen and hamilton inc mclean va, Tech.
Rep., 2001.

[18] L. E. Bassham III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid,
E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks et al.,
Sp 800-22 rev. 1a. a statistical test suite for random and pseudorandom
number generators for cryptographic applications. National Institute
of Standards & Technology, 2010.

[19] S. Alneyadi, E. Sithirasenan, and V. Muthukkumarasamy, “A survey on
data leakage prevention systems,” Journal of Network and Computer
Applications, vol. 62, pp. 137–152, 2016.

[20] Q. Zhao, C. Zuo, G. Pellegrino, and L. Zhiqiang, “Geo-locating
drivers: A study of sensitive data leakage in ride-hailing services.” in
NDSS Symposium 2019, February 2019, pp. 1–15. [Online]. Available:
https://publications.cispa.saarland/2757/

