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Abstract
Yao’s garbling scheme is one of the most fundamental cryptographic constructions.

Lindell and Pinkas (Journal of Cryptograhy 2009) gave a formal proof of security in the
selective setting where the adversary chooses the challenge inputs before seeing the gar-
bled circuit assuming secure symmetric-key encryption (and hence one-way functions).
This was followed by results, both positive and negative, concerning its security in the,
stronger, adaptive setting. Applebaum et al. (Crypto 2013) showed that it cannot sat-
isfy adaptive security as is, due to a simple incompressibility argument. Jafargholi and
Wichs (TCC 2017) considered a natural adaptation of Yao’s scheme (where the output
mapping is sent in the online phase, together with the garbled input) that circumvents
this negative result, and proved that it is adaptively secure, at least for shallow circuits.
In particular, they showed that for the class of circuits of depth δ, the loss in security
is at most exponential in δ. The above results all concern the simulation-based notion
of security.

In this work, we show that the upper bound of Jafargholi and Wichs is basically
optimal in a strong sense. As our main result, we show that there exists a family
of Boolean circuits, one for each depth δ ∈ N, such that any black-box reduction
proving the adaptive indistinguishability of the natural adaptation of Yao’s scheme
from any symmetric-key encryption has to lose a factor that is exponential in

√
δ.

Since indistinguishability is a weaker notion than simulation, our bound also applies to
adaptive simulation.

To establish our results, we build on the recent approach of Kamath et al. (Eprint
2021), which uses pebbling lower bounds in conjunction with oracle separations to prove
fine-grained lower bounds on loss in cryptographic security.
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1 Introduction
A garbling scheme allows one to garble a circuit C and an input x such that only the
output C(x) can be learned while everything else – besides some leakage such as the size or
topology of the circuit – remains hidden. It was originally used by Yao as a means to achieve
secure function-evaluation [Yao82, Yao86]. Despite its huge impact on cryptography, it was
formally defined as a stand-alone primitive only much later by Bellare, Hoang and Rogaway
[BHR12b]. In addition to a syntactic definition, they propose two different security notions
for garbling schemes: simulatability and indistinguishability. They show the equivalence
of the two definitions1 in the presence of a selective adversary, which sends the circuit and
input to be garbled in one shot. In contrast, for the more general case in which the adversary
first – in an offline phase – chooses a circuit C and then (after receiving its garbling) – in
the online phase – adaptively chooses its input x, the notion of indistinguishability turns
out to be strictly weaker than simulatability. Many applications require security in such an
adaptive setting, and for the sake of efficiency the cost during the online phase is to be kept
minimal.

Prior work on security. Whilst there exist several constructions of provably-secure (even
in the adaptive sense) garbling schemes (see Section 1.3), a feature of Yao’s scheme (and
variants thereof) is that security can be proven under the minimal assumption of one-way
functions. At the same time, this scheme offers almost-optimal online complexity, with the
size of the garbled input being linear in the input-size, and independent of the output- as
well as circuit-size. A formal security proof of Yao’s scheme in the selective setting was given
by Lindell and Pinkas [LP09]. There exists a generic approach to reduce adaptive security
to selective security: the adaptive reduction simply guesses the input x and then runs the
selective reduction on the adaptive adversary. This, unfortunately, leads to a loss in security
that is exponential in |x|. Furthermore, Applebaum et al. [AIKW13] showed that the online
complexity of any adaptively-simulatable garbling scheme must exceed the output-size of the
circuit, thereby proving a first limitation of Yao’s scheme.

All of this led Jafargholi and Wichs [JW16] to consider a natural adaptation of Yao’s
garbling scheme (described in Section 1.1), where the mapping of output labels to output
bits is sent in the online phase as part of the garbled input (see below for the construction).
The negative result by Applebaum et al. does not apply to this adaptation of Yao’s garbling
scheme since its online complexity exceeds the output size. Therefore, this adaptation is the
natural version of Yao’s garbling scheme for the case of adaptive security, and is the scheme
that we consider in this work and will simply refer to as “Yao’s garbling” from now on.
Jafargholi and Wichs [JW16] were able to show that it satisfies adaptive security for a wide
class of circuits, includingNC1 circuits. More precisely, they prove adaptive security of Yao’s

1In the security game for simulatability, the simulator has to simulate C̃ given only the output y = C(x)
and some leakage Φ(C). While equivalence of selective simulatability and selective indistinguishability holds
for the most natural leakage functions (e.g. the size or topology of C), it does not hold for arbitrary leakage
functions Φ.
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garbling via a black-box reduction to the IND-CPA security of the underlying symmetric-
key encryption (SKE) scheme with a loss in security that is exponential in the depth of the
circuit. Their proof employs a specially tailored pebble game on graphs, and can be seen as
an application of the piecewise-guessing framework of Jafargholi et al. [JKK+17]. Since our
work concerns the optimality of this proof, let’s look at it in a bit more detail.

1.1 Yao’s Scheme and Adaptive Indistinguishability

Let’s first informally recall Yao’s garbling scheme. A circuit C : {0, 1}n → {0, 1}` is garbled
in the offline phase as follows:

1. For each wire w in C, choose a pair of secret keys k0
w, k

1
w ← Gen(1λ) for a SKE

(Gen,Enc,Dec).

2. For every gate g : {0, 1}×{0, 1} → {0, 1} with left input wire u, right input wire v, and
output wire w, compute a garbling table g̃ consisting of the following four ciphertexts
(in a random order).

c1 := Enck0u(Enck0v(k
g(0,0)
w )) c2 := Enck1u(Enck0v(k

g(1,0)
w ))

c3 := Enck0u(Enck1v(k
g(0,1)
w )) c4 := Enck1u(Enck1v(k

g(1,1)
w ))

(1)

3. If C has s wires and output wires denoted by ws−`+1, . . . , ws, assemble the output
mapping {kbw → b}i∈[s−`+1,s], b∈{0,1}.

The garbled circuit C̃ consists of all the garbling tables g̃ as well as the output mapping. To
garble an input x = (b1, . . . , bn) in the online phase, simply set

x̃ := (kb1w1
, . . . , kbnwn)

where wi denotes the ith input wire. The only difference in the variant from [JW16] is that
the sending of the output mapping is moved to the online phase, which leads to an increase
in the online complexity to linear in the input- and output-size.

To evaluate the garbled circuit on the garbled input, one requires the following special
property of the SKE: For each ciphertext c ← Enck(m) there exists a unique key – namely
k – such that decryption doesn’t fail. Evaluation of the garbled circuit given the garbled
input then works starting from the gates at the lowest level by simply trying which of the
four ciphertexts can be decrypted using the two given input keys. This allows to recover
exactly one of the two keys associated to the output wire of the respective gate and in the
end the output mapping is used to map the sequence of revealed output keys to an output
string y ∈ {0, 1}`.
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Adaptive indistinguishability. A garbling scheme is adaptively indistinguishable if no
efficient adversary can succeed in the following experiment2 with non-negligible advantage:

1. The adversary submits a circuit C to the challenger, who responds with C̃.

2. The adversary then submits a pair of inputs (x0, x1).

3. The challenger flips a coin b and responds with x̃b.

4. The adversary wins if it guesses the bit b correctly.

In the following, we will refer to the two games for b = 0 and b = 1 as the “left” and “right”
games, respectively.

To prove adaptive indistinguishability3 of Yao’s scheme for an arbitrary SKE (satisfying
the special property), Jafargholi and Wichs construct a black-box reduction from the IND-
CPA security of the SKE. More precisely, they proceed by a hybrid argument, where they
define a sequence of hybrid games interpolating between the left and the right game such
that each pair of subsequent hybrid games only differs in a single ciphertext (in the garbling
table) and can be proven indistinguishable by relying on the IND-CPA security of the SKE.

The loss in security incurred by such a reduction then depends on the length of the
sequence and the amount of information required to simulate the hybrid games. To end
up with a meaningful security guarantee, thus, the sequence of hybrid games must not be
too long and it must be possible to simulate any of the hybrid games without relying on
too much information, particularly the knowledge of the entire input. Jafargholi and Wichs
design such a sequence of hybrid games by using an appropriate pebble game on the topology
graph underlying the circuit. In that game, a pebble on a gate indicates that the gate is
not honestly garbled (as in Equation (1)) but is, instead, garbled in some input-dependent
mode. The pebble rules, which dictate when a pebble can be placed on or removed from a
vertex, guarantee that two subsequent hybrids can be proven indistinguishable, and the loss
in security directly relates to the number of pebbles on the graph.

Keeping this proof technique in mind, the main idea of this work is to turn a pebble lower
bound (w.r.t. an appropriate pebble game) into a lower bound on the security loss inherent to
any black-box reduction of adaptive indistinguishability of Yao’s scheme. Such an approach
was recently adopted by Kamath et al. [KKPW21], also in the context of adaptive security
but for primitives that are of a different flavour (e.g., multi-cast encryption). However, the
case of garbled circuits turns out very different for several reasons we will highlight later (see
Section 2.5).

2In fact, we define a weaker security notion than indistinguishability as defined in [BHR12b]; according to
their definition the adversary can choose two circuits C0,C1 of the same topology and inputs x0, x1 such that
C0(x0) = C1(x1). Aiming at a lower bound on the gap between the security of Yao’s scheme and the security
of the underlying SKE, the additional restriction we put on our adversary only strengthens our results.

3To be precise, [JW16] prove the stronger security notion of simulatability, which implies indistinguisha-
bility.
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1.2 Our Results

We prove a lower bound on the loss in security incurred by any black-box reduction proving
adaptive indistinguishability of Yao’s garbling scheme [JW16] from IND-CPA security of the
SKE scheme. This immediately implies a similar lower bound with respect to the (stronger)
more common security notion of adaptive simulatability. Our lower bound is subexponential
in the depth d of the circuit, hence almost matches the best known upper bound from [JW16].

Theorem (main, Theorem 1). Any black-box reduction from adaptive indistinguishability
(and thus also simulatability) of Yao’s garbling scheme on the class of circuits with input
length n and depth δ ≤ 2n to the IND-CPA security of the underlying SKE loses at least
a factor loss = 1

q
· 2
√
δ/61, where q denotes the number of times the reduction rewinds the

adversary.

Two remarks concerning the theorem are in order. Firstly, we are proving a negation
of the statement in [JW16], which upper bounds loss for every graph in a class. Therefore,
when we say that the class of circuits above loses at least a factor loss, we mean that there
exists some circuit G in that class such that any reduction loses by that factor (and not that
every circuit in that class loses by that factor). The design of this circuit G is one of the
main technical contributions of this work. The second remark concerns the design of this
circuit G. In addition to some structural properties that we will come to later, we design G
to output the constant bit 0. This implies that the output mapping can easily be guessed
by a reduction, and therefore the difference, in this case, between Yao’s original scheme and
[JW16] is only marginal.

Comparison with Applebaum et al. [AIKW13]. The result in [AIKW13] rules out
adaptively-simulatable randomised encodings with online complexity less than the output-
size of the function it encodes. Since Yao’s garbling is one instantiation of randomised
encodings, their result immediately rules out its adaptive simulatability. However, [AIKW13]
does not apply to our setting for three reasons. Firstly, their result only applies to the original
construction of Yao’s garbled circuits where the garbled input can be smaller than the output
size. In this work we consider the adaptation of Yao’s garbling scheme [JW16] where the
output mapping is sent in the online phase, hence the online complexity always exceeds the
output size. Secondly, their result applies to circuits with large output, while our result
holds even for Boolean circuits with outputs of length 1. Finally, their result only applies to
simulation security, while our result even holds for indistinguishability.

Comparison with Hemenway et al. [HJO+16]. We would like to emphasise that our
lower bound only holds for the specific construction of Yao’s garbled circuits, and it does
not rule out other constructions, even potentially from one-way functions. In fact, the
construction of Hemenway et al. already circumvents our result and it is instructive to see
how. On a high level, their idea (similar to [BHR12a]) is to take Yao’s garbling scheme
and then encrypt all the resulting garbling tables with an additional layer of “somewhere
equivocal” encryption on top. This change allows them to prove adaptive security with only
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a polynomial loss in security (at the cost of increased online complexity). The intuitive
reason why our approach does not apply to this construction is that the additional layer of
encryption somehow “blurs out” all the details about the individual garbling tables, on which
our argument depends (see Section 2.4).

1.3 Further Related Work on Adaptive Security

Adaptive security for garbled circuits. The problem of constructing adaptively-secure
garbling schemes was first raised by Bellare, Hoang and Rogaway in [BHR12a]; they gave a
first adaptively-secure construction in the random oracle model, which bypasses the lower
bound of Applebaum et al. [AIKW13]. Bellare, Hoang and Keelveedhi [BHK13] then proved
the previous scheme adaptively-secure in the standard model, but under non-standard as-
sumptions on hash functions. Further constructions from various assumption followed:
Boneh et al. [BGG+14] constructed an adaptively-secure scheme from the learning with
errors (LWE) assumption, where the online complexity depends on the depth of the circuit
family. Ananth and Sahai [AS16] constructed an optimal garbling scheme from iO. Later,
Ananth and Lombardi [AL18] constructed succinct garbling schemes from functional encryp-
tion. In [JSW17], Jafargholi et al. relax the simulation-based security to indistinguishability
and show how to construct adaptively-secure garbling schemes from the minimal assumption
of one-way functions, where the online complexity only depends on the pebble complexity
and the input-size, but is independent of the output-size. A particularly strong result in this
area was due to Garg and Srinivasan [GS18], who constructed adaptively-secure garbling
with near optimal online complexity that can be based on standard assumptions such as the
computational Diffie-Hellman (CDH), the factoring, or the LWE assumption. While this list
is far from complete, we finally mention a recent work by Jafargholi and Oechsner [JO20]
who analyze adaptive security of several practical garbling schemes. They give positive as
well as negative results, and argue why the techniques from [JW16] cannot be applied to
certain garbling schemes.

Adaptive security for other graph-based games. Jafargholi et al. gave a framework
for proving adaptive security [JKK+17], also known as piecewise guessing technique. Beside
several applications to other graph-based security games, this framework also comprises the
reduction from [JW16] as a special case. Kamath et al. [KKPW21] considered optimality
of this approach for certain graph-based games which arise in the context of e.g., multicast
encryption, continuous group key agreement, and constrained PRF. They gave non-trivial
fine-grained lower bounds on the loss in adaptive security incurred by (oblivious) reductions
via pebble lower bounds.

2 Technical Overview
We aim to prove fine-grained lower bounds on loss in security incurred by black-box re-
ductions in a setting where a primitive F is used in a protocol ΠF . In our case F is SKE
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and ΠF is Yao’s garbling scheme using the SKE. In order to bound loss, the loss in security
incurred by any efficient black-box reduction R that breaks F when given black-box access
to an adversary that breaks ΠF (i.e., from F to ΠF ), we must show that for every R, there
exists

• an instance F (not necessarily efficiently-implementable) of F and

• an adversary A (not necessarily efficient) that breaks ΠF

such that loss in security incurred by R in breaking F is at least loss.4 We next describe how
the instance and the adversary are defined in our setting.

2.1 Our Oracles

We define two oracles F and A implementing an ideal SKE and an adversary, respectively,
such that

• the SKE scheme F = (Gen,Enc,Dec) satisfies IND-CPA security information-theoretically,

• the (inefficient) adversary A breaks indistinguishability of the garbling scheme ΠF , but
is not helpful in breaking the IND-CPA security of F .

Ideal encryption. We will define the ideal SKE oracle F such that Enc is defined through
a random expanding function (which is injective with overwhelming probability). Since the
security of F is information-theoretic, any advantage against IND-CPA which a reduction
with oracle access to F and A obtains must stem (almost) entirely from the interaction
with A. This is true since the reduction can only make polynomially many queries and thus
the probability that the answer to one of its oracle queries coincides with the IND-CPA
challenge is negligible. On the other hand, a computationally unbounded adversary using
an unlimited number of queries can break the scheme and (thanks to injectivity) perfectly
recover messages and secret keys from any ciphertext.

The adversary. As for the (inefficient) adversary A, we define a so-called threshold ad-
versary which does the following in the indistinguishability game:

1. A chooses a particular circuit G (see Section 2.3) which has constant output (bit) 0
and sends G to the challenger.

2. After receiving the garbled circuit G̃, A chooses garbling inputs x0 and x1 uniformly
at random and sends them to the challenger. Note that G(x0) = G(x1) trivially holds
since G has constant output.

4This is obtained by simply negating the definition of a black-box reduction: there exists an efficient
reduction R for every implementation (not necessarily efficient) F of F and for every (not necessarily efficient)
adversary A that breaks ΠF such that the loss in security is at most loss.
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3. On receipt of the garbled input x̃b along with an output mapping, A first runs some
initial checks on (G̃, x̃b) to verify that the garbling has the correct syntax, and then
extracts a pebble configuration P on G (see Section 2.4). That is, every gate in G is
either assigned a pebble or not, depending on the content of its garbling table in G̃ and
the garbled input x̃b. To compute this mapping, the inefficient adversary A simply
breaks the underlying encryption by brute force. Finally, A outputs 0 (denoting ‘left’)
if the extracted pebble configuration is good (defined later through some pebble game),
and 1 (denoting ‘right’) otherwise.

By design, the left indistinguishability game (where b = 0) will correspond to a good con-
figuration, whereas the right game will not. Therefore the above adversary is a valid dis-
tinguisher for the indistinguishability game (Lemma 6). Moreover, A concentrates all its
distinguishing advantage at the threshold of good and bad configurations (hence the name).
Therefore, intuitively speaking, for any reduction to exploit A’s distinguishing advantage, it
must somehow embed its own (IND-CPA) challenge at the threshold. All the technicality in
proving our main theorem goes into formalising this intuition, which we summarise next in
Section 2.2.

2.2 High-Level Idea

To prove a lower bound on loss (Theorem 1), we construct a punctured adversary A[c∗] (see
Section 4.5) which behaves similar to A except when it comes to the hardcoded challenge
ciphertext c∗ ← Enck∗(m) (for some arbitrary message m). We aim to puncture A[c∗] such
that it never decrypts c∗ but instead just proceeds by assuming that c∗ decrypts to the all-0
string, and hence cannot be of any help to a reduction that aims to break c∗. However,
we have to be careful here since the reduction embedding c∗ in G̃ will also embed other
ciphertexts under key k∗ (which it can derive through querying its IND-CPA encryption
oracle Enck∗), and hence A[c∗] would learn the key k∗ when brute-force decrypting these
ciphertexts. We solve this issue by endowing A[c∗] with a decryption oracle Deck∗ that
allows to find and decrypt those ciphertexts under k∗. Since our ideal encryption scheme
actually satisfies the stronger notion of IND-CCA security, this decryption oracle is of no
help to the reduction.

The core of our lower bound is now to define the circuit G and the notion of good pebble
configurations such that the following holds:

• Our threshold adversary A indeed breaks the garbling scheme.

• It is hard to distinguish A from A[c∗].

For the latter property, note that any efficient reduction R can only distinguish A from A[c∗]
if their outputs differ, which only happens if they extract different pebbling configurations
P 6= P∗ such that one of them is good and the other bad. Thus, to bound the success
probability of R, it suffices to establish the following two properties:
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1. The pebbling configurations P and P∗ extracted by A and A[c∗] (in the same execution
of the game, using the same randomness) differ by at most one valid pebbling move in
some natural pebble game5, where a pebble can be placed on or removed from a gate
if at least one of its parent gates carries a pebble.

2. It is hard for any reduction to produce (G̃, x̃) such thatA extracts a threshold configura-
tion, i.e. a pebble configuration that is good but can be switched to a bad configuration
within one valid pebbling move.

Intuitively, pebbles on gates in the circuit represent malformed gates, i.e., gates whose gar-
bling table is different from the honest garbling table. When considering circuits consisting
only of non-constant gates, the pebbling rule in Property 1 captures the fact that a reduc-
tion cannot produce ciphertexts encrypting the key k∗ under which its challenge ciphertext
c∗ ← Enck∗(m) (for some arbitrary m) was encrypted. Hence, in order to embed c∗ at a
gate, the reduction has to first output a malformed garbling (not encoding k∗) for its pre-
decessor gate. Now, to see why Property 1 holds – i.e., the pebbling configurations P and
P∗ extracted by A and A[c∗] follow the same dynamics – note that the behaviour of A and
A[c∗] can only differ if k∗ is not encrypted in any ciphertext.

The tricky part of our proof is to establish Property 2 which, on a high level, works as
follows. For a reduction R to simulate a threshold configuration we first force it to maul
– and hence pebble – several gates. Then, for this mauling to go ‘undetected’ we force R
to correctly guess the value of these gates when G is evaluated at x0. This, intuitively, will
be the source of its loss. To this end, we design our circuit G to consist of two blocks6, G⊕

and G∧. Looking ahead, whether there is a pebble on a gate in G⊕ will be independent of
the input and correspond to R’s attempt at guessing x0 (this relies on the properties of XOR
gates). The pebbles on G∧, in contrast, will be extractable with respect to the input garbling
x̃b and indicate whether or not the guesses on x0 in the G⊕ block were correct (this relies on
the properties of AND gates). Moreover, by definition:

• In case of a proper garbling of (G, x0) (i.e., the left game), the adversary A will not
extract any pebble on G⊕ or G∧.

• In case of a proper garbling of (G, x1) (i.e., the right game), on the other hand, the
adversary A will not extract any pebbles on G⊕, but will extract some pebbles on G∧

(since x1 6= x0).

Accordingly, we define the good predicate such that the empty configuration is good, whereas
any configuration containing a pebble on G∧ is bad, and therefore the above ensures that A
breaks the security of the garbling scheme. Furthermore, the threshold configurations contain
many pebbles on G⊕, but no pebbles on G∧. In other words, threshold configurations require
R to make many guesses about x0 and all of them need to be correct, which is unlikely to
occur. This establishes Property 2.

5In Section 4.3 we actually consider a much more finegrained pebble game, where different types of pebbles
represent different garbling modes of a gate. For this exposition, it suffices to focus on this simplified game.

6For this high-level overview, we ignore the third block G0 consisting of a binary tree of AND gates, whose
sole purpose is to guarantee constant 0 (bit) output.
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2.3 The Circuit G and the Good Predicate

The design of topology of the circuit G⊕ is such that it has high pebbling complexity with
respect to our pebble game: i.e., every valid pebbling sequence starting from the initial
empty configuration and reaching a final configuration that has a pebble on an output
gate of G⊕, must contain a “heavy” configuration with many, say d, pebbles. To guarantee
that threshold configurations contain many pebbles, we define the good configurations as
those that are reachable with d − 1 pebbles following valid pebbling moves. Since G∧ will
(topologically) succeed G⊕ in G, any configuration with a pebble on G∧ is in particular bad
(since an output gate of G⊕ must have been pebbled first). At the same time, to allow for our
“control mechanism”, we construct G so that each gate g in G⊕ has a ‘companion’ successor
gate in G∧ that helps check correctness of g’s output. Thus for each AND gate in G∧, one
of the inputs comes from the output of G⊕ and the other from the output of its companion
gate (see Figure 1). This fixes the topology of G and we choose the type of gate as to enforce
Property 2, as explained below.

• The G⊕ circuit is composed only of XOR gates, since these gates allow us to maintain
high entropy (of the input), and hence guarantee that it is hard to guess the outputs of
the pebbled gates in G⊕ (see Section 4.2). Furthermore, XOR gates are symmetric with
respect to their input in the sense that from the garbling table alone even an inefficient
adversary cannot distinguish which keys are associated with which bits. This property
allows A to extract the pebbling configuration of G⊕ just from G̃, independently of the
input (see next section).

• The G∧ circuit, on the other hand, is composed of AND gates. Since AND gates are
asymmetric (since only (1, 1) maps to 1, while all three other input pairs map to 0),
we can use them to detect errors in the G⊕ circuit: i.e., looking at a garbling table of
an AND gate our adversary A can exploit this asymmetry to easily associate keys to
bits. Thus, whenever during evaluation of G̃ on input x̃ the adversary A receives wrong
input keys for a (properly garbled) AND gate, A considers this gate as malformed and
associates it with a pebble. (The case of AND gates which are not properly garbled is
rather technical and we refer the reader to Section 4.4.)

2.4 Extracting the Pebble Configuration

Since it is central to the working of our adversary A (and is a somewhat subtle matter), here
we provide a high-level description of the extraction mechanism.7 First of all, recall that
pebbles on G⊕ and G∧ have different meanings: a pebbled XOR gate indicates that its garbling
table is malformed whereas a pebbled AND gate indicates that R’s guess for the companion

7In Section 4.4 we consider a more general extraction mechanism that can be extended to arbitrary gates
and assigns different types of pebbles, representing the “distance” of a garbling table g̃′ for a gate g from an
honest garbling table g̃. For ease of exposition, here we consider a simplified pebble game and only discuss
how to extract pebbles for XOR and AND gates, where a pebble in this simplified game would correspond to
different sets of pebbles for XOR and AND gates in the more fine-grained pebble game.
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XOR gate is wrong. This, coupled with the fact that the gates have differently-structured
gate tables (i.e., symmetric vs. asymmetric) means that the extraction mechanism for the
two gates (and hence the blocks) is also different. In particular, as we will see, the pebble
status of an XOR gate is something that can inferred solely from the garbled circuit G̃ (and
thus can be done in the offline phase) whereas the pebble status of an AND gate is something
that also depends on the garbled input x̃ and is necessarily done in the online phase. Let’s
look at how the respective extraction is carried out. First, given G̃, A extracts a key pair
for each wire in G from the encryptions associated with its successor gates, or the output
mapping; if this cannot be done uniquely, A aborts and outputs 1 (we refer to Section 4.4
for more details). In the following, for a gate g, let u and v denote the input wires, w the
output wire, and ku, k′u, kv, k′v, kw, k′w the corresponding keys associated with these wires.

• If g is an XOR gate, then the honest garbling table of g can be derived from Equation (1)
as

Encku(Enckv(kw)) Enck′u(Enckv(k
′
w))

Encku(Enck′v(k
′
w)) Enck′u(Enck′v(kw)).

Whenever a garbling table g̃ differs from this representation (i.e., not symmetric), A
assigns g a pebble and this assignment is independent of the bits running over the wires
u, v, w and the keys revealed during evaluation. Thus, A can extract pebbles on G⊕

already before it chose the inputs x0, x1, in particular independently of x̃.

• For an AND gate g, on the other hand, the garbling table of g consists of four ciphertexts
derived from Equation (1) as

Encku(Enckv(kw)) Enck′u(Enckv(kw))

Encku(Enck′v(kw)) Enck′u(Enck′v(k
′
w)).

Since the roles of the keys are asymmetric, the pebble extraction will depend on the bits
bu, bv, bw running over the wires and the keys kru, krv, krw revealed during evaluation. A
first attempt would be to simply map keys to bits as ku, kv, kw → 0 and k′u, k′v, k′w → 1,
and assign g a pebble if krη 6→ bη for some η ∈ {u, v, w}. Unfortunately, this simple idea
does not work since a reduction R might embed its challenge ciphertext c∗ ← Enck∗(m)
in the garbling of an AND gate (recall from Section 2.3 that the gates in G∧ receive
one input from an output gate of G⊕ and the other input from their companion gate
within the circuit G⊕). Now, if R embeds the challenge key k∗ at an output wire of G⊕,
it must pebble an output gate in G⊕, hence end up with a bad pebbling configuration
independently of c∗. However, this is not true if R embeds k∗ at the other input wire
of the AND gate. Thus, A must not extract a pebble for a garbling table that can be
derived from an honest garbling table by embedding a challenge key at this wire. We
show in Section 4.4 that such malformed garblings of AND gates either involve guessing
the input bits or they can still be used for our “control mechanism”.
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2.5 Comparison with [KKPW21]

While both, [KKPW21] and our work, model choices made by a reduction by putting pebbles
on a graph structure, the analogy basically ends there. In [KKPW21] an interactive game
between a “builder” and a “pebbler” is considered in which the builder chooses edges and the
pebbler decides adaptively whether to pebble them. The goal of the pebbler is to get into
a “good” configuration, and the difficulty for the reduction (playing the role of the pebbler)
there lies in the fact that the graph is only revealed edge-by-edge. In contrast, in this work
the graph structure is initially known and the game has just two rounds. The difficulty for
the reduction here comes from having to guess the bits running over a subset of wires during
evaluation of the circuit. None of the main ideas from [KKPW21] seem applicable in this
setting and vice versa. For example, most of the results in [KKPW21] are restricted to the
limited class of so-called oblivious reductions, while our setting doesn’t share the difficulties
encountered in [KKPW21]; in particular, our result holds for arbitrary black-box reductions.

3 Preliminaries

3.1 Notation and Definitions

For integers m,n ∈ N with m < n, let [n] := {1, 2, . . . , n}, [n]0 := {0, 1, . . . , n}, and
[m,n] := {m,m + 1, . . . , n}. For two sets S,S ′ we write S ⊂ S ′ if S is a (not necessarily
strict) subset of S ′. Furthermore, let log be always base 2. We recap the widely used
notions of IND-CPA and IND-CCA security of a symmetric encryption (SKE scheme): Let
(Gen,Enc,Dec) be a symmetric encryption scheme withK the image of Gen, Enc : K×M→ C,
Dec : K×C →M and we assume K, C ⊆ M (i.e., we can encrypt keys and ciphertexts). We
assume that the scheme is correct, i.e.,

∀k ∈ K,m ∈M : Pr[Deck(Enck(m)) = m] = 1

and that it is ε-indistinguishable under chosen-plaintext attack (IND-CPA):

Definition 1 (IND-CPA). The game is played between a challenger (either G0 or G1) and
an adversary on the symmetric encryption scheme (Gen,Enc,Dec). The challenger chooses
the challenge key k ← Gen(1λ) for a security parameter λ. The adversary can make two
types of queries:

• Encryption queries (encrypt,m), m ∈M: the challenger returns Enck(m).

• One challenge query (challenge,m0,m1), m0,m1 ∈M: the challenger when simulat-
ing Gb returns the challenge ciphertext c∗ ← Enck(mb).

An encryption scheme (Gen,Enc,Dec) is said to be IND-CPA secure, if no PPT adversary
can distinguish G0 from G1 with non-negligible probability (in λ).

Definition 2 (IND-CCA). The games G0 and G1 are defined similar to Definition 1 except
that the adversary can make an additional type of queries:

12



• Decryption queries (decrypt, c), c ∈ C: the challenger returns m := Deck(c) if c 6= c∗,
otherwise it returns ⊥.

An encryption scheme (Gen,Enc,Dec) is said to be IND-CCA, if no PPT adversary can
distinguish G0 from G1 with non-negligible probability (in λ).

3.2 Garbling schemes

The definitions are taken mostly from [JSW17]; more details can be found in [BHR12b].

Definition 3. A garbling scheme GC is a tuple of PPT algorithms (GCircuit,GInput,GEval)
with syntax and semantics defined as follows.

(C̃, K)← GCircuit(1λ,C). On inputs a security parameter λ and a circuit C : {0, 1}n →
{0, 1}`, the garble-circuit algorithm GCircuit outputs the garbled circuit C̃ and key K.

x̃← GInput(K, x). On input an input x ∈ {0, 1}n and key K, the garble-input algorithm
GInput outputs x̃.

y = GEval(C̃, x̃). On input a garbled circuit C̃ and a garbled input x̃, the evaluate algorithm
GEval outputs y ∈ {0, 1}`.

3.2.1 Correctness.

There is a negligible function ε = ε(λ) such that for any λ ∈ N, any circuit C and input x it
holds that

Pr
[
C(x) = GEval(C̃, x̃)

]
= 1− ε(λ),

where (C̃, K)← GCircuit(1λ,C), x̃← GInput(K, x).

We recall two different security notions: the stronger and typically considered notion
based on simulatability, and a weaker indistinguishability based notion which was considered
in [JSW17]. It is easy to see that simulatability implies indistinguishability (cf. [BHR12b]).

Definition 4 (Adaptive Simulatability.). A garbling schemeGC is (ε, T )-adaptively-simulatable
for a class of circuits C, if there exists a PPT time simulator S = (SCircuit, SInput) such that,
for any probabilistic adversary A of size T = T (λ),∣∣Pr [FA,GC,S(1λ, 0) = 1

]
− Pr

[
FA,GC,S(1λ, 1) = 1

]∣∣ ≤ ε(λ),

where the experiment FA,GC,S(1λ, b) is defined as follows:

1. The adversary A specifies a circuit C ∈ C with underlying graph structure Φ(C) and
gets C̃ created as follows:

• if b = 0: (C̃, K)← GCircuit(1λ, C),

13



• if b = 1: (C̃, z)← SCircuit(1λ,Φ(C)).

2. The adversary A specifies x and gets x̃ created as follows:

• if b = 0, x̃← GInput(k, x),

• if b = 1, x̃← SInput(C(x), z).

3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

Definition 5 (Adaptive Indistinguishability). A garbling scheme GC is (ε, T )-adaptively-
indistinguishable for a class of circuits C, if for any probabilistic adversary A of size T = T (λ),∣∣Pr [GameA,GC(1λ, 0) = 1

]
− Pr

[
GameA,GC(1λ, 1) = 1

]∣∣ ≤ ε(λ).

where the experiment GameA,GC,S(1λ, b) is defined as follows:

1. A selects a circuits C ∈ C and receives C̃, where (C̃, K)← GCircuit(1λ,C).

2. A specifies x0, x1 such that C(x0) = C(x1) and receives x̃b ← GInput(xb, K).

3. Finally, A outputs a bit b′, which is the output of the experiment.

In the indistinguishability game as defined in [BHR12b] the adversary can select two
circuits C0,C1 of the same topology and receives a garbling C̃b of one of them. The choice of
input x0, x1 is then restricted to satisfy C0(x0) = C1(x1). Our notion of indistinguishability
is clearly weaker, which strengthens our lower bound.

3.3 Yao’s garbled circuit

In Algorithm 1 we describe the variant [JW16] of Yao’s garbling scheme ΠF based on a
symmetric encryption scheme F with the special property defined below. Recall that in
contrast to the original scheme, here the output map is sent along with the garbled input in
the online phase.

Definition 6 (Special Property of Encryption). We say an encryption scheme F = (Gen,Enc,
Dec) satisfies the special property if for every security parameter λ, every key k ← Gen(1λ),
every message m ∈M, and encryption c← Enck(m) it holds Deck′(c) = ⊥ for all k′ 6= k.

4 Lower bound for Yao’s Garbling Scheme
Let Π denote the variant of Yao’s garbling scheme as analysed in [JW16]. In this section, we
aim to prove a lower bound on the loss in security involved when reducing adaptive indistin-
guishability of Π to the IND-CPA security of the underlying symmetric encryption scheme
(Gen,Enc,Dec). As explained in the introduction, we follow the approach in [KKPW21]
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Algorithm 1 Yao’s garbling scheme ΠF with access to a symmetric-key encryption scheme
F := (Gen,Enc,Dec).
1: procedure GCircuit(1λ,C)

input:

1. Security parameter λ in unary
2. Circuit C with S gates, W wires and input and output sizes n and `

2: for j ∈ [1,W ] and b ∈ {0, 1} do kbj ← Gen(1λ) end for . Sample wire keys
3: Set f =

{
(k0
j → 0, k1

j → 1)
}
j∈[W−`+1,W ]

. Set output map
4: for j ∈ [1, S] do . Garble gates
5: Let (gj, u, v, w) denote the j-th gate in C
6: g̃j =

{
Enckbuu (Enckbvv (k

gj(bu,bv)
w )

}
bu,bv∈{0,1}

7: end for
8: return (C̃, K = (k, f)) where C̃ := {g̃j}j∈[1,S] and k :=

{
(k0
j , k

1
j )
}
j∈[1,n]

9: end procedure

10: procedure GInput(K, x)
input:

1. Garbling key K parsed as (k, f) as in Lines 3 and 8
2. Input x ∈ {0, 1}n with bit decomposition {x1, . . . , xn}

11: Set kx :=
{
k
xj
j

}
j∈[1,n]

. Select input keys from k

12: return x̃ := (kx, f)
13: end procedure

14: procedure GEval(C̃, x̃)
input:

1. Garbled circuit C̃ parsed as {g̃j}j∈[1,S]

2. Garbled input x̃ parsed as (kx, f)

15: Parse kx as {k1, . . . , kn}
16: for j ∈ [1, S] do . Decode circuit
17: Let (u, v, w) denote the wires of gj . The topology is assumed to be public
18: Parse g̃j as ({c1, . . . , c4}) . Parse the gate table
19: for l ∈ [1, 4] do . Decrypt each double ciphertext till successful
20: Let m := Decku(Deckv(cl))
21: if m 6= ⊥ then set kw := m
22: end for
23: end for
24: Parse f as

{
(k0
j → 0, k1

j → 1)
}
j∈[W−`+1,W ]

25: for j ∈ [W − `+ 1,W ] do . Decode output
26: Set yj = 0 if kj = k0

j ; else set yj = 1
27: end for
28: return y
29: end procedure
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and define two oracles F and A implementing an ideal SKE scheme and an adversary, re-
spectively, such that A is not helpful in breaking IND-CPA security of F . For the precise
description of F we refer to Section 4.5. The (inefficient) threshold adversary A we define
as follows:

1. On input the security parameter in unary, 1λ, the adversary A chooses a circuit G with
input size n = Θ(λ), constant output, and depth δ(d) ∈ O(n) for a parameter d. The
circuit G consists of three parts, i.e., G = G0 ◦G∧ ◦G⊕; for precise description of G, see
Section 4.1. A sends G to the challenger.

2. After receiving G̃, the adversary A chooses x0, x1 ← {0, 1}n uniformly at random. Note
that G(x0) = G(x1) trivially holds since G has constant output. A sends x0, x1 to the
challenger.

3. On receipt of x̃b = (k1, . . . , kn) along with an output mapping, A extracts a pebbling
configuration on the graph G\G0 corresponding to G∧ ◦G⊕ as described in Section 4.4.
A outputs b′ = 0 if the pebbling configuration is good as per Definition 8, and b′ = 1
otherwise.

We will first provide a precise definition of the candidate circuit G in Section 4.1 and then
show the following two properties of this circuit: First, in Section 4.2 we will prove that if
a large subset of gates in G⊕ is malformed, then on uniformly random input some of these
gates will not evaluate correctly. Second, in Section 4.3, we introduce a new pebbling game
on DAGs and prove a pebbling lower bound on the graph G underlying G. The definition
of good pebbling configurations in Definition 8 then gives a cut in the configuration graph
of G \ G0 w.r.t. this new pebbling game. Having proven these properties of the circuit,
in Section 4.4 we will then describe a mapping from garbled circuit/input pair (G̃, x̃) to a
pebbling configuration on G \G0. This mapping together with the cut in the configuration
graph will guarantee that the threshold adversary A indeed breaks indistinguishability of the
garbling scheme ΠF . Finally, in Section 4.5, it then remains to combine these results. First,
we will essentially prove that any black-box reduction proving adaptive indistinguishability
of the garbling scheme based on the IND-CPA security of the underlying encryption scheme
must follow the pebbling rules, i.e., it must define two hybrid games such that the extracted
pebbling configurations differ by one valid pebbling move; this step will crucially rely on our
choice of gates. The pebbling lower bound from Section 4.3 then implies that any threshold
configuration contains many pebbles on G⊕. We will then use the result from Section 4.2
as well as the technical fix from Section 4.4 concerning equivocation of keys to show that
the simulation of any garbling (G̃, x̃) that is mapped to a threshold configuration requires to
guess many input bits. This will allow us to state our final theorem.

4.1 The Circuit

We construct a family of circuits G := {Gd}d∈N and show that the loss in security for Gd is
exponential in

√
d, where the parameter d is linear in the depth of the circuit. The circuit
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is designed keeping our high-level idea in mind, we denote its underlying graph by Gd. The
circuit Gd := G0

d ◦G∧d ◦G⊕d consists of the three blocks G⊕d , G∧d and G0
d, with underlying graphs

denoted by G⊕d , G
∧
d and G0

d, respectively. The graph G
⊕
d (see Figure 2.(b)) is a so-called tower

graph [DKW11], and is obtained from so-called pyramid graphs of depth d (see Figure 2.(a)).

• G⊕d is obtained from G⊕d by substituting each vertex with an XOR gate as shown in
Figure 2. On a high level, the pyramid structure ensures high pebbling complexity
whereas the XOR gates preserve (most) entropy in the input, which makes it hard for
a reduction to obtain correct evaluation of pebbled gates.

• G0
d consists of a binary tree of AND gates and its sole role is to set the output of the

circuit G to constant 0 (Lemma 1).8

• G∧d sits in between the G⊕d and G0
d blocks (see Figure 1), and consists of one AND gate

serving as “control” gate for each XOR gate in G⊕d and each input gate. Each AND gate
g in G∧d receives its inputs from (i) the output of its companion XOR gate in G⊕d (resp.
input gate) and (ii) the XOR gate in the last layer of G⊕d in (vertical) alignment with g
(see Figure 1, formal definition below). As mentioned previously, intuitively, this block
will act as an “error detection” mechanism for the G⊕d block in the sense that it helps
detect if (malformed) garblings of XOR gates evaluate wrongly.

More formally, for input size n = 2κ−1 with κ ∈ N, and d ≤ n, we describe the candidate
circuit G = Gd based on its underlying graph structure G = Gd as follows, see Figure 1: G
contains δ(d) := 2d + dlog((d+ 1)n)e + 2 layers, each containing n nodes. The input gates
(layer 0) have outdegree 2, the nodes on layers [1, 2d+ 1] all have in- and outdegree 2, and
the nodes in the last dlog(d · n)e layers have indegree 2 and outdegree 1. Since we will need
to differentiate between left and right parents a node, we will define the edge sets of these
graphs as the union of “right” and “left” edges. The first d+ 1 layers [0, d] build a graph G⊕
of high pebbling complexity (see Section 4.3), defined as

G⊕ :=([(d+ 1) · n− 1]0, E⊕), where E⊕ := E⊕L ∪ E
⊕
R with

E⊕L :={((i− 1) · n+ k, i · n+ k) | i ∈ [1, d] , k ∈ [0, n]},
E⊕R :={((i− 1) · n+ l, i · n+ k) | i ∈ [1, d] , k, l ∈ [0, n] , l = k + 1 mod n},

where we number the input gates by {0, . . . , n − 1}. Graph G⊕ is followed by d + 1 layers
[d+ 1, 2d+ 1] building G∧, defined as

G∧ :=([(d+ 1) · n, (2d+ 2) · n− 1], E∧), where E∧ := E∧L ∪ E∧in,R ∪ E∧R with
E∧L :={(d · n+ k, (d+ i) · n+ k) | i ∈ [1, d+ 1] , k ∈ [0, n]},
E∧in,R :={(d · n+ l, (d+ 1) · n+ k) | k, l ∈ [0, n] , l = k + 1 mod n},
E∧R :={((i− 2) · n+ k, (d+ i) · n+ k) | i ∈ [2, d+ 1], k ∈ [0, n]}.

8In principle we could have used constant-0 gates in place of the AND gates, or simply a single constant-0
gate of high fan-in (which would considerably simplify the description). But we prefer to stick to the standard
Boolean basis.
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G⊕

G∧

G0

1

d

d+ 1

d+ 2

2d+ 1

Figure 1: Schematic diagram for the candidate circuit of width 5 and depth 4. The input and
output wires are coloured green. The layer number is indicated on the left. The first two blocks are
the XOR and AND layers respectively; the final pyramid denotes the binary tree.

Finally, there is a binary tree structure G0 on top of the (d + 1) · n output gates of G∧, to
guarantee constant output 0 of the circuit.

The candidate circuit G is now defined based on the graph structure G as follows:

- All gates on layers [1, d] implement XOR gates.

- All other gates consist of AND gates.

In the following lemma we prove that G is indeed constant.

Lemma 1. G(x) = 0 for all x ∈ {0, 1}n, i.e., G is constant.

Proof. To see that this circuit has constant output 0, first note that G0 outputs 1 only on the
all-1 string 1n. In Section 4.2 we will provide an explicit representation of the output of G⊕

that in particular implies that the range of G⊕ consists of strings (y1, . . . , yn) ∈ {0, 1}n that
contain an even number of 1s (see Corollary 1). As we chose n = 2κ − 1 odd, this implies
that any output of G⊕ must contain at least one 0. Hence, the input to G∧ contains at least
one 0, and since G∧ only contains AND gates, the output of G∧ must contain a 0. This proves
that G is constant.
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(c)

Figure 2: The graphs and the circuit for parameter d = 6: (a) A pyramid graph of depth d, (b)
Extending the pyramid graph to get a tower graph G⊕d of depth d and (c) Circuit G⊕d obtained
replacing the vertices in G⊕d with XOR gates.

4.2 Vulnerability of the Circuit G⊕

In Section 4.5 we will prove that any black-box reduction R that aims to use A to gain
advantage in breaking the IND-CPA security of encryption scheme F has to simulate (G̃, x̃)
such that the extracted pebbling configuration on G⊕ contains d − 1 or d gray or black
pebbles. Each of these pebbles implies that at least one of the ciphertexts associated to that
gate must be malformed and modify the output of some input key pair. In the case that all
AND gates are properly garbled, all keys can be mapped to bits and hence such a switch of
the output can be detected (cf. Lemma 7). Thus, we consider the following game.

• On input a circuit C and a parameter d, R chooses a circuit C′ of the same topology
as C such that all except exactly d (non-input) gates coincide with the corresponding
gates in C. R sends C′ to A.

• On receipt of C′, A samples x← {0, 1}n uniformly at random.

• R wins if for all gates in C′ the output during evaluation on input x coincides with the
corresponding output bit when evaluating C.

We now prove that for C = G⊕, no algorithm R wins the above game with non-negligible
(in d) probability.

Lemma 2. Let d ∈ [1, n]. For G = G⊕ and any R, the probability that R wins the above
game is at most (3

4
)
√
d/4.

First, note that all except d gates in G′ are XOR gates, and in particular a linear function
over Z2. For each of the remaining d malformed gates, on the other hand, at least one
input pair is mapped to a different output bit than it would be in an XOR operation. We

19



⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

Figure 3: Circuit G⊕ with n = d = 7.

call the corresponding gates in the original circuit G⊕ pebbled. To prove Lemma 2, we will
show that there exists a subset of at least

√
d/4 of those d pebbled gates such that their

input is determined by independent linear functions. This implies that instead of choosing
x← {0, 1}n, A can equivalently choose the

√
d/2 input bits uniformly at random, and then

choose x uniformly under the constraint that the values running over these wires during
evaluation of G⊕ must be consistent with the predetermined bits. Clearly, x chosen this way
is still uniformly random in {0, 1}n. By definition of the game, R only wins the game if for
all gates in G′ the output during evaluation on input x coincides with the corresponding
output bit when evaluating G, and this must in particular also hold for the pebbled gates.
Since each of the malformed gates in G′ flips the output of at least one of the four possible
input pairs, and the input bits of

√
d/4 of the pebbled gates were chosen independently and

uniformly at random, the probability that R wins is at most (3
4
)
√
d/4.

Towards proving Lemma 2, let M denote the linear mapping corresponding to one layer
of gates in the circuit G⊕, i.e., written in matrix notation,

M =


1 1 0 . . . 0 0 0
0 1 1 . . . 0 0 0
... . . . ...
0 0 0 . . . 0 1 1
1 0 0 . . . 0 0 1

 .

The output of the µth layer of G⊕ on input x ∈ {0, 1}n is given by Mµ · x, hence we denote
the degree-1 polynomial in Z2[x1, . . . , xn] which determines its ν-th bit by Mµ

ν (for µ ∈ [0, n]
and ν ∈ [1, n]). Denoting by ν + 1 the representation of the residue class ν + 1 mod n in
[n], we have e.g.,

M0
ν = xν , M1

ν = xν ⊕ xν+1, M2
ν = xν ⊕ xν+2, M3

ν = xν ⊕ xν+1 ⊕ xν+2 ⊕ xν+3
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and in general it holds
Mµ

ν = Mµ−1
ν ⊕Mµ−1

ν+1
(2)

for all µ ∈ N, ν ∈ [1, n]. In the following we will associate gates with the corresponding
polynomials that determine their outputs.

If the input length n is odd – for convenience we assume n to be one less than a power of 2
– then G⊕ maintains high entropy; to prove this, we use the following explicit representation
of the polynomials Mµ

ν .

Lemma 3 (explicit formula for the polynomials Mµ
ν ). Let n = 2κ − 1, κ ∈ N, M defined

above, µ ∈ N, and ν ∈ [1, n]. For µ 6= n and βk ∈ {0, 1} its binary decomposition, i.e.
µ =

∑
k∈[0,κ−1] βk2

k, it holds:

Mµ
ν =

⊕
i∈[1,n]

αixi, where αi =

{
1 if i ∈ ν +

∑
k∈[0,κ−1]{0, βk} · 2k mod n,

0 else.
(3)

Note, Mµ
ν only depends on µ, not on µ. For µ = n = 2κ − 1, it holds:

Mµ
ν =

⊕
i∈[1,n]

αixi, where αi =

{
1 if i 6= ν,

0 else.
(4)

Proof. We prove the claim via induction on µ ∈ N. For µ = 1, we have Mµ
ν = xν ⊕xν+1. On

the other hand, for µ = 1 we have β0 = 1 and βk = 0 for all k ∈ [1, κ], which implies αν = 1,
αν+1 and αi = 0 for all i ∈ [`] \ {ν, ν + 1}. Hence, the claim is true for µ = 1.

For 2 ≤ µ ≤ n − 1, let µ − 1 =
∑

k∈[0,κ−1] β
′
k2
k, hence for µ =

∑
k∈[0,κ−1] βk2

k =∑
k∈[0,κ−1] β

′
k2
k + 1 we obtain

βk =

{
1− β′k for k ≤ k′ := min{k ∈ [0, κ− 1] | β′k = 0},
β′k for k > k′.

By induction hypothesis, we have

Mµ−1
ν =

⊕
i∈[1,n]

α
(0)
i xi, where α

(0)
i =

{
1 if i ∈ I(0) := {ν +

∑
k∈[0,κ−1] [0, β′k] · 2k mod n},

0 else.

Mµ−1
ν+1 =

⊕
i∈[1,n]

α
(1)
i xi, where α

(1)
i =

{
1 if i ∈ I(1) := {ν + 1 +

∑
k∈[0,κ−1] [0, β′k] · 2k mod n},

0 else.

Let I(0)∆I(1) := (I(0) \ I(1)) ∪ (I(1) \ I(0)) denote the symmetric difference of I(0) and I(1).
Then, by Equation (2), we get

Mµ
ν =

⊕
i∈[1,n]

αixi with αi = α
(0)
i ⊕ α

(1)
i =

{
1 if i ∈ I(0)∆I(1),

0 else.
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Since β′k′ = 0 and β′k = 1 for k < k′, we have for 0 ≤ k < k′:

ν + 1 +
k−1∑
l=0

2l +
κ−1∑
l=k+1

[0, β′l] 2l mod n = ν + 2k +
κ−1∑
l=k+1

[0, β′l] 2l mod n ∈ I(1) ∩ I(0),

and for k = k′:

ν + 1 +
k′−1∑
l=0

2l +
κ−1∑

l=k′+1

[0, β′l] 2l mod n = ν + 2k
′
+

κ−1∑
l=k′+1

[0, β′l] 2l mod n ∈ I(1) \ I(0),

and ν +
κ−1∑

l=k′+1

[0, β′l] 2l mod n ∈ I(0) \ I(1).

Combining the above cases and using that βk′ = 1 and βk = 0 for k < k′, proves Equation (3)
for µ ∈ [1, n− 1].

To prove Equation (4), note that for µ−1 = n−1 = 2κ−2 =
∑

k∈[1,κ−1] 2k, Equation (3)
gives

Mµ−1
ν =

⊕
i∈[1,n]

α
(0)
i xi, where α

(0)
i =


1 if i ∈ I(0) := {ν + 2 · [0, (n− 1)/2] mod n}

= {ν, ν + 2, . . . , ν − 1},
0 else.

Mµ−1
ν+1 =

⊕
i∈[1,n]

α
(1)
i xi, where α

(1)
i =


1 if i ∈ I(1) := {ν + 1 + 2 · [0, (n− 1)/2] mod n}

= {ν + 1, ν + 3, . . . , ν},
0 else.

Using I(0)∆I(1) = {ν + [n− 1] mod n} = [n] \ {ν} now proves Equation (4).
Finally, for µ = 2κ = n+ 1, Equation (4) implies

M2κ

ν = Mn
ν ⊕Mn

ν+1 =

 ⊕
i∈[1,n]\{ν}

xi

⊕
 ⊕
i∈[1,n]\{ν+1}

xi

 = xν ⊕ xν+1 = M1
ν ,

where we used the fact that n = 2κ − 1 by definition. This proves the Lemma.

Lemma 3 directly implies several useful properties, which we summarize in the following
corollary.

Corollary 1 (Properties ofM and G⊕). For M defined as above, n = 2κ−1, κ ∈ N, it holds

1. M2κ = M , which implies rank(Mk) = n− 1 for all k ≥ 1, i.e., G⊕ = Md is 2-to-1 for
any d.

2. Any n − 1 output bits of Mk (k ≥ 1) are determined by linearly independent degree-1
polynomials.

22



x1 x2 x3 x4 x5 x6 x7

x1 ⊕ x2 x2 ⊕ x3 x3 ⊕ x4 x4 ⊕ x5 x5 ⊕ x6 x6 ⊕ x7 x7 ⊕ x1

x1 ⊕ x3 x2 ⊕ x4 x3 ⊕ x5 x4 ⊕ x6 x5 ⊕ x7 x6 ⊕ x1 x7 ⊕ x2

x1 ⊕ x2

⊕x3 ⊕ x4

x2 ⊕ x3

⊕x4 ⊕ x5

x3 ⊕ x4

⊕x5 ⊕ x6

x4 ⊕ x5

⊕x6 ⊕ x7

x5 ⊕ x6

⊕x7 ⊕ x1

x6 ⊕ x7

⊕x1 ⊕ x2

x7 ⊕ x1

⊕x2 ⊕ x3

x1 ⊕ x5 x2 ⊕ x6 x3 ⊕ x7 x4 ⊕ x1 x5 ⊕ x2 x6 ⊕ x3 x7 ⊕ x4

· · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . .

· · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . .

· · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . . · · · ⊕ . . .

x =

Figure 4: The circuit G⊕ split into four equal-sized quarters.

3. Image(G⊕) = {x = (x1, . . . , xn) ∈ {0, 1}n |
⊕

i∈[1,n] xi = 0}, i.e., all vectors in the
image of G⊕ contain an even number of 1s.

The first property immediately follows from Lemma 3 since for µ = 2κ we have µ = 1.
The second property then follows from rank(Mk) = n − 1. For the last property, note that
the set ν +

∑
k∈[0,κ−1]{0, βk} · 2k mod n is even whenever a single bit βk is nonzero (which

is true for all µ > 0), and also the set {i ∈ [n] | i 6= ν} is even since n is odd.
The following Lemma now immediately implies Lemma 2.

Lemma 4. Any subset S ⊂ {Mµ
ν }µ∈[0,n],ν∈[1,n] of polynomials in Z2[x1, . . . , xn] with s := |S|

contains a subset S ′ of size
√
s/4 such that |parents(S ′)| =

√
s/2 and parents(S ′) is linearly

independent, where parents(Mµ
ν ) := {Mµ−1

ν ,Mµ−1

ν+1
}.

Proof. We split the (n+1)×n gates {Mµ
ν }µ∈[0,n],ν∈[1,n] into four equal-sized quartersMi, i ∈

[1, 4], each containing a subset of (n+ 1)/2× (n+ 1)/2 gates, see Figure 4. Since S has size
s, at least one of these quarters must contain ≥ s/4 gates from S. Furthermore, considering
the (n + 1)/2 vertical paths within such a quarter; then either 1) there is one vertical path
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which contains ≥
√
s/2 gates from S, or 2) there exist ≥

√
s/2 + 1 vertical paths which

contain at least one pebble each.
For case 1), note that for all ν ∈ [1, n] the set of gates within any vertical path within

Mi, i.e., {Mµ
ν }µ∈[0,n] ∩Mi = {Mµi+j

ν }j∈[0,(n−1)/2] with µ1 = µ2 = 0, µ3 = µ4 = (n + 1)/2,
is linearly independent. To see this, first note that by Corollary 1 {Mµi

ν , . . . ,M
µi

ν+(n−1)/2
} is

linearly independent for any i ∈ [1, 4] and generates the vertical path {Mµi+j
ν }j∈[0,(n−1)/2] in

Mi. Now, consider the explicit representation of Mµi+j
ν with j =

∑
k∈[κ−2]0

βk2
k in the basis

{Mµi
ν , . . . ,M

µi

ν+(n−1)/2
} (which follows from Equation (3)):

Mµi+j
ν =

⊕
l∈[0,(n−1)/2]

αlM
µi
ν+l
, where αl =

{
1 if l ∈ ν +

∑
k∈[κ−2]0

[0, βk] · 2k mod n,

0 else.

In particular, it follows that Mµi+j
ν =

⊕
l∈[j]0

αlM
µi
ν+l

with αj = 1 and αl = 0 for all l ∈
[j + 1, (n− 1)/2]. This implies that for bj ∈ {0, 1}∗⊕

j∈[0,(n−1)/2]

bj ·Mµi+j
ν = 0 ⇒ bj = 0 ∀j ∈ [0, (n− 1)/2] .

Thus, any subset of gates {Mµi+j
ν }j∈[0,(n−1)/2] along the ν-th vertical path inMi is linearly

independent over Z2. This implies that the set of ≥
√
s/2 gates in S which lie on one

vertical path is linearly independant. It immediately follows that the left parents of this set
are linearly independent as well. By basic linear algebra, replacing an element from a set of
linearly independent equations by a linear combination of this element with other elements
of the set preserves linear independence. Using Equation (2) and removing at most half of
the left parents, we obtain a set S ′ of ≥

√
s/4 gates whose parents are distinct and form a

linearly independent set.
For case 2), by assumption there exists a set S ′ consisting of

√
s/4 gates in S such

that their parents lie on distinct vertical paths in Mi.9 Furthermore, since ≥
√
s/2 + 1

vertical paths contain gates from S, we can choose S ′ such that parents(S ′) does not contain
the bottom right gate Mµi+(n−1)/2

νi+(n−1)/2 with ν1 = ν3 = 1, ν2 = ν4 = (n − 1)/2 (which is not
necessary but more convenient for the analysis below). We will now argue that the set
of parents of S ′ is linearly independent. Similar to above, we can uniquely represent the
elements of parents(S ′) := {Mµi+µj

νi+νj }j∈[
√
s/2] with µj, νj ∈ [0, (n− 1)/2], and νj < νj+1 for all

j ∈ [
√
s/2− 1] as a linear combination of the linearly independent set {Mµi

νi
, . . . ,Mµi

νi+n−1
}:

M
µi+µj
νi+νj =

⊕
l∈[µj ]0

αlM
µi
νi+νj+l

with α0 = 1 and µj + νj ≤ n− 1.

This implies that for bj ∈ {0, 1}∗⊕
j∈[
√
s/2]

bj ·M
µi+µj
νi+νj = 0 ⇒ bj = 0 ∀j ∈ [

√
s/2].

9Technically, for i ∈ {3, 4} we have to shift the windowMi by setting µi ← µi − 1.
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Hence, S ′ is indeed linearly independent over Z2. This proves the claim.

Lemma 2 now follows, since for any set of d pebbled gates, by Lemma 4 there exists a
subset S ′ of

√
d/4 pebbled gates such that their parents are distinct and form a linearly

independent set.

4.3 Pebbling Game and Threshold

Recall that in Yao’s garbling scheme, each gate g is associated with a (honest) garbling table
g̃, which consists of four double encryptions that encode g’s gate table. However, a reduction
is free to alter the contents of the honest garbling table in any way. In fact, the upper bounds
in [LP09, JW16] crucially rely on the ability to do this in an indistinguishable manner: in the
real game the garbling tables are all honest, whereas in the simulated game the garbling tables
all encode the constant-0 gate, and the hybrids involve replacing the honest garbling tables
one by one with that of the constant-0 gate.10 We introduce a pebble game to precisely model
such different simulations of the garbled circuit G̃ (by the reduction). Loosely speaking, the
extracted pebble configuration is an abstract representation of the simulation (G̃, x̃b), and
the pebbling rules model the reduction’s ability to maul garbling tables in G̃ without being
noticed (indistinguishability).

The pebbles. Intuitively, the pebble on a gate g encodes how “different” the garbling table
g̃′ which A receives is from an honest garbling g̃. To this end, we employ three different
pebbles: white, gray and black.

• A white pebble on g indicates that g̃′ and g̃ are at “distance” 0 (defined below), i.e., g̃
is (distributed identically to) an honest garbling table of g.

• A gray or black pebble on g indicates that g̃′ is malformed. What differentiates gray
from black is the degree of malformation: loosely speaking, a gray pebble indicates that
g̃′ is at a distance 1 from g̃, whereas a black pebble indicates that g̃′ is at a distance
2 (or more).

To understand what we mean by distance, we need to take a closer look at the structure of
a garbling table. An honest garbling table g̃ consists of the four double encryptions shown
in Table 1.(a). We assign a gray pebble to a gate g if the garbling table of g in G̃ can
be proven indistinguishable from g̃ by embedding a single IND-CPA challenge key (among
k0
u, k1

u, k0
v and k1

v). For example, let’s consider an AND gate and its honest garbling table
(Table 1.(b)): a malformed table that is at distance one (via the key k1

u or k1
v) from it is, e.g.,

a garbling table that encodes the constant-0 gate (Table 1.(d)). A garbling of an XOR gate,
in contrast, is at distance 2 from a garbling of a constant gate: If kau and kbv are the keys

10Note, this simulation crucially relies on the fact that keys can be equivocated : While the output keys
are all associated to 0, when altering the output mapping accordingly evaluation will still succeed. Note
that in the selective setting for Yao’s original scheme as well as in the adaptive setting for the modified
scheme [JW16] the input is known before the output mapping is sent.
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Ek0u(Ek0v(k
g(0,0)
w )) Ek0u(Ek0v(k

0
w)) Ek0u(Ek0v(k

0
w)) Ek0u(Ek0v(k

0
w))

Ek1u(Ek0v(k
g(1,0)
w )) Ek1u(Ek0v(k

0
w)) Ek1u(Ek0v(k

1
w)) Ek1u(Ek0v(k

0
w))

Ek0u(Ek1v(k
g(0,1)
w )) Ek0u(Ek1v(k

0
w)) Ek0u(Ek1v(k

1
w)) Ek0u(Ek1v(k

0
w))

Ek1u(Ek1v(k
g(1,1)
w )) Ek1u(Ek1v(k

1
w)) Ek1u(Ek1v(k

0
w)) Ek1u(Ek1v(k

0
w))

(a) (b) (c) (d)

Table 1: Garbling tables for (a) general gate g, (b) AND gate, (c) XOR gate, and (d) constant-0
gate. u and v denote the two input wires, whereas w denotes the output wire.

revealed during evaluation, then the garbling of an XOR gate can be proven indistinguishable
from the constant-(a ⊕ b) gate only by first embedding a challenge key at k1−a

u and then a
second challenge key at k1−b

v , or vice versa; i.e. the reduction needs to embed challenges at
each input wire.

Pebbling rules. To complete the description of a pebble game, we need to describe
the pebbling rules. These rules essentially capture the following observation: a reduction
(with overwhelming probability) cannot possess encryptions of its (IND-CPA) challenge key.
Therefore, whenever the garbling table g̃ of a gate g has been switched to a malformed
garbling g̃′ (say) at distance one, (at least) one of the garbling tables associated to its pre-
decessor gates, say gu, must have been first switched to a garbling that encodes only one of
gu’s output keys. This is required to “free up” one of gu’s output keys (so that it can now
be set as the challenge key). Looking ahead, we will be interested in pebbling the circuit
G⊕ which consists of XOR gates only. Hence, the pebbling rules are designed to capture the
structure of XOR gates. Recall that an XOR gate is at distance 2 from a constant gate, thus,
we end up with the following rules (where gu and gv denote the two predecessors of g):

1. a gray pebble can be placed on or removed from a gate g only if (at least) one of its
predecessor gates (say gu) carries a black pebble; and

2. a gray pebble on a gate g can be swapped with a black pebble if the other predecessor
gate (i.e., gv) carries a black pebble.

The actual game. The above white-gray-black (WGB) pebble game is a simplified version of
the (WG3B) pebble game we end up using, but it is sufficient to convey the essential ideas that
we use. The actual game, defined in Definition 7 (Section 4.3), is more fine-grained: in order
to keep track of the inner and outer encryptions, we introduce three types of gray pebbles
(gray-left, gray-right and gray-free), and the pebbling rules are also modified accordingly.

Definition 7 (Reversible WG3B pebbling game for indegree-2 graphs). Consider a directed
acyclic graph G = (V , E) with V = [1, S] and let X = {W, G∗, GL, GR, B} denote the set of
colours of the pebbles. Consider a sequence P := (P0, . . . ,Pτ ) of pebbling configurations for
G, where Pi ∈ X V for all i ∈ [0, τ ]. We call such a sequence a WG3B pebbling strategy for G
if the following two criteria are satisfied:
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1. In the initial configuration all the vertices are pebbled white (i.e., P0 = (W, . . . , W)) and
in the final configuration at least one sink of G is pebbled gray (i.e., Pτ = (. . . , G·, . . . )),
where G. denotes an arbitrary type of gray, i.e. G. ∈ {G∗, GL, GR}.

2. Two subsequent configurations differ only in one vertex and the following rules are
respected in each move:

(a) W↔ G∗: a white pebble can be replaced by a G∗ pebble (and vice versa) if one of
its parents is black-pebbled

(b) W/G∗ ↔ GL: a white or G∗ pebble can be replaced by a GL pebble (and vice versa)
if its left parent is black-pebbled

(c) W/G∗ ↔ GR: a white or G∗ pebble can be replaced by a GR pebble (and vice versa)
if its right parent is black-pebbled

(d) GL ↔ B: a GL pebble can be replaced by a black pebble (and vice versa) if its
right parent is black-pebbled

(e) GR ↔ B: a GR pebble can be replaced by a black pebble (and vice versa) if its left
parent is black-pebbled

The space-complexity of a WG3B pebbling strategy P = (P0, . . . ,Pτ ) for a DAG G is defined
as

σG(P) := max
i∈[0,τ ]

|{j ∈ [1, S] : Pi(j) ∈ {G∗, GL, GR, B}}|.

For a subgraph G′ induced on vertex set V ′ ⊂ V , the space-complexity of P restricted to G′
is defined as

σ|G′(P) := max
i∈[0,τ ]

|{j ∈ V ′ : Pi(j) ∈ {G∗, GL, GR, B}}|.

The space-complexity of a DAG G is the minimum space-complexity over all of its strategies
PG:

σ(G) := min
P∈PG

σG(P). (5)

A strategy matching the space-complexity of a DAG is deemed space-optimal for that DAG.

Remark 1. Note that for upper bounds the G∗ pebbles would be redundant in the following
sense: any WG3B pebbling sequence including G∗ pebbles can be replaced by a valid WG3B
sequence (potentially including redundant steps) that does not contain G∗ pebbles and has
a smaller or equal space-complexity. The reader familiar with pebbling games might notice
that – ignoring the G∗ pebbles – our WG3B pebbling rules exactly correspond to reversible
edge-pebbling [JKK+17]: In this game, pebbles are placed on edges instead of nodes, and a
pebble can be placed on/removed from an edge (u, v) ∈ E if and only if all edges incident on
u are pebbled.

The following lemma gives a lower bound on the WG3B pebbling complexity of the graph
G \G0 underlying the first two blocks G∧ ◦ G⊕ of our candidate circuit G.
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Figure 5: Pyramid graph used in the proof of Lemma 5. (a) The gates in G⊕ from which
the gate g∗ can be reached are highlighted (b) The correponding pyramid graph Dd′ . The
subgraphs of interest are highlighted.

Lemma 5 (Pebbling lower bound on G \G0). Let G \G0 be the graph underlying the circuit
G∧ ◦ G⊕. To gray-pebble a gate on layer d′ ∈ [1, d+ 1] following the reversible WG3B pebbling
rules from Definition 7, one requires space-complexity at least d′− 1. Furthermore, to GL- or
B-pebble a gate on layer d′ ≥ d+1, one requires at least d gray or black pebbles simultaneously
on the first d layers.

Proof. We rely on the crucial observation that the ancestor graph of any vertex v in layer
d′ ∈ [1, d+ 1] of G forms a so-called pyramid graph of depth d′, with v as the unique sink.
Let’s denote this graph by Dd′ . To prove the lemma, first note, that pebbling any node on
layer d′ requires to black -pebble one of its parents (see Figure 5). Thus, to prove the Lemma,
it suffices to argue that it takes space-complexity ≥ d′ − 1 to place a black pebble on the
sink of Dd′−1. We will prove the following slightly stronger claim:

Claim 1. Any WG3B pebbling sequence P = (P0, . . . ,PL) on Dd′ with unique sink v∗, where
P0 = {W, . . . , W} is the all-white configuration and PL = {. . . , B} is a configuration where the
sink of Dd′ is black-pebbled, contains a pebbling configuration P∗ such that σ(P∗) ≥ d′ and
each path from a source to v∗ contains at least one grey or black pebble.

We prove the claim via induction on d′. For d′ = 1 the claim is obviously true. For the
induction step, note that, to black-pebble node v∗, one needs to black-pebble its parents vl
and vr before, not necessarily at the same time though. Let Dd′−1,vl , Dd′−1,vr denote the
ancestor graphs of vl and vr, respectively, each being pyramid graphs of depth d′ − 1. By
induction hypothesis, there must exist configurations Pl, Pr in P which contain d′−1 grey or
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black pebbles in Dd′−1,vl and Dd′−1,vr , respectively, such that each path from a source to vl/vr
contains at least one grey or black pebble. Let Pl, Pr denote the last such configurations.
Let C(l)

d′,v∗ denote the left-most path in Dd′ , which passes through vl.
Let’s first consider the case that Pl = Pr. Since C(l)

d′,v∗ and Dd′−1,vr are disjoint, the
properties of Pl and Pr imply that there must be at least d′ grey or black pebbles in Pl = Pr
and since all paths to v∗ either go through vl or through vr, also the second property is true
and the claim follows with P∗ := Pl = Pr.

Now, w.l.o.g., assume Pl occurs before Pr in P . Thus, either 1) there are less than d′− 1
pebbles on Dd′−1,vl in configuration Pr or 2) there must exist a path C ′ ∈ Dd′−1,vl from a
source to vl which does not carry any grey or black pebbles, in particular also one of vl’s
parents is white-pebbled; and this is true for all configurations in (Pr, . . . ,PL). If case 2)
does not occur, then similar to the case Pl = Pr we can argue that there must be a grey or
black pebble on C

(l)
d′,v∗ and the claim follows. The same is true if node v∗ is grey or black

pebbled.
Finally, let’s assume 2) is true for Pr and v∗ is white-pebbled. Since vl and v∗ are W-

pebbled, there must exist a configuration P ′ ∈ (Pr, . . . ,PL) such that vl is black-pebbled in
P ′. Let P ′ be the first such configuration in (Pr, . . . ,PL). We will now construct a pebbling
sequence onDd′−1,vl which does not contain any configuration with at least d′−1 grey or black
pebbles such that all paths to vl carry at least one pebble – a contradiction to the induction
hypothesis. Note that it suffices to show that the pebbling configuration on Dd′−1,vl induced
by Pr can be reached by such a sequence, and then append this sequence by the pebbling
strategy induced on Dd′−1,vl by (Pr, . . . ,P ′). To define a pebbling strategy on Dd′−1,vl from
the all-white configuration to the one induced by Pr, which always keeps one path all-white
pebbled, we introduce some further notation: Let C ′ = (u1, . . . , ud′−1) with ud′−1 = vl be
represented as (b2, . . . , bd−1) ∈ {0, 1}d

′−2, where bi = 0/1 indicates that ui−1 is the left/right
parent of vi. Furthermore, let C(0)

i,u /C
(1)
i,u denote the leftmost/rightmost path to node u on

layer i. To define our pebbling strategy, we make the following simple observation: For any
i ∈ [2, d′−1], one can reach any configuration on C(1−bi)

i,ui
with ui white-pebbled while keeping

the path C(bi)
i,ui

all-W pebbled; this can be done by greedily black-pebbling all ancestors of grey
or black pebbled nodes in C(1−bi)

i,ui
and then reversibly switching all ancestors outside this set

back to white (note, there are no ancestors in C
(bi)
i,ui

, so this path remains white-pebbled).
Thus, we define our pebbling strategy as follows

• For i = d′ − 1, . . . , 2: Greedily black-pebble all ancestors of nodes in C(1−bi)
i,ui

which are
grey or black pebbled, and reach the pebbling configuration Pr induces on C(1−bi)

i,ui
, then

reversibly white-pebble all ancestors of C(1−bi)
i,ui

.

Note, throughout the i-th step the path C(bi)
i,ui
∪ (ui, . . . , ud′−1) remains white-pebbled and the

pebbling configuration reached after the i-th step coincides with Pr on
⋃
j∈[i,d′−1]C

(1−bi)
i,ui

, and
since ui is white-pebbled in Pr the algorithm indeed terminates at the configuration which
is induced on Dd′−1,vl by Pr. This proves the claim.
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The following definition now gives a cut in the configuration graph; our adversary A will
be a threshold adversary with respect to this cut.

Definition 8 (Good pebbling configurations). A pebbling configuration P on DAG G \G0

is called good if it is reachable by reversible WG3B pebbling moves using less than d gray or
black pebbles on the first d layers simultaneously, i.e., there exists a WG3B pebbling strategy
P := (P0, . . . ,P) for G such that σ|G⊕(P) ≤ d− 1.

In particular, by Lemma 5, any pebbling configuration P with a GL or B pebble on a gate
in G∧ is bad.

4.4 Extraction of Pebbling Configuration on G \G0

Given the garbled circuit G̃ and input x̃, our adversary A maps (G̃, x̃) to a pebbling config-
uration on the subgraph G \ G0 of the DAG G underlying G. It’s output behaviour then
depends on whether this pebbling configuration lies in the cut defined by Definition 8. In
this section we will discuss how to extract such a pebbling configuration. Note, that A
is computationally unbounded, hence can extract messages and keys from ciphertexts by
brute-force search.

1. First, check whether (G̃, x̃) evaluates correctly , i.e., GEval(G̃, x̃) = G(x0).
If the evaluation check passes, check whether G̃, x̃ have the correct syntax : Check
whether G̃ consists of four ciphertexts for each gate, which have the following form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(m2)),

{c3, c4} = {Enck2(m3),Enck2(m4)},
(6)

for distinct keys k1, k2, k3, k4, k5 and arbitrary (not necessarily distinct) messages m2,
m3,m4, where keys k1 and k3 are revealed during evaluation GEval(G̃, x̃). I.e., two of the
four ciphertexts are encryptions under the same left secret keys k1 and k2, respectively,
one of them is a double encryption Enck1(Enck3(k5)) under left key k1 and some right
key k3 of an output key k5 (all these being revealed throughout evaluation), and the
second encryption under k1 encrypts an encryption under a second right key k4 (of an
arbitrary message m2).
Finally, check consistency of keys : For each gate, extract key pairs (k1, k2) and (k3, k4)
corresponding to left and right input wires, and check whether they are consistent
with the keys extracted from sibling gates: If gate g is the left sibling of g′, then
g’s right input key pair must coincide with the left key pair extracted from g′, i.e.,
(k3, k4) = (k′1, k

′
2). Note, if this check passes, then all wires in the circuit can be

uniquely associated with a key pair. Finally, check that all extracted keys are distinct.
If any of these checks fails, map (G̃, x̃) to a bad pebbling configuration, e.g., to the
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pebbling configuration on G where all gates at levels [d+ 1, 2d+ 1] are black pebbled11

and quit.

Remark 2. Note, syntax and consistency checks allow a reduction to distinguish

• a ciphertext from a non-ciphertext,

• a ciphertext under key k from a ciphertext under key k′ 6= k.

We will argue in Section 4.5 that this is of no help to the reduction for breaking IND-CPA
security of the information-theoretic encryption scheme F .

For all garblings (G̃, x̃) that pass correctness, syntax, and consistency checks, A will extract
a pebbling configuration on G \G0 by mapping each gate to a color in {W, G∗, GL, GR, B}.

2. For each XOR gate gj (j ∈ [1, d] · n + [0, n]): Check whether gj is garbled correctly with
respect to input x0. To this aim, let bl, br, and bo = gj(bl, br) = bl⊕br denote the left/right
input and the output bit of gj, respectively, when evaluating G on x0. We use the same
notation as in Equation 6 above; furthermore, let k6 be the second key associated with
the output wire (which was extracted from the garbling tables of the successor gates).

• If gj is garbled similar to the case of an honest garbling of (G, x0), i.e., m2 = k6, m3 =
Enck3(k6), and m4 = Enck4(k5) (or the roles of m3,m4 permuted), then associate gj
with a W pebble.

• If m2 and m3 are as in the previous case, but m4 = Enck4(m) for some message
m 6= k5, then associate gj with a G∗ pebble. Similarly for the case where the roles of
m3,m4 are permuted.

• If m3 is as in the first case, m4 = Enck4(m) for an arbitrary message m, but m2 6= k6,
then associate gj with a GR pebble. Similarly for the case where the roles of m3,m4

are permuted.
• If m2 = k6 is as in the first case, but {m3,m4} differs from the previous cases, then

associate gj with a GL pebble.
• For all other cases, associate gj with a B pebble.

Remark 3. Due to symmetry of the XOR operation, whether a gate is considered properly
garbled (i.e. mapped to a white pebble) or not (i.e. mapped to gray or black) does not
depend on the input keys. Thus, the set of black and gray pebbles on G⊕ can be extracted
independently of x0 and x̃.

3. For each AND gate gj (j ∈ [d+ 1, 2d+ 1] · n + [0, n]): Similar to the case of XOR gates,
check whether the gate is correctly garbled with respect to x0. Using the same notation
as above, associate gj with a pebble as follows:

11This choice was made for convenience (see Lemmas 7 to 9), but in principle could be an arbitrary bad
configuration, and should simply guarantee that no reduction can gain any advantage by departing from the
protocol in an obvious way.
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• If gj is garbled similar to the case of an honest garbling of (G, x0), i.e., for

(bl, br) = (0, 0), we have m2 = k5, m3 = Enck3(k5), and m4 = Enck4(k6),
(bl, br) = (0, 1), we have m2 = k5, m3 = Enck3(k6), and m4 = Enck4(k5),
(bl, br) = (1, 0), we have m2 = k6, m3 = Enck3(k5), and m4 = Enck4(k5),
(bl, br) = (1, 1), we have m2 = k6, m3 = Enck3(k6), and m4 = Enck4(k6),

(or the roles of m3,m4 permuted) then associate gj with a W pebble.

• If m2 and m3 are as in the previous case, but m4 = Enck4(m) for some message m
that differs from above, then associate gj with a G∗ pebble. (Similarly for the case
where the roles of m3,m4 are permuted.)

• If m3 is as in the first case, m4 = Enck4(m) for an arbitrary message m, but m2

differs from the previous case, then associate gj with a GR pebble. (Similarly for the
case where the roles of m3,m4 are permuted.)

• If m2 is as in the first case, but {m3,m4} differs from the previous cases, then
associate gj with a GL pebble.

• For all other cases, associate gj with a B pebble.

Remark 4. At first sight, it might seem counterintuitive that the mapping from gates to
colours not only depends on the associated ciphertexts, but also on the input x0. This
however is unavoidable since the adversary A cannot simply map keys to bits, but can only
relate them to the keys it learned from x̃, which might be properly garbled or not.

In the following lemma, we prove that the adversary A using the above pebbling extrac-
tion indeed breaks indistinguishability of Yao’s garbling scheme.

Lemma 6. A breaks indistinguishability of the garbling scheme with probability 1− 1/2n−1.

Proof. We defined our adversary A to output b′ = 0 whenever the extracted pebbling config-
uration is good, and b′ = 1 else. In particular, Definition 8 guarantees that A outputs b′ = 0
if there are only white pebbles on the subgraph G \ G0 of the topology graph G of G, i.e.,
when (G̃b, x̃b) is distributed identically to (G̃, x̃0). On the other hand, when x1 was garbled,
then – as we will show below – there will be at least one gray or black pebble on layer d+ 1.
Hence, since by Lemma 5 switching a pebble on layer d′ = d + 1 from W to G∗, GR, GL or B
requires at least d gray or black pebles simultanously on the first d layers, A outputs b′ = 1
in this case.

It remains to show that (with all but negligible probability) a proper garbling (G̃, x̃1) will
be mapped to a pebbling configuration which has at least one gray or black pebble on layer
d+ 1. To this aim, we use the following properties of the circuit G⊕, which were established
in Section 4.2, Corollary 1: First, G⊕ is 2-to-1, with x0 and x0⊕ 1n being the two preimages
of G⊕(x0). Second, the image of G⊕ only consists of strings containing an even number of 1s.

Now, assume x1 /∈ {x0, x0⊕1n} (which happens with probability 1−1/2n−1), and G⊕(x0)
and G⊕(x1) differ in the i-th bit and coincide in the i + 1-th bit; note that such an i must
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exist, since G⊕(x0)⊕1n is not in the image of G⊕ (by the second property of G⊕). Assume the
i-th and i+ 1-th bits of G⊕(x0) are 0, i.e., using the same notation as above, we analyze the
case (bl, br) = (0, 0); the other cases work similarly. Consider the garbling of the i-th AND
gate G on layer d+ 1 w.r.t. the keys k1, k3, k5 revealed through evaluation of G̃ on input x̃1.
Then this coincides with the case (bl, br) = (1, 0), in particular, m2 = k6 and m4 = Enck4(k5)
differ from the garbling for input x0, while m3 is similar. Hence, A associates this gate with
a GR pebble. Similarly, we can see that if the left input coincides but the right differs, A
associates G with a GL pebble. Finally, if both inputs differ, this implies that in the garbling
m2 and m3 differ, hence A maps G to a B pebble. This proves the claim.

Since A extracts the pebble mode of a gate with regard to the garbled input (i.e., the
keys it learns through evaluation), the reduction can still change the mode of a gate after it
output G̃ by choosing different input keys for x̃. In the following lemmas we prove that this
flexibility of choosing the input keys is of not much help to a reduction aiming at a good
pebbling configuration, where in particular all gates at layers [d+ 1, 2d+ 1] are mapped to
W, G∗, or GR pebbles.

First, we consider the case of a properly garbled AND gates. In this case, due to the
asymmetry of the AND operation, input keys can be associated with bits and hence a properly
garbled layer of AND gates has a similar function as an output mapping.

Lemma 7. For any garbling of an AND gate on layer [d+ 1, 2d+ 1], and any input bits
bl, br, there exists at most one input key pair (k1, k3) such that the gate will be mapped to a
W pebble.

Proof. For the claim on gates mapped to W pebbles, we only consider the case (bl, br) = (0, 0),
the others work similarly. Let g∧ be an AND gate that is mapped to a W pebble. Hence, the
four associated ciphertexts must have the following form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(k5)),

c3 = Enck2(Enck3(k5)), c4 = Enck2(Enck4(k6)).

Since g∧ is mapped to a W pebble, in particular evaluation, syntax, and consistency checks
must pass. Hence, all keys are distinct, k1, k2 are associated to the left input wire, k3, k4 are
associated to the right input wire, and during evaluation two input keys kl ∈ {k1, k2} and
kr ∈ {k3, k4} are reveiled. We will now show that it must hold (kl, kr) = (k1, k3). Assume,
for contradiction, (kl, kr) = (k2, k3). Then g∧ will be mapped to a GR pebble, because
the inner encryptions (under key k4) of ciphertexts c2 and c4 are malformed. Similarly, if
(kl, kr) = (k1, k4), then c3 and c4 are considered malformed and g∧ is mapped to a GL pebble.
Finally, if (kl, kr) = (k2, k4), then c2, and c3 are considered malformed and g∧ is mapped to
a B pebble. This implies that g∧ is mapped to a W pebble only if (kl, kr) = (k1, k3).

The situation becomes a bit more involved if AND gates are not properly garbled, since
in this case asymmetry might be broken. However, if the left input keys can be mapped to
bits, then we can still obtain some meaningful guarantees. We first consider the case that an
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AND gate is garbled in G∗ mode, i.e. one ciphertext is malformed and there exist some input
bits (bl, br) such that it will be mapped to a G∗ pebble. In the following Lemma we prove
that for a different right input bit 1− br the gate will be mapped to a GL pebble instead.

Lemma 8. For any garbling of an AND gate, any left input bit bl, and fixed left input key,
there exists at most one br ∈ {0, 1} such that there exists a (not necessarily unique) right
input key such that the gate will be mapped to a G∗ pebble. If such a right input bit br exists,
then for right input bit 1− br the gate will be mapped to a GL pebble.

Proof. Consider the case that an AND gate g∧ is mapped to a G∗ pebble for (bl, br) = (0, 0).
In this case, the four ciphertexts associated to g∧ must have the form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(k5)),

c3 = Enck2(Enck3(k5)), c4 = Enck2(Enck4(m)),

for some message m 6= k6 and left input key kl = k1. Now, for (bl, br) = (0, 1) and kl = k1,
a gate garbled as above will be mapped to a GL pebble, no matter whether the right input
key is k3 or k4.
Next, consider the case that an AND gate g∧ is mapped to a G∗ pebble for (bl, br) = (1, 0).
In this case, the four ciphertexts associated to g∧ must have the form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(k6)),

c3 = Enck2(Enck3(k5)), c4 = Enck2(Enck4(m)),

for some message m 6= k5 and left input key kl = k1. Then, for (bl, br) = (1, 1) and kl = k1,
a gate garbled as above will be mapped to a GL pebble, no matter whether the right input
key is k3 or k4.

Next we consider the case of an AND gate that is garbled in GR mode w.r.t. some input
bits (bl, br). In this case we have to distinguish two different ways to garble a gate such that
it will be mapped to a GR pebble. For one type of GR pebble we can map keys to bits, just as
in the case of properly garbled gates. For the second type of GR pebble we obtain a similar
guarantee as for G∗ pebbles.

Lemma 9. For any garbling of an AND gate on layer [d+ 1, 2d+ 1], any left input bit bl,
and fixed left input key, one of the following is true:

1. For any right input bit br ∈ {0, 1} there exists at most one right input key such that
the gate will be mapped to a GR pebble. If such a key exists, then for any other right
input key the gate will be mapped to a B pebble.

2. There exists at most one input bit br ∈ {0, 1} such that there exists a right input key
kr such that the gate will be mapped to a GR pebble. If such a bit exists, then for right
input bit 1− br and any right input key the gate will be mapped to a B pebble.
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These two cases characterize two different types of GR pebbled gates, where we denote a gate
as GR-type-1 if case 1 is true, and GR-type-2 if only case 2 is true.

Proof. First, consider the case that an AND gate g∧ is mapped to a GR pebble for (bl, br) =
(0, 0). In this case, the four ciphertexts associated to g∧ must have the form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(m)),

c3 = Enck2(Enck3(k5)), c4 = Enck2(Enck4(m
′)),

for some message m 6= k5, an arbitrary message m′, and left input key kl = k1. We first
consider the case m = k6, m

′ = k5. Then, for br = 0 and right input key kr = k4, a gate
garbled as above will be mapped to a B pebble; i.e. case 1 happens. Similarly, for br = 1 and
right input key kr = k3, a gate garbled as above will be mapped to a B pebble; i.e. case 1
happens. Next consider the case m = k6, m

′ = k6. Then, for br = 1 and any right input key
kr, a gate garbled as above will be mapped to a B pebble, i.e. case 2 happens. Finally, for
m,m′ /∈ {k5, k6}, evaluation fails for kr = k4, hence the gate will be mapped to a B pebble.
However, also for br = 1 the gate will be mapped to a B pebble; hence both cases 1 and 2
are true.

Next, consider the case that an AND gate g∧ is mapped to a GR pebble for (bl, br) = (1, 0).
In this case, the four ciphertexts associated to g∧ must have the form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(m)),

c3 = Enck2(Enck3(k5)), c4 = Enck2(Enck4(m
′)),

for some message m 6= k6, an arbitrary message m′, and left input key kl = k1. Then, for
m = k5, m

′ = k5, and br = 1, the gate will be mapped to a B pebble, independently of the
right input key, i.e. case 2 happens. For m = k5, m

′ = k6, on the other hand, if br = 0 and
the right input key is kr = k4, then the gate will be mapped to a B pebble; and analogously,
if br = 1 and the right input key is kr = k3, then the gate will be mapped to a B pebble, i.e.
case 1 happens. For m,m′ /∈ {k5, k6} the gate will be mapped to a B pebble and both cases
are true.

Next, consider the case that an AND gate g∧ is mapped to a GR pebble for (bl, br) = (0, 1).
In this case, the four ciphertexts associated to g∧ must have the form

c1 = Enck1(Enck3(k5)), c2 = Enck1(Enck4(m)),

c3 = Enck2(Enck3(k6)), c4 = Enck2(Enck4(m
′)),

for some message m 6= k5, an arbitrary message m′, and left input key kl = k1. Then, for
m = k6, m

′ = k5, and br = 0, the gate will be mapped to a B pebble, independently of the
right input key, i.e. case 2 happens. For m = k6, m

′ = k6, on the other hand, if br = 0 and
the right input key is kr = k3, then the gate will be mapped to a B pebble; and analogously,
if br = 1 and the right input key is kr = k4, then the gate will be mapped to a B pebble, i.e.
case 1 happens. For m,m′ /∈ {k5, k6} the gate will be mapped to a B pebble and both cases
are true.
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Finally, consider the case that an AND gate g∧ is mapped to a GR pebble for (bl, br) =
(1, 1). In this case, the four ciphertexts associated to g∧ must have the form

c1 = Enck1(Enck3(k6)), c2 = Enck1(Enck4(m)),

c3 = Enck2(Enck3(k5)), c4 = Enck2(Enck4(m
′)),

for some message m 6= k5, an arbitrary message m′, and left input key kl = k1. Then, for
m = k6, m

′ = k5, and br = 0, the gate will be mapped to a B pebble, independently of the
right input key, i.e. case 2 happens. For m = k6, m

′ = k6, on the other hand, if br = 0 and
the right input key is kr = k3, then the gate will be mapped to a B pebble; and analogously,
if br = 1 and the right input key is kr = k4, then the gate will be mapped to a B pebble, i.e.
case 1 happens. For m,m′ /∈ {k5, k6} the gate will be mapped to a B pebble and both cases
are true.

4.5 Lower Bound on Security Loss for any Reduction

In this section we will combine all previous results to prove a lower bound on adaptive security
of Yao’s garbling scheme. More precisely, we will prove that any black-box reduction which
aims to exploit A’s distinguishing advantage to break IND-CPA security of the underlying
encryption scheme loses a factor subexponential in the depth of the circuit.

Let R be an arbitrary PPT reduction which has black-box access to an adversary A that
breaks indistinguishability of Yao’s garbling scheme, and attempts to solve an IND-CPA
challenge with respect to an encryption scheme (Gen,Enc,Dec). Following the approach of
Kamath et al. [KKPW21], we define an information-theoretically secure encryption scheme
F = (Gen,Enc,Dec) as follows: For l ∈ {1, 6}, let El : {0, 1}(l+2)λ → {0, 1}2(l+2)λ be a random
expanding function (which is injective with overwhelming probability).

• Key generation Gen(1λ): On input a security parameter λ in unary, output a key
k ← {0, 1}∗ uniformly at random.

• Encryption Enc(k,m): On input a key k ∈ {0, 1}λ and a message m ∈ {0, 1}l·λ with
l ∈ {1, 6}, sample randomness r ← {0, 1}λ, and output El(k,m; r).

• Decryption Dec(k, c) is simulated to be consistent with Enc: On input a key k ∈ {0, 1}λ

and a ciphertext c ∈ {0, 1}2(l+2)λ with l ∈ {1, 6}, check whether c lies in the image of
El(k, ·; ·), if so extract m ∈ {0, 1}l·λ, r ∈ {0, 1}λ such that c = El(k,m; r) and output
m, otherwise output ⊥.

Choosing El (l ∈ {1, 6}) to be random functions implies that F is information-theoretically
IND-CCA secure. Thus, since R only makes polynomially many queries, the only non-
negligible advantage R has in breaking the IND-CPA security of F must stem from its
interaction with A. Furthermore, with all but negligible (in λ) probability F satisfies the
special property (Definition 6), hence can be used in Yao’s garbling scheme.
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We first argue that neither checking correctness, syntax, nor consistency (cf. Section 4.4)
is of any help to R. Obviously, this is true for the correctness check, since R can efficiently
evaluate GEval(G̃, x̃). However, we have to argue a bit more to prove that also syntax and
consistency checks are of no help to R. To this aim, we construct an oracle O that allows to
distinguish

• a ciphertext from an arbitrary string in {0, 1}2(l+2)λ for l ∈ {1, 6},

• a ciphertext under key k ∈ {0, 1}λ from a ciphertext under key k′ 6= k.

More precisely, O takes as input two strings s ∈ {0, 1}2(l+2)λ and s′ ∈ {0, 1}2(l′+2)λ (l, l′ ∈
{1, 6}) and checks whether s, s′ lie in the image of El,El′ , respectively. If this check fails for
one of the strings, then O outputs ⊥. Otherwise, it extracts preimages (k,m, r) ∈ {0, 1}(l+2)λ

under El and (k′,m′, r′) ∈ {0, 1}(l′+2)λ under El′ . If k = k′, O outputs 1, otherwise 0.
We will first prove that access to oracle O allows R to efficiently carry out syntax and

consistency checks. Then we will prove that F remains information-theoretically IND-CPA
secure even against adversaries that have access to O.

Lemma 10. There exists an algorithm BF ,O with oracle access to O that given a garbled
circuit and input pair (G̃, x̃) such that GEval(G̃, x̃) = G(x0) efficiently checks whether (G̃, x̃)
satisfies syntax and consistency (as defined in Section 4.4).

Proof. We first describe how BF ,O check the syntax of the four strings s1, s2, s3, s4 ∈ {0, 1}16λ

associated to a gate g. Since evaluation succeeds, one of these strings must have the form
c1 = Enck1(Enck3(k5)) for three keys k1, k3, k5 ∈ {0, 1}λ that are revealed during evaluation;
w.l.o.g., assume s1 = c1. Given k1, B can easily check if the strings s2, s3, s4 can be decrypted
under k1 by querying the decryption oracle Dec on (k1, si) for all i ∈ {2, 3, 4}. The algorithm
B aborts except if exactly on of the strings s2, s3, s4 can be decrypted under k1, w.l.o.g.,
assume this string is s2. Now given the decryption Dec(k1, s2), B now checks whether this
is a valid ciphertext by querying O(Dec(k1, s1),Dec(k1, s2)). If the output of O is ⊥, then
Dec(k1, s2) is not a valid ciphertext and B aborts. If the output is 1, then both s1 and s2 are
double encryptions under the same key pair (k1, k4) = (k1, k3), hence B aborts. Otherwise,
B continues and queries O(s3, s4). B aborts, whenever the output to this query is not 1, i.e.,
s3 and s4 are not encryptions under the same key k2. Finally, B has to check that all keys
used to generate s1, s2, s3, s4 are distinct. It already learned by previous queries that k1 6= k2

and k3 6= k4, hence it suffices to query O(Dec(k1, si), sj) for i = 1, 2, j = 1, 3 and abort if
any output is not 0. Otherwise accept the syntax of (G̃, x̃).

Consistency of keys can be verified in a similar way using th oracle O: Assume (k1, k2),
(k3, k4) are the (partially unknown) distinct keys involved in the encryptions c1, c2, c3, c4 (as
guaranteed by the syntax check) associated to gate g; and similarly (k′1, k

′
2), (k′3, k

′
4) and

c′1, c
′
2, c
′
3, c
′
4 are the keys and ciphertexts associated with its right sibling g′. Since k3 and k′1

are revealed through evaluation, it is trivially true that k3 = k′1. For the unknown keys k4

and k′2, on the other hand, B can check equality using O on (Dec(k1, c2), c′3).
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After checking that each wire in the circuit can uniquely be associated to a key pair,
finally, B checks that all these keys are distinct: This works in a similar way as before by
querying the oracle O on appropriate ciphertexts.

Lemma 11. The encryption scheme F is information-theoretically IND-CPA secure against
adversaries with oracle access to O.

Proof. To see this, we show how the oracle O can be simulated by an IND-CPA challenger
with oracle access to F that sees all the adversary’s queries to F . First, note that the
probability of sampling a ciphertext from {0, 1}2(l+2)λ (l ∈ {1, 6}) without either calling Enc
on a triple (k,m, r) ∈ {0, 1}(l+2)λ or querying the IND-CPA oracle is negligible in λ. Thus,
an oracle that allows to distinguish a ciphertext from an arbitrary string can be imple-
mented simply by checking whether the queried string was output of a previous query; this
is indistinguishable from the real functionality for any computationally bounded reduction.
Furthermore, for all ciphertexts the reduction sees, it actually knows the corresponding keys,
except for those derived from the IND-CPA challenger. Hence, distinguishing whether two
given ciphertexts were derived under the same key is easy: In the case that both ciphertexts
were derived from the IND-CPA challenger, obviously both ciphertexts were derived under
the same key. In the case that at least one of the associated keys is known, the reduc-
tion can query the Dec oracle on this key and the other ciphertext. Since Enc is injective
with all-but-negligible probability, the answer to this query will be ⊥ if the keys do not
coincide.

Now, to prove that any black-box reduction from indistinguishability of Yao’s garbling
scheme to IND-CPA security of the underlying encryption scheme suffers from a loss that is
subexponential in the depth δ of the circuit, we construct an adversary A[c∗] that behaves
just like A but doesn’t decrypt challenge ciphertext c∗. More precisely, A[c∗] with input a
ciphertext c∗, has oracle access to O, F , as well as an IND-CCA decryption oracle Deck∗
that it can query on any ciphertext c 6= c∗. We construct A[c∗] such that it never decrypts
c∗ unless it already knows the encryption key k∗ from other keys and ciphertexts in G̃, x̃:

• First A[c∗] runs evaluation, syntax, and consistency checks using oracle O. If these
checks pass, similar to A, the algorithm A[c∗] uses brute-force search to decrypt all
ciphertexts except for those encrypted under k∗ (to check whether a ciphertext is
encrypted under k∗ it uses O and c∗). Ciphertexts c 6= c∗ encrypted under k∗ it
decrypts using oracle Deck∗ . For c∗, there are two cases:

– If the key k∗ was learned from previous decryptions (this can be checked by
decrypting c∗ under all known keys), A[c∗] simply decrypts c∗ using k∗.

– If the k∗ is not known to A[c∗], then it simply assumes c∗ ∈ {0, 1}2(l+2)λ with
l ∈ {1, 6} would decrypt to 0l·λ.

A[c∗] then continues analogous to A by mapping (G̃, x̃) to a pebbling configuration
and outputting 0 whenever the pebbling configuration is good per Definition 8, and 1
otherwise.
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Clearly, since A[c∗] never decrypts c∗ except if k∗ is known, there is no chance for R to
use A[c∗] to break IND-CPA security of F .12 It remains to bound the success probability of
any PPT distinguisher D to distinguish A[c∗] from A.13 To this aim, we will first show how
the WG3B pebbling game relates to this issue.

Lemma 12. Let c∗ ← Enck∗(m) be an arbitrary ciphertext and let P , P∗ be the two pebbling
configurations extracted by A and A[c∗], respectively, in the same execution of the game, i.e.
using the same randomness. Then P∗ differs from P by at most one valid WG3B pebbling
move.

Proof. First, note that whenever c∗ is not embedded into G̃ then A[c∗] is trivially indistin-
guishable fromA, asA[c∗] ≡ A in this case. Similarly, if k∗ ∈ x̃ or there exists any encryption
of k∗ in G̃, then also A[c∗] ≡ A; in particular, P = P∗. Now, assume that evaluation fails
for A[c∗] but passes in A. Then the key k∗ must be revealed through GEval(G̃, x̃). But then
A[c∗] properly decrypts c∗; hence this cannot happen and evaluation fails for A[c∗] if and
only it fails for A. Also syntax and consistency checks A[c∗] passes if and only if A passes.
Thus, whenever such an initial check fails, then P = P∗.

In the following we will assume that c∗ is embedded in G̃, the key k∗ is never encrypted
or opened in x̃, and all initial checks pass. The second assumption implies that the key k∗
must either be embedded at a non-opened input wire or at the output wire of a gate whose
associated ciphertexts only encode one of the two output keys. We will now argue that such
XOR gates will be mapped to B pebbles: Using the notation from Section 4.4, the key k5 is
learned during evaluation, while k6 is the second key associated to the output wire. If the
garbling of the XOR gate is independent of k6, this implies that messages m2 and m3 differ
from the case of an honest garbling. By definition, such gates are mapped to B pebbles.
Hence, c∗ can only be embedded in the garbling table of a gate g if at least one of g’s parents
is black pebbled.

Now, assume there exists a (XOR or AND) gate that is W in P and B in P∗; the case
opposite case works analogously. For ease of notation, we consider the case of an XOR gate
here, the case of AND gates follows analogously. By definition, an XOR gate is only mapped
to a B gate, if either (1) m2 6= k6 and m3 /∈ Enck3(k6), or (2) m2 6= k6 and m4 /∈ Im(Enck4).
For case (1), note that since k3 is known, m2 and m3 can only be switched by embedding c∗
twice, for right key k4 and left key k2. The same is true for case (2). But since by consistency
k2 6= k4, this implies that P and P∗ cannot differ by a switch from W to B.

Next, consider the case that a gate is mapped to W in P and to GL in P∗. We will argue
that in this case the key k∗ must be embedded at the left input wire. Again, for ease of
notation, we consider the case of an XOR gate g; the case of AND gates follows analogously.
Since A maps g to W and A[c∗] maps it to GL, g must be properly garbled and the change
arrises from A[c∗] “decrypting” c∗ to 0. Hence, c∗ must be embedded either at c3 or c4, in

12Recall that our ideal encryption scheme F is IND-CCA secure, hence access to the oracle Deck∗ used by
A[c∗] is of no help to R.

13Note, we assume that A[c∗] has private access to its oracles and D cannot observe its oracle queries to
distinguish it from A.
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particular k∗ = k2 the left input key. Furthermore, since g is properly garbled, it must hold
either c∗ ← Enck∗(Enck3(k6)) or c∗ ← Enck∗(Enck4(k5)), i.e. c∗ can only be embedded once
in this gate. If c∗ was additionally embedded in another gate, then this must be the left
sibling g′ of g due to consistency and distinctness of keys. In g′, however, k∗ is employed as
a right input key, hence c∗ can only be embedded as an inner encryption and in particular
constitutes a malformed encryption (note the difference in length between inner and outer
encryptions). Thus, both A and A[c∗] will map g′ to the same pebble.

In a similar way, one can prove that whenever a gate is mapped to W in P and to GR in
P∗, then the key k∗ must be embedded at the right input wire. Also in this case it follows
that c∗ can be embedded in at most one further gate – the right sibling – and there will be
considered as a malformed ciphertext by both A and A[c∗].

For the case that a gate is mapped to W in P and to G∗ in P∗, the key k∗ can be embedded
either at the right or the left input wire – however (by consistency) not at both. Also in this
case it follows that c∗ can be embedded in at most one further gate, and for this other gate
c∗ will be considered as a malformed ciphertext by both A and A[c∗].

Analogously, one can verify the remaining WG3B pebbling rules by analysing the cases
of a gate being mapped to G∗ (GL/GR) in P and to GL/GR (B) in P∗. Also in these cases,
embedding c∗ at any further gate leads to A and A[c∗] extracting the same pebble for this
further gate.

We will now bound the distinguishing advantage of DF . Recall that a pebbling configu-
ration on G \G0 is good per Definition 8 if it can be reached by WG3B pebbling moves using
at most d− 1 pebbles on the first d layers. Thus, by Lemma 12, any successful distinguisher
D has to simulate G̃ and x̃ such that the pebbling configurations P ,P∗ on G extracted by
A and A[c∗], respectively, contain exactly d − 1 or d black and gray pebbles on the first d
layers (depending on the IND-CPA challenge bit b∗), contain only W, G∗, and GR pebbles on
higher layers, and differ by a valid WG3B pebbling move within layers [1, d+ 1].

In the following we will first restrict our analysis to non-rewinding distinguishers and
assume x0, x1 were chosen uniformly at random by A after it sees G̃. Finally we will discuss
how to slightly modify our adversary A to also cover the case that D chooses A’s randomness
and rewinds A.

To bound the success probability of D, let r be arbitrary random coins and consider two
cases:

(1) there exists s such that the output of A(s) and A[c∗](s) after interaction with D(r, c∗)
differs and in P and P∗ there are more than d̄ G∗ and GR-type-2 (as defined in Lemma 9)
pebbles in layers [d+ 2, 2d+ 1],

(2) there exists s such that the output of A(s) and A[c∗](s) after interaction with D(r, c∗)
differs and in P and P∗ there are at most d̄ G∗ and GR-type-2 pebbles in layers
[d+ 2, 2d+ 1].

We leave the parameter d̄ < d/3 undefined for now and optimze it later. In Lemmas 13
and 14, we will argue that, intuitively, in both cases the distinguisher D must have correctly
guessed many of the input bits in x0.
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Lemma 13. Let r be arbitrary coins such that case (1) is true. Then the probability (over
uniformly random coins s) that the output of A(s) and A[c∗](s) differs after interaction with
D(r, c∗) is at most (3/4)

√
d̄/7.

Proof. To prove this lemma, we will use Lemmas 7 to 9. First, note that D can only succeed
if at most one of the gates at layer d + 1 is not mapped to a W pebble, since the adversary
A outputs 1 whenever any gate at layer d+ 1 is not W pebbled. Now, by Lemma 7, there is
at most one pair of input keys to an AND gate that leads to this gate being mapped to a W
pebble. As the input to all but one gate at layer d+ 1 comprises all input to layer d+ 1, this
implies that D can only succeed, if it properly garbles all gates at layer d+ 1 and the input
keys which are revealed through GEval(G̃, x̃) are associated with the corresponding bits in
G⊕(x0).

Next, consider the AND gates at layers [d+ 2, 2d+ 1]. For D to succeed, these gates must
not end up GL or B pebbled. Since all these gates have their left input from layer d and by
the previous argument all these keys are fixed, we can apply Lemmas 8 and 9: Let S denote
the set of d̄ gates in layers [d+ 2, 2d+ 1] that are mapped to G∗ or GR-type-2 pebbles (for
some random coins s such that (1) is true). Then by Lemma 4 there exists a subset S ′ ⊆ S
of size

√
d̄/4 such that the set of right parents SR of S ′ is linearly independent over Z2; and

for each gate g ∈ S ′ left and right parent are linearly independent. To see that the latter
is true, note that any subset smaller than n of gates within one layer or within one column
is linearly independent (cf. Lemma 3). It directly follows that left and right parents of any
gate g ∈ S ′ since they lie in the same column. Furthermore, the set of left parents SL to S ′
is linearly independent since it is a subset of ≤ d̄ < n gates at layer d.

To argue that D must have guessed many of the right input bits to S∧ correctly, we use
the following simple result from linear algebra.

Claim 2. Let m ∈ [1, n] and S1 = {ui}i∈[1,m] a subset of {0, 1}n that is linearly independent
over Z2. Let S2 = {vi}i∈[1,m] be a multiset of elements in {0, 1}n such that S2 as a set
is linearly independent over Z2. Furthermore, assume {ui, vi} is linearly independent for
all i ∈ [1,m]. Then there exists an index set I ⊂ [1,m] of size |I| = bm/4c such that⋃
i∈I{ui} ∪ {vi} is linearly independent.

Proof of the claim. Let i1 ∈ [1,m] be arbitrary and set I1 := {i1}. Then clearly |I1| = 1
and U1 :=

⋃
j∈I1{uj}∪{vj} is linearly independent. For k > 1, choose ik ∈ [1,m] \Ik−1 such

that Uk := Uk−1 ∪ {uik} ∪ {vik} is linearly independent, if exists, otherwise set ik := ik−1; set
Ik := Ik−1∪{ik}. We show that such ik ∈ [1,m]\Ik−1 must exist as long as k ≤ m/4: Since
dim(Uk−1) ≤ 2(k−1) ≤ m/2−2 and S1 is linearly independent, it must hold |S1∩〈Uk−1〉| ≤
m/2 − 2; we denote the index set of S1 ∩ 〈Uk−1〉 by IS1,k−1. For S2, on the other hand,
it also holds that |S2 ∩ 〈Uk−1〉| ≤ m/2 − 2, but since S2 is a multiset we don’t obtain a
lower bound on |S2 \ 〈Uk−1〉|. However, since for any linearly independent set U and v ∈ U
the set U ∪ {v} = U is linearly independent, we choose IS2,k−1 ⊂ [1,m] minimal such that⋃
j∈IS2,k−1

{uj} = S2 ∩ 〈Uk−1〉. Then again we have |IS2,k−1| ≤ m/2− 2. Thus, by pigeonhole
principle, there must exist ik ∈ [1,m]\ (IS1,k−1∪IS2,k−1) such that Uk := Uk−1∪{uik}∪{vik}
is linearly independent and we have |Ik| = |Ik−1 ∪ {ik}| = k.
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Since the multiset SL and the set SR of left and right parents of S ′ are linearly independent
(as sets), respectively, and for any g ∈ S ′ left and right input to G are linearly independent,
we can apply the claim to obtain a subset S ′′ ⊂ S ′ of size |S ′|/4 such that the union of the
parents of S ′′ is linearly independent. For S ′′, we can now use Lemmas 8 and 9 to see that
any successful D must have correctly guessed all right input bits to S ′′; i.e., for s sampled
uniformly at random, the probability that D succeeds is at most (1/2)|S

′′|. As |S ′| ≥
√
d̄/4,

the probability that D succeeds can be upper-bounded by

Pr[D succeeds in case (1)] ≤
(

1

2

)√d̄/16

<

(
3

4

)√d̄/7
.

Lemma 14. Let r be arbitrary coins such that case (2) is true. Then the probability (over
uniformly random coins s) that the output of A(s) and A[c∗](s) differs after interaction with
D(r, c∗) is at most (3/4)

√
d−3d̄/4.

Proof. Recall that whenever the consistency check passes, each wire in G̃ can be uniquely
associated with two keys. Now, in case (2), for all but d̄ wires in G \G0 the following holds:
By Lemmas 7 and 9, for each bit running over the wire w in G, there exists at most one key
associated with w in G̃

⊕
such that the AND gates with right input wire w is mapped to a

“good” (W or GR-type-1) pebble, while for the other key associated to w it would be mapped
to a “bad” pebble (GL or B). Note that in the latter case D immediately fails.

This allows us to map keys associated with wires in G̃
⊕
to bits, hence implies a mapping

from (G̃, x̃) to a circuit Ĝ and input x̂, where Ĝ contains at most 3d̄ “undefined” gates (note,
each internal wire effects 3 gates in G⊕). Now, for D to succeed, it has to simulate (G̃, x̃)
such that at least d′ := d − 3d̄ “well-defined” gates in the circuit Ĝ differ from XOR gates
and x̂ = x0. At the same time, all input and output wires of the well-defined gates have to
carry the correct bits during evaluation (for “evaluation” of Ĝ on x̂ we apply the mapping
from keys to bits to Eval(G̃, x̃) to extract a bit for all wires connected to well-defined gates).

Ignoring the undefined gates in Ĝ, this exactly corresponds to the game introduced in
Section 4.2: D simulates a circuit such that all but d′ gates are garbled correctly as XOR gates,
and D succeeds, if for all gates the (input and) output bits correspond to the respective bits
during evaluation of G⊕ on input x0. Lemma 2 now implies an upper bound on D’s success
probability in case (2):

Pr[D succeeds in case (2)] ≤
(

3

4

)√d′/4
=

(
3

4

)√d−3d̄/4

.

Thus, Lemmas 13 and 14 imply the following bound on any non-rewinding PPT distin-
guisher D (choose d̄ = d/4):
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Corollary 2. No non-rewinding PPT distinguisher DF can distinguish A[c∗] from A with
probability larger than (3/4)

√
d/14.

To handle arbitrary – potentially rewinding – distinguishers D, we modify A as follows:
Instead of sampling x0, x1 using random coins s, we assume a pseudorandom function fk
with uniformly random key k was hardcoded in A, which takes as input a garbled circuit
G̃ and coins s, and outputs a tuple (x0, x1). Since D only has black-box access to A/A[c∗],
the secret key k is hidden from D, thus for two different inputs (G̃, s), (G̃

′
, s′) to A/A[c∗] the

input pairs (x0, x1), (x′0, x
′
1) look like independently sampled uniformly random strings.

With this modification in place, we finally arrive at the following lower bound on the
security loss of any black-box reduction R (where we used δ < 3d, hence

√
d/14 >

√
δ/25).

Note that our bounds naturally only apply to d ≤ n, hence we assume δ < 2n in our theorem
statement.

Theorem 1. Any black-box reduction from the indistinguishability of Yao’s garbling scheme
(or its variant from [JW16]) on the class of circuits with input length n and depth δ ≤ 2n to
the IND-CPA security of the underlying encryption scheme loses at least a factor 1

q
·(4

3
)
√
δ/25 >

1
q
· 2
√
δ/61, where q denotes the number of times the reduction rewinds the adversary.

5 Discussion and Open Problems
In this work we prove that any black-box reduction from indistinguishability of (the modifi-
cation [JW16] of) Yao’s garbling scheme to IND-CPA security of the underlying encryption
scheme must involve a loss in security that is sub-exponential in the depth of the circuit.
This clearly also implies limitations to the stronger and more common simulation-based se-
curity and shows that the approach of [JW16] is essentially optimal. However, we leave it to
future work if our fine-grained separation can be turned into an actual attack against Yao’s
garbling scheme.

Beside this most exciting open problem, one can also consider if our approach can be
optimized. It might be possible to push our lower bound to an exponential loss, which
would exactly match the upper bound from [JW16]. Following our approach, this requires a
more sophisticated pebbling lower bound. Another interesting question would be if an even
stronger bound can be found for the original construction of Yao, where the output mapping
is sent in the offline phase, and certain limitations are already known from [AIKW13].
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