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Abstract. State-of-the-art re-keying schemes can be viewed as a tradeoff between
efficient but heuristic solutions based on binary field multiplications, that are only
secure if implemented with a sufficient amount of noise, and formal but more expensive
solutions based on weak pseudorandom functions, that remain secure if the adversary
accesses their output in full. Recent results on “crypto dark matter” (TCC 2018)
suggest that low-complexity pseudorandom functions can be obtained by mixing
linear functions over different small moduli. In this paper, we conjecture that by
mixing some matrix multiplications in a prime field with a physical mapping similar
to the leakage functions exploited in side-channel analysis, we can build efficient
re-keying schemes based on “crypto-physical dark matter”, that remain secure against
an adversary who can access noise-free measurements. We provide first analyzes of
the security and implementation properties that such schemes provide. Precisely, we
first show that they are more secure than the initial (heuristic) proposal by Medwed
et al. (AFRICACRYPT 2010). For example, they can resist attacks put forward by
Belaid et al. (ASIACRYPT 2014), satisfy some relevant cryptographic properties and
can be connected to a “Learning with Physical Rounding” problem that shares some
similarities with standard learning problems. We next show that they are significantly
more efficient than the weak pseudorandom function proposed by Dziembowski et al.
(CRYPTO 2016), by exhibiting hardware implementation results.
Keywords: Side-Channel Attacks · Fresh Re-Keying · Low-Complexity wPRFs ·
Learning With Rounding · Boolean Functions · Masking · Key-Homomorphism

1 Introduction
State-of-the-art. Protecting block cipher implementations against side-channel attacks
is a difficult problem. Countermeasures like masking [CJRR99, ISW03] are expensive
in software [GR17] and hardware [GMK17]. They are also error prone due to physical
defaults such as glitches [MPG05, NRS08] or transitions [CGP+12, BGG+14], and due
to composability issues [CPRR13, BBD+16]. Informally, this situation is caused by the
complex (nonlinear) nature of the block ciphers: while the linear parts of an implementation
can be trivially secret-shared with limited complexity overheads, the secure execution of
their nonlinear parts typically implies overheads that are quadratic in the number of shares
and requires refreshing algorithms that increase their randomness cost.

As a result of these limitations, the concept of fresh-rekeying (illustrated in Figure 1)
was introduced by Medwed et al. [MSGR10]. Its main underlying idea is to leverage a
separation of duties between a “re-keying function” RK, that is easy to protect against
side-channel attacks (e.g., easy to mask) and is only used to produce a fresh key k∗, and
a cryptographically strong function (e.g., a block cipher or a tweakable block cipher) to
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Figure 1: Fresh re-keying schemes: the dark grey blocks must be strongly protected
against side-channel attacks, the light grey blocks only require weak protections.

process the messages with this fresh key. As discussed in [DEMM14, DKM+15], the block
cipher based solution of Figure 1(a) only provides birthday security and the tweakable
block cipher based solution of Figure 1(b) provides beyond-birthday security.

Theoretically, block ciphers and tweakable block ciphers are well understood primitives,
with known instances that are secure and efficient (as long as they do not require strong
protections against side-channel attacks). By contrast, specifying the properties of the re-
keying function turned out to be challenging, and requires adjusting the tradeoff between
the re-keying function’s efficiency and the physical assumptions needed for its secure
implementation, which is reflected by currently published solutions.

Starting with the efficient side of the spectrum, the first proposal of Medwed et al. was
a heuristic one, based on a list of necessary properties for the re-keying function. These
properties include good diffusion and simplicity to protect against side-channel attacks
thanks to masking. Concretely, the instance chosen in [MSGR10, MPR+11] is a finite field
multiplication (k∗ = k · r over F2κ), which is easy to mask since key-homomorphic. It was
next shown by Belaid et al. that in the standard case where Hamming weight leakages
are observed by an adversary, a lack of physical noise makes this solution easy to break.
Indeed, the least significant bit of the Hamming weight of a value is the XOR of its bits.
Hence, for a known r, the least significant bit of HW(k · r) is a linear function of the bits of
k. After κ leakages on average, solving the resulting system of equations therefore leads to
the full master key [BFG14]. This attack was then improved in order to remain effective
with lower Signal-to-Noise Ratios (SNR) in [BCF+15, PM16, GJ19] and it was shown in
the first part of [DFH+16] that the “Learning Parity with (Gaussian) Leakage” (LPL)
problem on which this fresh re-keying scheme relies indeed requires significant noise levels
(i.e., more than what is available intrinsically in unprotected implementations).

At the other side of the spectrum, Dziembowski et al. studied the possibility to use a
weak Pseudo-Random Function (wPRF) as re-keying function [DFH+16]. Their proposal
is to perform (several) inner product computations 〈k,x〉 where k and x ∈ Zn2q and to
“round” the results by computing b〈k,x〉cρ which simply drops q − ρ bits. The security of
this re-keying can be reduced to a Learning With Rounding (LWR) assumption [BPR12,
AKPW13], and it is almost key-homomorphic: only the carry bits involved in the shared
computations break the key-homomorphism. Hence, by complementing this re-keying
with a light error correction scheme (the cost of which increasing logarithmically with the
number of shares), this wPRF can be efficiently masked. Yet, despite complexity overheads
that are close to linear in the number of shares, such a solution suffers from the large key



Sébastien Duval, Pierrick Méaux, Charles Momin, and François-Xavier Standaert 3

Figure 2: Fresh re-keying adversarial models (from weaker to stronger).

size that it requires (e.g., 128-bit security is conjectured for a key of n = 128 × q = 32
bits), the manipulation of which leading to relatively poor performances.

Contribution. The starting point of this work is the observation that state-of-the-art
re-keying schemes work in quite different adversarial models. Namely, on the top of the
re-keying function internals that have to be protected against side-channel attacks:

• The heuristic solution of Medwed et al. assumes that the adversary can only observe
the noisy leakages of the fresh key, as illustrated in Figure 2(a).

• The wPRF-based solution rather assumes that the adversary can observe the fresh
key in full (i.e., unbounded leakages), as illustrated in Figure 2(c).

By contrast, no current proposal takes advantage of the intermediate model of Figure 2(b)
where noise-free leakages are observed. We argue that recent results on low-complexity
PRFs, in particular the one of Boneh et al. on “exploring crypto dark matter” [BIP+18],
suggest secure and efficient re-keying schemes could be obtained in this model.

Cryptographic dark matter. The wPRF candidate of Boneh et al. is instantiated as follows.
First, it takes a secret matrix K ∈ Fm×n2 (possibly Toeplitz for efficiency) and a public
vector r ∈ Fn2 . Next, it computes the product K · r and it interprets the output of this
product as a vector of 0/1 values over F3. Finally, the output of the wPRF is the sum of
these values modulo 3. In other words, their wPRF can be defined as:

FK(r) := map(K · r), (1)

with map : {0, 1}m → F3 that maps y ∈ {0, 1}m to
∑

yi mod 3. The similarity between
this function and the one of Dziembowski et al. is striking: the matrix multiplication
can be seen as multiple inner products and the mapping function plays the role of the
rounding. Its limitations for masked implementations are therefore similar: the mapping
function is nonlinear over Fn2 which requires special care and implies overheads.

Crypto-physical dark matter and learning with physical rounding. The main research
question we tackle in this paper is whether we can build a secure re-keying scheme in
the adversarial model of Figure 2(b), by leveraging some “crypto-physical dark matter”.
By this, we mean building a wPRF combining a matrix multiplication with a physical
mapping that would not have to be computed explicitly (i.e., digitally) and would rather
be performed in an analog manner by an implementation’s leakages. Taking the example of
the Hamming weight function, which is a frequently observed leakage model [MOP07] and
will be our running example, we know from the results of Belaid et al. that multiplications
in F2κ make this proposal insecure (without noise). In the following, we put forward that
multiplications in a prime field can lead to secure (and efficient) candidates.
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Our contributions in this respect are threefold. First, we show that crypto-physical dark
matter cannot be secure if its underlying multiplications take place in a small field or if it is
based on too small vectors. Next, we propose instances based on medium size prime fields
Fp (e.g., with p ≈ 232) that are well suited for software and hardware implementations,
and we analyze some relevant security properties of the functions combining prime field
multiplications and the Hamming weight mapping. Finally, we highlight the excellent
implementation properties that a re-keying scheme based on such a crypto-physical dark
matter enables. Informally, these properties are due to the fact that contrary to re-keying
schemes in the model of Figure 2(c) where the mapping/rounding has to be computed
securely (e.g., thanks to masking), the (physical) mapping/rounding we introduce never
has to be computed securely in the model of Figure 2(b), since it is performed by a leakage
function. As a result, masking with a small key and complexity overheads that are linear
in the number of shares can theoretically be obtained with practically-relevant leakage
functions, also leading to a set of interesting open problems browsed in conclusions.

We note that, as usual when introducing a new cryptographic primitive, our focus in
this work is to exhibit relevant security & implementation properties which may open new
research directions. In this respect, our claim is that the proposed re-keying scheme is at
the same time more secure than the one of Medwed et al. [MSGR10] under reasonable
(e.g., Hamming weight) leakage models and more efficient than the one of Dziembowski et
al. [DFH+16] thanks to a significantly shorter key. We hope these results can be used as a
seed to trigger more cryptanalytic investigations and physical security analyzes.

We additionally note that we will use the term crypto-physical dark matter for the
re-keying operations and the term Learning With Physical Rounding (LWPR) for the
problem of recovering the long-term key of the resulting re-keying scheme.1

Related works. In addition to the previously listed schemes that leverage the masking
countermeasure, it was also proposed to use a leakage-resilient PRF for re-keying, as
investigated in [MSJ12, BSH+14, MSNF16, USS+20]. Such a solution has been recently
integrated in the ISAP Authenticated Encryption scheme [DEM+17]. It does not rely on
key-homomorphism and rather aims at limiting the manipulation of the long-term key in
order to limit the attack vectors to Simple Power Analysis (SPA) attacks.

2 Background & definitions
2.1 Notations
We denote vectors with bold letters v and matrices with bold capital letters M . We use
the log notation for the logarithm in basis 2. For n ∈ N, we denote by [n] the set of
integers from 1 to n and by [0, n] the set of integers from 0 to n.

2.2 Physical model & LWPR
In order to define the LWPR problem, we need to define the physical model we are working
with. In this respect, the main issue is that we must specify crypto-physical dark matter
computations that mix mathematical operations and physical ones. For this purpose, we
first observe that the elements of the vector y = K · r are in Fp. We then formalize
as “physical rounding” the function modeling the side-channel information an adversary
gets from noise-free leakages on this vector. The physical model we will consider for the
rounding is a composition of two (more or less specialized) assumptions.

1 Admittedly, the terms “compressive mapping” or “nonlinear filtering” would also be appropriate to
describe the Hamming weight function. We use the term rounding because of its appealing analogy with
the LWR problem that was already used in the fresh re-keying literature [DFH+16].
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One the one hand, we assume that the leaking device computes on binary-represented
data: each value in Fp is therefore represented with (at least) dlog pe bits. We denote as
g : Fp → {0, 1}dlog pe the function associating to each element of Fp the binary representation
of its representative in [0, p − 1]. We also define gm : Fmp → {0, 1}mdlog pe as: gm(v) :=
g(v1)||g(v2)|| . . . ||g(vm). We argue that this assumption is quite generic and captures the
reality of most embedded computing devices deployed in current applications.

On the other hand, we need a more specialized assumption defining how the physical
(noise-free) leakages depend on themdlog pe bits provided by gm. This role will be played by
the leakage function. We denote the leakage function computed on the binary representation
of the manipulated data as Lg(.) and use it as a parameter of our investigations.

We can then define a generic LWPR problem as follows.

Definition 1 (Learning with physical rounding). Let p, n,m ∈ N∗, p prime, for (unknown)
K ∈ Fm×(n+1)

p . The LWPRn,m
Lg,p

sample distribution is given by:

DLWPRn,mLg,p
:=
(
r, Lg(K � r)

)
for r ∈ Fnp uniformly random,

where K �r = K · (r, 1) and Lg : Fmp → Rd is the physical rounding function. Given query
access to DLWPRn,mLg,p

for a uniformly random K, the LWPRn,m
Lg,p

problem is (q, τ, µ, ε)-hard
to solve if after the observation of q LWPR samples, no adversary can recover the key K
with time complexity τ , memory complexity µ and probability higher than ε.

Note that K is multiplied with (r, 1) rather than r. The additional mdlog pe-bit key
addition is needed to obtain strong differential properties, as discussed in Section 4.2.1.

As already mentioned, as a starting point and as an interesting feasibility result, we
will next consider the security that can be obtained with the Hamming weight function
which the most frequently observed leakage model for standard CMOS devices [MOP07].
For this purpose, we first denote the Hamming weight function HW(v), defined on any
vector v of length t ∈ N∗ with coefficients in {0, 1} as HW(v) =

∑t
i=1 vi, where the sum

is performed in Z. We then consider two possible implementations of it:

• Parallel: Lpg(y) : y 7→ HW
(
gm(y)

)
= HW

(
g(y1)

)
+ HW

(
g(y2)

)
+ . . .+ HW

(
g(ym)

)
.

• Serial: Lsg(y) : y 7→
(

HW
(
g(y1)

)
,HW

(
g(y2)

)
, . . . ,HW

(
g(ym)

))
.

The parallel case is reflecting a hardware implementation where the m vector elements are
computed in parallel. The serial case is reflecting a software implementation where the
m vector elements are computed one by one. (Intermediate levels of parallelism could be
defined similarly). The serial case is a significantly more challenging context for securing
implementations against side-channel attacks than the parallel case, since a b-bit Hamming
weight function leaks approximately log(b) bits on average to the adversary.

Remark 1. Note that when m = 1, the LWPRn,m
Lpg ,p

and LWPRn,m
Lsg ,p

problems are identical.
Note also that one instance of LWPRn,m

Lpg ,p
generates the same amount of key material as m

instances of LWPRn,1
Lsg ,p

, with the same amount of randomnesses. LWPRn,m
Lsg ,p

samples can
be easily converted into LWPRn,m

Lpg ,p
samples (by summing them). Hence, if the LWPRn,m

Lpg ,p
problem is not (q, τ, µ, ε)-hard, then the LWPRn,m

Lsg ,p
is not (q, τ + qθ(m), µ, ε)-hard either,

where θ(m) is the time complexity of adding m integers smaller than p.
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Figure 3: General adversarial model of our re-keying scheme.

2.3 A general adversarial model
While trying to break the LWPR assumption is one natural path to attack our re-keying
scheme, it is not the only option. Side-channel security also relies on the fact that the
re-keying function itself is well protected. Since crypto-physical dark matter computations
are key-homomorphic, masking is a natural candidate for this purpose. It leads to the
general adversarial model of Figure 3, where the first (red) attack path targets the leakage
of the re-combined ephemeral key L(k∗) (i.e., the LWPR assumption) while the second
(blue) attack path targets the noisy leakages of the shared computations K1�r, K2�r, . . . ,
Kd � r together with the leakage generated by the shares’ recombination.

We next formalize this adversarial model, starting with a definition of our re-keying
scheme and following with the key recovery experiment it aims to keep hard.

Definition 2 (Re-keying scheme). Let n ∈ N be a security parameter, and d ∈ N a
number of shares. A re-keying scheme RK is made of the polytime algorithms:

• Gen(1n, d). Generates the long-term key K and the initial sharing K1,K2, . . . ,Kd.

• SharedMult(K1,K2, . . . ,Kd, r). Generates the shares of the ephemeral key k∗ (i.e.,
k∗1 , k

∗
2 , . . . , k

∗
d) from the d shares K1,K2, . . . , Kd and a randomness r.

• Rec(k∗1 , k∗2 , . . . , k∗d). Generates the ephemeral key k∗ by recombining its shares.

• Refresh(K1,K2, . . . ,Kd). Replace the shares of the long-term key by fresh ones.

Definition 3 (Side-channel key recovery experiment Expskr
A,RK(n, d)). The experiment

processes in three (setup, challenge and final) phases specified as:

• Setup phase. A long term key K is generated in function of the security parameter
n and it is split into shares K1,K2, . . . ,Kd using the Gen(1n, d) algorithm.

• Challenge phase. The adversary A performs q re-keying queries. For each query, the
vector r is chosen at random, the SharedMult algorithm is computed on the shares
of the long-term key and r, and the shares of the long-term key are refreshed. The
vector r is then given to A with the following leakages:

– L(Ki � r) +Ni, for i ∈ [d] and some noise Ni – the shares’ leakages.
– L(Rec) +Nrec, for some noise Nrec – the leakage from the shares’ recombination.
– L(k∗), the noise-free leakage from the ephemeral key k∗.

• Final phase. The adversary A outputs a candidate for the long-term key k′. The
output of the experiment is defined to be 1 if k′ = k and 0 otherwise.
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We say that A succeeds, or breaks the re-keying scheme RK, with probability ε, time
complexity τ , memory complexity µ and q queries if after q queries in a challenge phase
bounded by these time and memory complexities, Expskr

A,RK(n, d) = 1 with probability ε.

Remark 2. While the second attack path of Figure 3 (targeting the masked computations)
is well investigated in the literature, the first attack path (targeting the LWPR samples)
is new. We therefore start by studying this second attack path in Sections 3 and 4. For
completeness, we also discuss the second attack path and how to choose the number of
shares to reach a given security level in Section 5.3. Whether both attack paths can be
combined in advanced attacks is an interesting scope for further research.
Remark 3. While the LWPR problem is stated for noise-free leakages (which is important
since the ephemeral key is unshared), the secure implementation of masking generally
requires a certain level of noise. Yet, contrary to the masking of nonlinear operations
for which this necessary level of noise may increase with the number of shares [BCPZ16],
the masking of a key-homomorphic primitive only requires a constant noise rate. Other
advantages of the re-keying approach for masking are recalled in Section 5.3.
Remark 4. The adversarial model of Figure 3 does not explicitly show that the ephemeral
key k∗ is used in a (tweakable) block cipher in Figure 1. Concretely, the leakage L(k∗)
therefore has to be understood as all the leakage that can be obtained on k∗. The
starting assumption we study in this paper is the one of an adversary who does not obtain
significantly more information than the Hamming weight of k∗. Analyzing more general
classes of leakages is an important open problem, as will be discussed in Section 6.

2.4 Functions over Fp and vectorial Boolean functions
2.4.1 Cryptographic criteria & p-ary functions

We adapt tools from the analysis of cryptographic criteria for Boolean functions (from Fn2
to F2 [CCH10a]) to study the cryptographic properties of functions from Fnp to Fp.

Definition 4 (p-ary function). For p a prime, a p-ary function f in n variables (an n-
variable p-ary function) is a function from Fnp to Fp. The set of all p-ary functions in n
variables is denoted by Fp,n, and |Fp,n| = pp

n . 2-ary functions are called Boolean.

Definition 5 (Algebraic normal form and algebraic degree (e.g., [Hou18])). We call
Algebraic Normal Form (ANF) of a p-ary function f its n-variable polynomial representation
over Fp (i.e., belonging to Fp[x1, . . . , xn]/(xp1 − x1, . . . , x

p
n − xn)):

f(x) =
∑

S⊂[0,p−1]n
aS

∏
i∈[n]

xSii

 =
∑

S⊂[0,p−1]n
aSx

S ,

where aS ∈ Fp. The ANF of f is unique, and the algebraic degree of f equals the global degree

of its ANF: deg(f) = max
{S | aS 6=0}

n∑
i=1

Si (with the convention that deg(0) = −∞). When

p = 2, this can be expressed in terms of Hamming weight: deg(f) = max
{S∈Fn2 | aS 6=0}

HW(S).

Definition 6 (Nonlinearity). For d ∈ N∗, the order-d nonlinearity nld(f) of a p-ary function
f ∈ Fp,n, is the minimum Hamming distance between f and all the functions in Fp,n of
degree at most d:

nld(f) = min
f∗, deg(f∗)≤d

{dH(f, f∗)},

where dH(f, f∗) is the Hamming distance |{x ∈ Fnp | f(x) 6= f∗(x)}| between f and f∗.



8 Exploring Crypto-Physical Dark Matter and Learning with Physical Rounding

2.4.2 Cryptographic criteria & vectorial Boolean functions

We give definitions on vectorial Boolean functions that will be used in the paper [CCH10b],
with criteria borrowed from the analysis of block ciphers that we will evaluate.

Definition 7 (Vectorial Boolean function). A function from Fs2 to Ft2 is called vectorial
Boolean function. For F an (s, t)-vectorial Boolean function, the t Boolean functions
fi : (x1, . . . , xs) 7→ (F(x1, . . . , xs))i, 1 ≤ i ≤ t, with (F(x1, . . . , xs))i the i-th bit of
F(x1, . . . , xs) are called the coordinate functions of F. The 2t−1 nonzero linear combinations
of the coordinate functions are called component functions.

Definition 8 (Degree). For a vectorial Boolean function F the algebraic degree Deg(F) is
defined as the maximum of the algebraic degrees of its coordinate functions.

Definition 9 (MELP (e.g., [Vau99])). Let a family of vectorial Boolean functions (FK)K
from Fs2 to Ft2 be parameterised by a key K. Its Maximum Expected Linear Probability
(MELP) is defined as:

MELP((FK)K) = max
a∈Fs2, b∈Ft2\{0}

1
|(FK)K |

∑
FK∈(FK)K

(
F̂K(a, b)

2s

)2

,

with F̂K(a, b) =
∑
x∈Fs2

(−1)b·FK(x)+a·x the coefficients of the Hadamard transform of FK .

Definition 10 (MEDP (e.g., [Vau99])). Let a family of vectorial Boolean functions (FK)K
from Fs2 to Ft2 be parameterised by a keyK. Its Maximum Expected Differential Probability
is defined as:

MEDP((FK)K) = max
a∈Fs2\{0}, b∈Ft2

1
|(FK)K |

∑
FK∈(FK)K

δFK (a, b)
2s

,

where δFK (a, b) = |{x ∈ Fs2 | FK(x) ⊕ FK(x ⊕ a) = b}| is the number of solutions of the
differential equation defined by the mask (a, b), with ⊕ the bitwise XOR.

Definition 11 (ε-AXU [CW79]). A family of keyed functions H : A→ B is ε-almost XOR
universal if:

∀x 6= x′ ∈ A, ∀d ∈ B, |{hK ∈ H, hK(x)⊕ hK(x′) = d}| ≤ ε|H|

In particular, for (FK)K an ε-AXU family of keyed functions from Fs2 into Ft2, we have:

MEDP((FK)K) = 1
2s max

a 6=0,b

1
|(FK)K |

∑
x∈Fs2

|{FK ∈ (FK)K ,FK(x)⊕ FK(x⊕ a) = b}| ≤ ε ,

since |{FK ∈ (FK)K ,FK(x)⊕ FK(x⊕ a) = b}| ≤ ε|(FK)K |.

3 Negative results: Small p or small n are not enough
The operations involved while computing a LWPR sample can be separated in two parts:
on the one hand a matrix-vector multiplication over Fp, on the other hand the physical
rounding function. The first part is a linear operation over Fp. Therefore, if the second
part has a cryptographic weakness in characteristic p, it could be used to break the LWPR
problem. As a warm-up, we show the LWPR problem cannot be hard with small p or
n values. For this purpose, we first show that the LWPRn,m

Lpg ,3
problem is no harder than

solving a quadratic system of equations in characteristic 3. We then give a minimum
(necessary) condition on the vector size n for the LWPR problem to be hard.
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3.1 F3 is not secure enough
We first focus on the function Lpg(y) when y is a single element of F3. In this case, the
adversary observes the real Lpg(y) which belongs to Z and can be embedded in F3. That
is, she observes the outputs of the 3-ary (ternary) function f(y) = HW(g(y)) mod 3
associating to each y ∈ F3 the Hamming weight of its binary representation.

This function has algebraic degree at most 2 since it is a ternary function in one
variable, and it can be determined by solving a linear system over F3. More specifically,
since f satisfies f(0) = HW(g(0)) = HW((0, 0)) = 0, f(1) = HW(g(1)) = HW((0, 1)) = 1,
and f(2) = HW(g(2)) = HW((1, 0)) = 1, we directly obtain f(y) = y2.

Next, coming back to the general case, we focus on the function Lpg(y) where y ∈
Fm3 . When the adversary embeds Lpg(y) in F3, it corresponds to the ternary function
f ′(y) = HW(gm(y)) mod 3. In other words, f ′ is simply the direct sum of m times
the previous function f, and its algebraic degree is equal to the one of f. In particular:
f ′(y) =

∑m
i=1 f(yi) =

∑m
i=1 y2

i , and f ′ has algebraic degree 2 for p = 3.
Finally, since each yi is the result of a product between a row of K and (r, 1) over F3,

the adversary can extract from each LWPRn,m
Lpg ,3

sample a quadratic relation over F3 in the
elements of K, namely:

Lpg(K � r) mod 3 =
m∑
i=1

 n∑
j=1

Ki,jrj + Ki,n+1

2

mod 3.

By collecting LWPR samples the adversary can linearize this quadratic system in at
most m((n + 1)(n + 2))/2 unknowns, and determine a valid key for these samples by
solving it. Hence, considering that solving a linear system through standard Gaus-
sian elimination has at most a cubic complexity, we conclude that LWPRn,m

Lpg ,3
is not

(O(mn2),O(m3n6),O(m3n6), 1)-hard, making such an instance hardly useful for practical
applications.2 This attack can be extended for all prime p’s. But since its complexity
increases exponentially with p, it will not be a security issue for p big enough:

Proposition 1. Let n,m, p ∈ N, p a prime, solving the LWPRn,m
Lpg ,p

problem can be reduced
to solving an algebraic system of degree p− 1 in characteristic p.

Proof. We begin by considering a function f ∈ Fp,1, the p-ary function defined for y ∈ Fp as
f(y) = HW(g(y)) mod p. Note that independently of the exact expression of the function
g, the HW function gives an element in Z, and considering its remainder modulus p always
gives a function from Fp to Fp. Since all functions from Fp to Fp are the functions of Fp,1,
the degree of f is at most p− 1 (see Definition 5). Then, we focus on the p-ary function
f ′ : Fmp 7→ Fp defined as y → Lpg(y) mod p. Note that:

f ′(y) =
(

m∑
i=1

HW(g(yi))
)

mod p =
m∑
i=1

HW(g(yi)) mod p =
m∑
i=1

f(yi).

Hence deg(f′) = deg(f) and since deg(f) ≤ p − 1, we obtain deg(f′) ≤ p − 1. Since
each yi is the result of the linear combination over Fp of the i-th row of K and the
public vector r, each LWPRn,m

Lpg ,p
sample leads to a degree at most p− 1 equation in the

key elements, in characteristic p. More precisely: Lpg(K � r) mod p = f′(
∑n
i=1 K1,iri +

K1,n+1, . . . ,
∑n
i=1 Km,iri+Km,n+1). Therefore, an adversary solving the algebraic system

given by the different r values recovers K and breaks the LWPRn,m
Lpg ,p

problem.
2 The system may give various solutions and not only the correct K. We ignore this issue since our

goal in this section is only to show that small p’s cannot guarantee higher security.
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3.2 Small vectors are not secure enough
Contrary to the previous result which holds for any m (and shows that crypto-physical
dark matter cannot be secure with small p’s even if implemented in parallel), we now
consider an attack against LWPRn,1

Lg,p
taking advantage of a small value of n, which only

imposes a condition for serial implementations. Roughly, when m = 1, each sample gives
the Hamming weight of a known linear combination of the key elements. We show next
how this information over different samples can lead to an attack, provided n is small.

First, note that each sample of LWPRn,1
Lg,p

has the form (r, u) with u = HW(g(
∑n
i=1 kiri+

kn+1)) since the key is reduced to a vector when m = 1. The value u belongs to Z, and
considering the binary decomposition g over ` bits, 0 ≤ u ≤ `, the function HW(g(·)) is
surjective over [0, `] and |HW(g(·))−1(u)| takes different values for u ∈ [0, `].

Let us denote as Au the set of preimages of u through HW(g(·)). Then, each sample
gives the information

∑n
i=1 kiri + kn+1 ∈ Au. So taking a ∈ Au, there exists one of the

|Au| equations
∑n
i=1 kiri + kn+1 = a which is the correct one. After collecting n + 1

samples, and the corresponding u1, . . . , un values, one of the
∏n+1
i=1 |Aui | linear systems in

n+ 1 unknowns over Fp characterizes the key. We next show that a few extra samples are
sufficient in order to verify if a candidate key is the right key. Consequently the LWPRn,1

Lg,p

problem can be solved by solving a certain amount of linear systems. We additionally
highlight how this amount evolves with n, and how to reduce it.

The inner product between (r, 1) and k is uniformly distributed in Fp (any non null
element modulus p generates the multiplicative group). Therefore the probability for a
wrong key k′ to give the same u is |Au|/p. Let us denote M = maxu∈[0,`] |Au|. Then,
the probability of having a wrong key consistent with t samples is lower than or equal to
(M/p)t. Considering M/p ≤ 1/2 with λ samples (where λ is the bit-security parameter)
already ensures that k′ is consistent with the samples only with a negligible probability.
More precisely, for 2`−1 < p < 2` where ` ∈ N∗ and g corresponding to the usual binary
representation over ` bits, we get M/p ≤

(
`
d`/2e

)
/2`−1, which allows us to determine the

number of extra samples to consider for rejecting the wrong keys.
The amount of linear systems over Fp to solve can be as high asMn+1, which is at most(
`
d`/2e

)n+1 for the definition of g we consider. For each linear system, the attack consists in
solving the system given by the first n+ 1 samples, which can be done in time O(n3) with
standard Gaussian elimination, and in testing if the obtained key is consistent with t ≤ λ
extra samples, which costs t inner products, evaluations of g and HW. Assuming the cost
of the t evaluations is smaller than O(n3) (the cost of solving the linear system), the attack
cost in time is O(Mn+1n3) and it requires at most n+ 1 +λ samples. Taking p as an upper
bound on M gives attacks when (n+ 1) log p+ 3 logn < λ. For mid-size p values that are
interesting for implementation purposes (e.g., p ≈ 28, 216, 232), this inequality therefore
sets a condition for the minimum vector size n. If not respected, we can conclude that the
resulting LWPRn,1

Lg,p
problem is not (O(n+ 1 + λ),O(pn+1n3),O(n3), 1− negl(λ))-hard.

This attack exists for all values of n, but its complexity increases exponentially with
n. In the following we show that even when generalizing the attack, the complexity still
increases exponentially with n, and also with m for LWPRn,m

Lpg ,p
.

Generalization. Having Mn+1 systems to solve is the worst case in the previously
described attack. Instead, an adversary can take more favorable samples, the ones such that
the values of |Au| are smaller. The values of |Au| for u close to 0 or to ` are smaller than for
medium Hamming weight, namely |Au| ≤

(
`
u

)
. Let us denote the set Sv = [0, v] ∪ [`− v, `]

and Mv = 2
∑v
i=0
(
`
i

)
. Collecting only the samples such that u ∈ Sv, the adversary reduces

the amount of linear systems to solve from Mn+1 to at most Mn+1
v . The probability of

getting n + 1 samples following this constraint can be determined with a binomial law
depending on v and the number of samples (it is not with probability 1 as in the simpler
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case). Indeed, since r is uniformly distributed, the probability Pk of having u ∈ Sv is
Pv =

(∑
u∈Sv |Au|

)
/p. Then, the probability of having at least n + 1 over q samples

satisfying this constraint is given by 1 − F (n, Pv, q) where F denotes the cumulative
distribution function of the binomial law with success parameter Pv and number of tries q.
The time cost of the attack is decreased to O(Mn+1

v n3), but the probability of success is
reduced (varying with the number of samples q and the choice of v). Finally, the complexity
of this modified attack remains exponential in n, showing that it applies for small values
of n and not after.

Note that when m increases, this attack on LWPRn,m
Lpg ,p

also becomes impractical. In
this case, a sample has the shape (r, u), where u =

∑m
i=1 ui is in Z with each ui obtained

as ui = HW(g(
∑n
j=1 Ki,jrj + Ki,n+1)). Hence 0 ≤ u ≤ `m. We denote Amu the set of

preimages of u through HW(gm(·)), the size of |Amu | is growing exponentially in m. Indeed,
writing |Amu | in terms of |Au| we get:

∀u ∈ [0,m`], |Amu | =
∑

u1,...,um∈[0,`]m
u1+···+um=u

m∏
i=1
|Aui |.

As for the case m = 1, the adversary can take advantage of samples where u is close to 0
or m`, but the probability of getting such samples is decreasing exponentially in m.

4 First analysis and proposed instance
We now move to the analysis of crypto-physical dark matter instances that can lead to
hard LWPR problems. As a first step in this direction, we put forward desirable security
properties that can be used in order to rule out a number of standard attacks. As already
mentioned in introduction, this analysis is admittedly not exhaustive: it is only proposed
to support our claim that re-keying in the noise-free model of Figure 2(b) can provide
stronger security guarantees than the initial proposal of Medwed et al. [MSGR10], which
is only secure in the noisy model of Figure 2(a). We proceed in two steps for this purpose.
First, we extend the negative results of the previous section which analyze our construction
in Fp. We show that with sufficiently large p and n values, we can lower bound the
algebraic degree and the nonlineariy of the function generating LWPR samples. Next,
we complement this analysis with an evaluation in F2. In this case, we focus on the
cryptographic properties of K � r when interpreted as a function over binary fields, and
focus on its differential/linear properties and its algebraic degree.

4.1 Analysis in characteristic p

As mentioned in Section 3, the product K � r is linear over Fp. Hence, our focus is on the
(linear invariant) cryptographic criteria of the remaining function Lg considered over Fp,
denoted as f′.3 In Section 3.1, we saw an upper bound on the degree of such a function.
We now prove a lower bound on this degree. It allows us to thwart attacks based on solving
a linearized algebraic system. Thanks to this bound on the degree, we also derive a bound
on the nonlinearity of small order of the function f′. It enables us to prevent attacks based
on solving low-degree noisy algebraic systems, relying on a good approximation of f′ by a
low degree function. We first introduce the iterated Hamming weight function, similarly
to the iterated logarithm, that will be used to prove the lower bound on the degree.

3 Criteria over Fi
p could be considered too, but since the Hamming weight function only exceeds p

when m ≥ p
log p

, such a generalization will not lead to relevant observations for our intended instances.
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Definition 12 (Iterated Hamming weight function). Let n ∈ N, we define the iterated
Hamming weight as:

itH(n) =

 0 if n ≤ 1,

1 + itH

(
max

2≤x≤n
HW(g(x))

)
if n > 1.

This definition allows us to prove the following two results:

Proposition 2 (Degree lower bound). Let m, p ∈ N∗, p odd prime, and f ′ the p-ary
function defined as Lpg(y) mod p, then deg(f ′) ≥ (p− 1)

1
itH(p−1) .

Proof. Let us consider f the p-ary function in one variable which associates to each element
y ∈ Fp the element in Fp corresponding to HW(g(y)). We show that applying f iteratively
itH(p− 1) times gives the function yp−1: the one associating 0 to 0 and 1 to any nonzero
element. Note that f(0) = HW(g(0)) = 0, f(1) = HW(g(1)) = 1 and (considering the
order in Z) for x ≥ 2, we have 1 ≤ f(y) < y. Then, for each y 6= 0 there is a number of
iteration s ∈ N∗ such that for all t ∈ N∗, t ≥ n, f◦t(y) = f(f(· · · (f(y)) · · · )) = 1, where we
denote f◦t the function consisting in iterating t times f.

By construction the function itH(·) is non decreasing. Hence, for all x ∈ [p− 1] we have
itH(x) ≤ itH(p− 1) and for all y ∈ F∗p we obtain f◦itH(p−1)(y) = 1. Since f◦itH(p−1)(0) = 0 we
can conclude that f◦itH(p−1) and yp−1 take the same values over the whole Fp, hence it is the
same p-ary function. Due to the uniqueness of the ANF we use that deg(f◦itH(p−1)) = p− 1,
and therefore deg(f) ≥ (p− 1)

1
itH(p−1) (since for s ∈ N∗, deg(f◦s) ≤ deg(f)s).

Eventually, the function f′ is the direct sum of m times the function f. Therefore
deg(f ′) = deg(f), which allows us to conclude.

Proposition 3 (Order-d nonlinearity lower bound). Let m, p ∈ N∗, p odd prime, and f′

the p-ary function defined as Lpg(y) mod p, then ∀d ∈ [d(p−1)
1

itH(p−1) e−1], nld(f ′) ≥ pm−1.

Proof. We use a result on the p-ary Reed Muller codes. The p-ary Reed Muller code of
order d and length pn denoted RMp(d,m) consists in all the pm tuples corresponding to
(h(y))y∈Fmp where h is a m-variable p-ary function of degree at most d. Abusing notations,
we note h ∈ RMp(d,m). For all d ∈ N such that d < p, the minimal Hamming distance of
such code is (p− d)pm−1 (e.g., [PW04], page 3).

Since deg(f ′) ≤ p − 1, f ′ ∈ RMp(p − 1,m), and therefore for all h ∈ RMp(p − 1,m)
such that h 6= f′ we have dH(f, h) ≥ pm−1. Using Lemma 2 for all d ≤ d(p− 1)

1
itH(p−1) e − 1

we know that f ′ 6∈ RMp(d,m), therefore f′ is at Hamming distance at least pm−1 from all
functions of degree at most d, which allows to conclude.

Finally, we can also prove a better bound for the first-order nonlinearity:

Proposition 4 (First-order nonlinearity lower bound). Let m, p ∈ N∗, p odd prime,
` = dlog(p − 1)e, and f ′ the p-ary function defined as Lpg(y) mod p, if m` < p − 1 then
nl1(f ′) ≥ pm −max

(
pm−1(m`+ 1),

(
`m
d`m/2e

))
.

Proof. The first-order nonlinearity gives the minimum Hamming distance to constant
functions and degree one functions. We study these two cases separately for this proof.

All degree one m-variable functions la(y) have an ANF of the following shape: a0 +∑m
i=1 aiyi, where at least one of the ai is not null for i ∈ [m]. Without loss of generality,

let us consider am 6= 0. Then, for any fixed z ∈ Fm−1
p , the function la(z,ym) is a bijection

of Fp since Fp is a prime field. It implies that la takes each value of Fp exactly pm−1 times.
The function f ′ has values only in the range [0,m`], and since m` < p− 1, all the elements
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in [m`+ 1, p− 1] have no preimage through f ′. It allows deriving the following bound on
the distance between f ′ and any degree 1 function: HD(la, f ′) ≥ pm−1(p−m`− 1).

The closest constant function to f ′ in Hamming distance is the one equal to the value
of Fp taken the most by f ′. Since m` < p− 1, the value of f ′ seen as an integer in [0, p− 1]
is equal to HW(g(y1), . . . , g(ym)) considered over Z. The binary vector (g(y1), . . . , g(ym))
has length `m, and the maximal number of length-`m binary vector having the same
Hamming weight is given by the central binomial coefficient

(
`m
d`m/2e

)
. Hence, the value

taken the most by f′ is taken at most
(

`m
d`m/2e

)
times, which gives the following distance to

any constant function c(y): HD(c, f ′) ≥ pm −
(

`m
d`m/2e

)
.

We finally conclude from the two parts that the following holds:

nl1(f ′) = min
(

min
f∗, deg(f∗)=1

{HD(f ′, f∗)}, min
f∗, deg(f∗)≤0

{HD(f, f∗)}
)
,

≥ min
(
pm−1(p−m`− 1), pm −

(
`m

d`m/2e

))
,

≥ pm −max
(
pm−1(m`+ 1),

(
`m

d`m/2e

))
.

Discussion. Various techniques can be used to solve a noisy algebraic system of fixed
degree. We use the higher-order correlation approach of [Cou02] to encompass different
attacks and derive the corresponding complexities. Higher-order correlation attacks consists
in approximating f ′ by a degree d function h, and in solving systems of equations until
one is such that f′ and h coincide on all these equations. In the system of equations given
by the output of f ′, only the key elements are unknown. Therefore, solving the correct
algebraic system allows retrieving the key. Following, the time complexity of solving a
noisy degree d system of equation over Fp can be written as C(1− ε)−D with:

• C the time complexity to solve a degree d system of equations in V variables over Fp,

• (1− ε) the probability of the approximation to be correct for one equation,

• V is the number of variables (i.e., at least the number of key variables k, but it can
be more if techniques introducing new variables –such as linearization– are used).

• D the quantity of data necessary (at least the number of variables V ),

For illustration, we consider the complexity of linearizing the degree d system and solving
the linear system obtained. It allows deriving concrete estimations of the complexity for
three different attacks. For this purpose, we first observe that the number of variables
after linearization is Vd = |{v ∈ [0, p− 1]k, 1 ≤

∑k
i=1 vi ≤ d}| and C = O((Vd)ω), where

ω is the exponent in the complexity of Gaussian elimination.
In the first case, the adversary aims to solve an exact algebraic system. It corresponds

to ε = 0 and d = deg(f′). The time complexity is then O((Vdeg(f′))ω) and the bound on
the degree from Proposition 2 allows us to conclude. The second attack targets a noisy
linear system corresponding to ε = nl1(f′)/pm and d = 1. In this case, V1 = k and the
time complexity is at least O(kω(pm/(pm − nl1(f ′)))k). Hence, the bound of Proposition 4
provides the required estimation. Finally, if the adversary targets a noisy system of higher
algebraic degree d > 1, we have ε = nld(f′)/pm. The time complexity is then at least
O(V ωd (pm/(pm − nld(f ′)))Vd) and the bound of Proposition 3 allows us to conclude.

Those results illustrate that the proposed crypto-physical dark matter operations
lead to LWPR samples that resist some standard cryptanalysis techniques. We note
that the attacks outlined are not claimed to be optimal. For example, using Gröbner
basis algorithms such as F4 [Fau99] should improve over the aforementioned linearization
techniques, which we leave as an interesting scope for further investigations.



14 Exploring Crypto-Physical Dark Matter and Learning with Physical Rounding

4.2 Analysis in characteristic 2
We now consider a complementary analysis of the crypto-physical dark matter function
f = Lg(K � r) interpreted over binary fields. In contrast with the previous results in Fp
where the security of the related LWPR problem mostly depends on the Hamming weight
function, such a leakage function is actually weak over binary fields (e.g., Lg(.) mod 2 is
a linear relation). Therefore, we rather rely on hK = K � r in Fp to provide security in
the binary case. Our main result in this direction is to show that the MEDP (Maximum
Expected Differential Probability) of hK = K � r can be bounded by leveraging existing
results on universal hash functions. We complement this result by heuristic investigations
on small instances from which we conclude that its MELP (Maximum Expected Linear
Probability) follows a similar trend, and that its algebraic degree is close to maximal.

For this purpose, we first define the vectorial Boolean functions we will study. Denote
` the smallest integer such that 2` > p, that is the size in bits of the representation of an
element of Fp. Denote x[2] ∈ Fi2` a representation of the vector x[p] ∈ Fip over a binary field,
obtained by representing each element of x in F2` . We consider the family of functions
h′K : Fn2` → Fm2` defined for each key K ∈ Fm×(n+1)

p by h′K(r[2]) = (K1...n ·r[p] + Kn+1)[2],
where K1...n is the matrix made of the n first columns of K.

4.2.1 Differential analysis

We argue about the security of our construction by exhibiting its MEDP. We note that this
security property is commonly studied for block ciphers and message authentication codes,
but it is usually hard to obtain a good estimate of it without constraining assumptions.
Here, we get the exact MEDP of the construction. The very first universal family of hash
functions, called H1, introduced by Wegman and Carter in [CW79], allows us to derive
this result for our construction. It works in two steps: (1) we show that h′ with m = 1
is α

p -almost XOR universal with α close to 1; (2) we use tweaks of classical results on

concatenation to show that h′ is
(
α
p

)m
XOR universal. Concretely, our construction h′

with m = 1 is a modification of H1 where the multiplication over Fp is replaced with a
scalar product over Fp. Denote x[2] the natural decomposition of x ∈ Fp over F`2, with
2` > p (i.e., seeing x in N and using its decomposition in basis 2). It yields:

Proposition 5 ((k�r)[2] is AXU). Let k be an element of (Fnp \{0})×Fp. Define hk(r) =∑n
i=1 kiri + kn+1 mod p. Then, the family (h′k)k defined for all k as h′k(r) = hk(r)[2]

from Fnp into F`2, with 2` ≥ p, is α
p -almost XOR universal, with α = 2`

p

(
1 + 1

pn−1

)
.

Proof. For x 7→ x[2] a function from Fp to F`2, consider β such that for any i ∈ F`2, |{a ∈
Fp | a[2] = i}| ≤ β . Let K a random variable over the universe of keys Ω = (Fnp \ {0})×Fp,
which has cardinality (pn − 1)p. Let r, r′ ∈ Fnp , r 6= r′. Denote k ∈ Ω = (k1, . . . ,kn+1),
hk : Fnp → Fp, hk(r) =

∑n
i=1 kiri + kn+1. Then for any d ∈ F`2:

Pr(hK(r)[2] ⊕ hK(r′)[2] = d),

=
∑
u∈F`2

Pr((hK(r)[2], hK(r′)[2]) = (u, u⊕ d)),

=
∑
u∈F`2

∑
(a,b)∈F2

p

Pr((hK(r), hK(r′)) = (a, b)) Pr((a[2], b[2]) = (u, u⊕ d)) .

For any couple (a, b) ∈ F2
p and for any r, r′ ∈ Fnp , r 6= r′, without loss of generality assume

r 6= 0, there are at most pn−1 values of k such that (hk(r), hk(r′)) = (a, b). Details on
this are given in Appendix A, in particular this justifies the supplementary key addition.
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Indeed, it is a system of 2 linear inequivalent equations in n+ 1 independent variables,
hence it has n− 1 degrees of freedom. Thus:

Pr(hK(r)[2] ⊕ hK(r′)[2] = d) ≤
∑
u∈F`2

∑
(a,b)∈F2

p

pn−1

|Ω| Pr((a[2], b[2]) = (u, u⊕ d)),

≤
∑
u∈F`2

∑
(a,b)∈F2

p

pn−1

pn+1 − p
Pr(a[2] = u) Pr(b[2] = u⊕ d),

≤
∑
u∈F`2

pn+1

pn+1 − p

(
β

p

)2
,

= pn+1

pn+1 − p
2`β2

p2 ,

= 1
p

2`

p
β2
(

1 + 1
pn − 1

)
,

= 1
p
αβ2 .

The second line uses that for events A and B, Pr(A∩B) = Pr(A | B) Pr(B) ≤ Pr(A) Pr(B).
With 2` > p and (.)[2] the binary decomposition, we have β = 1, which yields Pr(hK(r)[2]⊕
hK(r′)[2] = d) ≤ α

p , hence (h′k)k is α
p -AXU.

Note that this proposition works for any ` and x 7→ x[2], including for 2` < p and
x 7→ x[2] the reduction modulo 2` that has β =

⌈
p
2`
⌉
, which generalizes the result from

Carter and Wegman. Note also that α ' 1 for p and n not too small and 2` close to p.
From Proposition 5, we have that (h′k)k is α

p -almost XOR universal. Using a refinement of
the result on the concatenation of universal functions [Sti91], we get the corollary:

Corollary 1 ((K�r)[2] is AXU). Let K be a random matrix of ((Fnp \{0})×Fp)m. Define
hK(r) = K1...n · r + Kn+1, for r ∈ Fnp . The family (h′K)K defined for all K as h′K(r) =
(((hK(r))1)[2], . . . , ((hK(r))m)[2]) from Fnp into (F`2)m is

(
α
p

)m
-almost XOR universal.

Proof. Denote eK : Fnp → Fp the parallel computation in h′, i.e., eK(r) = (
∑n
i=1Kiri +

Kn+1 mod p)[2] for K a random variable in Fn+1
p . h′ is made of m parallel versions of

eK(i) with independent keys K(i), but identical input value r. Thus for any r 6= r′,
eK(i)(r) 6= eK(i)(r′) for all 1 ≤ i ≤ m. Thus for any r 6= r′,

Pr((h′K(1)(r))1 ⊕ (h′K(1)(r′))1, . . . , (h′K(m)(r))m ⊕ (h′K(m)(r′))m = (d(1), . . . , d(m)))

≤
∏

1≤i≤m
Pr(eK(i)(r(i))⊕ eK(i)(r′(i)) = d(i)) ≤

(
α

p

)m
,

as we can apply Proposition 5 on the m independent eK(i) which all have inputs r 6= r′.

From this result, we conclude that (h′K)K is
(
α
p

)m
-almost XOR universal. Therefore

MEDP((h′K)K) ≤
(
α
p

)m
. For p not too small (e.g., the instance of Section 4.3), the factor

α can be neglected, as discussed for Proposition 5, and we get MEDP((h′K)K) ≤
(

1
p

)m
.

Discussion. Security against differential attacks is a standard requirement for crypto-
graphic primitives [BS90]. The MEDP of our construction is close to optimal, which can
can be interpreted as follows: set a differential (a, b) through the target function, then a
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small MEDP implies that for a random choice of key, this differential will have a small
probability. This does not guarantee that for any given choice of key, no differential has a
high probability. It rather guarantees that the differential (a, b) that maximizes the MEDP
will only maximizes the differential probability of a few keys, and that for a given key, few
differentials have a high probability. (We checked experimentally that these guarantees
were verified for small instances of our construction). Our analysis therefore suggests that
for any choice of key, finding a high probability differential is hard.

We note that the supplementary key addition of our construction is required for our
proof, which leverages the one of Carter and Wegman (see Appendix A). Without it this
result does not hold, and we tested experimentally that the MEDP can be significantly
worse in that case, depending on choices of p and n (and can even be equal to one for
small n values). It is an interesting open question to find out whether a slightly worse (yet,
still sufficient) MEDP could be proven without this supplementary key addition for large
enough p and n values. We note also that since our re-keying function works with random
inputs, finding a good difference anyway requires birthday complexity (so overall, we do
not expect differential attacks to be significant threats against our construction).

We finally mention that truncated differential attacks [Knu94] are of particular interest
for our re-keying scheme, as it outputs m words of Fp by independent parallel computations.
It is therefore natural to consider the probability of obtaining a certain difference on one
output word, regardless of the rest of the output. From Proposition 5, we have that the
MEDP of such a truncated differential is less than 1

p , which is excellent for an output in
Fp, thus discarding the possibility of predicting the output difference.

4.2.2 Linear, algebraic and other cryptanalyses

Security against linear cryptanalysis is another standard requirement for cryptographic
primitives [Mat93]. It consists in finding affine relations between the input and output
bits of a primitive, that hold with high probability. In turn, it can lead to distinguishers,
key-recovery attacks, and also to being able of predicting output bits without the key.
Resistance against linear attacks is classically measured with the MELP. However, we
are not aware of results bounding the MELP of a universal hash function that would lead
to theoretical results similar to the MEDP ones. Hence, we only argue about resistance
against linear attacks experimentally. We analyzed reduced instances with m = 1 and
small primes (i.e., p up to 251) and values of n (i.e., n up to 4) and observed that the
MELP follows a similar trend as the MEDP, and is always less than 1

p for each output word.
We conjecture that for any key, finding a linear relation with high probability is hard.

We also evaluated the algebraic degree of the same small instances as used to heuristically
assess the MEDP of our re-keying function and observed that it was always maximum (equal
to `), which guarantees that no algebraic attack can be easily performed. In particular,
this is different from the case of the scalar product (with or without the supplementary
key addition) over F`2. In this binary field case, the MEDP is still optimal (in particular
Proposition 5 holds) but the scalar product is linear. Therefore, higher-order differential
attacks [Lai94, Knu94] can be performed exploiting the low degree of the function (which
is 1). Having a high degree, our construction over Fp avoids such issues, and should resist
to other attacks exploiting a low-degree function, such as cube attacks [DS09].

Finally, some other techniques seem suitable to analysing our construction. For instance,
Divide-and-Conquer techniques seem relevant on the m independent outputs of h′K , and
Guess-and-Determine techniques [HR00] could be interesting as the master key K is never
modified. Investigating those and more advanced techniques is left for future work.
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4.3 Exemplary instance (and variants)
Relying on the previous analyses, we propose to consider an instance of crypto-physical
dark matter based on a Mersenne prime p = 231 − 1. We aim for the generation of a
128-bit key in the parallel case and therefore consider m = 4 (the generated key will have
entropy ≈ 4× 31, which is sufficient for the intended applications). As for the size of the
secret matrix n, we set it based on the minimum condition (n+ 1) log p+ 3 logn ≥ λ, with
λ ≈ 128, and consider n = 4. More conservative solutions could be considered (especially
for serial implementations, see the discussion in Section 6), but we assume these values are
a good starting point in order to stimulate external cryptanalysis. We expect that this
instance provides a concrete security such that the first attack path of Figure 3 is more
challenging than targeting directly the long-term key shares via a side-channel attack like
in Section 5.3, up to significantly higher number of shares than the proposal of Medwed et
al. [MSGR10]. Variants that would be worth being investigated in the future include:

• Using a Toeplitz matrix for K. This would reduce the key size at the cost of
introducing more redundancy in the computations, which could be exploited via
mathematical cryptanalysis (extending the results in this paper) or side-channel
cryptanalysis (e.g., enabling so-called horizontal attacks [BCPZ16]).

• Removing the additional key addition (i.e., considering a nm-word key rather than
a (n+ 1)m-word key). As mentioned in Section 4.2.1, a first step in this direction
would be to evaluate how much the MEDP can be preserved in this case.

5 Implementation results
The previous section showed that a re-keying based on crypto-physical dark matter is sig-
nificantly more secure than the initial proposal of Medwed et al. [MSGR10], under realistic
leakage assumptions. We now discuss the other part of our contribution. Namely, we show
that the proposed instance is also significantly more efficient than the wPRF proposal of
Dziembowski et al. [DFH+16]. In order to make the two solutions somewhat comparable
(given that they are providing security in quite different models), we consider a hashed
version of the LWR-based wPRF (that gives a PRF in the random oracle model [BR17]),
implemented on a a modern FPGA in [BSS20], which we compare with the full TBC-based
re-keying scheme of Figure 1(b), with an AES-based TBC following [LRW11]. We then
propose a masked implementation of our new solution relying on a similar hardware
architecture as [BSS20] and exhibit the improved performances it achieves. We finally
analyze the side-channel security of this masked crypto-physical dark matter and discuss
how to select the number of shares in order to reach a given security target.

5.1 Hardware architecture
Our architecture to perform crypto-physical dark matter computations is illustrated in
Figure 4. As the architecture in [BSS20], it is designed to leverage the key-homomorphism
of the re-keying function by processing the shares serially. It is divided in two main blocks.
The first one is composed of the different memories that hold the shares of K, the value
of r and the randomness required to refresh the shares. The latter is embedded into
the memory blocks and is added to each word of K after it has been read from memory.
The second block is the computation core. It includes the logic to perform the different
dot product operations (organized as a pipeline for efficiency) and an accumulator that
recombines the intermediate results. For security and performance (in particular latency)
reasons, we perform 5 multiplications in parallel, leading to an internal bus of 160 bits.
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Figure 4: Overview of the crypto-physical dark matter hadrware architecture.

The detailed architecture of the memory block is shown in Figure 5. The r memory
consists of a 128-bit long register that is fed with the appropriate value at the beginning
of an execution. Both the key and the randomness memories are composed of d (i.e.,
the amount of shares used) independent memories of d ∗m ∗ (n+ 1) ∗ 32 = d ∗ 640 bits.
In practice, these are mapped to BRAM blocks which are dedicated memory resources
embedded in the FPGA. While processing a specific share, all the memories are read and
the appropriate output is selected. The selection mechanism is straightforwardly done
using a multiplexer for the randomness memory. An additional register barrier is added in
front of the selection multiplexer in order to avoid physical defaults such as glitches that
may lead to reductions of the security order [MPG05]. Additionally, the register barriers
corresponding to memories that are not expected to be read are reset. The values that are
read in memory are then directly forwarded to the computation pipeline.

 K0 

 K1 

 Kd

mem r

Ki

r

+ -

 K

Shift reg

Figure 5: Architecture of the memory block.
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A dedicated mechanism is used in order to refresh the key values that are forwarded
to the computation core. Each share is directly re-randomized after being used, with a
(linear) refresh mechanism that is similar to the one in [BSS20]. Namely, we first generate
uniform 31-bit values thanks to four 128-bit LFSRs and output a uniform value over Fp
thanks to a simple rejection sampling (i.e., we output a single 31-bit value that is different
from 231, and use four LFSRs so that they jointly fail with low probability). We then
refresh the key words and write them back in the appropriate memory.

The data output by the memory block directly feeds the computation core by entering
the modular multiplication layer. As depicted in Figure 6, the latter in composed of 5
independent modular multiplications. We rely on the DSP resources embedded in the
FPGA to do so, and more precisely on the multiplier units that they contain.
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Ki [63:32]

Ki [95:64]

Ki [127:96]

Ki [159:128]

r [31:0]

+

+

+

+

r [63:32]
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+

0

+

0

+

0

+

0

+

0

k* [31:0]

k* [63:32]

k* [95:64]

k* [127:96]

k* [159:128]

Figure 6: Architecture of the dot product pipeline.

We use instances of the solution presented in [KSHS17] in order to perform the modular
multiplications. This solution mixes an efficient utilization of the DSP resources combined
with an adder tree specifically designed to limit the logic depth. Additionally, it allows
easily incorporating the modular reduction with limited overheads.

Following the modular multiplication, the modular adder tree is split in a two-level
pipeline to improve the maximal clock frequency that can be reached. It turns out the
register between the second and the third addition layers has a significant impact on the
clock frequency, improving its maximal value from 50MHz to 80Mhz at a low logic cost
(see Table 1). The difference with the solution in [BSS20] which reaches 90MHz without
pipeline is due to the additional logic required to perform the modular reductions.

Eventually, an accumulator ends the pipeline and is composed of 5 independent adders
with feedback. As when a refreshed key share is written back in the memory, the data
coming from the dot product pipeline is fed to all the adders and only a specific one is
activated depending on the line processed. Following this configuration, the final session
key value is obtained once all the lines of all the shares have been processed.
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5.2 Performance evaluation
We now analyze different performance metrics for our new LWPR-based proposal and
compare them with the LWR-based solution of Dziembowski et al. [DFH+16].

We start with the size of the key storage which is among the easiest to quantify. It is
represented in Figure 7 and simply illustrates the difference between the (128× 32)-bit
key that the LWR-based solution requires, to be compared with our (20× 32)-bit key.
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Figure 7: Key storage in function of the number of shares.

We follow with the randomness requirements of the two proposals, which are illustrated
in Figure 8. They are proportional to the key size, but the gap between the LWR-based
solution and ours is amplified due to the fact that the output of each inner product
in [DFH+16] has to be rounded to 10 bits for security reasons, and dlog2(d)e bits are
additionally lost due to the error correcting code that is needed in order to deal with the
carry propagations that make the LWR-based wPRF almost key-homomorphic only.

The implementation cost of the two proposals on a Xilinx Kintex 7 is summarized in
Table 1. As previously mentioned, our architecture is a parallel one performing P = 5
modular multiplications concurrently. The one of [BSS20] uses levels of parallelism
P = 1, 2, 4 and 8. We report the P = 4 and P = 8 cases which are the most comparable
(since the P parameter also sets the number of DSP blocks used by the FPGA, that is worth
4× P ). The figures exclude the key storage that is implemented in the FPGA BRAMs
blocks. The LWR-based solution additionally includes an implementation of Keccak to
hash the input. The LWPR-based solution additionally includes the implementation of an
AES-based TBC. We conclude from these figures that both solutions lead to reasonable
costs and their area requirements should not be a problem for practical deployment. We
additionally note that in the LWPR case, the cost of the AES-based TBC implementation
(which leverages a 32-bit architecture) amounts for 650 registers and 629 LUTs.

Eventually, the most relevant metric to highlight the performance gains of the crypto-
physical dark matter is the latency given in Figure 9 (excluding the generation of the
masking randomness but including the input hash function for the LWR-based solution,
and the AES-based TBC for the LWPR-based one). It underlines that even when the
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Figure 8: Randomness requirements in function of the number of shares.

Table 1: Implementation cost of the re-keying functions.

Regs LUTs
d 2 4 8 2 4 8

LWR (P=4) 3835 4369 5427 6678 6860 7012
LWR (P=8) 4601 5647 7757 7066 7209 7480

LWPR (no pipe) 1780 2106 2752 3902 4272 8727
LWPR (pipe) 1938 2266 2912 3944 4182 8686

LWR-based solution is implemented with a large level of parallelism (e.g., P = 8), the
LWPR-based solution is orders of magnitude faster. Furthermore, the lower part of the
figure shows that for 20 shares, a full re-keyed TBC can be performed in approximately
160 cycles (to which one must add the cost to generate 12,500 random bits, as per Figure 8,
which means a quite reasonable 80 bits per cycle if to be generated on-the-fly).

5.3 Physical security
The previous performance evaluations show that crypto-physical dark matter can be a very
competitive option for higher-order masked implementations. For completeness, we next
provide the results of a practical security evaluation for such masked implementations,
using the same worst-case approach as in [BSS20]. We first recall some generic advantages
of key-homomorphic primitives for masking, then describe how to evaluate/bound their
concrete (e.g., power consumption) leakage, and finally show how to choose the number of
shares needed to reach a given security target thanks to this leakage bound.

Advantages of key-homomorphic primitives for masking. In short, and as carefully
discussed in [BSS20], key homomorphic primitives enable a significant simplification of
both the design of secure masked implementations and their evaluations.

A first interesting feature for this purpose is that they are trivial to analyze from a
probing security viewpoint, since they enable the independent manipulation of the shares.
Key-homomorhic primitives do not suffer from composability issues and the only refreshing
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Figure 9: Latency in function of the number of shares.

they need is for the shares of their long-term key, which can be performed using cheap
schemes (with linear overheads), as discussed in [BDF+17], Section 8.2.

A second interesting feature is that they mitigate the risks of physical defaults (like
glitches or transitions) leading to shares’ re-combinations. This benefit again comes from
the possibility to manipulate shares independently. In case of shares-serial implementations
like the one we chose, they can additionally reduce the risks of couplings [CBG+17].

A third advantage is that each key share is manipulated minimally (i.e., a constant
number of times, independent of the security order). This ensures an inherently good
resistance against horizontal attacks, formalized by a constant noise rate.

Eventually, a consequence of the previous advantages is that the evaluation of such
masked implementations is scalable. For example, increasing the number of shares in
a block cipher implementation usually benefits from order-specific optimizations and
implies some re-design of the internal components that consequently requires repeating the
(time-consuming) side-channel security evaluations for each security order. By contrast,
increasing the number of shares of a key-homomorphic architecture boils down to re-using
exactly the same component multiple times, avoiding the need to repeat evaluations.

Evaluation of the shares’ leakages. The side-channel security of a masked implemen-
tation depends on two main assumptions: the shares’ leakages must be sufficiently noisy
and independent [DFS19]. As discussed and evaluated in [BSS20], the independence is
essentially guaranteed by design in a shares-serial key-homomorphic architecture. Since
we use the same architecture, we do not detail the detection tests needed to confirm this
assumption and rather focus on the level of noise in a prototype implementation.

For this purpose, we first synthetized our design for the Xilinx Spartan 6 FPGA
available on the SAKURA-G board.4 Its clock frequency was set to 6 MHz. The synthesis
was performed with the “keep hierarchy” flag avoiding the tool to trim out useful registers.
The leakage signal was captured with a Tektronix CT-1 probe. This signal was sampled
with a Picoscope 5244d at a rate of 500 MSamples/s, with 12-bit resolution.

An exemplary power traces is given at the top of Figure 10. It corresponds to a 3-share
implementation that generates a fresh key in ≈ 12 cycles (i.e., 4 × 3 cycles, where the

4 http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html.

http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html
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4 factor is the number of 31-bit key words generated to obtain a 124-bit key and the 3
factor is the number of shares). As a standard first step in our evaluations, we estimated
the 8-bit side-channel Signal-to-Noise Ratio (SNR) [Man04], which is represented at the
bottom of the same figure. We observe that the level of SNR varies between bytes and
selected the most leaking byte for our following (worts-case) investigations.5
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Figure 10: Top: exemplary leakage trace. Bottom: SNR for exemplary target bytes.

As a standard second step in our evaluations, we used the SNR plots to select Points-of-
Interest (POIs) in the traces, represented by the crosses in Figure 10. We then estimated
the information leakage that can be extracted from the corresponding multivariate distri-
bution under a Gaussian assumption, using the information theoretic metrics and bounds
introduced in [BHM+19]. Namely, we estimated the Gaussian Perceived Information (gPI)
and the Gaussian hypothetical information (gHI) using the sampling based estimation
described in this reference. The convergence of these two metrics for the 10 POIs we
selected is illustrated at the top of Figure 11. The gHI gives a bound on the amount of
information that can be extracted with such a Gaussian model. We assume that it provides
a reasonable approximation of the worst-case security level of our implementation (with the
usual cautionary remark that better measurement setups and models can always improve
the gPI and its corresponding gHI bound). Since we consider an 8-bit adversary while
attacks based on 32-bit guesses can be performed by determined adversaries, we multiplied
our leakage estimation by a factor 4 to make our approximations more conservative.

Selecting a number of shares. Eventually, based on the previous estimations of the
information leakages and assuming that the independence condition is fulfilled for our
implementations, we use the results in [DFS19] in order to select the number of shares
needed to reach a target security level. In short, they bound the data complexity N of
any side-channel attack against a masked implementation by the inverse of the the mutual
information obtained on its shares (which we approximate with the aforementioned gHI)
raised to the number of shares d. It leads to the following inequality:

N ≥ c

MI(K; L)d ≈
c

gHI(K; L)d ,

5 All the SNRs in Figure 10 are for the first share. The following shares give slightly less leakage due
to the progressive filling of the pipeline described in Figure 6, which generates algorithmic noise.
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Figure 11: Top: convergence of IT metrics. Bottom: security level.

with c a small constant depending on the size of the key hypothesis and the target success
rate [dCGRP19] (e.g., c = 10 is a standard value for 8-bit guesses). The resulting data
complexities are given at the bottom of Figure 11 in function of the number of shares. They
confirm that high security can be obtained against the second attack path of Figure 3.

6 Conclusions & open problems
We introduce crypto-physical dark matter as a provocative solution to improve the security
and performances of state-of-the-art re-keying schemes. Its main idea is to combine simple
computations in a medium size prime field with a physical leakage function that we
assume operating in a sufficiently different field. As feasibility results, we show that such
a combination ensures a number of relevant cryptographic properties for the well known
Hamming weight leakage function, and that it leads to excellent performances in hardware,
leading to a number of stimulating research challenges that we detail next.

From a (both mathematical and implementation) security viewpoint, the preliminary
analyzes of this work could be extended towards more advanced attacks, in order to refine
the understanding of the complexity to solve the LWPR problem. Another important
open question is to generalize our conclusions to broader classes of leakage functions. For
example, obtaining results for any “linear” leakage function, as modeled in [SLP05], appears
as a natural first step. Eventually, and despite our current security analyzes suggest that
some degree of parallelism can make the LWPR problem harder, it would be interesting
to study whether crypto-physical dark matter could lead to secure implementations in
software (e.g., 32-bit) devices, that are in general difficult to secure against side-channel
analysis and will likely require stronger instances and larger number of shares.

Besides, from an application viewpoint, the integration of the proposed re-keying
scheme in leakage-resilient modes of operation and/or the efficient protection of decryption
algorithms with them would be worth being investigated as well. A natural starting point
is the work of Mennink on fresh re-keying applied to authenticated encryption [Men20].
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A Supplementary key addition
For any couple (a, b) ∈ F2

p and for any r, r′ ∈ Fnp , r 6= r′, wlog assuming r 6= 0, there are
at most pn−1 values of k such that (hk(r), hk(r′)) = (a, b). We have equations in pn+1

variables k1, . . . , kn+1, and a system of two equations:{
< k1...n, r > +kn+1 = a,
< k1...n, r′ > +kn+1 = b

⇔
{
< k1...n, r > +kn+1 = a,
< k1...n, r′ − r > = b− a

As long as the two equations are not colinear and non-trivial, this system is of rank 2,
hence it has at most |Ω|p2 ≤ pn−1 solutions. The supplementary key addition makes that
these equations cannot be colinear, as only the first one depends on kn+1.

Besides, these equations are also non-trivial (i.e., they depend on the key), since the
first one depends on kn+1 and in the second one, r′ − r 6= 0.

By contrast, without the supplementary key addition, for choices of r, r′ such that
ri = cr′i for all i, there exist p− 1 couples (a, b) = (a, ca) such that the two equations are
colinear (unless c = 0 in which case only the couple (a, b) = (0, 0) is a solution), hence the
system becomes of rank 1 and has at most p

|Ω| solutions for all such couples (a, b).
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