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Abstract. Deep learning-based side-channel analysis already became a
de-facto standard when investigating the most powerful profiling side-
channel analysis. The results from the last few years show that deep
learning techniques can efficiently break targets that are even protected
with countermeasures. While there are constant improvements in making
the deep learning-based attacks more powerful, little is done on evaluat-
ing such attacks’ performance. Indeed, what is done today is not different
from what was done more than a decade ago.
This paper considers how to evaluate deep learning-based side-channel
analysis and whether the commonly used techniques give the best results.
To that end, we consider different summary statistics and the influence
of algorithmic randomness on the stability of profiling models. Our re-
sults show that besides commonly used metrics like guessing entropy, one
should also show the standard deviation results to assess the attack per-
formance properly. Our results show that using the arithmetic mean for
guessing entropy does not yield the best results, and instead, a geometric
mean should be used.
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1 Introduction

Side-channel analysis (SCA) encompasses techniques aiming at exploiting weak-
nesses of algorithms’ implementations [11]. One common division of SCA is into
direct attacks and profiling attacks. Profiling attacks are more powerful but also
require a stronger attacker who has access to a copy of a device to be attacked.
The attacker uses that copy to build a model of a device that can be used to
attack another similar (identical) device. Since there are two phases to run a
profiling attack (profiling phase and attack phase), such attacks are also called
two-stage attacks. In the last few years, the most explored profiling attacks
are based on machine learning (especially deep learning). Such attacks are very
powerful as they can break targets protected with countermeasures [2,7] but
also somewhat “easier” to deploy as they do not require a pre-processing stage.
Still, there are many open questions that are usually connected with how to find
machine learning architectures that perform well [30,26]. Unfortunately, this is
just one side of the problem. A perspective that cannot be neglected is how to
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assess the performance of such a profiling model. While the state-of-the-art in
deep learning attacks progressed tremendously in the last few years, no results
consider how to evaluate the performance of deep learning-based SCA.

It is common to use metrics like key rank, success rate, and guessing entropy
to evaluate the attack performance in SCA. While the first one is simple, the lat-
ter two are run multiple times to counteract the effect of dataset/measurements
selection. For direct attacks (e.g., CPA) or simpler profiling attacks like the tem-
plate attack, this repetition is sufficient as the algorithms are deterministic, so
running them multiple times gives the same results (if the measurements do
not change). On the other hand, deep learning techniques (i.e., artificial neural
networks) have multiple sources of randomness (randomness due to the initializa-
tion, randomness due to the regularization, randomness due to the optimization
procedure), making those algorithms stochastic. As such, it is common to ex-
pect different results if running those algorithms multiple times. This makes the
evaluation of the performance of such algorithms more challenging. The problem
becomes even more challenging if accounting for the differences among various
neural network architectures.

To the best of our knowledge, there are not many works assessing the eval-
uation performance of side-channel attacks. Martin et al. investigated how to
estimate key rank distribution for SCA [12]. Interestingly, they concluded that
the guessing entropy should be easier to estimate through the arithmetic mean.
What is more, the authors concluded that repeated experiments are needed for
a stable estimate. Whitnall and Oswald considered robust profiling setting [25],
which can also be connected with the stability of a profiling model, as intu-
itively, a more robust profiling model also provides more stability. Picek et al.
considered the robustness issue through the expectation estimation problem and
provided strong theoretical foundations to assess the robustness of deep learning-
based SCA [20]. The authors concluded that deep learning algorithms are quite
robust, but they did not consider how to improve the evaluation process.

This paper investigates how to evaluate the attack performance of deep
learning-based SCA. Our main contributions are:

– We investigate the influence of algorithmic randomness on the attack per-
formance. More precisely, we use the standard deviation to showcase that
running experiments multiple times can result in a significantly different
assessment of the attack performance. This is confirmed for scenarios us-
ing different random models and when using the same profiling model and
training it independently several times.

– We investigate the most appropriate summary statistic for the evaluation of
the attack performance. We consider the arithmetic mean, geometric mean,
and median and show that the median is the most appropriate metric. Fur-
thermore, our results indicate that deep learning-based SCA often results in
skewed distributions of the attack performance, so the arithmetic mean is
not appropriate statistics, which is highly relevant as it is commonly used.

– We investigate how a different number of independent experiments in the
attack phase influences attack performance. Our results show that this value
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does not play a significant influence, so much smaller values can be safely
used.

We conduct an extensive experimental evaluation including three datasets, two
leakage models, and different types of neural networks to confirm our observa-
tions.

2 Preliminaries

We denote with calligraphic letters (X ) sets, and the corresponding upper-case
letters denote random variables (X) and random vectors (X) over X . The corre-
sponding lower-case letters (x, x) denote realizations of X and X, respectively.

A dataset represents a collection of side-channel measurements denoted as
T, with each trace ti associated with an input value (plaintext or ciphertext)
di and a key ki. The dataset is commonly divided into a training set of size
N , a validation set of size V , and an attack set of size Q. We denote with k a
key candidate that takes its value from the keyspace K, while k∗ represents the
correct key.

Finally, θ denotes the vector of parameters learned in a profiling model (e.g.,
the weights in neural networks). Finally, H denotes the set of hyperparameters
defining the profiling model.

2.1 Machine Learning-based Side-channel Analysis

In the rest of this work, we concentrate on supervised machine learning and
the multi-class classification task, as commonly done in related works (see Sec-
tion 3). Supervised machine (deep) learning classification represents the machine
learning task of learning a function f that maps an input to the discrete out-
put (f : X → Y )) based on examples of input-output pairs. We consider the
multi-classification task (thus, with more than two classes), where c denotes the
number of classes. The function f is parameterized by θ ∈ Rn, where n denotes
the number of trainable parameters.

Training. In the training phase, the goal is that the algorithm learns the pa-
rameters θ′ minimizing the empirical risk represented by a loss function L on a
dataset of size N :

θ′ = arg min
θ

1

N

N∑
i

L(fθ(xi), yi). (1)

Validation. When training a profiling model, we want it to generalize well
to previously unseen data. Alternatively, this could be stated as the goal of
having a profiling model that shows stability. There, it is common to use cross-
validation techniques. Cross-validation is a statistical validation technique used
to assess the performance of a machine learning model. It uses a subset of the
dataset to train a model and a complementary subset of the dataset not used
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for training to assess the model performance. Two commonly employed cross-
validation techniques in the machine learning-based SCA are validation and
k-fold cross-validation.

With the validation technique, we divide the dataset into training, validation,
and test dataset and use the validation dataset to assess the performance of a
model trained on the training dataset. Finally, we use the best-obtained model to
attack the test dataset. While this technique is simple, it will suffer from a large
variance caused by different measurements in disjoint datasets. This technique
is commonly used with deep learning-based SCA.

In the k-fold cross-validation, a dataset is divided into k parts. Then, a model
is built on k− 1 folds and evaluated on the k-th fold. This is repeated until each
fold serves as the k-th fold (thus, every combination of k − 1 folds serves to
train the model). The choice of k commonly follows the bias-variance trade-off.
This technique is commonly used with computationally simpler machine learning
techniques.

Testing. In the test phase, the goal is to predict classes (or probabilities that a
certain class would be predicted) y based on the previously unseen traces x (the
number of traces equals Q), and the trained model f .

Evaluating the Attack Performance. The outcome of predicting with a
model f on the attack set is a two-dimensional matrix P with dimensions equal
to Q× c. The probability S(k) for any key byte candidate k is a valid SCA dis-
tinguisher, where it is common to use the maximum log-likelihood distinguisher:

S(k) =

Q∑
i=1

log(pi,v). (2)

The value pi,v denotes the probability that for a key k and input di, we obtain
the class v. The class v is derived from the key and input through a cryptographic
function CF and a leakage model l.

It is common to estimate the effort to obtain the secret key k∗ with metrics
like success rate (SR) and guessing entropy (GE) from the predictions. Guessing
entropy was first defined by Massey, and it represents the expected number of
guesses (using an optimal strategy) to correctly guess the value of a random
variable [13]. Later, Standaert et al. connected those results with SCA and key
rank as the number of guesses an optimal adversary would need to guess the
secret key [24].

With Q traces in the attack phase, an attack outputs a key guessing vector
g = [g1, g2, . . . , g|K|] in decreasing order of probability where g1 denotes the
most likely and g|K| the least likely key candidate. Then, guessing entropy is the
average position of k∗ in g 1. The success rate of order o is the average empirical

1 Averaging is commonly done over 100 independent experiments (attacks) to obtain
statistically significant results.
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probability that the secret key k∗ is located within the first o elements of the
key guessing vector g.

Sources of Randomness in Deep Learning-based SCA. When considering
deep learning, there are several common sources of randomness that will influence
the obtained results. Informally, we can divide those sources into those connected
with the dataset (dataset randomness) and those connected with the machine
learning algorithm (algorithmic randomness). The randomness connected with
datasets is caused by the random selection of the traces to be included in the
training/attack dataset. Averaging multiple results is a common way how to
reduce the effect of any specific traces. While the choice of measurements can
significantly influence the results, we consider it out of scope for this paper, as
it influences any side-channel attack and not only the deep learning ones. For
more results about attack performance when selecting different traces, we refer
interested readers to [29].

Considering the randomness of machine learning algorithms, we will obtain
different results even if training/evaluating a neural network on the same set of
traces. The common sources of randomness are:
– random initialization of weights and biases,
– randomness in regularization techniques like Dropout,
– randomness in optimization techniques (used to minimize the loss function

and, consequently, improve neural networks’ performance).
Finally, we can also consider the randomness stemming from the hyperpa-

rameter tuning. Since most deep learning-based SCA uses random search to
find good hyperparameters, we can expect (radically) different evaluation re-
sults based on the used architectures. While there are already results showing
that these sources of randomness play a significant role in deep learning-based
SCA (as discussed in Section 3), there is no discussion on how to resolve such
issues or at least report the results in a more meaningful way.

3 Related Works

The last decade brought significant advances to the profiling side-channel anal-
ysis domain. A plethora of good results, first with simpler machine learning
techniques and later with deep learning, showed the full potential of such tech-
niques, even when considering protected targets. At the same time, the variety
of techniques and choices one could take when using machine learning (or even
more deep learning) brought the need for much more detailed analyses, resulting
in an abundance of results and papers.

The first developed profiling SCA techniques like template attack [4] or
stochastic models [22] have no hyperparameters to tune, making the analysis
simpler and deterministic. Then, running the experiments multiple times results
in the same solutions, provided that the same measurements are used. While
there is no algorithmic randomness for the template attack, there is dataset
randomness. Besides selecting the traces to be used in the profiling and attack
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phase, it is common to employ a feature selection/engineering before running
the attack. This step will influence the final attack performance. Note that the
feature selection/engineering step is also a common one for simpler machine
learning techniques.

Afterward, machine learning techniques like support vector machines [19],
random forest [8], or Naive Bayes [17,6] started to attract more attention in the
SCA community as the results were in general favorable compared to template
attack. Those techniques have a different number of hyperparameters (expect
Naive Bayes that has no hyperparameters) one needs to tune to reach their
full potential. Coupled with the complexity stemming from selecting data for
training, this can significantly increase the number of required experiments (and
thus, time). Still, the evaluation of the attack performance did not account for
the algorithmic sources of randomness, and the SCA community continued to
report the results in the same fashion as for the template attack (e.g., the average
key rank for a specific number of attack traces).

Finally, in the last few years, we see a trend of using deep learning for profiling
SCA. The first significant step was done by Maghrebi et al. as they showed
that CNNs could efficiently break targets [10]. Additionally, they showed that
deep learning works well with raw traces, removing the need for various feature
selection techniques [16]. Cagli et al. demonstrated that deep learning could also
break implementations protected with jitter countermeasures and introduced
the concept of data augmentation in the profiling SCA [3]. Picek et al. evaluated
several machine learning metrics and showed a discrepancy between those and
the side-channel metrics [18]. The authors showed that the metrics problems
also happen for deep learning techniques. Kim et al. designed a deep learning
architecture capable of achieving excellent results on several publicly available
datasets [7]. To further improve the attack performance, the authors regularized
input with Gaussian noise.

Benadjila et al. provided an investigation into the importance of hyperpa-
rameter tuning [1]. Zaid et al. proposed the first methodology to select hyper-
parameters related to the size (number of learnable parameters, i.e., weights
and biases) of layers in CNNs [30]. Wouters et al. [26] improved upon the work
from Zaid et al. [30] where they showed how to reach similar attack performance
with significantly smaller neural network architectures. Perin et al. investigated
deep learning model generalization and showed that output class probabilities
represent a strong SCA metric [14]. Wu et al. introduced Bayesian optimization
for hyperparameter tuning [27]. With this approach, the authors managed to
find small neural network architectures that perform well (surpassing the ar-
chitectures’ performance obtained by the previous methodologies). Rijsdijk et
al. used reinforcement learning to find small convolutional neural networks that
perform well, surpassing the previous state-of-the-art [21]. These works showed
the importance of hyperparameter tuning but did not consider the influence of
algorithmic randomness. What is more, the ever-increasing number of hyperpa-
rameters to test resulted in a simpler (faster) validation process but also a larger
variance among results.
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Li et al. investigated the influence of randomness caused by the weight ini-
tialization for MLP and CNN architectures and showed that, depending on the
choice of the weight initialization method, SCA attack performance could vary
significantly [9]. Perin and Picek explored the impact of the optimizer choice for
deep learning-based SCA [15]. Their results indicated that some commonly used
optimizers could easily overfit, thus requiring more effort during the training
process.

All these works have in common that they do not question whether the esti-
mation of the attack performance can be improved and if the arithmetic mean is
the best choice for estimating the attack.

4 Experimental Setup

4.1 Datasets

We consider three datasets: two versions of the ASCAD dataset and the CHES CTF
dataset. The first two datasets are obtained from an 8-bit AVR microcontroller
running a masked AES-128 implementation, where the side-channel is electro-
magnetic emanation [1]. The first version of the dataset comprises 50 000 traces
for profiling and 10 000 for the test. Commonly, researchers attack the first
masked byte, which is key byte three, and for it, the authors provided the
pre-selected window of 700 features. This dataset has the same key for both
training and test sets. We denote this dataset as ASCAD F. This dataset is avail-
able at https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/
ATM_AES_v1_fixed_key.

The second version of the dataset is obtained from the same target as the
first one but has random keys in the profiling set, which has 200 000 traces, and
a fixed key in the test set that has 100 000 traces. The pre-selected window to
attack the first masked key byte (key byte three) has 1 400 features. We denote
this dataset as ASCAD R. This dataset is available at https://github.com/

ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key.
Finally, we investigate a dataset obtained from a 32-bit STM microcontroller

running a masked AES-128 implementation. There are 45 000 traces for the train-
ing set 2, which contains a fixed key. The attack set consists of 5 000 traces. The
key used in the training and validation set is different from the key configured
for the test set. Each trace consists of 2 200 features. This dataset is available at
https://chesctf.riscure.com/2018/news.

4.2 Leakage Models

We investigate two leakage models:
1. The Hamming weight (HW) leakage model: the attacker assumes the leakage

proportional to the sensitive variable’s Hamming weight.
2. The Identity (ID) leakage model: the attacker considers the leakage in the

form of an intermediate value of the cipher.

2 At the moment, there are only 10 000 traces available to download

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
https://chesctf.riscure.com/2018/news
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4.3 Machine Learning Algorithms

Our experiments include two commonly used neural network types used in the
profiling side-channel analysis. The first one is the multilayer perceptron (MLP),
and the second one is the convolutional neural network (CNN).

Multilayer Perceptron. The multilayer perceptron is a feed-forward neural net-
work mapping input sets onto sets of appropriate outputs. MLP consists of
multiple layers of nodes in a directed graph, where each layer is fully connected
to the next one, and training of the network is done with the backpropagation
algorithm [5].

Convolutional Neural Networks. Convolutional neural networks commonly con-
sist of three types of layers: convolutional layers, pooling layers, and fully con-
nected layers. The convolution layer computes the output of neurons connected
to local regions in the input, each computing a dot product between their weights
and a small region they are connected to in the input volume. Pooling decrease
the number of extracted features by performing a down-sampling operation along
the spatial dimensions. Finally, the fully connected layer (the same as in MLP)
computes either the hidden activations or the class scores.

4.4 Environment

The machine learning model was implemented in python version 3.6, using Ten-
sorFlow library version 2.0. The model training algorithms were run on a cluster
made out of Nvidia GTX 1080 and GTX 2080 graphics processing units (GPUs),
managed by Slurm workload manager version 19.05.4.

4.5 Summary Statistics

Once we obtained the information bout key rank from z independent experiments
over space S, we need to find the most appropriate estimator for the expected
value of S. A common way to do this is to use the arithmetic mean, where the
arithmetic mean of z examples equals

x =
1

z

z∑
i=1

xi. (3)

While a common way to calculate guessing entropy, arithmetic mean has a draw-
back as it is dominated by numbers on a larger scale. This happens due to a
simple additive relationship between numbers where scales do not play a role.

An alternative to arithmetic mean that takes into account the proportions is
the geometric mean:

x̌ =

(
z∏

i=1

xi

) 1
z

. (4)
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We can also consider the middle value of the dataset, which is called median:

x̃ =
x z

2
+ x z

2 +1

2
. (5)

The median is less affected by outliers and skewed data compared to the arith-
metic mean.

The standard deviation is a measure of the amount of variation or dispersion
of a set of values. In the SCA context, a large standard deviation means that
the adversary will have a high probability to be “lucky” (or “unlucky”) in the
choice of measurements or hyperparameters.

σx =

√√√√1

z

z∑
i=1

(xi − x)2. (6)

5 Experimental Results

For the ASCAD F and ASCAD R datasets, we used 50,000 traces for profiling,
while for CHES CTF, we used 10 000 profiling traces. The attack set size is set
to 5 000 for all three datasets. We investigate two settings in our experiments:
in the first one, we consider random profiling models, while in the second one,
we use state-of-the-art profiling models from related works.

The number of random profiling models is set to 100 for all experiments. We
set the maximum size for architectures for the random model generation to the
ones from the ASCAD paper, which we denote as ’MLP best’ and ’CNN best’.
Aligned with the optimal settings provided by the ASCAD paper, we use RM-
SProb as the optimizer with a learning rate of 1e-5. The training epoch number
is set to 75. The detailed model implementation are listed in Table 1. To generate
the random models from the base model (MLP best and CNN best), for CNN
models, we randomized the kernel size of the convolution layer and the number
of neurons in the dense layer. The latter one is also randomized in MLP models.
Specifically, the range is from the half of the original parameter to the original
parameter. For instance, the kernel range of the first convolution layer in the
CNN model is from 32 to 64. For MLP, the range of the neurons is from 100
to 200. We aim to provide diverse architectures, but they should still perform
relatively well as they are based on well-performing architectures that we do not
change radically.

Test models Convolution Pooling Dense layer Activation

(filter number, size) (size, stride)

MLP best - - 200*5 ReLU

CNN best Conv (64, 128, 256, 512, 512) avg(2,2)*5 4 096*2 ReLU

Table 1: Base MLP and CNN architectures used in the experiments.
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In terms of attacks with the state-of-the-art models, we used the MLP models
obtained through the Bayesian Optimization [28]. The implementation details
are listed in Table 1. The CNN models we used are developed with the rein-
forcement learning approach [21]. The details about the architectures are listed
in Tables 2 and 3. All of the training hyperparameters are aligned with the
original papers [28,21]. Specifically, the learning rate of CNNs is handled by
OneCycleLR policy [23] with the maximum learning rate of 5e-3. While there
are other state-of-the-art models we could use (e.g., from [30,26]), we opted for
these as the related works did not run experiments for the HW leakage model
but only the identity leakage model. Finally, to reduce the effects of algorithmic
randomness (initialization, regularization, optimization), we train each model 20
times and average the results.

Test models Dense layer Activation lr

ASCAD FHW 1 024, 1 024, 760, 8, 704, 1 016, 560 ReLU 1e-5

ASCAD FID 480,480 ELU 5e-3

ASCAD RHW 448, 448, 512, 168 ELU 5e-4

ASCAD RID 664, 664, 624, 816, 624 ELU 5e-4

CHES CTFHW 192, 192, 616, 248, 440 ELU 1e-3

Table 2: MLP architectures used in the experiments [28].

Test models Convolution Pooling Dense layer Activation

(filter number, size) (size, stride)

ASCAD FHW Conv(16,100) avg(25,25) 15+4+4 selu

ASCAD FID Conv(128,25) avg(25,25) 20+15 selu

ASCAD RHW Conv(4, 50) avg(25, 25) 30+30+30 selu

ASCAD RID Conv(128, 3) avg(75, 75) 30+2 selu

CHES CTFHW Conv(4, 100) avg(4, 4) 15+10+10 selu

Table 3: CNN architectures used in the experiments [21].

In all the experiments, we conduct the following steps to obtain the results:
1. For each of the profiling models (20 for state-of-the-art and 100 for random

models), we calculate summary statistics (arithmetic mean, geometric mean,
median) for evaluation metrics (GE, SR) for a different number of attacks
(independent experiments).

2. Once we obtain results summary statistics for all experiments, we average
them (arithmetic mean).

3. We plot the average and standard deviation over experiments. Note that
since we average over profiling models, we show the influence of algorithmic
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randomness and not dataset randomness (as then, we should show standard
deviation over a number of attacks).

4. Since all of the models effectively retrieve the key or converge to close to
zero guessing entropy, we use TGE0 to evaluate the attack result (i.e., the
number of attack traces to reach GE of zero).
Moreover, we also investigated the success rate but observed it commonly

does not change regardless of the averaging methods and thus offers limited
information. Therefore, we omit these results and only present the success rate
results that contain more information.

5.1 Results for the ASCAD F Dataset

The results for random models are shown in Figure 1. The solid lines represent
the average of the TGE0 metric (i.e., arithmetic mean, geometric mean, or me-
dian), while the dashed lines of the same color indicate the upper and lower
bound of the standard deviation (± σ). The spaces in-between are filled with
the corresponding but lighter color. First, one can observe all the results to indi-
cate rather stable behavior: the median is a statistic indicating the best attack
performance while the worst is the arithmetic mean. Interestingly, we can ob-
serve that the upper deviation value for the median gives similar results as the
lower deviation value for the arithmetic mean, indicating that the median is a
significantly better evaluation statistic. The differences in the number of attack
traces are also significant: from around 700 to 2 000 attack traces. These results
indicate that if using the arithmetic mean (and to a smaller extent, geometric
mean), it is easy to get outlier results, skewing the distribution.

Next, the behavior for a different number of attacks remains stable where we
do not see differences for more than 40 attacks. This indicates that averaging 100
times, as commonly done in the literature, does not bring significant advantages,
so this can be potentially reduced to make the attack evaluation faster. Finally,
for all three averaging methods, the standard deviation results are comparable
regardless of the number of attacks. This indicates that random models indeed
perform well for this dataset and that more elaborate tuning mechanisms are
not needed (a similar conclusion is given in [28]. Interestingly, MLP for the
ID leakage model shows the best results and smallest standard deviation. We
postulate that this happens as the model’s capacity is well aligned with the
difficulty of the dataset, so most of the experiments end up with a rather similar
attack performance.

We also show averaged success rate results in Figure 2. The rest of the results
are omitted as the success rate results are the same for the three averaging meth-
ods. Interestingly, we see a drop for both geometric mean and arithmetic mean
with more attack results being averaged, while the median remains stable. This
indicates that the influence of outliers when considering more attacks becomes
more significant, as it skews the distribution.

Next, we investigate the performance of four state-of-the-art models. The
results are shown in Figure 3. The green dashed line represents the attack per-
formance reported in the original papers [28,21]. For MLP, observe that the
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(a) Random MLP with the HW
leakage model.

(b) Random MLP with the ID leakage
model.

(c) Random CNN with the HW
leakage model.

(d) Random CNN with the ID leakage
model.

Fig. 1: TGE0: attack on ASCAD F with random MLP and CNN models.

(a) Random MLP with the HW
leakage model.

(b) Random CNN with the ID leakage
model.

Fig. 2: Success Rate: attack on ASCAD F with random MLP and CNN models.

results as reported in related works are better. This indicates that the mod-
els are not very stable, and to reliably report their performance, averaging is a
mandatory step. What is more, we see that getting results on the level of those
reported in related works requires a significant number of experiments (until
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the appropriate weights of a model are found). Large standard deviation values
also confirm this. We can again observe that the median gives the best results,
while the arithmetic mean indicates significantly worse behavior (around twice
as many traces required to reach GE of zero). For all the cases except MLP for
the ID leakage model, we also see that the increased number of attacks does not
indicate differences in the performance.

For CNN results, the median performs the best, which is aligned with the
previous results. The number of attacks shows only a marginal influence, and
the deviation is large for the HW leakage model while small for the ID leakage
model. We postulate this happens as with fewer classes scenario (as it is for the
HW leakage model), the profiling model has more capacity (recall that these
optimized models are already quite small from the perspective of the number
of trainable parameters) and more choice to end up with different performing
architectures. The model capacity seems better aligned with the task for the ID
leakage model, so most of the experiments end up with similar attack perfor-
mance. Interestingly, we observe that we can reach an even better performance
than reported in related works. We believe this happens as we (in essence) show
results for ensembles of classifiers, which is reported to work better than a single
classifier [14].

Finally, a large standard deviation is expected for random models, as we
effectively train different profiling models, so it is reasonable to expect some
to perform poorly. Still, we see significant deviation even when using a single
optimized model, which indicates that 1) those models are still too large for the
task, and 2) reporting the attack performance for a single setup can be very
misleading.

5.2 Results for the ASCAD R Dataset

Next, we perform attacks on the ASCAD R dataset. Recall that the profiling
traces for this dataset contain random keys while the attack set contains a fixed
but unknown key. This setting is closer to the real attack scenario, but it increases
the difficulties in retrieving the correct key from the attack set. Figure 4 presents
the attack results for 100 random models. Compares with ASCAD F, we see
performance degradation, especially when attacking the ID leakage model. For
instance, when attacking with random MLP for the ID leakage model, 74% of
the models failed to converge GE to zero within 5 000 attack traces. Still, even in
the worst attack cases, we see median reliability representing the attack result
and requiring the smallest number of attack traces to obtain the correct key.
Aligned with the previous results, we observe a limited influence of the number
of attacks, while standard deviation is large for all cases except one (MLP with
the ID leakage model). This indicates that many models perform poorly and
n be optimized (which is not surprising as we select them randomly and this
dataset is more difficult than the previous one).

Aligned with the previous experiment, there is a significant drop in success
rate when the number of attacks increases, indicating the influence of outliers. In
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(a) Optimized MLP with the HW
leakage model.

(b) Optimized MLP with the ID
leakage model.

(c) Optimized CNN with the HW
leakage model.

(d) Optimized CNN with the ID
leakage model.

Fig. 3: TGE0: attack on optimized MLP and CNN models with the ASCAD F
dataset.

all scenarios, the median reaches the highest success rate of all tested averaging
methods.

Moving to the results for the state-of-the-art models, as shown in Figure 5,
we see the attack performance is significantly improved compared to the previous
result on random models. This means that using random models will not suffice
to reach the top attack performance due to a more difficult dataset. Again,
we see median performs the best, consistently indicating the superiority of this
averaging method. When comparing our results with the one reported in the
original paper [28,21] (green dashed line), we again see a slight mismatch between
them. Specifically, the reported results for CNN with the HW leakage model act
as an outlier in Figure 5c, which again emphasizes the influence of the random
weight initialization and the need to provide averaged results over a number of
profiling models.

The number of attacks has a small influence, but again, there is no reason
to use more than 50 attacks in the experiments. We see a very large standard
deviation for CNN and the ID leakage model, indicating that the profiling model
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(a) Random MLP with the HW
leakage model.

(b) Random MLP with the ID leakage
model.

(c) Random CNN with the HW
leakage model.

(d) Random CNN with the ID leakage
model.

Fig. 4: TGE0: attack on ASCAD R with random MLP and CNN models.

is not very stable, so multiple experiments should be done to assess the attack
performance properly.

Finally, for CNNs, we again see the synergistic effect of using multiple profil-
ing models as we effectively develop an ensemble. An interesting perspective is
that we can improve state-of-the-art architectures’ results by making ensembles
of the same architectures with different trainable parameters. We consider this
very interesting as it allows easy constructions of ensembles aligned with the
available results from the literature.

5.3 Results for the CHES CTF Dataset

Finally, we attack the CHES CTF dataset. Note that CHES CTF with the ID
leakage model always results in attack failure according to [21,28], so we use
only the HW leakage model. The results from random model attacks are shown
in Figure 6. The performance of the median of the geometric mean is similar,
and both of them outperform the arithmetic mean that is commonly used by
researchers and evaluators. The results for the random CNNs show not successful
attack, which means that random selection of profiling architectures is not a good
choice for this dataset. The number of attacks does not show a difference if used



16 Lichao Wu, Guilherme Perin, and Stjepan Picek

(a) Optimized MLP with the HW
leakage model.

(b) Optimized MLP with the ID
leakage model.

(c) Optimized CNN with the HW
leakage model.

(d) Optimized CNN with the ID
leakage model.

Fig. 5: TGE0: attack on optimized MLP and CNN models with the ASCAD R
dataset.

more than 40, and the deviation for MLP is large, as many profiling models do
not succeed in breaking the target.

When attacking with state-of-the-art profiling models, the attack efficiency is
dramatically improved. As shown in Figure 7, for both MLP and CNN, median
performs better than geometric and arithmetic means. Therefore, we can confi-
dently conclude that the median is a better way of calculating GE. Comparing
our results and [28,21] (green dashed line), the latter performs significantly bet-
ter. As mentioned before, since 20-model averaging compensates for the effect
of the random weight initialization, we believe that our results reflect the real
performance. A large deviation value additionally confirms those observations.
Still, using ensembles could be an option to improve the attack performance.
Finally, aligned with all previous cases, we do not see a significant impact of the
number of attacks.

5.4 General Observations

1. Deep learning-based SCA can show radically different attack performance
due to algorithmic randomness, and as such, the attack distribution is skewed.
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(a) Random MLP with the HW
leakage model.

(b) Random CNN with the HW
leakage model (most of the attacks

failed to converge)

Fig. 6: TGE0: attack on CHES CTF with random MLP and CNN models.

(a) Optimized MLP with the HW
leakage model

(b) Optimized CNN with the HW
leakage model

Fig. 7: TGE0: attack on optimized MLP and CNN models with the CHES CTF
dataset.

2. Arithmetic mean should not be used as the average estimate of the attack
performance as it suffers due to commonly skewed distribution. Our experi-
ments show that the median is the best choice.

3. Large number of independent experiments to average the attack performance
does not increase the stability of results, indicating this as a simple option
to speed up the evaluation process.

4. Large standard deviation with random models is expected as we use (radi-
cally) different profiling models. For state-of-the-art models, a large standard
deviation indicates that the profiling models still have too much capacity.

5. It is necessary to report averaged performance over a number of different
profiling models (or trainable parameters) to provide a reliable estimate of
the actual attack performance.
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6. It is possible to build strong attacks by using ensembles where we use dif-
ferent profiling models (as done in related works) but also by using a single
model trained a number of times.

6 Conclusions and Future Work

This paper investigates the difficulty of assessing the attack performance for deep
learning-based side-channel analysis. We experimentally show that the most ap-
propriate summary statistics for evaluating deep learning-based SCA is median
and not the arithmetic mean as commonly used. Furthermore, we show that the
number of attacks plays only a marginal role where it is enough just not to use
a very small number of attacks (e.g., run more than 40 independent attacks)
to assess the attack performance properly. Next, we show that algorithmic ran-
domness has a significant effect on the results, and to properly assess them, it
is necessary to show averaged results and not only a single one (as commonly
done). Finally, we show that ensembles of classifiers can reach better attack
performance (as already shown). However, it is not necessary to build those en-
sembles from different profiling models as the algorithmic randomness connected
with the training process suffices to produce different performing profiling mod-
els.

This paper dealt only with algorithmic randomness and deep learning. It
would be interesting also to consider dataset randomness and use more summary
statistics. For instance, while it is common to report average results over multiple
experiments, no other summary statistics are reported. We consider reporting
standard deviation a good option. Indeed, when comparing several deep learning
algorithms, one can often see rather similar results. Nevertheless, the question
is how stable those results are and if such additional information can help us to
judge better what algorithm performs better.
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