
Systematic Side-channel Analysis of Curve25519 with Machine
Learning

Léo Weissbart1, Łukasz Chmielewski2, Stjepan Picek3, and Lejla Batina4

1l.weissbart@cs.ru.nl
2lukaszc@cs.ru.nl

3s.picek@tudelft.nl
4lejla@cs.ru.nl

1,3Delft University of Technology, The Netherlands
1,2,4Digital Security Group, Radboud University, The Netherlands

2Riscure, The Netherlands

Abstract

Profiling attacks, especially those based on machine
learning, proved to be very successful techniques in re-
cent years when considering the side-channel analysis
of symmetric-key crypto implementations. At the same
time, the results for implementations of asymmetric-
key cryptosystems are very sparse.

This paper considers several machine learning tech-
niques to mount side-channel attacks on two imple-
mentations of scalar multiplication on the elliptic curve
Curve25519. The first implementation follows the base-
line implementation with complete formulae as used
for EdDSA in WolfSSl, where we exploit power con-
sumption as a side-channel. The second implementa-
tion features several countermeasures, and in this case,
we analyze electromagnetic emanations to find side-
channel leakage.

Most techniques considered in this work result in
potent attacks, and especially the method of choice
appears to be convolutional neural networks (CNNs),
which can break the first implementation with only a
single measurement in the attack phase. The same con-
volutional neural network demonstrated excellent per-
formance for attacking AES cipher implementations.

Our results show that some common grounds can

be established when using deep learning for profiling
attacks on very different cryptographic algorithms and
their corresponding implementations.

Keywords— Side-channel analysis, Machine learning,
Deep learning, Public-key cryptography, Curve25519

1 Introduction

Various cyber-physical devices have become integral
parts of our lives. They provide basic services, and as
such, also need to fulfill appropriate security require-
ments. Designing such secure devices is not easy due
to limited resources available for implementations, and
the need to provide resilience against various attacks.
In the last decades, implementation attacks emerged as
real threats and the most potent attacks. In implemen-
tation attacks, the attacker does not aim at the weak-
nesses of an algorithm, but the weaknesses in imple-
mentations [23]. One powerful category of implementa-
tions attacks is the profiled side-channel analysis (SCA)
where the attacker has access to a profiling device she
uses to learn about the leakage from the device under
attack. Profiled SCA uses a broad set of methods to con-
duct the attack.

In the last few years, attacks based on the ma-
chine learning classification task have proved to be

1

mailto:l.weissbart@cs.ru.nl
mailto:lukaszc@cs.ru.nl
mailto:s.picek@tudelft.nl
mailto:lejla@cs.ru.nl


very successful when attacking symmetric-key cryptog-
raphy [20, 21, 22, 35, 39]. On the other hand, profiled
SCAs on public-key cryptography implementations are
much more scarce [25, 38, 8].

While the current state-of-the-art results on profiled
SCA and public-key cryptography suggest breaking tar-
gets with a relatively small effort, many questions re-
main unanswered. For instance, it is not yet clear what
are the benefits of countermeasures against machine
learning-based attacks. What is more, public-key cryp-
tography has different use cases and parameters that
also result in classification problems with significantly
different number of classes one commonly encounters
when attacking, e.g., block ciphers. Finally, in pro-
filed SCA on symmetric ciphers, we are slowly moving
away from scenarios where the only interesting aspect
is the attack performance. Indeed, the SCA commu-
nity is now becoming interested in questions like in-
terpretability [24, 32, 45] and explainability [46] of deep
learning attacks, but also building methodologies [50]
and frameworks [33, 34] for objective analysis.

This paper considers profiled side-channel attacks on
two implementations of scalar multiplication on one of
the most popular elliptic curves for applications, i.e.,
Curve25519. The first implementation is the baseline
implementation with the complete formulae as used for
EdDSA in WolfSSl. The second implementation also in-
cludes several countermeasures. To evaluate the secu-
rity of those implementations, we consider seven differ-
ent profiled methods. Additionally, we investigate the
influence of the dimensionality reduction technique.
By doing this, we aim at filling the knowledge gap and
give insights into the performance of different profiled
methods. Finally, we compare the differences in the
attack performance when considering protected and
non-protected implementations.

This paper is based on the work “One Trace Is All
It Takes: Machine Learning-Based Side-Channel Attack
on EdDSA” [48]. The main differences are:

1. We provide results for an additional target, pro-
tected with countermeasures.

2. We provide results for several more profiled meth-
ods and different dimensionality reduction steps.

3. We investigate the applicability of one visualiza-
tion technique for deep learning when attacking
public-key implementations.

The rest of this paper is organized as follows. In Sec-
tion 2, we give details about EdDSA and scalar multipli-
cation procedure. Afterwards, we discuss the profiled
methods we use in our experiments. Section 3 provides
details about the attacker model, the datasets we use,
hyperparameter tuning, and dimensionality reduction.
In Section 4, we provide experimental results for both
targets. In Section 5, we discuss related works. Finally,
in Section 6, we conclude the paper and offer some po-
tential future research directions.

2 Background

In this section, we start by introducing the elliptic curve
scalar multiplication operation and the EdDSA algo-
rithm. After that, we discuss profiling attacks that we
use in our experiments.

2.1 Elliptic Curve Digital Signature Algo-
rithm

In the context of public-key cryptography, one impor-
tant feature is the (entity) authentication between two
parties. This feature ensures to party B that party A has
sent a message M and that this message is original and
unaltered. Authentication can be performed by the Dig-
ital Signature Algorithm (DSA). Nowadays, public-key
cryptography for constrained devices typically implies
Elliptic Curves cryptography (ECC) as the successor of
RSA because it achieves a higher security level with
smaller key lengths saving the resources such as mem-
ory, power, and energy. The security of ECC algorithms
is based on the difficulty of Elliptic Curve Discrete Log-
arithm Problem (ECDLP), which states that while it is
easy and efficient to compute Q = k ·P , it is “difficult” to
find k with knowledge of Q and P .

EdDSA [4] is a variant of the Schnorr digital signature
scheme [42] using Twisted Edward Curves, a subgroup
of elliptic curves that uses unified formulas, enabling
speed-ups for specific curve parameters. This algorithm
proposes a deterministic generation of the ephemeral
key, different for every message, to prevent flaws from a
biased random number generator. The ephemeral key
r is made of the hash value of the message M and the

2



auxiliary key b, generating a unique ephemeral public
key R for every message.

EdDSA, with the parameters of Curve25519, is re-
ferred to as Ed25519 [3]. EdDSA scheme for signature
generation and verification is described in Algorithm 1,
where the notation (x, . . . , y) denotes the concatenation
of the elements. The hash function H is SHA-512 [29].
The key length is of size u = 256. We denote the private
key with k, the private scalar a is the first part of the pri-
vate key’s hashed value, and the auxiliary key b is the
second part. We denote the ephemeral key with r and
M is the message.

After the signature generation, party A sends
(M ,R,S), i.e., the message along with the signature
pair (R,S) to B . The verification of the signature is
done by B with Steps 10 to 11. If the last equation is
verified, it represents a point on the elliptic curve, and
the signature is correct, ensuring that the message can
be trusted as an authentic message from A.

Algorithm 1 EdDSA Signature generating and verifica-
tion

Keypair Generation: (Used once, first time private
key is used.)
Input: k, Output: a,b,P

1: Hash k such that H(k) = (h0,h1, . . . ,h2u−1) = (a,b)
2: a = (h0, . . . ,hu−1), interpret as integer in little-

endian notation
3: b = (hu , . . . ,h2u−1)
4: Compute public key: P = aG .

Signature Generation:
Input: M , a,b,P Output: R,S

5: Compute ephemeral private key r = H(b, M) .
6: Compute ephemeral public key R = rG .
7: Compute h = H(R,P, M) mod l .
8: Compute: S = (r +ha) mod l .
9: Signature pair (R,S)

Signature Verification:
Input: M ,P,R,S, Output: {True, False}

10: Compute h = H(R,P, M)
11: Verify if 8SG = 8R +8hP holds in E

2.2 Elliptic Curve Scalar Multiplication

We focus on two types of implementations of EC scalar
multiplication. The first implementation is of EdDSA
using Ed25519 as in WolfSSL. This implementation is
based on the work of Bernstein et al. [4] and is a
window-based method with radix-16, making use of a
precomputed table containing results of the scalar mul-
tiplication of 16i |ri |·G , where ri ∈ [−8,7]∩Z and G is the
base point of Curve25519. This method is popular be-
cause of its trade-off between memory usage and com-
putation speed, but also because the implementation is
time-constant and does not feature any branch condi-
tion nor array indices and hence is presumably secure
against timing attacks.

Leaking information from the corresponding value
loaded from memory with a function g e_sel ect is here
used to recover e and hence can be used to connect to
the ephemeral key r easily. More details are given in the
remainder of this paper. We can attack this implemen-
tation and extract the ephemeral key r from Step 5 in
Algorithm 1.

The second implementation we focus on is the
Montgomery Ladder scalar multiplication as used in
µNaCl [15]. The implementation employs arithmetic-
based conditional swap and is additionally protected
with projective coordinate re-randomization and scalar
randomization. The traces used to analyze this im-
plementation are obtained from a publicly available
dataset [11]. all details on this implementation, in-
cluding the additional countermeasures, are described
in [27].

2.3 Profiling Attacks

2.3.1 Random Forest - RF

Random Forest is an ensemble learning method that
consists of a number of decision trees [6]. Decision trees
consist of combinations of Boolean decisions on a dif-
ferent random subset of attributes of input data (called
bootstrap sampling). For each node of each tree, the
best split is taken among these randomly chosen at-
tributes. Random forest is a stochastic algorithm since
it has two sources of randomness: bootstrap sampling
and attribute selection at node splitting. While the ran-
dom forest has several hyperparameters to tune, we in-

3



Figure 1: Anatomy of a neuron.

vestigate the influence of the number of trees in the for-
est, where we do not pose any limits on the tree size.

2.3.2 Support Vector Machines - SVM

Support Vector Machines is a kernel-based machine
learning family of methods used to classify linearly sep-
arable and linearly inseparable data [47]. The idea
for linearly inseparable data is to transform them into
a higher dimensional space using a kernel function,
wherein the data can usually be classified with higher
accuracy. The scikit-learn implementation we use con-
siders libsvm’s C-SVC classifier [31] that implements
SMO-type algorithm [16]. This implementation of SVM
learning is widely used because it is simpler and faster
compared to older methods. The multi-class support is
handled according to a one-vs-one scheme. We inves-
tigate two variations of SVM: with a linear kernel and
with a radial kernel. Linear kernel-based SVM has the
penalty hyperparameter C of the error term. Radial
kernel-based SVM has two significant hyperparameters
to tune: the cost of the margin C and the kernel γ.

2.3.3 Convolutional Neural Networks - CNNs

CNNs, like other types of neural networks, have several
layers where each layer is made up of neurons, as de-
picted in Figure 1. Every neuron in a layer computes
a weighted combination of an input set by a net in-
put function (e.g., the sum function in neurons of a

fully-connected layer) from which a nonlinear activa-
tion function produces an output. When the output is
different from zero, we say that the neuron activation
feeds the next layer as its input. Layers with a convolu-
tion function as the net input function are referred to as
convolutional layers and are the core building blocks in
a CNN. Pooling layers are commonly used after a con-
volution layer to sample down local regions and create
spatial regions of interest. The last fully-connected lay-
ers of a CNN behave as a classifier for the extracted fea-
tures from the inputs.

In this work, we start from the VGG-16 architecture
introduced in [43] for image recognition. This architec-
ture was also recently applied for SCA on AES [20] and
EdDSA [48]. This CNN architecture also uses the follow-
ing elements:

1. Batch normalization to normalize the input layer
by applying standard scaling on the activations of
the previous layer.

2. Flatten layer to transform input data of rank greater
than two into a one-dimensional feature vector
used in the fully-connected layer.

3. Dropout (randomly dropping out units (both hid-
den and visible) in a neural network with a certain
probability at each batch) as a regularization tech-
nique for reducing overfitting by preventing com-
plex co-adaptations on the training data.

The architecture of a CNN depends on a large number
of hyperparameters, so choosing hyperparameters for
each different application is an engineering challenge.
The choices made in this paper are discussed in Sec-
tion 4.

2.3.4 Gradient Boosting - XGB

Gradient boosting for classification is an algorithm that
trains several weak learners (i.e., decision trees that
perform poorly considering the classification problem)
and combines their predictions to make one stronger
learner. Gradient boosting differs from the random for-
est in the way the decision trees are built. While in
random forest classifier, each tree is trained indepen-
dently using random samples of the data, decisions
trees in gradient boosting depend on the previously
trained tree’s prediction to correct its errors. Gradient
tree boosting is composed of a concatenation of sev-

4



eral smaller decision trees. We used the eXtreme Gradi-
ent Boosting (XGB) implementation of gradient boost-
ing, designed by Chen and Guestrin [10], which use a
sparsity aware algorithm for handling sparse data and
a theoretically justified weighted quantile sketch for ap-
proximate learning.

2.3.5 Naive Bayes - NB

Gaussian Naive Bayes classifier is one of the classifica-
tion algorithms that applies Bayes’s theorem with the
“naive” assumption. The naive assumption describes
the conditional independence between every pair of
features in a given class sample. The Gaussian assump-
tion is assumed as the features probability distribution.
The Naive Bayes method is highly scalable with the
number of features and requires only a few represen-
tative features per class to achieve a satisfying perfor-
mance.

2.3.6 Template Attack - TA

The template attack relies on the Bayes theorem and
considers the features to be dependent. Commonly,
template attack relies on a normal distribution [9] and it
assumes that each P (~X =~x|Y = y) follows a (multivari-
ate) Gaussian distribution parameterized by its mean
and covariance matrix for each class Y . Choudary and
Kuhn proposed using one pooled covariance matrix av-
eraged over all classes Y to cope with statistical difficul-
ties and thus lower efficiency [12]. In our experiments,
we use this version of the attack.

3 Experimental Setup

3.1 Attacker Model

The general recommendation for EdDSA, as well as
other ECDSA implementations, is to select different
ephemeral private keys r for each different signature.
When this is not applied and the same r is used for dif-
ferent messages, the two resulting signature pairs (R,S)
and (R,S′) for messages M and M ′, respectively can be
used to recover r as r = (z − z ′)(S −S′)−1, where z and z ′
represent a majority of leftmost bits of H(M) and H(M ′)

interpreted as integers 1. Finally, the private scalar a is
exposed as a = R−1(Sr − z) and can be misused by the
attacker to forge new signatures 2.

The attacker’s aim is the same as for every ECDSA
attack: recover the secret scalar a. The difference is
that the attacker cannot acquire two signatures with
the same random r , but can still recover the secret
scalar in two different ways. The first method con-
sists of attacking the hash function’s implementation to
recover b from the computation of ephemeral private
key [40]. The second one attacks the implementation of
the scalar multiplication during the ephemeral public
key’s computation to infer it in a single trace [48]. In this
paper, we consider only the profiled attacks, i.e., those
based on the supervised machine learning paradigm,
where the task is the classification (learning how to as-
sign a class label to examples). As side-channels, we
consider the power and electromagnetic (EM) leakage.

3.2 SCA Datasets

We analyze two publicly available datasets targeting el-
liptic curve scalar multiplication on Curve25519 for mi-
crocontrollers. The first dataset consists of power traces
of a baseline implementation, and the second dataset
consists of electromagnetic traces of a more protected
implementation.

3.2.1 Baseline Implementation Dataset

We consider a dataset of scalar multiplication on
Curve25519. The implementation follows the baseline
implementation of the scalar multiplication algorithm
as in [48]. The traces contain power measurements col-
lected from a Piñata development board1 based on a 32-
bit STM32F4 microcontroller with an ARM-based archi-
tecture, running at the clock frequency of 168 MHz. The
device is running the Ed25519 implementation of Wolf-
SSL 3.10.2. The target is the EC scalar multiplication of

1To be precise: z and z′ correspond to l leftmost bits of H(M) and
H(M ′) respectively, where l denotes the bit length of the group order.

2For details we refer the reader to the presentation about a real-
world application of this attack:
https://wikileaks.org/sony/docs/05/docs/Hacks/PS3%
20timeline.pdf

1Pinata Board: https://www.riscure.com/product/
pinata-training-target/

5

https://wikileaks.org/sony/docs/05/docs/Hacks/PS3%20timeline.pdf
https://wikileaks.org/sony/docs/05/docs/Hacks/PS3%20timeline.pdf
https://www.riscure.com/product/pinata-training-target/
https://www.riscure.com/product/pinata-training-target/


0 200 400 600 800 1000
Features

2

4

6

8

10

12

SN
R

Figure 2: Signal-to-noise ratio for the baseline imple-
mentation dataset.

the ephemeral key and the base point of curve Ed25519
(as explained in Section 3.1). Because of the chosen im-
plementation, it is possible to profile the full scalar by
nibble in a horizontal fashion. The dataset is thus com-
posed of multiple separate nibble computations.

The dataset has 6 400 labeled traces of 1 000 features
each, with associated nibble value. In Figure 2, we give
the signal-to-noise ratio of this dataset. The SNR is high
and reaches a maximum value of 12.9. Such a high SNR
is the consequence of dealing with power leakages that
are less noisy than usual EM leakages. The leakage is es-
sentially located between points 50 and 700, where sev-
eral features seem to leak information about the han-
dled nibble.

3.2.2 Protected Implementation Dataset

The traces in the protected dataset are taken from a
publicly available dataset [11]. This set contains elec-
tromagnetic traces coming from 5 997 executions of
Curve25519 µNaCl Montgomery Ladder scalar multi-
plication 3 running on the Piñata target, the same
as in Section 3.2.1. The implementation employs
an arithmetic-based conditional swap and is addi-
tionally protected with the projective coordinate re-
randomization and scalar randomization. Each trace

3http://munacl.cryptojedi.org/curve25519-cortexm0.
shtml

0 1000 2000 3000 4000 5000
Features

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

SN
R

Figure 3: Signal-to-noise ratio for the protected imple-
mentation dataset.

from the dataset represents a single iteration of the
Montgomery Ladder scalar multiplication that is cut
from the whole execution trace; such trace is labeled
with the corresponding cswap condition bit 4. Further-
more, all these cut traces (5997 ∗ 255 = 1529235) are
aligned to exploit the leakage efficiently. Details about
the implementation and how the traces are aligned are
in [27].

Figure 3 represents the SNR of the dataset for the bit
model. This SNR is relatively flat except for two peaks
where the leakage of the data is stronger. One is located
before feature 3 000 and the second after feature 5 000.
The noise level is high for an EM dataset but is smaller
than the other dataset based on power traces.

3.3 Evaluation Metrics

To examine the feasibility and performance of our at-
tack, we use two different metrics. We first compare
the performance using the accuracy metric since it is
a standard metric in machine learning. The accuracy
metric represents the fraction of the measurements that
are classified correctly. The second metric we use is the
success rate as it is an SCA metric that gives a more
concrete idea on the power of the attacker [44]. Let us
consider the settings where we have A attack traces. As

4Observe that a full scalar can be trivially recovered from the cswap
condition bits used in the 255 Montgomery Ladder iterations.

6

http://munacl.cryptojedi.org/curve25519-cortexm0.shtml
http://munacl.cryptojedi.org/curve25519-cortexm0.shtml


the result of an attack, we output a key guessing vec-
tor v = [v1, v2, . . . , v|K |] in decreasing order of probabil-
ity with |K | being the size of the keyspace. Then, the
success rate is the average empirical probability that v1

is equal to the correct key.

3.4 Dimensionality Reduction

For computational reasons, one may want to analyze
only the most informative features from the dataset’s
traces. Consequently, we explore several different set-
tings where we use all the features in a trace or con-
duct dimensionality reduction. For dimensionality re-
duction, we use a method called principal component
analysis. Principal component analysis (PCA) is a lin-
ear dimensionality reduction method that uses Singu-
lar Value Decomposition (SVD) of the data matrix to
project it to a lower-dimensional space [5]. PCA cre-
ates a new set of features (called principal components)
that form a new orthogonal coordinate system that is
linearly uncorrelated. The number of components is
the same as the number of original features. The com-
ponents are arranged so that the first component cov-
ers the largest variance by a projection of the original
data, and the following components cover less and less
of the remaining data variance. The projection con-
tains (weighted) contributions from all the original fea-
tures. Not all principal components need to be kept
in the transformed dataset. Since the components are
sorted by decreasing covered variance, the number of
kept components, designated by L, maximizes the orig-
inal data variance and minimizes the data transforma-
tion’s reconstruction error. While PCA is meant to select
the principal information from data, there is no guaran-
tee that the reduced data form will give better results for
profiling attacks than its complete form.

3.5 Hyperparameter Tuning

Most machine learning methods are parametric and
require some hyperparameters to be tuned before the
training phase. Depending on this pre-tuning, the
trained classifier will potentially have a different out-
come. The different classification methods we used are
trained with a wide set of hyperparameters as detailed

in this section. The exact used hyperparameters are
listed in Tables 1 and 4.

TA. We use the Template Attack with a pooled covari-
ance matrix [12]. This method has no hyperparameters
to tune.

NB. We do not conduct hyperparameter tuning as the
method is non-parametric (i.e., there are no hyperpa-
rameters to tune).

RF. We tune the number of decision trees. We consider
the following number of trees: 50, 100, 500.

SVM. For the linear kernel, the hyperparameter to op-
timize is the penalty parameter C . We search for the best
C in the range [1,105] in logarithmic space. For the ra-
dial basis function (RBF) kernel, we have two hyperpa-
rameters to tune: the penalty C and the kernel coeffi-
cient γ. The search for best hyperparameters is done
within C = [1,105] and γ= [−5,2] in logarithmic spaces.

XGB. In the same fashion as the random forest clas-
sifier, we set the hyperparameters exploration for the
number of trees to 50, 100, and 300. We impose a maxi-
mum depth for each tree from 1 to 3 nodes, to force each
tree to be a weak learner.

CNN. The chosen hyperparameters for VGG-16 fol-
lows several rules that have been adapted for SCA in [20]
or [39] and that we describe here:

1. The model is composed of several convolution
blocks and ends with a dropout layer followed by a
fully-connected layer and an output layer with the
Softmax activation function.

2. Convolutional and fully-connected layers use the
ReLU activation function (max(0, x)).

3. A convolution block is composed of one convolu-
tion layer followed by a pooling layer.

4. An additional batch normalization layer is applied
for every odd-numbered convolution block and is
preceding the pooling layer.

5. The chosen filter size for convolution layers is set
to the size 3.

7



Table 1: Best hyperparameters found for the baseline
implementation dataset.

Algorithm Number of features Best hyperparameters

SVM linear 1 000 C =1 000
500 C =23.1
100 C =284.8
10 C =1 333

SVM rbf 1 000 C =1 000, γ=1
500 C =12.3, γ=0.65
100 C =81.1, γ=0.65
10 C =1 000, γ=1.23

RF 1 000, 500, 100, 10 n_tr ee=500
XGB 1 000, 500, 100, 10 n_tr ee=300, max_depth=3

6. The number of filters nfilters,i in a convolution
block i increases according to the following rule:
nfilters,i = max(2i ·nfilters,1,512) for every layer i ≥ 0
and we choose nfilters,1 = 8.

7. The stride of the pooling layers equals two and
halves the input data for each block.

8. Convolution blocks follow each other until the size
of the input data is reduced to 1.

4 Results

In this section, we first present results for the baseline
implementation and the protected implementation af-
terward. We finish the section with results on visualiza-
tion and discussion. The best results in Tables 2 and 5
are given in bold.

4.1 Baseline implementation

After the conducted training phase of all the different
classifiers with their hyperparameters, we list in Table 1
the best hyperparameters combinations for each ma-
chine learning model.

The resulting CNN architecture for a 1 000 features in-
put is depicted in Figure 4. Other architectures will have
a different number of convolutional blocks and a num-
ber of weights depending on the number of features of
the input.

Figure 4: CNN architecture, as implemented in Keras.
This architecture takes a 1 000 features input and con-
sists of nine convolutional layers followed by max pool-
ing layers. For each odd convolutional layer, there is a
batch normalization layer before the pooling layer. At
the end of the network, there is one fully-connected
layer.

8



In Table 2, we give the accuracy score for different
profiling methods when considering the recovery of a
single nibble of the key. We can see that all profil-
ing techniques reach excellent performance with accu-
racy above 95%. When considering all available fea-
tures (1 000), CNN performs the best and achieves an
accuracy of 100%. Both SVM (linear and RBF) and RF
have the same accuracy. SVM’s performance is interest-
ing since the same value for linear and RBF kernel indi-
cates there is no advantage of using higher-dimensional
space, which means that the classes are linearly sepa-
rable. Finally, NB, XGB, and TA still perform well, but
we conclude they reach the worst results compared to
other methods.

PCA results in lower accuracy scores for most of
the considered techniques. When considering 500 or
100 PCA components, the TA’s results slightly improve,
while RF and CNN results slightly decrease. SVM with
both kernels can reach minimally higher accuracy when
considering 500 PCA components. When considering
the scenario with only the ten most important PCA
components, all the results deteriorate compared with
the results with 1 000 features, and SVM performs the
best.

To conclude, all techniques exhibit strong perfor-
mance, but CNN is the best if no dimensionality reduc-
tion is applied. There, the maximum accuracy is ob-
tained after only a few epochs (see Figures 6 and 7).
If dimensionality reduction is applied, CNN shows a
progressive performance deterioration. This behavior
should not come as a surprise since CNNs are usually
used with the raw features (i.e., no pre-processing). Ap-
plying such techniques could reduce the performance
due to a loss of information and changes in the spatial
representation of features. Interestingly, TA and SVM
are very stable methods, regardless of the number of
used features (components), and those methods show
the best performance for a reduced number of features
settings.

In Figure 5, we present a success rate with orders up
to 10 for all profiling methods on the dataset without ap-
plying PCA. Recall, a success rate of order o is the prob-
ability that the correct subkey is ranked among the first
o candidates of the guessing vector. While CNN has a
100% success rate of order 1, other methods achieve the
perfect score only for orders greater than 6.

Table 2: Accuracy results for the baseline implementa-
tion dataset.

Algorithm
1 000

features 500 PCA 100 PCA 10 PCA

TA 0.9977 0.9992 0.9992 0.9830
RF 0.9992 0.9909 0.9921 0.9937
SVM (linear) 0.9992 0.9995 0.9990 0.995
SVM (rbf) 0.9992 0.9996 0.9989 0.995
CNN 1.00 0.9796 0.9968 0.96
XGB 0.9965 0.9794 0.9807 0.9901
NB 0.9837 0.9475 0.9731 0.9823

Figure 5: Success rate results for the baseline imple-
mentation dataset.

9



Table 3: Cumulative probabilities for the profiling
methods.

Algorithm
1 000

features 500 PCA 100 PCA 10 PCA

TA 0.86 0.95 0.95 0.33
RF 0.95 0.56 0.61 0.67
SVM (linear) 0.95 0.97 0.94 0.73
SVM (rbf) 0.95 0.98 0.93 0.73
CNN 1.00 0.27 0.82 0.04
XGB 0.80 0.27 0.29 0.53
NB 0.35 0.03 0.18 0.32

The results for all methods are similar in the recov-
ery of a single nibble from the key. To have an idea of
how good these methods perform for the recovery of a
full 256-bit key, we apply classification on the succes-
sive 64 nibbles. We obtain an intuition of the result-
ing accuracy by considering the cumulative probabil-
ity Pc of the probabilities of recovery of one nibble Ps

: Pc =Π64Ps (see Table 3). The cumulative accuracy ob-
tained in such a way can be interpreted as the predic-
tive first-order success rate of a full key for the different
methods in terms of a security metric.

From these results, the best result is obtained with
CNN when no dimensionality reduction is applied.
Other methods are nonetheless powerful profiling at-
tacks with up to 95% performance to recover the full key
on the first guess with the best choice of hyperparame-
ters and dimensionality reduction. When considering
the results after dimensionality reduction, SVM is the
best performing technique when using 500 PCA com-
ponents.

As it can be observed from Figures 6 and 7, both
the scenarios without dimensionality reduction and di-
mensionality reduction to 100 and 500 components
reach the maximal performance very fast. On the
other hand, the scenario with 10 PCA components
does not reach the maximal performance within 100
epochs since the validation accuracy does not start to
decrease. Still, even longer experiments do not show
further improvement in the performance, which indi-
cates that the network simply learned all that is possi-
ble and that there is no more information that can be

(a) Training Accuracy

(b) Validation Accuracy

Figure 6: Accuracy of the CNN method over 100 epochs
for the baseline implementation dataset.

10



(a) Training Loss

(b) Validation Loss

Figure 7: Loss of the CNN method over 100 epochs for
the baseline implementation dataset.

used to increase the performance further. Finally, the
fast increase in training and validation accuracy, and
the stable behavior of profiling methods clearly indi-
cate that attacking the implementation without coun-
termeasures is easy.

4.2 Protected Implementation

We list the selected hyperparameters for the protected
implementation in Table 4. The protected implemen-
tation dataset contains more features per trace than
the other dataset. Therefore, the number of trainable
parameters for machine learning methods greatly in-

Table 4: Best hyperparameters found for the protected
implementation dataset.

Algorithm Number of features Best hyperparameters

RF 5 500, 1 000, 10 n_tr ee=500
XGB 5 500, 1 000 n_tr ee=300, max_depth=3

10 n_tr ee=300, max_depth=2

Algorithm
5 500

features 1 000 PCA 10 PCA

RF 0.9903 0.5022 0.5023
NB 0.6058 0.4971 0.5018
XGB 0.6058 0.4945 0.5019
TA 0.9908 0.8954 0.5238
CNN 0.9999 0.5014 0.5572

Table 5: Accuracy results for the protected implementa-
tion dataset.

creases, increasing the models’ training load. We exper-
imented with RF, NB, and XGB and left out SVM (both
with linear and RBF kernel) as this method’s training be-
comes too expensive.

We show the accuracy results for all tested meth-
ods on the protected implementation dataset in Ta-
ble 5. Notice that, contrary to the previously consid-
ered dataset, not all profiling techniques have good per-
formance, and most of them are even close to random
guessing. Still, some profiling methods can reach above
99% accuracy, where the best results are obtained with
CNN. When PCA is applied, random forest performs
poorly with 50.2% accuracy for ten and 1 000 compo-
nents, which is not better than one could expect from
random guessing. However, this method turns out to be
quite efficient on the raw features and reaches an accu-
racy of 93% for one bit recovery.

Naive Bayes and XGB perform poorly regardless of
the hyperparameters explored and if dimensionality re-
duction is applied. The accuracy stays around random
guessing when PCA is applied with ten and 1 000 com-
ponents, and does not go above 60% in the best case.
Naive Bayes and XGB are simple classifiers and, consid-
ering their accuracy score on this dataset, are not pow-

11



erful enough to defeat a protected EC scalar multiplica-
tion implementation.

The template attack is performing well, where the
more features are taken, the better the results. The best
accuracy score for template attack is obtained when all
features are kept, and it reaches 99% accuracy. When
PCA is applied and 1 000 components are selected, the
accuracy falls to 89% (which is, in fact, the best results
for all considered techniques). Finally, when the num-
ber of selected components is reduced to 10, the accu-
racy falls to 52%.

CNN is a highly efficient method only when consid-
ering the dataset without applying the PCA method,
where it reaches an accuracy above 99%. As we can see
in Figures 8 and 9, when PCA is applied, while the train-
ing loss and accuracy seems to fit the training set, the
model fails to generalize and converge on the validation
set given the chosen number of traces and epochs.

We can evaluate the accuracy of the different meth-
ods to predict a 256 bits scalar by computing the cu-
mulative probability of success of a single bit over 256
attempts. The cumulative probability pc for a 256 bits
key considering a single bit probability recovery Ps is:
Pc = ∏

256 Ps . Here, only the methods with a single ac-
curacy above 99% are worth considering as the other
methods have a cumulative probability close to zero.
For example, the cumulative accuracy for the random
forest with 5 500 features is 8%, and CNN with 5 500 fea-
tures is 98%.

4.3 Visualization of the Integrated Gradient

For CNNs, various visualization techniques have been
developed to help researchers understand what in-
put features influence the neural network predictions.
These tools are interesting in side-channel analysis to
evaluate if a network bases its prediction on the part
of the trace where the leakage is the strongest. We
note that visualization techniques proved to be a help-
ful tool when considering profiled SCA and block ci-
phers [17, 24]. We use here the Integrated gradient
method [30]. In this method, the higher is the gradient
value, the more important the feature is for the model’s
prediction.

From Figures 10 and 11, we can notice that when we
apply principal component analysis, the network tends

(a) Training Accuracy

(b) Validation Accuracy

Figure 8: Accuracy of the CNN method over 100 epochs
on the protected implementation dataset.

12



(a) Training Loss

(b) Validation Loss

Figure 9: Loss of the CNN method over 100 epochs on
the protected implementation dataset.

0 100 200 300 400 500
Time (samples)

0

100

200

300

400

Gr
ad

ie
nt

(a) 500 POI

0 200 400 600 800 1000
Time (samples)

0

50

100

150

200

250

Gr
ad

ie
nt

(b) 1 000 features

Figure 10: Integrated gradient method applied to CNN
trained on the baseline implementation dataset.

13



0 200 400 600 800 1000
Time (samples)

0

2000

4000

6000

8000

10000

12000

14000

16000

Gr
ad

ie
nt

(a) 1 000 features

0 1000 2000 3000 4000 5000
Time (samples)

0

2000

4000

6000

8000

10000

Gr
ad

ie
nt

(b) 5 500 features

Figure 11: Integrated gradient method applied to CNN
trained on the protected implementation dataset.

to rely more on the first features. After applying PCA,
the features are reorganized and ranked from the most
important to the least important feature. When consid-
ering the dataset without applying PCA, the features’ or-
der is the same as those sampled with the oscilloscope.
We can notice interesting similarities between the SNR
of the unprotected implementation (Figure 2) and the
integrated gradient of the CNN. The interpretation of
the integrated gradient obtained for the CNN trained
on the protected implementation dataset is less evident
as the high peaks do not correspond to the leaking fea-
tures indicated by the SNR (see Figure 3).When compar-
ing the visualization results for both datasets, the simi-
larity between the baseline results for the full number
of features and after dimensionality reduction indicates
that the performance should be similar, which is con-
firmed by the accuracy results. On the other hand, we
see striking differences between two visualizations for
the protected implementation, where the one with 1 000
features cannot concentrate on the most important ele-
ments, which is again evident from the accuracy results.

4.4 General Remarks

The obtained results allow us to infer some more gen-
eral recommendations one could follow one attacking
ECC with profiled SCAs:

1. When attacking unprotected implementations,
most of the considered methods work well. While
CNN performs the best, computationally simpler
methods represent an interesting alternative.

2. For protected implementation, deep learning per-
forms significantly better than other considered
methods.

3. For the protected implementation, all the methods
perform worse when Principal component analysis
is applied to reduce the number of features.

4. Template attack should be an interesting option in
cases when one cannot use all the features.

5. There is not much difference in the attack perfor-
mance concerning hyperparameter tuning, which
indicates that coarse-grained tuning should be
enough.

6. Visualization techniques offer good indication in
the performance of CNNs, as they show on what
features CNN concentrates. If CNN cannot con-

14



centrate on a smaller number of features, this re-
sults in a poor attack performance.

5 Related Work

In 2003 Chari et al. [9] introduced a template attack
(TA) as a powerful SCA method in the information-
theoretic point of view, which became a standard tool
for profiling SCA. As TA’s straightforward implementa-
tions can lead to computationally intensive computa-
tion, one option for more efficient computation is to
use only a single covariance matrix, which is referred
to as the so-called pooled template attack presented by
Choudary and Kuhn [12]. There, the authors were able
to template a LOAD instruction and recover all 8 bits
treated with a guessing entropy equal to zero.

Several works applied machine learning methods to
SCA of block ciphers because they resemble general
profiling techniques. Two methods stand out particu-
larly in profiling SCA, namely Support Vector Machines
( [36, 22, 41, 21]) and Random Forest ( [18, 35, 41]). Few
other works also experienced SCA with naive Bayes [36]
and Gradient boosting methods [37, 49]. With the gen-
eral evolution in the field of deep learning, more and
more works deal with neural networks for SCA and often
show top performance. Most of the research concen-
trated on either multilayer perceptron or convolutional
neural networks [22, 37, 7, 13].

There is a large portion of works considering profil-
ing techniques for symmetric-key ciphers, but there is
less for public-key cryptography 5, especially ECC. Tem-
plate attacks on ECC trace back to an attack on ECDSA,
as demonstrated by Medwed and Oswald 2009 [26].
That work showed TA to be efficient for attacking SPA-
resistant ECDSA with the P192 NIST curve on a 32-bit
microcontroller [25]. Heyszl presented another tem-
plate attack on ECC in [19]. That attack exploited reg-
ister location-based leakage using a high-resolution in-
ductive EM probe. Another approach to attack ECC is
the so-called online template attacks [1, 14, 2, 30]. The
first three approaches [1, 14, 2] use correlation to match
the template traces to the whole attacked traces while

5We do not consider here the post-quantum schemes, because al-
though they belong to public-key cryptography, they differ signifi-
cantly from ECC or RSA.

the fourth attack [30] employs instead several machine
learning distinguishers.

Lerman et al. considered a template attack and sev-
eral machine learning techniques to attack RSA. How-
ever, the targeted implementation was not secure, mak-
ing the comparison with non-machine learning tech-
niques less favorable [21]. Nascimento et al. applied a
horizontal attack on ECC implementation for AVR AT-
mega microcontroller targeting the side-channel leak-
age of cmov operation. Their approach to side-channel
is similar to ours, but they do not use deep learning in
the analysis [28]. Note, that approach was extended to
unsupervised settings using clustering [27]. Poussier et
al. used horizontal attacks and linear regression to con-
duct an attack on ECC implementations, but their ap-
proach cannot be classified as deep learning [38]. Car-
bone et al. used deep learning to attack a secure im-
plementation of RSA [8]. The results from that paper
show that deep learning can reach strong performance
against secure implementations of RSA.

6 Conclusions

In this paper, we consider several profiling methods to
attack Curve25519 in both unprotected and protected
settings. The results show that unprotected implemen-
tation is easy to attack with many techniques, where
good results are achieved even after dimensionality re-
duction. We observe a significantly different behavior
for the protected dataset, where only CNN can easily
break the target implementation. What is more, most
of the other methods perform on the level of random
guessing. For this dataset, we also see a strong negative
influence of dimensionality reduction. Finally, our re-
sults with the integrated gradient visualization indicate
such methods useful in evaluating CNN’s behavior. In-
deed, when there are clear peaks for the integrated gra-
dient, this maps to a simple classification task, and con-
sequently, powerful attack performance.

We plan to investigate whether standard machine
learning metrics like accuracy have fewer issues for
public-key cryptography implementations than are re-
ported for symmetric-key ciphers. As this gap between
machine learning and side-channel metrics represents
one of the most significant challenges in the SCA com-

15



munity today, insights about public-key particularities
are needed.

Acknowledgements

Ł. Chmielewski is partially supported by European
Commission through the ERC Starting Grant 805031
(EPOQUE) of P. Schwabe. We thank anonymous review-
ers for the suggestions on how to improve the paper.

References

[1] Batina, L., Chmielewski, Ł., Papachristodoulou, L.,
Schwabe, P., Tunstall, M.: Online template attacks.
In: Willi Meier, D.M. (ed.) Progress in Cryptology
- INDOCRYPT 2014 - 15th International Confer-
ence on Cryptology in India, New Delhi, India, De-
cember 14-17, 2014, Proceedings. LNCS, vol. 8885,
pp. 21–36. Springer (2014), http://cryptojedi.
org/papers/#ota

[2] Batina, L., Chmielewski, Ł., Papachristodoulou,
L., Schwabe, P., Tunstall, M.: Online template
attacks. Journal of Cryptographic Engineering
(August 2017). https://doi.org/10.1007/s13389-
017-0171-8, https://doi.org/10.1007/
s13389-017-0171-8

[3] Bernstein, D.J.: Curve25519: new Diffie-Hellman
speed records (2006). URL: http://cr.yp.to/
papers.html#curve25519. Citations in this doc-
ument 1(5) (2016)

[4] Bernstein, D.J., Duif, N., Lange, T., Schwabe, P.,
Yang, B.Y.: High-speed high-security signatures.
Journal of Cryptographic Engineering 2(2), 77–89
(2012)

[5] Bohy, L., Neve, M., Samyde, D., Quisquater, J.J.:
Principal and independent component analysis
for crypto-systems with hardware unmasked units.
In: Proceedings of e-Smart 2003 (January 2003),
cannes, France

[6] Breiman, L.: Random Forests. Machine Learning
45(1), 5–32 (2001)

[7] Cagli, E., Dumas, C., Prouff, E.: Convolutional
Neural Networks with Data Augmentation Against
Jitter-Based Countermeasures - Profiling Attacks
Without Pre-processing. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, Septem-
ber 25-28, 2017, Proceedings. pp. 45–68 (2017)

[8] Carbone, M., Conin, V., Cornélie, M.A., Das-
sance, F., Dufresne, G., Dumas, C., Prouff,
E., Venelli, A.: Deep learning to evaluate se-
cure RSA implementations. IACR Transac-
tions on Cryptographic Hardware and Em-
bedded Systems 2019(2), 132–161 (Feb 2019).
https://doi.org/10.13154/tches.v2019.i2.132-161,
https://tches.iacr.org/index.php/TCHES/
article/view/7388

[9] Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In:
International Workshop on Cryptographic Hard-
ware and Embedded Systems. pp. 13–28. Springer
(2002)

[10] Chen, T., Guestrin, C.: XGBoost: A scalable tree
boosting system. CoRR abs/1603.02754 (2016),
http://arxiv.org/abs/1603.02754

[11] Chmielewski, Ł.: Reassure (h2020
731591) ecc dataset (Jan 2020).
https://doi.org/10.5281/zenodo.3609789,
https://doi.org/10.5281/zenodo.3609789

[12] Choudary, O., Kuhn, M.G.: Efficient template at-
tacks. In: Francillon, A., Rohatgi, P. (eds.) Smart
Card Research and Advanced Applications - 12th
International Conference, CARDIS 2013, Berlin,
Germany, November 27-29, 2013. Revised Selected
Papers. LNCS, vol. 8419, pp. 253–270. Springer
(2013)

[13] Cid, C., Jr., M.J.J. (eds.): Selected Areas in
Cryptography - SAC 2018 - 25th International
Conference, Calgary, AB, Canada, August 15-17,
2018, Revised Selected Papers, Lecture Notes in
Computer Science, vol. 11349. Springer (2019).
https://doi.org/10.1007/978-3-030-10970-7

16

http://cryptojedi.org/papers/#ota
http://cryptojedi.org/papers/#ota
https://doi.org/10.1007/s13389-017-0171-8
https://doi.org/10.1007/s13389-017-0171-8
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curve25519
https://tches.iacr.org/index.php/TCHES/article/view/7388
https://tches.iacr.org/index.php/TCHES/article/view/7388
http://arxiv.org/abs/1603.02754
https://doi.org/10.5281/zenodo.3609789


[14] Dugardin, M., Papachristodoulou, L., Najm, Z.,
Batina, L., Danger, J., Guilley, S.: Dismantling real-
world ECC with horizontal and vertical template
attacks. In: Constructive Side-Channel Analysis
and Secure Design - 7th International Workshop,
COSADE 2016, Graz, Austria, April 14-15, 2016.
(2016), http://eprint.iacr.org/2015/1001/

[15] Düll, M., Haase, B., Hinterwälder, G., Hutter,
M., Paar, C., Sánchez, A.H., Schwabe, P.: High-
speed curve25519 on 8-bit, 16-bit, and 32-bit
microcontrollers. Des. Codes Cryptogr. 77(2-3),
493–514 (2015), http://dblp.uni-trier.de/
db/journals/dcc/dcc77.html#DullHHHPSS15

[16] Fan, R.E., Chen, P.H., Lin, C.J.: Working Set Se-
lection Using Second Order Information for Train-
ing Support Vector Machines. J. Mach. Learn. Res.
6, 1889–1918 (Dec 2005), http://dl.acm.org/
citation.cfm?id=1046920.1194907

[17] Hettwer, B., Gehrer, S., Güneysu, T.: Deep neu-
ral network attribution methods for leakage analy-
sis and symmetric key recovery. In: Paterson, K.G.,
Stebila, D. (eds.) Selected Areas in Cryptography –
SAC 2019. pp. 645–666. Springer International Pub-
lishing, Cham (2020)

[18] Heuser, A., Picek, S., Guilley, S., Mentens,
N.: Lightweight ciphers and their side-
channel resilience. IEEE Transactions
on Computers PP(99), 1–1 (2017).
https://doi.org/10.1109/TC.2017.2757921

[19] Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl,
G.: Localized electromagnetic analysis of cryp-
tographic implementations. In: Dunkelman, O.
(ed.) Topics in Cryptology – CT-RSA 2012. LNCS,
vol. 7178, pp. 231–244. Springer (2012)

[20] Kim, J., Picek, S., Heuser, A., Bhasin, S., Han-
jalic, A.: Make some noise. unleashing the
power of convolutional neural networks for
profiled side-channel analysis. IACR Trans-
actions on Cryptographic Hardware and Em-
bedded Systems 2019(3), 148–179 (May 2019).
https://doi.org/10.13154/tches.v2019.i3.148-179,
https://tches.iacr.org/index.php/TCHES/
article/view/8292

[21] Lerman, L., Bontempi, G., Markowitch, O.: Power
analysis attack: An approach based on machine
learning. Int. J. Appl. Cryptol. 3(2), 97–115 (Jun
2014). https://doi.org/10.1504/IJACT.2014.062722,
http://dx.doi.org/10.1504/IJACT.2014.
062722

[22] Maghrebi, H., Portigliatti, T., Prouff, E.: Break-
ing cryptographic implementations using deep
learning techniques. In: Security, Privacy, and
Applied Cryptography Engineering - 6th Interna-
tional Conference, SPACE 2016, Hyderabad, In-
dia, December 14-18, 2016, Proceedings. pp. 3–26
(2016)

[23] Mangard, S., Oswald, E., Popp, T.: Power Analy-
sis Attacks: Revealing the Secrets of Smart Cards.
Springer (December 2006), ISBN 0-387-30857-1,
http://www.dpabook.org/

[24] Masure, L., Dumas, C., Prouff, E.: Gradient
visualization for general characterization in
profiling attacks. In: Polian, I., Stöttinger,
M. (eds.) Constructive Side-Channel Analysis
and Secure Design - 10th International Work-
shop, COSADE 2019, Darmstadt, Germany,
April 3-5, 2019, Proceedings. Lecture Notes in
Computer Science, vol. 11421, pp. 145–167.
Springer (2019). https://doi.org/10.1007/978-3-
030-16350-1_9, https://doi.org/10.1007/
978-3-030-16350-1_9

[25] Medwed, M., Oswald, E.: Template attacks on
ECDSA. In: International Workshop on Informa-
tion Security Applications. pp. 14–27. Springer
(2008)

[26] Medwed, M., Oswald, E.: Template attacks on
ECDSA. In: Chung, K.I., Sohn, K., Yung, M.
(eds.) Information Security Applications. LNCS,
vol. 5379, pp. 14–27. Springer (2008), https://
eprint.iacr.org/2008/081/

[27] Nascimento, E., Chmielewski, Ł.: Horizontal clus-
tering side-channel attacks on embedded ecc
implementations (extended version). Cryptology
ePrint Archive, Report 2017/1204 (2017), https:
//eprint.iacr.org/2017/1204

17

http://eprint.iacr.org/2015/1001/
http://dblp.uni-trier.de/db/journals/dcc/dcc77.html#DullHHHPSS15
http://dblp.uni-trier.de/db/journals/dcc/dcc77.html#DullHHHPSS15
http://dl.acm.org/citation.cfm?id=1046920.1194907
http://dl.acm.org/citation.cfm?id=1046920.1194907
https://tches.iacr.org/index.php/TCHES/article/view/8292
https://tches.iacr.org/index.php/TCHES/article/view/8292
http://dx.doi.org/10.1504/IJACT.2014.062722
http://dx.doi.org/10.1504/IJACT.2014.062722
http://www.springer.com/
http://www.dpabook.org/
https://doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.1007/978-3-030-16350-1_9
https://eprint.iacr.org/2008/081/
https://eprint.iacr.org/2008/081/
https://eprint.iacr.org/2017/1204
https://eprint.iacr.org/2017/1204


[28] Nascimento, E., Chmielewski, Ł., Oswald, D.,
Schwabe, P.: Attacking embedded ecc implemen-
tations through cmov side channels. In: Avanzi, R.,
Heys, H. (eds.) Selected Areas in Cryptography –
SAC 2016. pp. 99–119. Springer International Pub-
lishing, Cham (2017)

[29] NIST, F.P.: 180-4 secure hash standard (shs), no. Au-
gust. Gaithersburg: National Institute of Standards
and Technology (2015)

[30] Özgen, E., Papachristodoulou, L., Batina, L.: Clas-
sification Algorithms for Template Matching. In:
IEEE International Symposium on Hardware Ori-
ented Security and Trust, HOST 2016, McLean, VA,
USA, 2016 (to appear). (2016)

[31] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duches-
nay, E.: Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12, 2825–
2830 (2011)

[32] Perin, G., Ege, B., Chmielewski, Ł.: Neural net-
work model assessment for side-channel analysis.
IACR Cryptology ePrint Archive 2019, 722 (2019),
https://eprint.iacr.org/2019/722

[33] Picek, S., Heuser, A., Alippi, C., Regazzoni, F.:
When theory meets practice: A framework for
robust profiled side-channel analysis. Cryptology
ePrint Archive, Report 2018/1123 (2018), https:
//eprint.iacr.org/2018/1123

[34] Picek, S., Heuser, A., Guilley, S.: Profiling side-
channel analysis in the restricted attacker frame-
work. Cryptology ePrint Archive, Report 2019/168
(2019), https://eprint.iacr.org/2019/168

[35] Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regaz-
zoni, F.: The curse of class imbalance and
conflicting metrics with machine learning for
side-channel evaluations. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2019(1), 209–237 (2019).
https://doi.org/10.13154/tches.v2019.i1.209-237,
https://doi.org/10.13154/tches.v2019.
i1.209-237

[36] Picek, S., Heuser, A., Jovic, A., Ludwig, S.A., Guilley,
S., Jakobovic, D., Mentens, N.: Side-channel analy-
sis and machine learning: A practical perspective.
In: 2017 International Joint Conference on Neural
Networks, IJCNN 2017, Anchorage, AK, USA, May
14-19, 2017. pp. 4095–4102 (2017)

[37] Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin,
S., Legay, A.: On the performance of convolu-
tional neural networks for side-channel analysis.
In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds.)
Security, Privacy, and Applied Cryptography Engi-
neering. pp. 157–176. Springer International Pub-
lishing, Cham (2018)

[38] Poussier, R., Zhou, Y., Standaert, F.X.: A system-
atic approach to the side-channel analysis of ECC
implementations with worst-case horizontal at-
tacks. In: Fischer, W., Homma, N. (eds.) Crypto-
graphic Hardware and Embedded Systems – CHES
2017. pp. 534–554. Springer International Publish-
ing, Cham (2017)

[39] Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Du-
mas, C.: Study of deep learning techniques for
side-channel analysis and introduction to ASCAD
database. IACR Cryptology ePrint Archive 2018, 53
(2018)

[40] Samwel, N., Batina, L., Bertoni, G., Daemen, J.,
Susella, R.: Breaking ed25519 in WolfSSL. In: Cryp-
tographers’ Track at the RSA Conference. pp. 1–20.
Springer (2018)

[41] Schindler, W., Huss, S.A. (eds.): Constructive Side-
Channel Analysis and Secure Design - Third In-
ternational Workshop, COSADE 2012, Darmstadt,
Germany, May 3-4, 2012. Proceedings, LNCS,
vol. 7275. Springer (2012)

[42] Schnorr, C.P.: Efficient signature generation by
smart cards. Journal of cryptology 4(3), 161–174
(1991)

[43] Simonyan, K., Zisserman, A.: Very deep convolu-
tional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556 (2014)

18

https://eprint.iacr.org/2019/722
https://eprint.iacr.org/2018/1123
https://eprint.iacr.org/2018/1123
https://eprint.iacr.org/2019/168
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237


[44] Standaert, F.X., Malkin, T., Yung, M.: A Uni-
fied Framework for the Analysis of Side-Channel
Key Recovery Attacks. In: EUROCRYPT. LNCS,
vol. 5479, pp. 443–461. Springer (April 26-30 2009),
Cologne, Germany

[45] van der Valk, D., Picek, S.: Bias-variance de-
composition in machine learning-based side-
channel analysis. Cryptology ePrint Archive, Re-
port 2019/570 (2019), https://eprint.iacr.
org/2019/570

[46] van der Valk, D., Picek, S., Bhasin, S.: Kilroy was
here: The first step towards explainability of neural
networks in profiled side-channel analysis. Cryp-
tology ePrint Archive, Report 2019/1477 (2019),
https://eprint.iacr.org/2019/1477

[47] Vapnik, V.N.: The Nature of Statistical Learning
Theory. Springer-Verlag New York, Inc., New York,
NY, USA (1995)

[48] Weissbart, L., Picek, S., Batina, L.: One Trace Is All
It Takes: Machine Learning-Based Side-Channel
Attack on EdDSA. In: Bhasin, S., Mendelson, A.,
Nandi, M. (eds.) Security, Privacy, and Applied
Cryptography Engineering. pp. 86–105. Springer
International Publishing, Cham (2019)

[49] Xu, M., Wu, L., Zhang, X.: Power Analysis on SM4
with Boosting Methods. In: 2018 12th IEEE Inter-
national Conference on Anti-counterfeiting, Secu-
rity, and Identification (ASID). pp. 188–191. IEEE
(2018)

[50] Zaid, G., Bossuet, L., Habrard, A., Venelli,
A.: Methodology for efficient cnn archi-
tectures in profiling attacks. IACR Transac-
tions on Cryptographic Hardware and Em-
bedded Systems 2020(1), 1–36 (Nov 2019).
https://doi.org/10.13154/tches.v2020.i1.1-36,
https://tches.iacr.org/index.php/TCHES/
article/view/8391

A Cover Letter: Special issue on
SPACE 2019

This paper is based on the work “One Trace Is All It
Takes: Machine Learning-Based Side-Channel Attack
on EdDSA” [48]. The main differences are:

1. We provide results for an additional target pro-
tected with countermeasures.

2. We provide results for several more profiled meth-
ods and different dimensionality reduction steps.

3. We investigate the applicability of one visualiza-
tion technique for deep learning when attacking
public-key implementations.

More specifically, we rewrote Section 1 to give more
emphasis on the relevance for machine learning-based
SCA on ECC. In Section 2, we added information about
the new implementation we consider and some info on
added profiling methods (Sections 2.2., 2.3.4, 2.3.5). In
Section 3, we added information about the new dataset
(for protected implementation), and we briefly discuss
the metrics we use. We additionally discuss the hyper-
parameter tuning in more detail and dimensionality re-
duction, where we do not use anymore heuristics to se-
lect the number of components. The main changes are
in Sections 3.2.2, 3.3., and 3.4.

Section 4 gives results for both implementations
(changes in Section 4.1 and new Section 4.2), with and
without PCA, and for all considered profiling methods.
In this section, all results are new except for the baseline
implementation with 1 000 features (we also have some
additional results for this scenario). The parts on visu-
alization and general remarks are new (Sections 4.3 and
4.4).

Section 5 has only minor differences from the pre-
vious version, where we included a few more related
works. Finally, Section 6 now give a more general out-
line for comparison between two implementations and
a new suggestion for future work (since the one from
SPACE we covered in this submission).

19

https://eprint.iacr.org/2019/570
https://eprint.iacr.org/2019/570
https://eprint.iacr.org/2019/1477
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391

	Introduction
	Background
	Elliptic Curve Digital Signature Algorithm
	Elliptic Curve Scalar Multiplication
	Profiling Attacks
	Random Forest - RF
	Support Vector Machines - SVM
	Convolutional Neural Networks - CNNs
	Gradient Boosting - XGB
	Naive Bayes - NB
	Template Attack - TA


	Experimental Setup
	Attacker Model
	SCA Datasets
	Baseline Implementation Dataset
	Protected Implementation Dataset

	Evaluation Metrics
	Dimensionality Reduction
	Hyperparameter Tuning

	Results
	Baseline implementation
	Protected Implementation
	Visualization of the Integrated Gradient
	General Remarks

	Related Work
	Conclusions
	Cover Letter: Special issue on SPACE 2019

