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Abstract

Searchable symmetric encryption (SSE) enables clients to search encrypted data. Curtmola
et al. (ACM CCS 2006) formalized a model and security notions of SSE and proposed two
concrete constructions called SSE-1 and SSE-2. After the seminal work by Curtmola et al., SSE
becomes an active area of encrypted search.

In this paper, we focus on two unnoticed problems in the seminal paper by Curtmola et al.
First, we show that SSE-2 does not appropriately implement Curtmola et al.’s construction idea
for dummy addition. We refine SSE-2’s (and its variants’) dummy-adding procedure to keep the
number of dummies sufficiently many but as small as possible. We then show how to extend
it to the dynamic setting while keeping the dummy-adding procedure work well and implement
our scheme to show its practical efficiency. Second, we point out that the SSE-1 can cause a
search error when a searched keyword is not contained in any document file stored at a server
and show how to fix it.

∗This work was done while the author was an undergraduate student at The University of Electro-Communications.
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1 Introduction

1.1 Backgrounds

Many services use extensive data on service users and compile databases of the data to accelerate
search functions. With the development of the information society, databases increasingly contain
sensitive/personal information. One of the important issues to make our information society safer is
protecting database privacy while keeping search function efficient. Searchable symmetric encryp-
tion (SSE), introduced by Song et al. [1], is a cryptographic solution to the challenge and provides
a way to efficiently search a large database (e.g., cloud storage) for encrypted data. Curtmola et
al. [2, 3] first provided a systematic formalization of SSE, and many works (e.g., [4–15]) followed
their seminal work.

There are two major and fundamental index data structures; the forward index, which stores a
mapping from documents to words, and the inverted index, which stores a mapping from words to
documents. Due to its structure, the latter is usually used for keyword searches; one computes the
mapping with a keyword to be searched and obtains information on documents that contain the
keyword. Therefore, it ensures efficient search cost since the size often depends on the number of
such documents, not all documents. Since the original goal of SSE is to provide efficient keyword
search while allowing leakage of inconsequential information, most previous works focused on the
inverted-index-based approach. On the other hand, one can use the forward index to search for
keywords as well, though it impairs the search efficiency; to search a keyword, one computes the
mapping for each document and extracts information on the keyword, and hence, its total size
is proportional to the number of documents stored in the index. There are a few works [2, 3, 16,
17] on the forward-index-based approach in contrast to the inverted index1 since the asymptotic
search efficiency is obviously less efficient than the inverted-index-based ones. Hence, the practical
efficiency of forward-index-based SSE schemes is still unclear.

In the seminal work, Curtmola et al. [2, 3] showed two concrete SSE schemes via the respective
approach. They showed a trade-off on search efficiency and security level between those approaches.
The inverted-index-based scheme, called SSE-1, provides a more efficient search procedure than the
forward-index-based scheme called SSE-2. On the other hand, SSE-2 can meet adaptive security,
whereas SSE-1 only satisfies a weaker notion, called non-adaptive security.2 Both schemes require
dummies to mask the indexes to hide the number of keywords that appear in each document. This
paper focuses on how to handle dummies in SSE-1 and SSE-2, respectively.

1.2 Our Contributions

In this paper, we reveal two problems in the seminal paper by Curtmola et al. [2, 3] that have been
overlooked thus far.

The original construction idea is not appropriately reflected in SSE-2. We show that
SSE-2 and its variants [8, 17] did not implement Curtmola et al.’s construction idea. Specifically,
Curtmola et al. described that sufficiently many dummies should be added for each document file,
not for each keyword, when creating an encrypted database (or a secure index ). The idea is indeed
compatible with the forward index due to the mapping from documents to words; when creating
the secure index, for each document, one computes the mapping and appends sufficiently-many
dummies to its output. However, as already pointed out in [8], the original SSE-2 scheme is flawed

1Several works [8, 9, 18, 19] implicitly dealt with the approach.
2The follow-up works (e.g., [13, 20–22]) showed that the inverted-index-based approach could achieve adaptive

security.
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in its dummy-adding procedure. Note that the flaw does not stem from the construction idea.
Kurosawa and Ohtaki [8] and Hayasaka et al. [17] showed variants of SSE-2 that succeeded in
eliminating the bugs. However, their fixes violate Curtmola et al.’s construction idea since they
added a lot of dummies for each keyword, not for each document.

Based on the above observation, in Section 3, we revisit those schemes as follows. We show
that the above fixes cause the unnecessarily-large secure-index size and propose a reasonable and
plausible construction approach that appropriately implements Curtmola et al.’s construction idea.
Consequently, we refine SSE-2’s dummy-adding procedure to keep the number of dummies suffi-
ciently many but as small as possible. Furthermore, we extend our SSE scheme in the dynamic
setting and implement it to unveil the advantages and potential practicality of forward-index-based
schemes such as SSE-2. Our dynamic SSE scheme in Section 4 is, thanks to the forward-index-
based approach, simple and does not require any state information, which is secret information that
might be updated on every update/search operation. Although the forward-index-based approach
compounds the search cost in an asymptotic sense, the implementation of our dynamic SSE scheme
in Section 5 shows its practical efficiency; the file addition and deletion procedures for a single file
take roughly 150µs and 3.8µs, respectively, and the search procedure requires roughly 0.7s when
200,000 files are registered.

SSE-1 does not satisfy the search correctness. We point out that when no document files
stored on the server contain a searched keyword, SSE-1 can cause a search error and hence does not
meet the search correctness. This error is due to the careless handling of dummies for keywords
that do not appear in any stored file. Furthermore, we also point out that the original SSE-1 does
not work for the large keyword universe (called a dictionary) even if we ignore the above error. In
Section 6, we show how to fix the error and modify the scheme to handle a large dictionary.3

2 Preliminaries

2.1 Notations

For any positive integer n ∈ N, {1, . . . , n} is denoted by [n]. For a finite set X , we denote by

x
$← X and X ← x the processes of sampling a value x from X uniformly at random and adding x

to X , respectively, and we use |X | to represent the cardinality of X . Concatenation and an empty
string are denoted by ∥ and ε, respectively. For algorithm description, all strings, sets, and arrays
are initially set to empty ones. Throughout the paper, we denote by κ a security parameter and
consider probabilistic polynomial time (PPT) algorithms. For any non-interactive algorithm A,
out ← A(in) means that A takes in as input and outputs out. We denote by AO(·)(in) A allowed
access to an oracle O. In this paper, we consider two-party interactive algorithms between a client
and a server. ⟨outc, outs⟩ ← ⟨Ac(inc),As(ins)⟩ means that the client and server run Ac and As

with each input inc and ins, respectively, and get each output outc and outs, respectively. For
simplicity, we describe the above as (outc; outs) ← A (inc; ins). As necessary we explicitly describe
the transcript trans as ⟨(outc; outs) , trans⟩ ← A (inc; ins). We say a function negl(·) is negligible if
for any polynomial poly(·), there exists some constant κ0 ∈ N such that negl(κ) < 1/poly(κ) for all
κ ≥ κ0.

3We do not consider a dynamic version and implementations of SSE-1 (more broadly, inverted-index-based schemes)
since they are well analyzed in previous works such as [10].
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Experiment: ExpPCPAΠske,A(κ)

1: K
$← G(κ)

2: (M⋆, stA)← A
O(K,·)
0 (κ)

3: C⋆
0 ← E(K,M⋆)

4: C⋆
1

$← C
5: b

$← {0, 1}
6: b′ ← A

O(K,·)
1 (stA, C

⋆
b )

7: if b′ = b then
8: return 1
9: else

10: return 0

Figure 1: PCPA-security experiment. O(K, ·) is an encryption oracle which takes a plaintextM ∈M
as input and returns E(K,M) ∈ C.

2.2 Pseudorandom Functions (PRFs)

Let π := {πk : {0, 1}m → {0, 1}m
′}k∈{0,1}κ be a family of functions, where m and m′ are polynomial

in κ.

Definition 1 (PRFs). π is said to be a PRF family if for any PPT algorithm D, there exists a
negligible function negl(κ) such that:∣∣∣Pr [Dπk(·)(κ) = 1 | k $← {0, 1}κ

]
− Pr

[
Dg(·)(κ) = 1 | g $← G

]∣∣∣ < negl(κ),

where G is a family of all functions that map an m-bit string to an m′-bit string. In particular, π
is said to be a pseudorandom permutation (PRP) family if m = m′ and π is a family of bijections
(then G turns to a permutation family).

2.3 Symmetric-Key Encryption (SKE)

As in [2, 3], we use SKE with a slightly-strong security notion.

Definition 2 (SKE). An SKE scheme Πske consists of three-tuple non-interactive algorithms
Πske := (G,E,D), which are defined as follows:

• K ← G(κ): It is a probabilistic algorithm which takes a security parameter κ as input and
outputs a secret key K.

• C ← E(K,M): It is an algorithm which takes a secret key K
$← {0, 1}κ and a plaintext

M ∈ M as input and outputs a ciphertext C ∈ C, where M and C are sets of plaintexts and
ciphertexts, respectively.

• M ← D(K,C): It is a deterministic algorithm which takes the secret key K and a ciphertext
C as input and outputs a plaintext M or a special symbol ⊥ which indicates decryption failure.

We consider pseudorandomness against chosen plaintext attacks (PCPA security for short) [2, 3],
which guarantees that ciphertexts are indistinguishable from random strings. We consider an
experiment against an adversary A = (A0,A1) in Fig. 1.
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Real Experiment: RealD(κ,Q)

1: (DB, stD)← D0(κ)

2: (k, σ(0),EDB(0))← Setup(κ,DB)

3: stD ← EDB(0)

4: for t = 1 to Q do
5: q ← Dt(stD)

6: ⟨(σ(t),X (t−1)
q ;EDB(t)), trans(t)⟩
← Search(k, q, σ(t−1);EDB(t−1))

7: stD ← (EDB(t), trans(t))
8: b← DQ+1(stD)
9: return b

Ideal Experiment: IdealD,S,L(κ,Q)

1: (DB, stD)← D0(κ)

2: (EDB(0), stS)← S0(LSetup(κ,DB))

3: stD ← EDB(0)

4: for t = 1 to Q do
5: q ← Dt(stD)

6: ⟨(stS;EDB(t)), trans(t)⟩
← St(stS,LSrch(t, q);EDB

(t−1))

7: stD ← (EDB(t), trans(t))
8: b← DQ+1(stD)
9: return b

Figure 2: Real and ideal experiments.

Definition 3 (PCPA Security). Let Πske be an SKE scheme. Πske is said to be PCPA-secure if for
any PPT algorithm A, we have:∣∣∣∣Pr [ExpPCPAΠske,A(κ) = 1

]
− 1

2

∣∣∣∣ < negl(κ).

PCPA-security can be achieved by common SKE schemes such as AES with counter mode.
Note that one may employ CPA-secure SKE schemes for SSE-1, SSE-2, and our schemes, instead of
PCPA-secure schemes, where CPA refers to (standard) chosen plaintext attacks.

2.4 Searchable Symmetric Encryption

Notations for SSE. Let λ and ℓ be polynomials in κ. Let Λ := {0, 1}λ be a set of possible
keywords (sometimes called a dictionary),4 and F be a set of possible document files. We assume
that each file fid ∈ F has the corresponding identifier id ∈ {0, 1}ℓ, which is irrelevant to the content
of fid (e.g., document numbers). As in previous works, we suppose that each file fid := (id,Wid)
consists of its identifier id and Wid ⊂ Λ, which is a set of distinct keywords contained in fid. We
sometimes write fi := (idi,Wi) instead of fidi := (idi,Widi) for simplicity. We consider a global
counter t, which is initially set to zero, to describe a time-line for the SSE scheme. Namely, t
is incremented for each search operation. A database DB is represented as a set of (id,Wid), i.e.,
DB := {(idi,Wi)}ni=1, where n is the number of document files stored in the server. We denote
by W :=

⋃n
i=1Wi a set of keywords in DB, and let d := |W|. The size N of the database DB is

defined by the number of (document, keyword) pairs in DB, i.e., N :=
∑n

i=1 |Wi|. Let ID be a set of
identifiers in DB, i.e., ID := {id | (id,Wid) ∈ DB}. For any w ∈ Λ, IDw represents a set of identifiers
containing w in DB (i.e., IDw := {id | id ∈ ID ∧ w ∈ Wid}).

Model. We define a syntax that captures both non-dynamic and dynamic SSE schemes since we
deal with both in this paper. Note that this definition is essentially the same as those in [20, 22, 23]
in the non-dynamic setting, and includes Curtmola et al.’s definition [2, 3] as a special case (see
Appendix A for details). Unlike Curtmola et al.’s work [2, 3], we omit encryption and decryption
algorithms for document files since it can be easily realized with any PCPA-secure (or CPA-secure)
SKE scheme.

4One may consider an unbounded dictionary, i.e., Λ = {0, 1}∗, by employing collision-resistant hash functions that
map from arbitrary strings to λ-bit strings.
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First of all, the client runs Setup with the security parameter κ and a database (i.e., a document-
file set) DB, and gets a secret key k, state information σ(0), and an encrypted database EDB(0).
What the server stores is only EDB(0). The client and the server run Search = (Searchc, Searchs) to
search a keyword q ∈ Λ at t. The client (resp., the server) executes Searchc with k, σ(t), and the
keyword q (resp., Searchs with EDB(t)), and obtains updated state information σ(t+1) and a search

result X (t)
q (resp., an updated encrypted database EDB(t+1)).

Definition 4 (SSE). An SSE scheme Σ over Λ consists of two-tuple algorithms Σ := (Setup, Search),
which are defined as follows:

• (k, σ(0),EDB(0))← Setup(κ,DB): It is a non-interactive probabilistic algorithm which takes a
security parameter κ and an initial database DB as input and outputs a secret key k, initial
state information σ(0), and initial encrypted database EDB(0).

• (σ(t+1),X (t)
q ;EDB(t+1)) ← Search(k, q, σ(t);EDB(t)): It is an interactive algorithm which con-

sists of Searchc and Searchs. Searchc takes k, a keyword q to be searched, and σ(t) as input,

and outputs updated state information σ(t+1) and a search result X (t)
q . Searchs takes EDB(t)

as inputs and outputs EDB(t+1).

The correctness of the above model is defined as follows. Suppose that Search(k, q, σ(t);EDB(t))
is executed for any q ∈ Λ after t search operations for any t (= poly(κ)). Then, Σ satisfies the

correctness if the output X (t)
q satisfies the following with overwhelming probability:

X (t)
q =

{
IDq if q ∈ W,
∅ if q /∈ W.

Security. Following most previous works, we provide the simulation-based security definition
for SSE. It is known that there is a trade-off between efficiency and security levels in SSE, and
therefore we have to allow some leakage to perform efficient operations. Such information leakage
is characterized as a leakage function L := (LSetup,LSrch). To put it briefly, LSetup and LSrch are
information leaked during the setup and search operations, respectively.

We define adaptive security, which is a standard security notion for SSE. The notion is pa-
rameterized by a leakage function L, and therefore it is called L-adaptive security. Intuitively,
L-adaptive security guarantees that no information is leaked other than L even if an adversary
adaptively performs update and search operations. Formally, we consider the following two ex-
periments: a real experiment RealD between a PPT algorithm D = (D0,D1, . . . ,DQ+1)

5 and the
client; and an ideal experiment IdealD,S,L between D and a simulator S = (S0, . . . , SQ). The formal
description of RealD and IdealD,S,L is given in Fig. 2.

Definition 5 (L-adaptive security). Let Σ be an SSE scheme. Σ is said to be L-adaptively secure
if for any PPT algorithm D, there exists a PPT algorithm S such that:

|Pr [RealD(κ,Q) = 1]− Pr [IdealD,S,L(κ,Q) = 1]| < negl(κ).

Remark 1 (Non-Adaptive Security). If we consider real and ideal experiments where D0 also
outputs Q keywords at once and receives stD := (EDB(t), trans(t)) (and removes D1, . . . ,DQ), Def. 5
then turns to the definition of L-non-adaptive security for SSE.

5Q indicates the number of queries issued by D, and the upper bound of Q can be easily estimated from the
running time of D.
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f1 f2 f3 . . . fn
w1 ✓ ✓ . . .

w2 ✓ ✓ . . . ✓
w3 ✓ . . .
...

...
...

...
. . .

...

w|Λ| ✓ . . . ✓
(a) A look-up table.

Address Value

w1∥1 id1
w1∥3 id3
w2∥1 id1
...

...

w|Λ|∥n idn
(b) An index based on
the look-up table.

Address Value

πk(w1∥1) id1
πk(w1∥3) id3
πk(w2∥1) id1

...
...

πk(w|Λ|∥n) idn
(c) A secure index.

Figure 3: Curtmola et al.’s construction approach.

Concrete leakage functions for SSE-1 and SSE-2. Curtmola et al. [2, 3] considered the
following specific leakage functions:6

– LSetup(κ,DB) := (Λ, {(idi, |fi|)}ni=1), where DB := {(idi,Wi)}ni=1 = {fi}ni=1.

– LSrch(t, q) := (t,SP
(t)
q ,AP

(t)
q ), where SP

(t)
q and AP

(t)
q are defined as follows.

• SP
(t)
q is a search pattern at t for q, which is a set of the global counters when the same

keyword was previously searched, i.e., SP
(t)
q := {t′ | t′ ∈ [t],LSrch(t′, q)}.

• AP
(t)
q is an access pattern at t for q. It holds AP

(t)
q = IDq with overwhelming probability

(depending on the correctness).

3 Forward-Index-Based SSE Scheme with the Efficient Dummy-
Adding Procedure

As described in the introduction, the original SSE-2 contains bugs, which were already mentioned
in [8]. In this section, we show that the existing fixes [8, 17] do not reflect Curtmola et al.’s
construction idea. They require more dummies than the constructions really need and hence do
not work well for a large dictionary (e.g., |Λ| = exp(κ)). We then show how to fix them in the best
way possible.

3.1 The SSE-2 Construction and Its Variants

First, we review the original SSE-2 scheme.

Construction idea. As described earlier, Curtmola et al. took the forward-index-based approach
for SSE-2. At a high level, a secure index stored in the server should contain relations between each
keyword w ∈ W and its corresponding files IDw to perform the search operation correctly, however
no information more than LSrch has to be leaked from the secure index by search.

Their basic construction idea consists of the following three steps (see Fig. 3 as an example):
(1) create a look-up table describing relations between files and keywords in Fig. 3(a); (2) make an
index in Fig. 3(b) based on the look-up table; and (3) use PRFs (or PRPs) to hide the relations
from the server such as Fig. 3(c). The server cannot learn the relation between keywords and
files from the secure index due to the underlying PRF π. On the one hand, the client can search
arbitrary keyword q ∈ Λ by computing a trapdoor Tq := (πk(q∥1), . . . , πk(q∥n)). The server can

6To be precise, Curtmola et al. did not consider the leakage in the form of leakage functions. Nevertheless, our
definition captures the same leakage as in their papers [2, 3].
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Real part Dummy part

f1 f2 f3 . . . fn f1 f2 f3 . . . fn
w1 ✓ ✓ . . . ✓ · · · ✓
w2 ✓ ✓ . . . ✓ ✓ · · ·
w3 ✓ . . . ✓ ✓ · · · ✓
...

...
...

...
. . .

...
...

...
...

. . .
...

w|Λ| ✓ . . . ✓ ✓ ✓ · · ·

Figure 4: The horizontally-extended look-up table.

correctly return the search result by collecting values stored at each address in Tq. However, the
above idea is insufficient since the current form of the secure index leaks |W1|, . . . , |Wn|, which can
be extracted by counting the number of identifiers of each files in the secure index.

To prevent the server from learning the number of distinct keywords in each file, Curtmola
et al. took the following approach: adding dummy entries (i.e., pairs of a dummy address and
file’s identifier) to the secure index. That is, for each file fi, they tried to hide |Wi| by adding
sufficiently many dummies. Specifically, Curtmola et al. introduced the concept of max, which is
the maximum number of distinct keywords that can fit in the largest document file (i.e., max :=
maxi∈[n]{|f1|, . . . , |fn|}). Namely, for the largest file fi⋆ , max := c such that

∑c
j=1 |wj | ≤ |fi⋆ | <∑c+1

j=1 |wj |, where w1 ≤ w2 ≤ · · · for Λ = {w1, w2, . . .}. Note that we set max := |Λ| if max > |Λ|
since there are at most |Λ| words.7 Curtmola et al. showed that max is sufficient to hide |Wi| for
each file fi, , i.e., to simulate the setup procedure with only LSetup(κ,DB) = (Λ, {(idi, |fi|)}ni=1).
Specifically, for each file fi, they added (max− |Wi|) dummy entries to the secure index.

Bugs in the original SSE-2 and existing solutions. Although adding dummies was a good
idea to guarantee the security, their dummy addition procedure had fateful flaws, which was already
pointed out in [8], and hence the original SSE-2 construction does not work.8 Therefore, we here
describe a modified one based on [8, 17]. Roughly speaking, for each w ∈ Λ, each file fi is associated
with a real or dummy entry. Namely, if fi contains w, a real entry for idi is added to the secure
index; otherwise, a dummy entry for idi is added. Specifically, for each keyword w ∈ Λ and each
file fi, an address addr is set as

addr :=

{
πk(0∥w∥i) if w ∈ Wi,
πk(1∥w∥i) if w /∈ Wi.

Namely, the first bit indicates a real/dummy flag, and the secure index contains |Λ| values for each
file fi. The above procedure can be viewed as a horizontally-extended version of the look-up table
(Fig. 3(a)) in Fig. 4.

Let π be a PRP family, where π := {πk : {0, 1}λ+⌊logn⌋+2 → {0, 1}λ+⌊logn⌋+2}k∈{0,1}κ , and Index
be an array. The modified SSE-2 construction Σ′SSE2 based on the above “horizontally-extended”
approach is given in Fig. 5.

Proposition 1 ([2, 8, 17]). If π is a PRP family, an SSE scheme Σ′SSE2 = (Setup, Search) con-
structed above is L-adaptively secure, where

LSetup(κ,DB) = (Λ, {(idi, |fi|)}ni=1) and LSrch(t, q) = (SP(t)
q ,AP

(t)
q ),

for any DB, any t, and any q ∈ Λ.
7Let us give an example in the case where each keyword consists of one-byte characters: for the largest file fi⋆

with 100 KB, we can fit at most max = 51,328 distinct keywords since we have 1 · 28 + 2 · 51,072 = 102,400 bytes.
8For details, see Appendix B.
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Σ′SSE2: Setup(κ,DB)

1: k
$← {0, 1}κ

2: for i = 1 to n do
3: for ∀w ∈ Λ do
4: if w ∈ Wi then
5: Index[πk(0∥w∥i)] := id
6: else
7: Index[πk(1∥w∥i)] := id // add dummies

8: EDB(0) := Index
9: return (k, σ(0) := {n},EDB(0))

Σ′SSE2: Search(k, q, σ(t);EDB(t))

Client:
1: for i = 1 to n do
2: T (t)

q ← πk(0∥q∥i) // T (t)
q : trapdoor

3: Send trans
(t)
1 := T (t)

q to the server

Server:

4: for ∀addr ∈ T (t)
q do

5: if Index[addr] ̸= NULL then

6: X (t)
q ← Index[addr] // X (t)

q : search result

7: Send trans
(t)
2 := X (t)

q to the client

8: return EDB(t+1) := Index

Client:

9: return (σ(t+1) := σ(t),X (t)
q )

Figure 5: The modified SSE-2 construction via the horizontally-extended approach.

3.2 Revisiting a Way of Adding Dummies

In the above scheme, a real or dummy entry is assigned to each keyword and each file. It means
that the resulting secure index contains n · |Λ| entries, which is actually extremely large (|Λ| = 2λ

in our setting). Therefore, we here consider a more efficient way of adding dummies.
Actually, Curtmola et al. could not reflect the concept of max in their construction correctly.

Curtmola et al.’s idea is to add dummies to the secure index up to max, not |Λ|, for each file fi.
max seems sufficient to prevent the server from narrowing down candidates of the underlying file
fi. Therefore, our approach is to correctly employ and improve their idea for the construction.

The concept of max, reintroduced. First of all, how many dummy entries are necessary
and sufficient to simulate the setup procedure with only {(idi, |fi|)}ni=1 (i.e., LSetup(κ,DB))? As
explained in the previous section, Curtmola et al. [2] partially answered it by introducing the
concept of max, though they could not implemented the concept correctly.

We revisit the concept of max to reduce the number of dummy entries; we consider max for each
file, not for the largest file, since max seems too much to hide |Wi| for all i ∈ [n] \ {i⋆}. max for a
file fi, which is denoted by maxidi (or maxi for simplicity), is the maximum number of keywords fit
in fi. Namely, for fi, maxi := c such that

∑c
j=1 |wj | ≤ |fi| <

∑c+1
j=1 |wj |, where w1 ≤ w2 ≤ · · · for

Λ = {w1, w2, . . .}. Note that we set maxi := |Λ| if maxi > |Λ| since there are at most |Λ| words.
Our idea is to add dummies to the secure index up to maxi, neither |Λ| nor max, for each file

fi. By definition, it is clear that maxi is still sufficient to hide |Wi|, i.e., to prevent the server from
narrowing down candidates of the underlying file fi. We show how to correctly employ our idea
below.

Extending the look-up table vertically. We extend the look-up table in Fig. 3(a) vertically
to add dummies up to maxi for each fi (see Fig. 6). Then, the vertically-extended look-up table
contains

∑n
i=1maxi entries in total, whereas the horizontally-extended one contains n · |Λ|. Note

that maxi is (in general, significantly) smaller than |Λ| for any i ∈ [n], since |fi| (and hence maxi)
is polynomial in κ while |Λ| is exponential in κ in our setting. In any case, we have maxi ≤ |Λ|
for any file fi ∈ F . Specifically, we realize our approach, which is remarkably more efficient than
the previous one [8, 17], by setting addresses for fi in the form of πk(b∥w∥i), where b ∈ {0, 1} is a
real/dummy flag, i.e., b := 0 for every w ∈ Wi and b := 1 for every w ∈ [maxi − |Wi|]. Indeed, our
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f1 · · · fi · · · fn
w1 ✓ · · · ✓ · · ·
w2 ✓ · · · · · · ✓
w3 · · · ✓ · · ·
...

... · · ·
...

. . .
...R

ea
l
P
ar
t

w|Λ| ✓ · · · · · · ✓
1 ✓ · · · ✓ · · · ✓
...

... · · ·
... · · ·

...

maxn − |Wn| ✓ · · · ✓ · · · ✓
...

... · · ·
... · · ·

max1 − |W1| ✓ · · · ✓ · · ·
... · · ·

...
. . .D

u
m
m
y
P
a
rt

maxi − |Wi| · · · ✓ . . .

Figure 6: The vertically-extended look-up
table.

ΣOurs: Setup(κ,DB = {(idi,Wi)}ni=1)

1: k
$← {0, 1}κ

2: for i = 1 to n do
3: for ∀w ∈ Wi do
4: Index[πk(0∥w∥i)] := idi
5: for β = 1 to maxi − |Wi| do
6: Index[πk(1∥β∥i)] := idi

// Add dummies up to maxi
7: EDB(0) := Index
8: return (k, σ(0) := {n},EDB(0))

Figure 7: Our construction via the vertically-
extended approach.

solution seems the most efficient fix for the SSE-2 construction.

3.3 Our Construction

Based on the above approach, we propose a new Setup algorithm in Fig. 7. Note that Search is the
same as one in Section 3.1.

Theorem 1. If π is a PRP family, a non-dynamic SSE scheme ΣOurs = (Setup, Search) constructed
above is L-adaptively secure, where

LSetup(κ,DB) = (Λ, {(idi, |fi|)}ni=1) and LSrch(t, q) = (SP(t)
q ,AP

(t)
q ),

for any DB, any t, and any q ∈ Λ.

Proof. We show how to construct the simulator S in IdealD,S,L(κ,Q) as follows.

First, we show that S can simulate EDB(0) by using LSetup(κ,DB), where DB = {fi}ni=1 =

{(idi,Wi)}ni=1. In RealD(κ,Q), the client creates EDB(0). For each file fi = (idi,Wi), EDB(0)

contains maxi random strings associated with idi. Therefore, roughly speaking, in IdealD,S,L(κ,Q)
the simulator S randomly chooses (

∑n
i=1maxi) bit-strings, and for each file i ∈ [n], assigns maxi

strings as addresses for idi . Then, D cannot distinguish the two experiments due to the security
of π (see Def. 1).

Formally, for LSetup(κ, {(idi,Wi)}ni=1) = (Λ, {(idi, |fi|)}i=1), S simulates EDB(0) as follows. Let
Ui be a set of all addresses associated with idi, and it is initialized as an empty set. For each i ∈ [n],
S computes maxi from |fi| and Λ, and randomly chooses maxi unused addresses. Namely, S repeats
the following procedure maxi times:

1. addr
$← {0, 1}λ+⌊logn⌋+2 \

(⋃i
j=1 Uj

)
.

2. Ui ← addr.

3. Index[addr] := idi.

9



Finally, S outputs EDB(0) := Index. All addresses in Listused are distinct from each other since π is
a permutation, and look random due to the security of π. Hence, S can simulate EDB(0) by only
using LSetup(κ,DB).

We next show how to simulate the search procedure, i.e., how to simulate Search by only
using LSrch(t, q). In RealD(κ,Q), the client first computes πk(0∥q∥i) for all i ∈ [n], and sends the

server trans
(t)
1 = T (t)

q := {πk(0∥q∥1), . . . , πk(0∥q∥n)} as trapdoors. From the correctness, it holds
Index[πk(0∥q∥i)] = idi if fi contains q; it holds Index[πk(0∥q∥i)] = NULL otherwise. Moreover, it

holds X (t)
q = IDq.

We construct S that simulates the above procedure correctly as follows. Let Listtrpdr be a list of
all addresses that have been used for the response of search queries (i.e., used as trapdoors). We

have to consider two cases depending on LSrch(t, q) = (SP
(t)
q ,AP

(t)
q ):

(1) It is the first time to search for q, i.e., SP
(t)
q = {t}.

(2) q has been queried before, i.e., SP
(t)
q ̸= {t}.

The reason why we consider the two cases is that trapdoors at the first search for a keyword q
should be chosen at random, but those at subsequent searches should be the same as the first
search.

(1) It is the first time to search for q, i.e., SP
(t)
q = {t}. In IdealD,S,L(κ,Q), S simulates the above

real procedures by inverse process. Note that S knows LSrch(t, q) = (SP
(t)
q ,AP

(t)
q ). S randomly

chooses an unused address addri,q as a trapdoor for q and idi for all i ∈ [n], but the domain from

which addri,q is chosen depends on whether idi ∈ AP
(t)
q or not.

(1-a) Every identity idi ∈ AP
(t)
q should be stored at addri,q. Note that S needs to avoid choosing

addresses already used as trapdoors for other keywords contained in fi. Therefore, S chooses
addri,q from Ui \ Listtrpdr, where t′ is a counter such that (id, t′) ∈ Listid.

(1-b) For every idi ∈ {id1, . . . , idn}\AP(t)
q , the corresponding trapdoor should be an empty address.

However, we have to pay attention to the fact that some empty addresses (i.e., addresses stored
in Listtrpdr) were assigned to trapdoors for other previously-searched keywords. Therefore, S
randomly chooses addri,q from {0, 1}λ+ℓ+1 \ (Listtrpdr ∪ Listaddr), where Let Listaddr :=

⋃n
i=1 Ui

be a list of all addresses used in EDB(0).

S then adds addri,q to each of T (t)
q and Listtrpdr. Therefore, S can simulate the search procedure by

setting trans
(t)
1 := T (t)

q and trans
(t)
2 := AP

(t)
q .

(2) q has been queried before, i.e., SP
(t)
q ̸= {t}. In this case, S has to create the same trapdoors as

those at the first search. Therefore, S retrieves T (t′)
q for some t′ ∈ SP

(t)
q \{t}, and sets trans

(t)
1 := T (t′)

q

and trans
(t)
2 := AP

(t)
q .

Thus, S can correctly simulate Search by only using LSrch(t, q).

4 Extension to the Dynamic Setting

In this section, we show that our SSE scheme can be easily extended to the dynamic setting.

Additional notations for dynamic SSE. Since the underlying database and its corresponding
keywords are changed by update operations, we will use the following notations in this section.
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Real Experiment: RealD(κ,Q)

1: (DB(0), stD)← D0(κ)

2: (k, σ(0),EDB(0))← Setup(κ,DB(0))

3: stD := {EDB(0)}
4: for t = 1 to Q do
5: query← Dt(stD)
6: if query = (upd, op, in) then

7: ⟨(σ(t);EDB(t)), trans(t)⟩
← Update(k, op, in, σ(t−1);EDB(t−1))

8: if query = (srch, q) then

9: ⟨(σ(t),X (t−1)
q ;EDB(t)), trans(t)⟩
← Search(k, q, σ(t−1);EDB(t−1))

10: stD ← (EDB(t), trans(t))
11: b← DQ+1(stD)
12: return b

Ideal Experiment: IdealD,S,L(κ,Q)

1: (DB(0), stD)← D0(κ)

2: (EDB(0), stS)← S0(LSetup(κ,DB
(0)))

3: stD := {EDB(0)}
4: for t = 1 to Q do
5: query← Dt(stD)
6: if query = (upd, op, in) then

7: ⟨(stS;EDB(t)), trans(t)⟩
← St(stS,LUpd(t, op, in);EDB

(t−1))
8: if query = (srch, q) then

9: ⟨(stS;EDB(t)), trans(t)⟩
← St(stS,LSrch(t, q);EDB

(t−1))

10: stD ← (EDB(t), trans(t))
11: b← DQ+1(stD)
12: return b

Figure 8: Real and ideal experiments for dynamic SSE.

In dynamic SSE, a global counter t is incremented for each update/search operation. A database

DB(t) at t is represented as a set of (id,Wid), i.e., DB
(t) := {(idi,Wi)}n

(t)

i=1 , where n
(t) is the number

of document files stored in the server at t. We denote by W(t) :=
⋃n(t)

i=1Wi a set of keywords in

DB(t), and let d(t) := |W(t)|. The size of the database DB(t) is defined by the number of (document,

keyword) pairs in DB(t), i.e., N (t) :=
∑n(t)

i=1 |Wi|. Let ID(t) be a set of identifiers in DB(t), i.e.,

ID(t) := {id | (id,Wid) ∈ DB(t)}. For any w ∈ Λ, ID
(t)
w represents a set of identifiers containing w in

DB(t) (i.e., ID
(t)
w := {id | id ∈ ID(t) ∧ w ∈ Wid}).

4.1 Model

We extend the syntax and security notions in Section 2.4 to the dynamic setting. Note that this
extended definition is essentially the same as in [20, 22, 23].

Syntax. A dynamic SSE scheme ΣDSSE over Λ consists of three-tuple algorithms ΣDSSE := (Setup,
Update, Search), where Setup and Search are the same as those in Def. 4 and Update is defined as
follows:

• (σ(t+1);EDB(t+1)) ← Update(k, op, in, σ(t);EDB(t)): It is an interactive algorithm which con-
sists of Updatec and Updates. Updatec, which is run by the client, takes k, an operation
op ∈ {add, del}, the corresponding input in (e.g., in = fid for add and in = id for del), and σ(t)

as input, and outputs updated state information σ(t+1). Similarly, Updates, which is run by
the server, takes EDB(t) as inputs and outputs EDB(t+1).

For simplicity, we consider the Update algorithm for a single document file. For example, the
client runs Update m times when adding m files to the server. The correctness is defined in a similar
way to the non-dynamic setting, so we omit to describe it here.

Adaptive security and forward privacy. We define L-adaptive security for dynamic SSE by
extending a leakage function L so that it includes a leakage function LUpd for updates.

To formalize L-adaptive security, we consider similar experiments RealD and IdealD,S,L to non-
dynamic ones in Fig. 2. The difference between the dynamic and non-dynamic versions is that
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D can arbitrarily make update queries as well as search queries. The formal description of the
experiments is given in Fig. 8.

Definition 6 (L-Adaptive Security for Dynamic SSE). Let ΣDSSE be a dynamic SSE scheme.
ΣDSSE is said to be L-adaptively secure if for any PPT algorithm D, there exists a PPT algorithm
Sim such that:

|Pr [RealD(κ,Q) = 1]− Pr [IdealD,S,L(κ,Q) = 1]| < negl(κ).

Briefly speaking, forward privacy [23] guarantees that the adversary cannot learn if newly-added
files contain previously-searched keywords. Therefore, we can say that forward privacy provides
genuinely secure add operations. As explained in the introduction, Zhang et al. [24] showed that
non-forward-private dynamic SSE schemes are vulnerable to the file injection attack, which is
easy to carry out in the real world. Hence, forward privacy has become the minimum security
requirement for dynamic SSE. Formally, forward privacy is defined as follows.

Definition 7 (Forward Privacy). Let ΣDSSE be a L-adaptively secure dynamic SSE scheme, where
L = (LSetup,LUpd,LSrch). ΣDSSE is said to meet forward privacy if LUpd (for op = add) can be
written as:

LUpd(t, add, in) = L′(t, add, (id, |Wid|, |fid|)),

where in is input for a document file fid and L′ is a stateless function.

Namely, ΣDSSE is said to satisfy forward privacy if leaked information on addition only de-
pends on identifiers and the number of keywords contained in the newly-added files (not keywords
themselves).

Concrete leakage functions for our dynamic scheme. We consider the following specific
leakage functions for updates.

– LUpd(t, add, (id,Wid)) := (id, |fid|).
– LUpd(t, del, id) := id.

Note that the above leakages are naturally derived by Curtmola et al.’s leakage function for setup,
and clearly satisfy Def. 7, and thus, our scheme in the next section meets forward privacy.

4.2 Our Dynamic SSE Scheme

Based on our SSE scheme in Section 3.3, we propose a simple dynamic SSE scheme. The most
appealing feature of our construction is that it does not require any state information. We believe
that the state-free feature is quite important in the practical aspect since it allows the client to
access the server via multiple devices without synchronization.9 That is, an encrypted search service
does not require the latest state information to search, and hence, the client only has to store an
(initial) secret key k in their smartphone, laptop, and desktop computers for the service. Our
dynamic SSE schemes are the first state-free constructions with forward privacy. To sum up, the
forward-index-based approach conduces to the simple and state-free construction.

Let π := {πk : {0, 1}λ+ℓ+1 → {0, 1}λ+ℓ+1}k∈{0,1}κ be a PRP family. We propose our dynamic
SSE scheme ΣDSSE = (Setup,Update, Search) in Fig. 9 (we omit Setup since it is the same as our
non-dynamic scheme).

9Though existing constructions can also achieve the state-free feature by encrypting and storing the state infor-
mation on the server our construction is secure even if the state information is disclosed.
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ΣDSSE: Update(k, add, (id,Wid), σ
(t);EDB(t))

Client:
1: for ∀w ∈ Wid do
2: U (t)

id ← πk(0∥w∥id)
3: for β = 1 to maxid − |Wid| do
4: U (t)

id ← πk(1∥β∥id)
5: Send trans

(t)
1 := (id,U (t)

id )
6: return σ(t+1) := ∅
Server:

7: I ← id
8: for ∀addr ∈ U (t)

id do
9: Index[addr] := id

10: return EDB(t+1) := (I, Index)

ΣDSSE: Update(k, del, id, σ(t);EDB(t))

Client:
1: Send trans

(t)
1 := id

2: return σ(t+1) := ∅
Server:

3: I := I \ {id}
4: Aid := {addr | Index[addr] = id}
5: for ∀addr ∈ Aid do
6: Index[addr] := NULL

7: return EDB(t+1) := (I, Index)

ΣDSSE: Search(k, q, σ(t);EDB(t))

Client:
1: Send request (as trans

(t)
1 ) to the server

Server:

2: Send trans
(t)
2 := I back to the client

Client:

3: for ∀id ∈ I do
4: T (t)

q ← πk(0∥q∥id)
5: Send trans

(t)
3 := T (t)

q to the server

Server:

6: for ∀addr ∈ T (t)
q do

7: if Index[addr] ̸= NULL then

8: X (t)
q ← Index[addr]

9: Send trans
(t)
4 := X (t)

q to the client

10: return EDB(t+1) := (I, Index)
Client:

11: return (σ(t+1) := ∅,X (t)
q )

Figure 9: Our dynamic SSE construction.

Theorem 2. If π is a PRP family, then a dynamic SSE scheme ΣDSSE = (Setup,Update,Search)
constructed above is L-adaptively secure and forward-private, where

LSetup(κ,DB) = (Λ, {(idi, |fi|)}ni=1), LUpd(t, add, (id,Wid)) = (id, |fid|),
LUpd(t, del, id) = id, LSrch(t, q) = (SP(t)

q ,AP
(t)
q ),

for any DB(0), any t and any q ∈ Λ.

We can prove this theorem in a way similar to Theorem 1. We give the proof in Appendix C.

Remark 2 (Degrading security levels for efficiency). To the best of our knowledge, all existing
dynamic SSE schemes meet a weaker security than the above scheme. Especially, most schemes
meet L-adaptive security with LUpd(t, add, (id,Wid)) = (id, |Wid|, |fid|).10 To improve efficiency, our
scheme can be easily modified so that it is secure with such a leakage function. Namely, we can
obtain a more efficient dynamic SSE scheme by just removing dummy-addition procedures (lines 3
and 4 of the addition procedure).

10Such a leakage function still satisfies forward privacy.
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Table 1: Enron email dataset

#files #keywords Size (KB)

517,401 214,874 2, 413,971

Table 2: Statistical information on the dataset

parameter max min average

|fid| (bytes) 2,011,957 398 4,445

maxid 251,495 58 343.7

|Wid| 59,148 12 77.1

maxid − |Wid| 192,347 46 266.6

5 Implementation

We give a performance evaluation of the proposed schemes by C++ software implementation. We
here implemented our dynamic construction and show that it seems sufficiently efficient in the
practical sense. In particular, we show that the search procedure can be efficiently performed in
practice, though it requires O(maxid) computational cost in the asymptotic sense. Our experiments
are done in Amazon EC2 using m4.2xlarge instance (32 GiB of memory and 8 CPU cores) with
Ubuntu Server 18.04 LTS (HVM), EBS General Purpose (SSD) Volume Type. For the instantiation
of a PRP π, we chose AES-GCM and GMAC to utilize Intel AES-NI instruction set. Throughout
the experiment, we assume 128-bit security (key size). Our AES-GCM and GMAC implementation
uses EVP functions API within OpenSSL library (version 1.1.0g). Although in our schemes (both
of non-dynamic and dynamic ones), each operation (at the server side) can be parallelized, i.e.,
each server-side procedure of all algorithms can be executed in parallel, we implement our dynamic
scheme on only a single thread.

Dataset. To create EDB, we deploy Enron Email dataset [25] (May 7, 2015 version) which
is a well-known dataset containing roughly 2.4GB mail data from about 150 users, mostly senior
management of Enron. Table 1 shows the number of files, the number of keywords, and the total size
of Enron dataset. For the keywords used in EDB, we use only stems of the words that appear in the
dataset. We obtain the set of keywords from dataset by applying the Porter stemming algorithm
within NLTK (Natural Language ToolKit) library. We may add that to apply the stemming
algorithm, we deleted the header information, symbols, and URL information in preprocessing.
Table 2 shows the statistics on the size of each file, maxid and |Wid|.

Addition/deletion cost. We show the setup/addition and deletion costs of our scheme in
Figs. 10 and 11, respectively. Surprisingly, the figures show that the implementation of our scheme
complete the whole of 517,401 data in roughly 75 seconds for addition and roughly two seconds
for deletion, including communication time. Namely, the addition and deletion for our scheme
take roughly 150µs and 3.8µs, respectively. It means the dummy-addition procedure does not
significantly impair the performance, though our scheme should perform O(maxid) computational
cost.

Search cost. Fig. 12 shows the experimental result on search cost for our scheme. The vertical
and horizontal axes show turn-around time for single search query, including communication cost,
and the number of registered files, respectively. When 200,000 files are registered in EDB, our
scheme requires roughly 0.7 seconds.

Thus, our forward-private scheme can be said that the performance is sufficiently practical
depending on applications or datasets. Note that one should keep in mind that the communication
cost is proportional to the total number of files. As noted at the beginning of this section, our
implementation results are done on only single thread. Therefore, we can obtain much higher
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Figure 10: Setup/addition
cost for our schemes.

Figure 11: Deletion cost for
our schemes.

Figure 12: Search cost for our
schemes.

performance by utilizing parallelization/vectorization.

6 How to Remove the Possibility of Search Error in SSE-1

Curtomola et al. proposed a non-adaptive secure SSE scheme called SSE-1 [2, 3]. This section
shows SSE-1 has a problem that a search error occurs when the client searches a keyword not used
in any stored files (but contained in the dictionary). We then propose a correction technique for
this problem.

As in [2, 3], in this section, we assume that the dictionary size |Λ| is polynomial in κ and that
all keywords in Λ can be represented using at most v bits. Furthermore, we explain why SSE-1
requires the dictionary size is polynomial in κ and propose a way to improve SSE-1 to support the
exponential-size dictionary.

6.1 The Original SSE-1 Construction and Its Problem

As described in the introduction, SSE-1 is constructed via the inverted-index-based approach. First
of all, we review the construction idea of SSE-1.

The server holds an array Array and an address table Table as a secure index. The array consists
of nodes {Nw,i}w∈W,i∈[|IDw|]. Each node Nw,i stores information about the i-th file identifier that
includes w and is encrypted with a PCPA-secure SKE scheme. Decrypting all nodes for w, the server
can obtain the correct search result IDw. All nodes {Nw,1, . . . ,Nw,|IDw|} for each w are sequentially
linked so that the server can decrypt all of them if the server is given the decryption key for Nw,1.
Each node Nw,i consists of the following three components:

• File identifier id ∈ IDw

• Address of the next node Nw,i+1

• Decryption key kw,i+1 for the next node Nw,i+1

The server can obtain an address and a decryption key for Nw,i+1 in addition to id ∈ IDw by
decrypting Nw,i. Namely, {Nw,i}i∈[|IDw|] is sequentially decrypted.

Table stores information about an address aw and a decryption key kw,1 for the first node Nw,1
of each keyword w ∈ Λ in each row (see Fig. 13). Note that each row is encrypted. When the
client searches for w, the client sends the server a row number πK3(w) and a decryption key fK2(w)
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Row No. Value

πK3(w1) (aw1∥kw1,1)⊕ fK2(w1)

πK3(w2) (aw2∥kw2,1)⊕ fK2(w2)

πK3(w3) (aw3∥kw3,1)⊕ fK2(w3)
...

...

πK3(w|Λ|) (aw|Λ|∥kw|Λ|,1)⊕ fK2(w|Λ|)

Figure 13: An Address Table Table.

for the row. As a result, the server obtains an address aw and a decryption key kw,1 for Nw,1 from
Table. The server then decrypts Nw,1 in Array and gets an address and a decryption key of the next
node Nw,2, in addition to id ∈ IDw. Namely, the server can initiate the sequential decryption of
{Nw,i}i∈[|IDw|] by getting the address and decryption key of Nw,1 from Table.

The server can finally obtain IDw by repeating the sequential decryption. The address and
decryption key in the last node are set to all zeros, which indicates “termination.”

There are three points to keep in mind when Array and Table are created.

(a) If Array consists of only {Nw,i}w∈W,i∈[|IDw|] then the database size N =
∑n

i=1 |Wi|, leaks to
the server from the number of nodes.

(b) If the server knows the relationship between keywords and rows in Table, then the server can
identify the keyword corresponding to a search query.

(c) If Table consists of only keywords inW, then |W| leaks to the server from the number of rows
of Table.

We first explain (a). Note that N holds information about the number of distinct keywords in the
stored files, which is not included in the leakage function described in Section 2.4. It must be kept
secret from the server. However, N leaks to the server from Array since |{Nw,i}w∈W,i∈[|IDw|]| = N .
Thus, sufficiently-many dummy nodes need to be added to Array to hide N from the server.

The number of dummy nodes to be created is calculated using maxi described in Section 3.2.
Recall that maxi is the maximum number of distinct keywords that fi can contain, and it can
be calculated from the stored files by the server. Creating maxi − |Wi| dummy nodes can hide
|Wi| from the server, since the server cannot determine how many nodes are dummy in maxi
nodes. The client can hide N from the server by applying this technique to all files and summing
them up. The reason is the following: note that the number of nodes including dummy nodes
in Array is maxDB :=

∑n
i=1maxi, since the number of dummy nodes is

∑n
i=1(maxi − |Wi|) =∑n

i=1maxi −
∑n

i=1 |Wi| =
∑n

i=1maxi − N . Then, maxDB can be calculated by the server from
the stored files. As a result, N can be hidden from the server. The rows in Table are randomly
permuted for (b), and |Λ| − |W| dummy rows are created in Table for (c).

SSE-1 uses a PRF and two PRPs with the following parameters:

• f : {0, 1}κ × {0, 1}v → {0, 1}s+κ,
• π : {0, 1}κ × {0, 1}v → {0, 1}v,
• ψ : {0, 1}κ × {0, 1}s → {0, 1}s,

where s := ⌈log2(maxDB)⌉ is the bit length of each node address. Each row in Table is masked
with fK2(w), where K2 ∈ {0, 1}κ and w ∈ W. The randomization of the row order is executed by
using πK3(w), where K3 ∈ {0, 1}κ and w ∈ W. ψ is used to determine node addresses in Array.
Let Πske = (G,E,D) be a PCPA-secure SKE scheme and IDw = {idw,1, idw,2, . . . , idw,|IDw|} for all
w ∈ W.
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ΣSSE1: Setup(κ,DB)
Building Array:

1: K1
$← {0, 1}κ

2: ctr = 1
3: for ∀w ∈ W do
4: kw,1 ← G(κ)
5: for i = 1 to |IDw| do
6: kw,i+1

$← G(κ)
7: if i < |IDw| then
8: Create a node Nw,i := (idw,i∥ψK1 (ctr + 1)∥kw,i+1)
9: else
10: Create a last node Nw,|IDw| := (idw,|IDw|∥0s+κ)
11: Array[ψK1

(ctr)] := E(kw,i,Nw,i)
12: if i = 1 then
13: aw := ψK1

(ctr) // Address of Nw,1

14: ctr = ctr + 1
15: for j = 1 to maxDB −N do

16: Array[ψK1
(ctr)]

$← {0, 1}ℓ+s+κ // Create a dummy node
17: ctr = ctr + 1

Building Table:

16: K2,K3
$← {0, 1}κ

17: for ∀w ∈ W do
18: Table[πK3

(w)] := (aw∥kw,0)⊕ fK2
(w)

19: ΠW ← πK3
(w) // ΠW : set of row numbers for w ∈ W

20: for ∀w ∈ Λ \W do

21: vw
$← {0, 1}v \ ΠW , and cw

$← {0, 1}s+κ

22: Table[vw] := cw // Dummy rows for w /∈ W
23: return (k := (K2,K3), σ(0) := ε,EDB(0) := (Array,Table))

ΣSSE1: Search((K2,K3), q, σ
(t);EDB(t))

Client:
1: T (t)

q ← (πK3
(q), fK2

(q)) // T (t)
q : trapdoor

2: Send trans
(t)
1 := Tq to the server

Server:

3: Parse trans
(t)
1 as (γ1, γ2)

4: if Table[γ1] = NULL then

5: Set X (t)
q := ϕ and go to line 12

6: Parse Table[γ1]⊕ γ2 as (a′1, k
′
1)

7: Set i = 1
8: while (a′i∥k′i) ̸= 0s+κ do
9: Parse the result of D(k′i,Array[a

′
i]) as (id′, a′i+1, k

′
i+1)

10: X (t)
q ← id′ // X (t)

q : search result
11: i = i+ 1

12: Send trans
(t)
2 := X (t)

q to the client

Client:

13: return (σ(t+1) := σ(t),X (t)
q )

Figure 14: The original SSE-1 scheme.

We formally describe the original SSE-1 in Fig. 14 (See the operation example of SSE-1 in
Appendix D).

The problem of the original SSE-1 construction. We show that SSE-1 causes a search error
violating the correctness of the search procedure when the client searches for w′ /∈ W. In fact,
Curtmola et al. [2, 3] did not discuss the case where the client searches for such a keyword.11

However, it is necessary to consider the case in practice since the client is likely to search for
keywords that do not appear in any files.12

There are three kinds of search results as follows.

i) The server sends the correct search result to the client. (This case satisfies the correctness.)

ii) The server sends an incorrect search result to the client. (This case violates the correctness.)

iii) The server does not send the search result to the client for some reason. (This case viorates
the correctness.)

Hereafter, we analyze the processes when the client searches for w′ /∈ W. Denote the value of
undefined rows in Table and undefined addresses in Array as NULL. We summarize the following
discussions in Fig. 15.

11Strictly speaking, lines 4–5 of the search procedure captrure the case where the client searches for w′ /∈ W.
However, the process is not a sufficient countermeasure for such a case since Table[πK3(w

′)] for w′ /∈ W does not
always be NULL, as shown in this section.

12Note that SSE-2 correctly performs the search procedure even when the client searches for w′ /∈ W since the
corresponding (dummy) addresses of the secure index are set to the values that are never accessed in the search
procedure.
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Figure 15: The process flow of searching for w′ /∈ W. (Note that the infinite loop occurs with
non-negligible probability.)

Let consider the case where the client searches for w′ /∈ W. The client sends (πK3(w
′), fK2(w

′)),
and the server checks the value of Table[πK3(w

′)]. Then, there are two possible cases.

A-1) Table[πK3(w
′)] = NULL, and then the server aborts the search process.

A-2) Table[πK3(w
′)] ̸= NULL, and then the server executes Table[πK3(w

′)]⊕ fK2(w
′).

In the case A-1), the server can identify that there is no file identifier to send and can send the
empty set as the search result. Thus, this case satisfies the correctness.

In the case A-2), the result of Table[πK3(w
′)]⊕fK2(w

′) becomes a random value since the dummy
row is randomly chosen at line 16 in the setup procedure. However, the server parses the random
value as (a′1, k

′
1), according to the procedure at line 4 in the search procedure, since it cannot

identify whether the row is a dummy. The probability of the case A-2) is (|Λ| − |W|)/(2v − |W|)
and non-negligible since v, which is the bit length of row number, is about log2|Λ|.

The case A-2) is divided into two cases depending on a′1.

B-1) Array[a′1] = NULL, and then the server aborts the search process.

B-2) Array[a′1] ̸= NULL, and then the server executes D(k′1,Array[a
′
1]).

In the case B-1), the server can send the empty set as the search result since it can identify that
there is no file to send. Thus, this case satisfies the correctness.

In the case B-2), the decryption result becomes a random value since k′1 is the incorrect key.
The server parses the random value as (id′, a′2, k

′
2), according to the procedure at line 7 in the search

procedure.
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The probability of B-1) depends on the number of nodes in Array. Recall that the bit length of
the node address is s := ⌈log2(maxDB)⌉ where maxDB is the number of nodes. Thus, the probability
of B-1) is maximized in the case wheremaxDB = 2s−1+1, and the probability of B-1) is 1−maxDB/2

s,
which is about 1/2. On the other hand, if maxDB = 2s, the probability of B-1) is 1 − maxDB/2

s,
which is 0, that is, B-2) is always occurs.

After the case B-2) occurs, there are two cases depending on a′2 and k′2.

C-1) (a′2∥k′2) = 0s+κ, and then the server terminates the search process.

C-2) (a′2∥k′2) ̸= 0s+κ, and then the server continues the search process.

In the case C-1), the server recognizes that the node is the last one since the search process follows
the regular procedure. The server sends the client id′ obtained by the incorrect decryption without
noticing the error. Thus, this case violates the correctness that corresponds to the case of ii).
Fortunately, the probability of the case of C-1) is negligibly small since it is 1/2s+κ.

After the case C-2) occurs, either B-1) or B-2) occurs again, depending on a′2. Note that
C-2) occurs with overwhelming probability, i.e., the search process almost never ends with C-1).
Unfortunately, the loop of the above erroneous search process might occur since, as explained above,
B-2) occurs with non-negligible probability. In particular, if maxDB = 2s, i.e., the probability of
B-1) is zero, the server repeats the search process almost infinitely since the server cannot terminate
the search process except for negligible probability. As a result, the server cannot send the search
results to the client. This case violates the correctness since it corresponds to the case of iii).

6.2 How to Fix the Search Error

This section shows how to fix the search error in the previous section.

Solution 1. First, we propose a technique to stop the search loop by detecting the error without
changing the setup procedure. When the search loop occurs, some unusual procedures are per-
formed. For instance, the file identifier obtained by decrypting a node with an incorrect key may
not actually exist in ID. Thus, the server can detect the error by checking whether the obtained
file identifier is included in ID (if the server knows the identifiers corresponding to the stored files).

Also, the number of nodes decrypted in a search process is at most n, which is the total number
of files. If more than n nodes are decrypted in the search process, the server can detect the search
error.

Although the server can always abort the loop with the above detection ideas, the redundant
search process still occurs. Thus, we next consider more efficient techniques to eliminate the error
by modifying the setup procedure.

Solution 2. Intuitively, the search error can be resolved by changing the row numbers of dummies

to be generated from vw
$← {0, 1}v \ Λ. Namely, line 21 in the setup procedure is changed to the

following process:

vw
$← {0, 1}v \ ΠΛ, and cw

$← {0, 1}s+κ,

where ΠΛ := {x ∈ {0, 1}v : w ∈ Λ, x = πK3(w)}. Note that it is necessary to enlarge v when the
size of {0, 1}v \ ΠΛ is not enough for all w′ /∈ W. Although this solution avoids the search error,
the client needs to calculate πK3(w

′) for all w′ such that w′ ∈ Λ ∧ w′ /∈ W in the setup procedure.
This puts a big burden on the client. Thus, we propose another more efficient solution.

Solution 3. We show the search error can be resolved by just adding a special node to Array. For
unused keywords, we prepare the special node N′, which is a zero string, to indicate that there is no
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file identifier that should be sent to the client. More formally, the following procedure is inserted
at the end of “Building Array”:

k′
$← G(κ)

Create a special node N′ := 0ℓ+s+κ

Array[ψK1(ctr)] := E(k′,N′)

α := ψK1(ctr)

Note that the client must create N′ even if Λ = W, i.e., even if there is no unused keyword in the
dictionary, since the server can identify whether Λ =W or not from the number of nodes in Array.
Thus, the number of nodes in Array always be maxDB + 1.

Also, in Table, we change all rows for all w′ /∈ W to point to the N′, not just random value. As
a result, when the client searches for w′ /∈ W, the server always decrypts N′ and understands there
is no file to return to the client. More formally, lines 21–22 in the setup procedure are changed to
the following process:

Table[πK3(w)] := (α∥k′)⊕ fK2(w)

Finally, we show that SSE-1 with Solution 3 is (L-non-adaptively) secure. We show that our
modifications only require minor changes to the original proof in [2, 3].

We first check the modified Array. Our modification does not change nodes other than the
special node N′, so that we discuss how to simulate N′. Noting that the procedure of creating N′

does not depend on the stored file, the simulator also can run the procedure. Then, the simulator

performs k′
$← {0, 1}κ and α′

$← {0, 1}s instead of k′
$← G(κ) and ψK1(ctr), respectivley.

We next check the modified Table. Each row for w′ /∈ W is encrypted with f(w′) like the rows
for w ∈ W, and thus, these rows can be simulated in the same way as the rows for w ∈ W. Namely,
roughly speaking, the simulation can be done as follows: Let Q′ be the number of distinct queries
in Λ/W, which the simulator can identify from the access pattern and the search pattern. Then, for
i ∈ [Q′], the simulator sets (α′, k′)⊕ ri as a value of the corresponding row, where ri ← {0, 1}s+κ.

6.3 Toward Handling the Exponential-Size Dictionary

SSE-1 assumes that the dictionary size |Λ| is polynomial in κ since it creates the address table for
all w ∈ Λ in order to hide |W| from the server. However, if the total size of the stored files is
smaller than |Λ|, it is not necessary to create rows for all w ∈ Λ. This is because the server knows
that all keywords in Λ cannot fit in the stored files. Based on this fact, SSE-1 can be improved to
support the case where the dictionary size is exponential in κ by introducing the similar idea of
max, described in Section 3.1.

Let max′ := c such that
∑c

j=1 |wj | ≤
∑n

j=1 |fj | <
∑c+1

j=1 |wj |, where w1 ≤ w2 ≤ · · · for Λ =
{w1, w2, . . .}. max′ means the maximum number of distinct keywords that all stored files can
contain.13 Thus, we can make Table whose number of rows is max′. Note that max′ does not leak
any useful information to the server since the server also can compute it from the stored (encrypted)
files. The rows for w ∈ W are created in the same way in the original SSE-1. Also, the remaining
max′ − |W| rows are created to connect the special node N′ as in Solution 3.

13More precisely, the maximum number of distinct keywords contained in all stored files should be calculated from
each file size, not the sum of them. In other words, max′ may be greater than it. Nonetheless, we adopt the definition
of max′ for simplicity since it is sufficient to hide |W| and is independent of the size of Λ.
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7 Conclusion

This paper focused on Curtmola et al.’s seminal work [2, 3] in the SSE area and revealed two
previously-overlooked problems in their SSE constructions, SSE-1 and SSE-2. First, we pointed out
that SSE-2 and its variants [8, 17] did not appropriately implement Curtmola et al.’s construction
idea of dummy-addition procedures, and proposed a new construction based on SSE-2 that provides
the smaller secure index than the above schemes. We further showed that our scheme can be easily
extended to a dynamic version and is practically efficient via our software implementation. Second,
we pointed out that SSE-1 violates the search correctness since the search for keywords that do
not appear in any stored files triggers unexpected behavior. We demonstrated that the error can
be detected by the server, the detection procedure, of course, should be implemented in advance.
Besides, we showed how to fix the error, and how to extend SSE-1 to handle the exponential-sized
dictionary.
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A Model in the CGKO papers

We describe a syntax of SSE defined in [2, 3].

Definition 8 (SSE [2, 3]). An SSE scheme ΣCGKO over Λ consists of five-tuple non-interactive
algorithms ΣCGKO := (Gen,Enc,Trpdr,Srch,Dec), which are defined as follows:

• K ← Gen(κ): It is a probabilistic algorithm which takes a security parameter κ as input and
outputs a secret key K.

• (I,C) ← Enc(K,D): It is a probabilistic algorithm which takes a security key K and n
document files D := (D1, . . . , Dn) as input and outputs a secure index I and corresponding
ciphertexts C := (C1, . . . , Cn).

• τq ← Trpdr(K, q): It is a deterministic algorithm which takes a security key K and a keyword
q ∈ Λ as input and outputs a trapdoor τq.

• Xq ← Srch(I, τq): It is a deterministic algorithm which takes a secure index I and a trapdoor
τq for a keyword q and outputs a set Xq of identifiers as a search result.

• Di ← Dec(K,Ci): It is a deterministic algorithm which takes a security key K and a ciphertext
Ci as input and outputs its corresponding document file Di.

The above model requires the following search correctness: for all κ ∈ N, for all K ← Gen(κ),
for all possible D, for all (I,C)← Enc(K,D), and for all q ∈ Λ, we have

(Srch(I,Trpdr(K, q)) = IDq)

∧ (Di ← Dec(K,Ci) for ∀i ∈ [n]) ,

with overwhelming probability.
When we ignore encryption and decryption procedures for documents (they can be realized

independently of other algorithms by PCPA-secure SKE), the above syntax can be seen as a special
case of ours (Def. 4). Indeed, we can construct an SSE scheme with our syntax from the above
algorithms.

• (k, σ(0),EDB(0)) ← Setup(κ,DB): Run K ← Gen(κ) and (I,C) ← Enc(K,D), and return
k := K, σ(0) := ε, and EDB(0) := I, where ε denotes an empty string. Note that we ignore C
here.
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ΣSSE2: Setup(κ,DB(0))

1: parse DB(0) = {(idi,Wi)}ni=1

2: Set max from max{|f1|, . . . , |fn|}
3: for ∀i ∈ [|W|] do
4: for ∀j ∈ [|IDwi

|] do
5: Index[πk(wi∥j)]] := idi,j // idi,j : j-th id in IDwi

6: for ∀j ∈ [n] do
7: for ∀β ∈ [max− |Widj |] do
8: Index[πk(0

λ∥n+ β)]] := idj // add dummies

9: EDB(0) := Index
10: return (k, σ(0) := {n},EDB(0))

ΣSSE2: Search(k, q, σ(t);EDB(t))

Client:
1: for i = 1 to n do
2: T (t)

q ← πk(q∥i) // T (t)
q : trapdoor

3: Send trans
(t)
1 := T (t)

q to the server

Server:

4: for ∀addr ∈ T (t)
q do

5: if Index[addr] ̸= NULL then

6: X (t)
q ← Index[addr] // X (t)

q : search result

7: Send trans
(t)
2 := X (t)

q to the client

8: return EDB(t+1) := Index

Client:

9: return (σ(t+1) := σ(t),X (t)
q )

Figure 16: The original SSE-2 scheme.

• (σ(t+1),X (t)
q ;EDB(t+1))← Search(k, q, σ(t);EDB(t)):

(σ(t+1),X (t)
q ) ← Searchc(k, q, σ

(t)). Run τq ← Trpdr(K, q), and send τq as trans
(t)
1 to the

server. Receiving trans
(t)
2 , return X (t)

q := trans
(t)
2 and σ(t+1) := ε.

EDB(t+1) ← Searchs(EDB
(t)). Receiving trans

(t)
1 , run Srch(I, trans

(t)
1 ) and sends the output as

trans
(t)
2 to the client. Return EDB(t+1) := EDB(t) (= I).

B The Original SSE-2 Scheme

We describe the original SSE-2 scheme ΣSSE2 = (Setup,Search) in Fig. 16. Curtmola et al. actually
described the original SSE-2 scheme as if it is an inverted-index-based scheme, although the basic
idea behind SSE-2 is the forward index as described in Section 3.

As already mentioned in [8], Curtmola et al.’s dummy addition procedure had fateful flaws.
More specifically, in line 8 of Setup, dummy entries are added to Index[πk(0

λ∥n+1)], . . . , Index[πk(0
λ∥n+

max− |Wi|)] for every file fi ∈ DB(0). Namely, the dummies are overwritten for every i ∈ [n], and
hence the SSE-2 construction does not work well.

C Security Proof of Our Dynamic SSE Scheme

First, we show that S can simulate all transcripts during the execution of Update by using LUpd(t, op, in).
In the following, we suppose that an identity id is never reused again once the corresponding file
fid is deleted.14

For query = (upd, add, (id,Wid)): In RealD(κ,Q), Update is executed, and the corresponding tran-

script trans
(t)
1 = (id,U (t)

id ) consists of id and maxid random strings, which are used as addresses

14This handling for identifiers is highly recommended in practice since the server notices that previously-deleted
files are re-added if the identifiers are reused. Moreover, though we can also prove this theorem in the setting where id
is reused, it seems to contradict forward privacy, which guarantees that the addition procedure leaks no information
on unique keywords contained in newly-added files, since the server can notice the previous search results related to
id at the point when id is re-added.
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for id in EDB(t+1). Therefore, roughly speaking, if the simulator S randomly chooses maxid unused
(λ+ℓ+1)-bit strings as addresses for id in IdealD,S,L(κ,Q), D cannot distinguish the two experiments
due to the security of π (see Def. 1).

Formally, S simulates the transcript trans
(t)
1 = (id,U (t)

id ) as follows. Due to the addition proce-
dure, addresses of previously-registered files definitely store the corresponding identities. On the
other hand, due to the search procedure, previous trapdoors for a certain keyword q are empty
addresses if the corresponding files do not contain q. Therefore, due to the search correctness, it
is not appropriate to just choose empty addresses of Index, which are unused strings as addresses

of files ever to be registered, as addresses for id. Hence, addresses used for U (t)
id have to be all

fresh, i.e., S has to choose addresses that have not been used as either addresses nor trapdoors for
previously-registered files.

To capture this, we additionally define the following notations. Let Listid be a list of all pairs
of an identifier and a global counter when it was registered, i.e., Listid = {(id, t′)}, and I(t) be a set

of identifiers stored in the database at t. Let Listaddr :=
⋃

(id′,t′)∈Listid U
(t′)
id′

be a list of all addresses
that have been registered at least once by t. Note that Listaddr might include addresses deleted by
t. Let Listused be a list of all addresses that have been used for the response of search queries (i.e.,
used as trapdoors) at least once by t.

For LUpd(t, add, (id,Wid)) = (id, |fid|), S computes maxid from |fid| and Λ, and randomly chooses
maxid unused addresses. Namely, S repeats the following procedure maxid times:

1. addr
$← {0, 1}λ+ℓ+1 \ (Listaddr ∪ Listused).

2. Listaddr ← addr.

3. U (t)
id ← addr.

All addresses in Listaddr are distinct from each other since π is a permutation, and look random
due to the security of π. Finally, S adds (id, t) to Listid, and sets I(t) := I(t−1) ∪ {id}. Hence, S can
simulate Update(k, add, (id,Wid), σ

(t);EDB(t)) by only using LUpd(t, add, (id,Wid)).

For query = (upd, del, id): In RealD(κ,Q), the client sends the transcript trans
(t)
1 := id, and the server

deletes the corresponding addresses that store id. It is obvious that it can be easily simulated by S
using LUpd(t, del, id) = id. S sets I(t) := I(t−1) \ {id}.

For query = (srch, q): In RealD(κ,Q), the client first sends a request as trans
(t)
1 and receives trans

(t)
2 =

I back, where I is exactly the same as I(t−1) that Smaintains. Then, the client computes πk(0∥q∥id)
for all id ∈ I, and sends the server trans

(t)
3 = T (t)

q := {πk(0∥q∥id) | id ∈ I} as trapdoors. From
the correctness, it holds Index[πk(0∥q∥id)] = id if fid contains q; it holds Index[πk(0∥q∥id)] = NULL

otherwise. Moreover, it holds X (t)
q = ID

(t)
q .

We construct S that simulates the above procedure correctly as follows. First of all, S sets

I(t) := I(t−1). Then, we have to consider two cases depending on LSrch(t, q) = (SP
(t)
q ,AP

(t)
q ):

(1) It is the first time to search for q, i.e., SP
(t)
q = {t}.

(2) q has been queried before, i.e., SP
(t)
q ̸= {t}.

The reason why we consider the two cases is that trapdoors at the first search for a keyword q
should be chosen at random, but those at at two and subsequent searches should be the same as
the first search. We give an illustrative diagram of the simulation for Search in Fig. 17.

(1) It is the first time to search for q, i.e., SP
(t)
q = {t}. In IdealD,S,L(κ,Q), S simulates the above

real procedures by inverse process. Note that S knows LSrch(t, q) = (SP
(t)
q ,AP

(t)
q ). S randomly
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Figure 17: An illustrative diagram of the search simulation, where t′ := max SP
(t)
q \{t}. S simulates

trapdoors for all id ∈ I(t). Note that in the case of (1), we have SP
(t)
q \ {t} = ∅.

chooses an unused address addrid,q as a trapdoor for q and id for all id ∈ I, but the domain from

which addrid,q is chosen depends on whether id ∈ AP
(t)
q or not.

(1-a) Every identity id ∈ AP
(t)
q should be stored at addrid,q. Note that S needs to avoid choosing

addresses already used as trapdoors for other keywords contained in fid. Therefore, S chooses

addrid,q from U (t′)
id \ Listused, where t

′ is a counter such that (id, t′) ∈ Listid.

(1-b) For every id ∈ I(t) \AP(t)
q , the corresponding trapdoor should be an empty address. However,

we have to pay attention to the fact that some empty addresses (i.e., addresses stored in
Listused) were assigned to trapdoors for other previously-searched keywords. Therefore, S
randomly chooses addrid,q from {0, 1}λ+ℓ+1 \ (Listused ∪ Listaddr).

S then adds addrid,q to each of T (t)
q and Listused. Therefore, S can simulate the search procedure

by setting trans
(t)
1 := request, trans

(t)
2 := I(t), trans(t)3 := T (t)

q and trans
(t)
4 := AP

(t)
q . S maintains a

list SrchList
(t)
q := {(addrid,q, id) | id ∈ I(t)}, which maintains all pairs of a trapdoor for id and q and

the corresponding identity id at t, for the case (2).

(2) q has been queried before, i.e., SP
(t)
q ̸= {t}. In this case, S basically follows the same procedure

as the case (1). Therefore, S simulates trapdoors for the following two kinds of identifiers:

(2-a) id that appears in the search result, i.e., id ∈ AP
(t)
q .

(2-b) id that does not appear in the search result but that is stored in the current database, i.e.,

id ∈ I(t) \ AP(t)
q .

For the case (2-a), unlike the case (1-a), we have to care about the fact that AP
(t)
q contains two

kinds of identifiers:

(2-a’) id that already appeared in the last search result, i.e., id ∈ AP
(t′)
q ∩ AP

(t)
q , where t′ :=

max(SP
(t)
q \ {t}).15

15If we allow the client to reuse id, (i.e., the same id is assigned to a deleted file for addition), we have to consider

all t′′ ∈ SP
(t)
q \ {t}, not just t′ := max(SP

(t)
q \ {t}). The reason for this is that there might exist id that appears in

the search results at t and t′′, but does not appear in the result at t′, where SP
(t)
w := {t, t′, t′′} and t > t′ > t′′. Thus,

in such a case, we should consider id ∈
∪

t′′∈SP
(t)
q \{t} AP

(t′′)
q .

26



(2-a”) id added to Index after the last search for q, i.e., id ∈ AP
(t)
q \ AP(t′)

q .

Note that we have (AP
(t′)
q ∩ AP

(t)
q ) ∪ (AP

(t)
q \ AP(t′)

q ) = AP
(t)
q since it holds (A ∩ B) ∪ (B \ A) = B

for any finite sets A and B. For the case (2-a’), S has to use the same trapdoors as previously-used

ones. It can be done easily; for id ∈ AP
(t′)
q ∩ AP

(t)
q , S retrieves (addrid,q, id) from SrchList

(t′)
q , and

adds addrid,q to T
(t)
q . For the case (2-a”), S generates trapdoors as in the case (1-a), and adds them

to each of T (t)
q and Listused.

Similarly, for the case (2-b), we need to divide into the following two cases:

(2-b’) id that does not contain q and that already existed in the database at the the last search for

q, i.e., id ∈ (I(t′) \ AP(t′)
q ) ∩ (I(t) \ AP(t)

q ).

(2-b”) id that does not contain q and that was added to Index after the last search for q, i.e.,

id ∈ (I(t) \ AP(t)
q ) \ (I(t′) \ AP(t′)

q ).

Note that we have ((I(t′) \ AP(t′)
q ) ∩ (I(t) \ AP(t)

q )) ∪ ((I(t) \ AP(t)
q ) \ (I(t′) \ AP(t′)

q )) = I(t) \ AP(t)
q ,

as in the case (2-a). For the case (2-b’), S has to use the same trapdoors as previously-used ones.

Namely, for id ∈ (I(t′) \ AP(t′)
q ) ∩ (I(t) \ AP(t)

q ), S retrieves (addrid,q, id) from SrchList
(t′)
q , and adds

addrid,q to T (t)
q . For the case (2-b”), S generates trapdoors as in the case (1-b), and adds them to

each of T (t)
q and Listused.

S finally sets SrchList
(t)
q := {(addrid,q, id) | id ∈ I(t)}. Thus, S can correctly simulate the search

procedure by setting trans
(t)
1 := request, trans

(t)
2 := I(t), trans(t)3 := T (t)

q , and trans
(t)
4 := AP

(t)
q .

D Operation Example of SSE-1

We describe a small example of SSE-1 below.

Setting: Dictionary Λ = {w1, w2, . . . , w6}, where w1 is 1 bits, w2, w3 are 2 bits, and w4, w5, w6

are 3 bits. The stored files are f1 = (id1,W1 = {w2, w4}), f2 = (id2,W2 = {w1, w2}), and
f3 = (id3,W2 = {w1, w2, w3}).

In this setting, max1 = 3 since |w1| + |w2| + |w3| ≤ |f1| < |w1| + |w2| + |w3| + |w4|. Similarly,
max2 = 2 and max3 = 3. Thus, maxDB = 8, and the number of dummy nodes is one since
maxDB −N = 1

Setup: In lines 3–14 of the setup procedure, following seven nodes are created in Array.

• Array[ψK1(1)] := E(kw1,1,Nw1,1)
where Nw1,1 := id2∥ψK1(2)∥kw1,2

• Array[ψK1(2)]← E(kw1,2,Nw1,2)
where Nw1,2 := id3∥0s+κ

• Array[ψK1(3)] := E(kw2,1,Nw2,1)
where Nw2,1 := id1∥ψK1(4)∥kw2,2

• Array[ψK1(4)] := E(kw2,2,Nw2,2)
where Nw2,2 := id2∥ψK1(5)∥kw2,3

• Array[ψK1(5)] := E(kw2,3,Nw2,3)
where Nw2,3 := id3∥0s+κ

• Array[ψK1(6)] := E(kw3,1,Nw3,1)
where Nw3,1 := id3∥0s+κ
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Row No. Value

πK3(w1) (ψK1(1)∥kw1,1)⊕ fK2(w1)

πK3(w2) (ψK1(3)∥kw2,1)⊕ fK2(w2)

πK3(w3) (ψK1(6)∥kw3,1)⊕ fK2(w3)

πK3(w4) (ψK1(7)∥kw4,1)⊕ fK2(w3)

vw5

$← {0, 1}v \ ΠW cw5

$← {0, 1}s+κ

vw6

$← {0, 1}v \ ΠW cw6

$← {0, 1}s+κ

Figure 18: An Address Table (Example)

• Array[ψK1(7)] := E(kw4,1,Nw4,1)
where Nw4,1 := id1∥0s+κ

Furthermore, at line 16, the following node is created as a dummy node.

• Array[ψK1(8)]
$← {0, 1}l+s+κ

Also, Table is described in Fig. 18.

Search: Consider the case of searching w2. The client first sends (πK3(w2), fK2(w2)) as the trapdoor
to the server. The server obtains ψK1(3) and kw2,1 by Table[πK3(w2)]⊕fK2(w2). The server initiates
the sequential decryption using ψK1(3) and kw2,1 as follows.

1. The server obtains Nw2,1 = id1∥ψK1(4)∥kw2,2 by decrypting Array[ψK1(3)] using kw2,1

2. The server obtains Nw2,2 = id2∥ψK1(5)∥kw2,3 by decrypting Array[ψK1(4)] using kw2,2

3. The server obtains Nw2,3 = id3∥0s+κ by decrypting Array[ψK1(5)] using kw2,3, and it terminates
the sequential decryption.

As a result, the server gets the result IDw2 = {id1, id2, id3}, which is correct.
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