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Abstract We investigate the isogeny graphs of supersingular elliptic curves over F𝑝2 equipped with a 𝑑-isogeny
to their Galois conjugate. These curves are interesting because they are, in a sense, a generalization of curves
defined over F𝑝 , and there is an action of the ideal class group of Q(

√
−𝑑𝑝) on the isogeny graphs. We investigate

constructive and destructive aspects of these graphs in isogeny-based cryptography, including generalizations of
the CSIDH cryptosystem and the Delfs–Galbraith algorithm.
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1 INTRODUCTION
Supersingular isogeny graphs of elliptic curves over F𝑝2 , with their rich number-theoretic and combinatorial

properties, are at the heart of an increasing number of pre- and post-quantum cryptosystems. Identifying and
exploiting special subgraphs of supersingular isogeny graphs is key to understanding their mathematical properties,
and their cryptographic potential.

Isogeny-based cryptosystems roughly fall into two families. On one hand, we have the cryptosystems that
work in the full ℓ-isogeny graph for various ℓ, including the Charles–Goren–Lauter hash [13], SIDH [30, 23,
17], SIKE [31], OSIDH [16], SQISign [24], and many more. These systems take advantage of the fact that the
supersingular ℓ-isogeny graph is a large regular graph with large diameter and excellent expansion and mixing
properties (indeed, it is a Ramanujan graph).

On the other hand, we have cryptosystems that work in the F𝑝-subgraph supported on vertices defined over F𝑝
(or with 𝑗-invariants in F𝑝), such as CSIDH [11], CSI-FiSh [7], and CSURF [10]. These cryptosystems, many of
which represent optimizations and extensions of pioneering work with ordinary curves due to Stolbunov [43, 46]
and Couveignes [18], take advantage of the fact that the F𝑝-endomorphism rings of these curves are an imaginary
quadratic ring, and the ideal class group of this ring has a convenient and efficiently-computable commutative
action on the F𝑝-subgraph. This group action allows us to define many simple and useful cryptosystems, but it
also explains the structure of the F𝑝-subgraph, allowing us to use it as a cryptanalytic tool [21] and as a convenient
point-of-reference when exploring structures in the full supersingular isogeny graph [1].

This paper investigates a family of generalizations of the F𝑝-subgraph, one for each squarefree integer 𝑑. The
key is to recognise that a curve E/F𝑝2 has its 𝑗-invariant in F𝑝 precisely when E is isomorphic to the conjugate
curve E (𝑝)/F𝑝2 defined by 𝑝-th powering the coefficients of E, and the edges of the F𝑝-subgraph correspond to
isogenies that are compatible with these isomorphisms. In this paper, we relax the isomorphisms to 𝑑-isogenies,
and consider the cryptographic consequences. We obtain a series of distinguished subgraphs of the supersingular
isogeny graph, each equipped with a free and transitive action by an ideal class group.

We define (𝑑, 𝜖)-structures—essentially, curves with a 𝑑-isogeny to their conjugate—and the isogenies between
them in §2. While (𝑑, 𝜖)-structures are defined over F𝑝2 , in §3 we show that they have modular invariants in F𝑝 ,
and give useful parameterizations for 𝑑 = 2 and 3. We narrow our focus to supersingular curves in §4, using the
theory of orientations to set up the class group action on (𝑑, 𝜖)-structures. We give some illustrative examples of
isogeny graphs of supersingular (𝑑, 𝜖)-structures in §5, before turning to cryptographic applications in §6.

Isogeny graphs of (𝑑, 𝜖)-structures are a natural setting for variants of CSIDH (and closely related cryptosys-
tems). We give arguments for the security of such cryptosystems in §6.1. We outline a non-interactive key exchange
in §6.2, generalizing CSIDH (which is the special case 𝑑 = 1), and highlight some of the subtleties that appear
when we move to 𝑑 > 1. Optimized implementation techniques are beyond the scope of this article.

The isogeny graphs formed by (𝑑, 𝜖)-structures form interesting geographical features in the full supersingular
isogeny graph. Charles, Goren, and Lauter investigated random walks that happen to hit (𝑑,±1)-structures in the
security analysis of their hash function [13, §7]; random walks into (ℓ,±1)-structures are also key in the path-finding
algorithm of [22]. Further heuristics in this direction appear in [1]. Here, we consider these vertices not in isolation,
but within their own isogeny graphs; thus, we obtain a series of generalizations of the “spine” of [1], and a broad
generalization of the Delfs–Galbraith isogeny-finding algorithm [21] in §6.4.
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Notation and conventions. If E is an elliptic curve, then End(E) denotes its endomorphism ring and End0 (E)
denotes End(E) ⊗ Q. Each elliptic curve E/F𝑝2 has a Galois-conjugate curve E (𝑝) , defined by 𝑝-th powering
all of the coefficients in the defining equation of E. The curve and its conjugate are connected by inseparable
“Frobenius” 𝑝-isogenies 𝜋𝑝 : E → E (𝑝) and 𝜋𝑝 : E (𝑝) → E, defined by 𝑝-th powering the coordinates (abusing
notation, all inseparable 𝑝-isogenies will be denoted by 𝜋𝑝). Observe that (E (𝑝) ) (𝑝) = E, and the composition of
𝜋𝑝 : E → E (𝑝) and 𝜋𝑝 : E (𝑝) → E is the 𝑝2-power Frobenius endomorphism 𝜋E of E. Conjugation also operates
on isogenies: each isogeny 𝜙 : E → E ′ defined over F𝑝2 has a Galois conjugate isogeny 𝜙 (𝑝) : E (𝑝) → E ′ (𝑝) ,
defined by 𝑝-th powering all of the coefficients in a rational map defining 𝜙. We always have

(𝜙 (𝑝) ) (𝑝) = 𝜙 and 𝜋𝑝 ◦ 𝜙 = 𝜙 (𝑝) ◦ 𝜋𝑝 ,

and conjugation thus gives an isomorphism of rings between End(E) and End(E (𝑝) ).

2 CURVES WITH A 𝑑-ISOGENY TO THEIR CONJUGATE
Let 𝑝 > 3 be a prime, and 𝑑 a squarefree integer prime to 𝑝. Typically, 𝑝 is very large and 𝑑 is very small.
We are interested in elliptic curves E/F𝑝2 equipped with a 𝑑-isogeny 𝜓 : E → E (𝑝) . Given any such 𝑑-isogeny

𝜓, we have two returning 𝑑-isogenies:

𝜓 (𝑝) : E (𝑝) → E and 𝜓 : E (𝑝) → E .

Definition 1. Let E/F𝑝2 be an elliptic curve equipped with a 𝑑-isogeny 𝜓 : E → E (𝑝) to its conjugate. We say
that (E, 𝜓) is a (𝑑, 𝜖)-structure if

𝜓 = 𝜖𝜓 (𝑝) with 𝜖 ∈ {1,−1} .
Each (𝑑, 𝜖)-structure (E, 𝜓) has an associated endomorphism

𝜇 := 𝜋𝑝 ◦ 𝜓 ∈ End(E) .

We say that (E, 𝜓) is ordinary resp. supersingular if E is ordinary resp. supersingular.1

Proposition 1. If (E, 𝜓) is a (𝑑, 𝜖)-structure and 𝜇 is its associated endomorphism, then

𝜇2 = [𝜖𝑑]𝜋E .

If 𝜋E is the Frobenius endomorphism of E and 𝑡E is its trace, then there exists an integer 𝑟 such that [𝑟]𝜇 = [𝑝]+𝜖𝜋E
in End(E), 𝑑𝑟2 = 2𝑝 + 𝜖𝑡E in Z, and the characteristic polynomial of 𝜇 is 𝑃𝜇 (𝑇) = 𝑇2 − 𝑟𝑑𝑇 + 𝑑𝑝.

Proof. We have 𝜓𝜋𝑝 = 𝜋𝑝𝜓
(𝑝) , so 𝜇2 = 𝜋𝑝𝜓𝜋𝑝𝜓 = 𝜋𝑝 (𝜋𝑝𝜓 (𝑝) )𝜓 = 𝜋E (𝜓 (𝑝)𝜓). Now 𝜓 (𝑝) = 𝜖𝜓 (because

(E, 𝜓) is a (𝑑, 𝜖)-structure), so 𝜓 (𝑝)𝜓 = [𝜖𝑑], and therefore 𝜇2 = [𝜖𝑑]𝜋E . For the rest: 𝜇 has degree 𝑑𝑝, so
it satisfies a quadratic polynomial 𝑃𝜇 (𝑇) = 𝑇2 − 𝑎𝑇 + 𝑑𝑝 for some integer 𝑎. The first assertion then implies
[𝑎]𝜇 = 𝜇2 + [𝑑𝑝] = [𝜖𝑑]𝜋E + [𝑑𝑝]. Squaring, we obtain

([𝑎]𝜇)2 = [𝑑]2 (𝜋2
E + 𝑝2) + 2[𝑑𝑝] [𝜖𝑑]𝜋E = [𝑑]2 (𝑡E𝜋E) + 2[𝑑𝑝] [𝜖𝑑]𝜋E = [𝜖𝑑]𝜋E ([𝜖𝑑]𝑡E + 2𝑑𝑝) ,

so 𝑎2 = 𝜖𝑑𝑡E + 2𝑑𝑝, hence 𝑑 | 𝑎2. But 𝑑 is squarefree, so 𝑑 | 𝑎, and then 𝑟 = 𝑎/𝑑 satisfies the given conditions. □

Remark 1. In the situation of Proposition 1: if E is ordinary, then Z[𝜇] and Z[𝜋E] are orders in Q(𝜋E) of
discriminant 𝑑2𝑟2 − 4𝑑𝑝 and 𝑡2E − 4𝑝2 = 𝑟2 (𝑑2𝑟2 − 4𝑑𝑝), respectively, so |𝑟 | is the conductor of Z[𝜋E] in Z[𝜇].
(The supersingular case is treated in detail in §4.)

Definition 2. Let (E, 𝜓) and (E ′, 𝜓 ′) be (𝑑, 𝜖)-structures. We say an isogeny (resp. isomorphism) 𝜙 : E → E ′ is
an isogeny (resp. isomorphism) of (𝑑, 𝜖)-structures if 𝜓 ′𝜙 = 𝜙 (𝑝)𝜓, that is, if the following diagram commutes:

E E (𝑝)

E ′ (E ′) (𝑝)

𝜓

𝜙 𝜙 (𝑝)

𝜓′

1We focus on curves defined over F𝑝2 because our applications involve supersingular curves, and every supersingular curve is isomorphic
to a curve over F𝑝2 . One might consider isogenies to conjugates over higher-degree extensions, but then in general we do not have the relation
𝜓 = ±𝜓 (𝑝) , which is fundamental to our results.

2



It is easily verified that isogenies of (𝑑, 𝜖)-structures follow the usual rules obeyed by isogenies: the composition
of two isogenies of (𝑑, 𝜖)-structures is an isogeny of (𝑑, 𝜖)-structures, the dual of an isogeny of (𝑑, 𝜖)-structures is
an isogeny of (𝑑, 𝜖)-structures, and every (𝑑, 𝜖)-structure has an isogeny to itself (the identity map, for example).
Isogeny therefore forms an equivalence relation on (𝑑, 𝜖)-structures.

If (E, 𝜓) is a (𝑑, 𝜖)-structure with associated endomorphism 𝜇, then

−(E, 𝜓) := (E,−𝜓) and (E, 𝜓) (𝑝) := (E (𝑝) , 𝜓 (𝑝) )

are (𝑑, 𝜖)-structures with associated endomorphisms −𝜇 and 𝜇 (𝑝) , respectively. If 𝜙 : (E, 𝜓) → (E ′, 𝜓 ′) is an
isogeny of (𝑑, 𝜖)-structures, then 𝜙 : −(E, 𝜓) → −(E ′, 𝜓 ′) and 𝜙 (𝑝) : (E, 𝜓) (𝑝) → (E ′, 𝜓 ′) (𝑝) are also isogenies
of (𝑑, 𝜖)-structures. We thus have two involutions, negation and conjugation, on the category of (𝑑, 𝜖)-structures
and their isogenies.

Remark 2. The isogenies 𝜓 and 𝜋𝑝 : E → E (𝑝) are both in fact isogenies of (𝑑, 𝜖)-structures (E, 𝜓) → (E, 𝜓) (𝑝) .

Twisting. Let 𝛼 be an element of F𝑝 \ {0}. For each elliptic curve E : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, there is a curve

E𝛼/F𝑝2 (𝛼2) : 𝑦2 = 𝑥3 + 𝛼4𝑎𝑥 + 𝛼6𝑏

and an F𝑝2 (𝛼)-isomorphism 𝜏𝛼 : E → E𝛼 defined by (𝑥, 𝑦) ↦→ (𝛼2𝑥, 𝛼3𝑦). Abusing notation, we write 𝜏𝛼 for
this map on every elliptic curve; with this convention, 𝜏𝛽 ◦ 𝜏𝛼 = 𝜏𝛼𝛽 . If 𝛿 is a nonsquare in F𝑝2 then E

√
𝛿 is the

quadratic twist (which, up to F𝑝2-isomorphism, is independent of the choice of nonsquare 𝛿) and 𝜏√𝛿 is the twisting
isomorphism. For each isogeny 𝜙 : E → E ′ defined over F𝑝2 , there is an F𝑝2 (𝛼2)-isogeny

𝜙𝛼 := (𝜏𝛼 ◦ 𝜙 ◦ 𝜏1/𝛼) : E𝛼 −→ (E ′)𝛼 .

Now let (E, 𝜓) be a (𝑑, 𝜖)-structure with associated endomorphism 𝜇. If again we choose a nonsquare 𝛿 in F𝑝2 ,
and a square root

√
𝛿 of 𝛿 in F𝑝4 , then in general (E

√
𝛿 , 𝜓

√
𝛿) is not a (𝑑,±1)-structure (because conjugation and

twisting generally do not commute); but (E, 𝜓)
√
𝛿 := (E

√
𝛿 , 𝜏(

√
𝛿) (𝑝−1) ◦𝜓

√
𝛿) is a (𝑑,−𝜖)-structure with associated

endomorphism 𝜇
√
𝛿 . The F𝑝2 -isomorphism class of (E, 𝜓)

√
𝛿 is independent of the choice of 𝛿; we call (E, 𝜓)

√
𝛿

the quadratic twist of (E, 𝜓). Note that ((E, 𝜓)
√
𝛿)

√
𝛿 � (E, 𝜓). If 𝜙 : (E, 𝜓) → (E ′, 𝜓 ′) is an isogeny of (𝑑, 𝜖)-

structures, then 𝜙
√
𝛿 induces an isogeny of (𝑑,−𝜖)-structures 𝜙

√
𝛿 : (E, 𝜓)

√
𝛿 → (E ′, 𝜓 ′)

√
𝛿 . Twisting therefore

takes us from the category of (𝑑, 𝜖)-structures into the category of (𝑑,−𝜖)-structures and back again.

Example 1. Consider the case 𝑑 = 1. Each (1, 1)-structure is F𝑝2 -isomorphic to the base-extension to F𝑝2 of a
curve defined over F𝑝 (with the 1-isogeny being [±1]); the associated endomorphism is the 𝑝-power Frobenius
endomorphism on the base-extended curve, and the integer 𝑟 of Proposition 1 is the trace of the 𝑝-power Frobenius.
Each (1,−1)-structure is the quadratic twist of a (1, 1)-structure: essentially, an ordinary (1,−1)-structure is
isomorphic to a GLS curve [26]. This discussion should be compared with the remark at the end of [44, §3].

3 PARAMETRIZATIONS AND MODULAR CURVES
For our computations, we can represent a (𝑑, 𝜖)-structure (E, 𝜓) as (E, 𝑓𝜓 , 𝛼), where 𝑓𝜓 is the kernel polynomial

of 𝜓 (that is, the monic polynomial whose roots are the 𝑥-coordinates of the nonzero points in ker𝜓) and 𝛼 is the
element such that 𝜓 = 𝜏𝛼 ◦ �̃�, where �̃� : E → E/ker𝜓 is the normalized “Vélu” isogeny.

We want a more space-efficient encoding of isomorphism classes of (𝑑, 𝜖)-structures, both as a canonical
encoding for vertices in isogeny graphs, and for transmission of (𝑑, 𝜖)-structures used as cryptographic values.

While (𝑑, 𝜖)-structures may seem to be relatively complicated objects over F𝑝2 , their isomorphism classes
can be encoded to little more than a single element of F𝑝 . Briefly: the key is to take the quotient by negation,
which maps the set 𝑆𝑑,𝜖 of isomorphism classes of (𝑑, 𝜖)-structures over F𝑝2 into 𝑋0 (𝑑)(F𝑝2 ), where 𝑋0 (𝑑) is
the level-𝑑 modular curve. Then, the Atkin–Lehner involution 𝜔𝑑 , which maps a modular point onto its “dual”,
acts as conjugation on the image of 𝑆𝑑,𝜖 . Writing 𝑋+

0 (𝑑) = 𝑋0 (𝑑)/⟨𝜔𝑑⟩, we have a four-to-one map from 𝑆𝑑,𝜖

onto 𝑋+
0 (𝑑)(F𝑝), identifying the isomorphism class of (E, 𝜓) with −(E, 𝜓), (E, 𝜓) (𝑝) , and −(E, 𝜓) (𝑝) . We can

therefore represent an element of 𝑆𝑑,𝜖 as a point in 𝑋+
0 (𝑑) (F𝑝) plus two bits (one to determine the sign, the other

the conjugate). Since 𝑋+
0 (𝑑) is a curve, we can further compress the representative point in 𝑋+

0 (𝑑)(F𝑝) to one
element of F𝑝 plus a few bits. This step depends strongly on the geometry of 𝑋+

0 (𝑑)(F𝑝): for example, if 𝑋+
0 (𝑑)

has genus 0 then we can rationally parametrize it, giving a simple compression of points in 𝑋+
0 (𝑑)(F𝑝) to single

elements of F𝑝; if 𝑋+
0 (𝑑) is hyperelliptic, then we can compress points in 𝑋+

0 (𝑑) (F𝑝) to a single element of F𝑝 plus
a “sign” bit in the usual way; and as the gonality of 𝑋+

0 (𝑑) increases, so does the number of auxiliary bits required.
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A full development of these representations and the algorithms that operate on them is beyond the scope
of this short article, but we will give useful explicit constructions for 𝑑 = 2 and 3 here, derived from explicit
parametrizations of Q-curves due to Hasegawa [29]. The associated endomorphisms for ordinary curves in these
families have been used to accelerate scalar multiplication algorithms (see [44], where we also find related families
for 𝑑 = 5 and 7, and [28]) and as inputs for specialized point-counting algorithms [37].

3.1 REPRESENTING (2, 𝜖)-STRUCTURES
Let Δ be a nonsquare in F𝑝 , and fix a square root

√
Δ in F𝑝2 . For each 𝑢 in F𝑝 , the curve

E2,𝑢/F𝑝2 : 𝑦2 = 𝑥3 − 6(5 − 3𝑢
√
Δ)𝑥 + 8(7 − 9𝑢

√
Δ)

has a rational 2-torsion point (4, 0), which generates the kernel of a 2-isogeny 𝜓2,𝑢 : E2,𝑢 → E2,𝑢
(𝑝) defined

over F𝑝2 . If we use Vélu’s formulae to compute the (normalized) quotient isogeny E2,𝑢 → E2,𝑢/⟨(4, 0)⟩, then the
isomorphism E2,𝑢/⟨(4, 0)⟩ → E2,𝑢

(𝑝) is 𝜏1/√−2. Composing, we obtain an expression for 𝜓2,𝑢 as a rational map:

𝜓2,𝑢 : (𝑥, 𝑦) ↦−→
(
−𝑥
2

− 9(1 + 𝑢
√
Δ)

𝑥 − 4
,
𝑦

√
−2

(
−1
2

+ 9(1 + 𝑢
√
Δ)

(𝑥 − 4)2

))
.

Computing the dual isogeny 𝜓2,𝑢 and comparing it with 𝜓2,𝑢
(𝑝) , we find that (E2,𝑢 , 𝜓2,𝑢) is a (2, 1)-structure if

𝑝 ≡ 5, 7 (mod 8), or a (2,−1)-structure if 𝑝 ≡ 1, 3 (mod 8). (To obtain a family of (2,−1)-structures when
𝑝 ≡ 5, 7 (mod 8) or (2, 1)-structures if 𝑝 ≡ 1, 3 (mod 8), it suffices to take the quadratic twist.)

3.2 REPRESENTING (3, 𝜖)-STRUCTURES
Let Δ be a nonsquare in F𝑝 , and fix a square root

√
Δ in F𝑝2 . For each 𝑢 in F𝑝 , the elliptic curve

E3,𝑢/F𝑝2 : 𝑦2 = 𝑥3 − 3
(
5 + 4𝑢

√
Δ
)
𝑥 + 2

(
2𝑢2Δ + 14𝑢

√
Δ + 11

)
has an order-3 subgroup {O, (3,±2(1 − 𝑢

√
Δ))} defined by the polynomial 𝑥 − 3. Taking the quotient with

Vélu’s formulae and composing with 𝜏1/√−3 yields an explicit 3-isogeny 𝜓3,𝑢 : E3,𝑢 → E3,𝑢
(𝑝) , and we find that

(E3,𝑢 , 𝜓3,𝑢) is a (3, 1)-structure if 𝑝 ≡ 2 (mod 3), or a (3,−1)-structure if 𝑝 ≡ 1 (mod 3). (To obtain a family of
(3,−1)-structures when 𝑝 ≡ 2 (mod 3) or (3, 1)-structures if 𝑝 ≡ 1 (mod 3), take the quadratic twist.)

4 SUPERSINGULAR (𝑑, 𝜖)-STRUCTURES
We now come to the main focus of our investigation: supersingular (𝑑, 𝜖)-structures and their isogeny graphs.

Definition 3. We write D𝑑,𝜖 (𝑝) for the set of supersingular (𝑑, 𝜖)-structures over F𝑝2 up to F𝑝2 -isomorphism, and
Γ(D𝑑,𝜖 (𝑝)) for the graph on D𝑑,𝜖 (𝑝) whose edges are (F𝑝2 -isomorphism classes of) isogenies of (𝑑, 𝜖)-structures.
For each prime ℓ ≠ 𝑝, we write Γℓ (D𝑑,𝜖 (𝑝)) for the subgraph of Γ(D𝑑,𝜖 (𝑝)) where the edges are ℓ-isogenies.

Observe that the quadratic twist gives an isomorphism of graphs Γ(D𝑑,𝜖 (𝑝)) � Γ(D𝑑,−𝜖 (𝑝)).

Proposition 2. Let (E, 𝜓) be a (𝑑, 𝜖)-structure with associated endomorphism 𝜇. If E is supersingular, then
1. 𝜇2 = [−𝑑𝑝].
2. The trace of Frobenius satisfies 𝑡E = −2𝜖 𝑝, and in particular E(F𝑝2 ) � (Z/(𝑝 + 𝜖)Z)2.

Proof. With the notation of Proposition 1: The curve E is supersingular if and only if 𝑝 | 𝑡E . Now 𝑝 ∤ 𝑑, so 𝑝 | 𝑟
by Proposition 1. The characteristic polynomial 𝑃𝜇 (𝑇) of 𝜇 has discriminant (𝑟𝑑)2 −4𝑑𝑝; this discriminant cannot
be positive, so |𝑟 | ≤ 2

√
𝑝/𝑑. Since 𝑝 | 𝑟 , we have 𝑟 = 0, so 𝜇2 = [−𝑑𝑝], and 𝑡E = −2𝑝

𝜖 = −2𝜖 𝑝. □

Proposition 2 tells us that if (E, 𝜓) is a supersingular (𝑑, 𝜖)-structure, then 𝜖 is completely determined by the
F𝑝2 -isogeny class of E. Further, 𝑡E can only be ±2𝑝: the special supersingular traces −𝑝, 0, and 𝑝 (corresponding
to non-quadratic twists of curves of 𝑗-invariant 0 and 1728, if these are supersingular) cannot occur.
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4.1 ORIENTATIONS
Proposition 2 tells us that the associated endomorphism of each supersingular (𝑑, 𝜖)-structure acts like a square

root of −𝑑𝑝 in the endomorphism ring. We can make this notion more precise using orientations, as described by
Colò and Kohel in [16] and Onuki in [38]. Before going further, we recall some generalities.

Let 𝐾 be an imaginary quadratic field, O𝐾 its ring of integers, and O an order in 𝐾 . A 𝐾-orientation on an
elliptic curve E/F𝑝2 is a homomorphism 𝜄 : 𝐾 → End0 (E); we call the pair (E, 𝜄) a 𝐾-oriented elliptic curve.
We say 𝜄 is an O-orientation, and (E, 𝜄) is an O-oriented elliptic curve, if 𝜄(O) ⊆ End(E). An O-orientation
𝜄 : 𝐾 → End0 (E) is primitive if 𝜄(O) = End(E) ∩ 𝜄(𝐾): that is, if 𝜄 is “full” in the sense that it does not extend to
an O ′-orientation for any strict super-order O ′ ⊃ O.

Let (E, 𝜄) be a 𝐾-oriented elliptic curve. If 𝜙 : E → E ′ is an isogeny, then there is an induced 𝐾-orientation
𝜙∗ (𝜄) on E ′ defined by

𝜙∗ (𝜄) : 𝛼 ↦−→ 1
deg(𝜙) 𝜙 ◦ 𝜄(𝛼) ◦ 𝜙 .

Given two oriented curves (E, 𝜄) and (E ′, 𝜄′), an isogeny 𝜙 : E → E ′ is said to be 𝐾-oriented, or an isogeny of
𝐾-oriented elliptic curves, if 𝜄′ = 𝜙∗ (𝜄). In this case we write 𝜙 : (E, 𝜄) → (E ′, 𝜄′). If there exists a 𝐾-oriented
isogeny 𝜙 : (E ′, 𝜄′) → (E, 𝜄) such that 𝜙 ◦ 𝜙 = [1]E and 𝜙 ◦ 𝜙 = [1]E′ , then we say that 𝜙 is a 𝐾-oriented
isomorphism, and we write (E, 𝜄) � (E ′, 𝜄′). Note that 𝜙 : (E, 𝜄) → (E ′, 𝜄′) is an oriented isomorphism if and only
if the underlying isomorphism of curves 𝜙 satisfies 𝜙 ◦ 𝜄(𝛼) = 𝜄′(𝛼) ◦ 𝜙 for all 𝛼 in 𝐾 .

If 𝜙 : (E, 𝜄) → (E ′, 𝜄′) is a 𝐾-oriented isogeny, then 𝜄 resp. 𝜄′ is a primitive O resp. O ′-orientation for some
order O resp. O ′ in 𝐾 . If ℓ = deg 𝜙 is a prime not equal to 𝑝, then one of the following holds:

• O = O ′, and 𝜙 is said to be horizontal; or
• O ⊂ O ′ with [O ′ : O] = ℓ, and 𝜙 is said to be ascending; or
• O ⊃ O ′ with [O : O ′] = ℓ, and 𝜙 is said to be descending.
Let O be an order in a quadratic field 𝐾 such that 𝑝 does not split in 𝐾 or divide the conductor of O.

Following [16], we let SSO (𝑝) denote the set of O-oriented supersingular elliptic curves over F𝑝 up to 𝐾-oriented
isomorphism. The subset of primitive O-oriented curves (up to 𝐾-oriented isomorphism) is denoted by SSpr

O (𝑝).
For any integral invertible ideal 𝔞 in O and any O-oriented curve (E, 𝜄), we have a finite subgroup

E[𝔞] := {𝑃 ∈ E | 𝜄(𝛼) (𝑃) = 0 ∀𝛼 ∈ 𝔞} .

Now suppose 𝔞 is prime to the conductor of O in O𝐾 .2 If 𝜙𝔞 : E → E/E[𝔞] is the quotient isogeny, then
(𝜙𝔞)∗ (𝜄) is an O-orientation on E/E[𝔞], and 𝜙𝔞 is a horizontal isogeny of O-oriented curves. If 𝔞 is principal then
(E/E[𝔞], (𝜙𝔞)∗ (𝜄)) � (E, 𝜄), so the map

(𝔞, (E, 𝜄)) ↦→ (E/E[𝔞], (𝜙𝔞)∗ (𝜄))

extends to fractional ideals and factors through the class group, and as in [16] we get a transitive group action

Cl(O) × SSO (𝑝) −→ SSO (𝑝) .

Onuki [38] shows that if we restrict to a certain subset of the primitive O-oriented curves, then this action is
transitive and free. Let JO denote the set of 𝑗-invariants of elliptic curves E over C (not F𝑝) with End(E) � O. All
elements in JO are algebraic integers, so an elliptic curve whose 𝑗-invariant is in JO has potential good reduction
at any prime ideal. Since JO is finite, we can take a number field 𝐿 and a prime ideal 𝔭 of 𝐿 above 𝑝 such that for
all 𝑗 ∈ JO , there exists an elliptic curve over 𝐿 with good reduction at 𝔭 and 𝑗-invariant 𝑗 . Fix an injection of the
residue field of 𝐿 modulo 𝔭 into F𝑝 . Let Ell(O) be the set of isomorphism classes of elliptic curves E over 𝐿 with
good reduction at 𝑝 and 𝑗-invariants in JO . For every such E, we let [·]E be the normalized O-orientation: that
is, such that for any invariant differential 𝜔 on E, ([𝛼]E)∗𝜔 = 𝛼𝜔 for all 𝛼 in O. Then reduction mod 𝔭 defines a
map 𝜌 : Ell(O) → SSpr

O (𝑝) sending E to (Ẽ, [.] Ẽ), where Ẽ is the reduction of E/𝐿 at 𝔭 and [·] Ẽ is the orientation
such that [𝛼] Ẽ = [𝛼]E (mod 𝔭) for all 𝛼 in O.

Theorem 1 (Onuki [38, Theorem 3.4]). With the notation above: Cl(O) acts freely and transitively on 𝜌(Ell(O)).

4.2 THE NATURAL ORIENTATION
From now on we let 𝐾 = Q(

√
−𝑑𝑝), and let O𝐾 be the maximal order of 𝐾 .

2Working with the class group, we can always replace ideals that are not prime to the conductor with equivalent integral ideals that are.
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If (E, 𝜓) is a supersingular (𝑑, 𝜖)-structure and 𝜇 is the associated endomorphism, then

𝜄𝜓 : Q(
√
−𝑑𝑝) −→ End0 (E)√
−𝑑𝑝 ↦−→ 𝜇

is a Z[
√
−𝑑𝑝]-orientation by Proposition 2. We call this the natural orientation.

Lemma 1. If E/F𝑝2 is a supersingular elliptic curve with #E(F𝑝2 ) = (𝑝 + 𝜖)2 and 𝜄 is a Z[
√
−𝑑𝑝]-orientation on

E, then 𝜄 is the natural orientation for some (𝑑, 𝜖)-structure (E, 𝜓).

Proof. Let 𝜇 := 𝜄(
√
−𝑑𝑝) in End(E). We have deg(𝜇) = 𝑑𝑝 and 𝑝 ∤ 𝑑, so 𝜇 factors over F𝑝2 into the composition of

a 𝑑-isogeny and a 𝑝-isogeny. Since E is supersingular, the 𝑝-isogeny is isomorphic to 𝜋𝑝 , and so 𝜇 = 𝜋𝑝𝜓 for some
𝑑-isogeny𝜓 : E → E (𝑝) . It remains to show that𝜓 = 𝜖𝜓 (𝑝) . Now [−𝑑𝑝] = 𝜇2 = 𝜋𝑝𝜓𝜋𝑝𝜓 = 𝜓 (𝑝)𝜋2

𝑝𝜓 = 𝜓 (𝑝)𝜓𝜋2
𝑝 ,

and 𝜋2
𝑝 = [−𝜖 𝑝] becauseE is supersingular with #E(F𝑝2) = (𝑝+𝜖)2, so [𝑑] = 𝜖𝜓 (𝑝)𝜓, and therefore𝜓 = 𝜖𝜓 (𝑝) . □

Lemma 2. Let (E, 𝜓) and (E ′, 𝜓 ′) be (𝑑, 𝜖)-structures with natural orientations 𝜄𝜓 and 𝜄𝜓′ , respectively. If
𝜙 : E → E ′ is an isogeny, then 𝜙 is an isogeny (resp. isomorphism) of Z[

√
−𝑑𝑝]-oriented elliptic curves

(E, 𝜄) → (E ′, 𝜄′) if and only if it is an isogeny (resp. isomorphism) of (𝑑, 𝜖)-structures (E, 𝜓) → (E ′, 𝜓 ′).

Proof. Let 𝜇 resp. 𝜇′ be the associated endomorphisms of (E, 𝜓) resp. (E ′, 𝜓 ′); then

𝜙∗ (𝜄𝜓) = 𝜄𝜓′ ⇐⇒ 𝜙∗ (𝜄𝜓)(
√
−𝑑𝑝) = 𝜄𝜓′ (

√
−𝑑𝑝) (

√
−𝑑𝑝 generates Q(

√
−𝑑𝑝)

⇐⇒ 𝜙 ◦ 𝜇 ◦ 𝜙 = 𝜇′[deg 𝜙] (multiplying by deg 𝜙)

⇐⇒ 𝜙 ◦ 𝜇 = 𝜇′ ◦ 𝜙 (cancelling 𝜙)
⇐⇒ 𝜙 ◦ 𝜋𝑝 ◦ 𝜓 = 𝜋𝑝 ◦ 𝜓 ′ ◦ 𝜙 (by definition)

⇐⇒ 𝜋𝑝 ◦ 𝜙 (𝑝) ◦ 𝜓 = 𝜋𝑝 ◦ 𝜓 ′ ◦ 𝜙 (𝜋𝑝 ◦ 𝜙 = 𝜙 (𝑝) ◦ 𝜋𝑝)

⇐⇒ 𝜙 (𝑝) ◦ 𝜓 = 𝜓 ′ ◦ 𝜙 (cancelling 𝜋𝑝)

and the result follows on comparing definitions. □

Colò and Kohel [16] and Onuki [38] use class-group actions to study the isogeny graphs Γ(SSO (𝑝)) with vertex
set SSO (𝑝) for different orders O. Proposition 3 allows us to transfer their results to our setting of (𝑑, 𝜖)-structures.

Proposition 3. The graphs Γ(D𝑑,𝜖 (𝑝)) and Γ(SS
Z[
√
−𝑑𝑝] (𝑝)) are explicitly isomorphic for 𝜖 = 1 and 𝜖 = −1.

Proof. This follows from Lemmas 1 and 2, once we can show that the isomorphism class of any Z[
√
−𝑑𝑝]-oriented

supersingular curve (E, 𝜄) over F𝑝 contains a representative over F𝑝2 of order (𝑝 + 𝜖)2. Since 𝑗 (E) is in F𝑝2 , after a
suitable F𝑝-isomorphism we may suppose that E is defined over F𝑝2 and #E(F𝑝2 ) = (𝑝 + 𝜖)2; and then 𝜄 is defined
over F𝑝2 because for a supersingular elliptic curve over F𝑝2 all of the endomorphisms are defined over F𝑝2 . □

Let 𝐾 = Q(
√
−𝑑𝑝). The order Z[

√
−𝑑𝑝] has index 2 in O𝐾 if −𝑑𝑝 ≡ 1 (mod 4), and is equal to O𝐾 otherwise.

If −𝑑𝑝 . 1 (mod 4), then, every natural orientation is a primitive O𝐾 -orientation; if −𝑑𝑝 ≡ 1 (mod 4), each
natural orientation is either a primitive Z[

√
−𝑑𝑝]-orientation or a primitive O𝐾 -orientation.

Proposition 4. Let (E, 𝜓) be a supersingular (𝑑, 𝜖)-structure with natural orientation 𝜄𝜓 .
1. If −𝑑𝑝 . 1 (mod 4), then 𝜄𝜓 is a primitive O𝐾 -orientation.
2. If −𝑑𝑝 ≡ 1 (mod 4), then 𝜄𝜓 is a primitive O𝐾 -orientation if the associated endomorphism 𝜇 fixes E[2]

pointwise, and a primitive Z[
√
−𝑑𝑝]-orientation otherwise.

Proof. By definition, 𝜄𝜓 is a Z[
√
−𝑑𝑝]-orientation. To complete Case (2), it suffices to check whether the element

𝜄𝜓 ( 1
2 (−1 +

√
−𝑑𝑝)) = 1

2 (𝜇 − [1]) of End0 (E) ∩ 𝜄𝜓 (𝐾) is in End(E) (because 1
2 (−1 +

√
−𝑑𝑝) generates O𝐾 , but is

not in Z[
√
−𝑑𝑝]). This is the case if and only if 𝜇 − [1] factors over [2], if and only if 𝜇 fixes E[2] pointwise. □

In the light of Propositions 3 and 4, we partition D𝑑,𝜖 (𝑝) into two subsets:

D𝑑,𝜖 (𝑝) = Dmax
𝑑,𝜖 (𝑝) ⊔ Dsub

𝑑,𝜖 (𝑝) ,

whereDmax
𝑑,𝜖 (𝑝) contains the classes whose natural orientations are primitiveO𝐾 -orientations, andDsub

𝑑,𝜖 (𝑝) contains
the classes whose natural orientations are primitive orientations by the order of conductor 2 in O𝐾 . If −𝑑𝑝 . 1
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(mod 4), then Dmax
𝑑,𝜖 (𝑝) = D𝑑,𝜖 (𝑝) and Dsub

𝑑,𝜖 (𝑝) = ∅. If −𝑑𝑝 ≡ 1 (mod 4), then [O𝐾 : Z[
√
−𝑑𝑝]] = 2, so

Dmax
𝑑,𝜖 (𝑝) resp. Dsub

𝑑,𝜖 (𝑝) consists of the (𝑑, 𝜖)-structures where 𝜇 acts trivially resp. nontrivially on the 2-torsion.
Given Lemma 2, ℓ-isogenies of (𝑑, 𝜖)-structures are “ascending”, “descending”, and “horizontal” with respect

to the natural orientations: we have horizontal ℓ-isogenies between vertices in Dmax
𝑑,𝜖 (𝑝) and between vertices in

Dsub
𝑑,𝜖 (𝑝), while Dmax

𝑑,𝜖 (𝑝) and Dsub
𝑑,𝜖 (𝑝) are connected by ascending and descending 2-isogenies. In the language

of isogeny volcanoes, vertices in Dmax
𝑑,𝜖 (𝑝) form the “craters”, and vertices in Dsub

𝑑,𝜖 (𝑝) the “floors”.

4.3 THE CLASS GROUP ACTION
Proposition 3 translates the action of Cl(Z[

√
−𝑑𝑝]) on SS

Z[
√
−𝑑𝑝] (𝑝) defined above into an action on D𝑑,𝜖 (𝑝).

Theorem 2 makes this precise: it shows that Dmax
𝑑,𝜖 (𝑝) is a principal homogeneous space (or torsor) under Cl(O𝐾 ),

and that if Dsub
𝑑,𝜖 (𝑝) is not empty then it is a principal homogeneous space under Cl(Z[

√
−𝑑𝑝]).

Theorem 2. Let 𝐾 = Q(
√
−𝑑𝑝), with maximal order O𝐾 , and let 𝜖 = ±1.

• The class group Cl(O𝐾 ) acts freely and transitively on Dmax
𝑑,𝜖 (𝑝).

• If Dsub
𝑑,𝜖 (𝑝) ≠ 0, then Cl(Z[

√
−𝑑𝑝]) acts freely and transitively on Dsub

𝑑,𝜖 (𝑝).

Proof. Let O = O𝐾 or Z[
√
−𝑑𝑝]. Since 𝑝 does not split in 𝐾 , Theorem 1 tells us that Cl(O) acts freely and

transitively on 𝜌(Ell(O)) ⊆ SSpr
O (𝑝). Given the isomorphism of Proposition 3, it only remains to prove that

𝜌(Ell(O)) = SSpr
O (𝑝). For any (E, 𝜄) in SSpr

O (𝑝), Proposition 3.3 of [38] tells us that (E, 𝜄) or (E, 𝜄) (𝑝) is in
𝜌(Ell(O)). In our case, both are in 𝜌(Ell(O)), so the action on SSpr

O (𝑝) is free: since E[𝔡] = E[𝑑] ∩ ker 𝜇 = ker𝜓,
the action of 𝔡 = (𝑑,

√
−𝑑𝑝) on SSpr

O (𝑝) maps (E, 𝜄) to (E, 𝜄) (𝑝) , because it maps (E, 𝜓) to (E, 𝜓) (𝑝) . □

Corollary 1. Let 𝐾 = Q(
√
−𝑑𝑝), with maximal order O𝐾 . If ℎ𝐾 = # Cl(O𝐾 ), then

#Dmax
𝑑,𝜖 (𝑝) = ℎ𝐾 and #Dsub

𝑑,𝜖 (𝑝) =

ℎ𝐾 if −𝑑𝑝 ≡ 1 (mod 8) ,
3ℎ𝐾 if −𝑑𝑝 ≡ 5 (mod 8) ,
0 otherwise .

Proof. By Theorem 2, we have #Dmax
𝑑,𝜖 (𝑝) = # Cl(O𝐾 ) and either #Dsub

𝑑,𝜖 (𝑝) = 0 (if −𝑑𝑝 . 1 (mod 4)) or
#Dsub

𝑑,𝜖 (𝑝) = # Cl(Z[
√
−𝑑𝑝]) (if −𝑑𝑝 ≡ 1 (mod 4)). It remains to compute # Cl(Z[

√
−𝑑𝑝]) in the case −𝑑𝑝 ≡ 1

(mod 4), where Z[
√
−𝑑𝑝] has conductor 2. In this case, the formula of [19, Theorem 7.24] simplifies to

# Cl(Z[
√
−𝑑𝑝]) = # Cl(O𝐾 )

[O×
𝐾 : Z[

√
−𝑑𝑝]×]

(
2 −

(
−𝑑𝑝

2

))
,

where the Kronecker symbol (−𝑑𝑝/2) is 0 if 2 | −𝑑𝑝, 1 if −𝑑𝑝 ≡ ±1 (mod 8), and −1 if −𝑑𝑝 ≡ ±3 (mod 8). The
result follows on noting that [O×

𝐾 : Z[
√
−𝑑𝑝]×] = 1, because −𝑑𝑝 is never −3 or −4. □

Remark 3. The Brauer–Siegel theorem states that asymptotically, log2 (ℎ𝐾 ) ∼ 1
2 log2 |Δ𝐾 |, where Δ𝐾 = −𝑑𝑝 if

−𝑑𝑝 ≡ 1 (mod 4), and −4𝑑𝑝 otherwise. (See e.g. [34, Ch. XVI] for details.)

4.4 COMPUTING THE CLASS GROUP ACTION
Suppose we want to compute the action of (the class of) an ideal 𝔩 = (ℓ, 𝑎+𝑏

√
−𝑑𝑝) on some (E, 𝜓) in D𝑑,𝜖 (𝑝).

Following [20], we consider two approaches: “Vélu” and “modular”.
In the “Vélu” approach, we compute a generator 𝐾ℓ of the kernel E[𝔩] of 𝜙: that is, 𝐾ℓ is a point in E[ℓ]

such that [𝑎]𝜇(𝐾ℓ) = −[𝑏]𝐾ℓ . This point may only be defined over an extension F𝑝2𝑟 of F𝑝2 . We then compute
the quotient isogeny 𝜙 : E → E ′ := E/⟨𝐾ℓ⟩ using Vélu’s formulæ, at a cost of 𝑂 (ℓ) F𝑝2𝑟 -operations, or the
algorithm of [6], in 𝑂 (

√
ℓ) F𝑝2𝑟 -operations. Finally, we push 𝜓 through 𝜙 by computing the image of its kernel

subgroup and choosing the correct “sign”. If we are given an F𝑝2 -rational generator 𝐺 for ker𝜓, then pushing 𝜓
through 𝜙 essentially costs one isogeny evaluation; otherwise, this amounts to an exercise in symmetric functions,
with a cost on the order of 𝑂 (𝑑) isogeny evaluations. Each evaluation costs 𝑂 (ℓ) or 𝑂 (

√
ℓ) F𝑝2 -operations. The

total cost is dominated by the cost of the multiplication by the cofactor #𝐸 (F𝑝2𝑟 )/ℓ needed to find 𝐾ℓ : we have
log (#𝐸 (F𝑝2𝑟 )/ℓ) = 2𝑟 log 𝑝, so constructing 𝐾ℓ requires 𝑂 (𝑟2 log 𝑝) operations in F𝑝2 .

The “modular” approach uses modular polynomials. To compute the action of 𝔩 on (E, 𝜓), we compute
𝐺 = gcd(Φ𝑑 (𝑋, 𝑋 𝑝),Φℓ ( 𝑗 (E), 𝑋)) (if 𝑑 = 1, then we take Φ1 (𝑋, 𝑋 𝑝) = 𝑋 𝑝 − 𝑋). In general𝐺 has only two roots
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in F𝑝2 , corresponding to the two ℓ-neighbours. In a non-backtracking walk we can divide by 𝑋 − 𝑗 (E ′), where
(E ′, 𝜓 ′) is the preceding vertex, to find the next step. Otherwise, we can distinguish between the two neighbours
by examining the action of 𝜇 on the ℓ-torsion. Care must be taken to identify, and to appropriately handle, the
exceptional case where a neighbouring 𝑗-invariant admits multiple (𝑑, 𝜖)-structures modulo negation (as with the
vertices 𝐴 and 𝐶 in the example of Figure 2 below).

To compute gcd(Φ𝑑 (𝑋, 𝑋 𝑝),Φℓ ( 𝑗 (𝐸), 𝑋)), compute 𝐹 (𝑋) := Φℓ ( 𝑗 (E), 𝑋) in 𝑂 (ℓ) F𝑝2 -operations, and then
𝑌 := 𝑋 𝑝 mod 𝐹 (𝑋) using the square-and-multiply algorithm in 𝑂 (ℓ log 𝑝) F𝑝2 -operations. We then compute
𝑍 := Φ𝑑 (𝑋,𝑌 ) mod 𝐹, and then gcd(𝑍, 𝐹), in 𝑂 (𝑑2ℓ2) F𝑝2 -operations. Generally ℓ is polynomial in log 𝑝, but
typically it is even smaller, and then the dominating step is the computation of 𝑌 .

As in the ordinary case [20], the Vélu approach is more efficient when 𝑟2 < ℓ; in particular, when 𝐾ℓ is defined
over F𝑝2 . If we are free to choose 𝑝, then we can optimize systems that use the action of a series of small primes ℓ𝑖
by taking 𝑝 such that the ℓ𝑖 split in Z[

√
−𝑑𝑝] and ℓ𝑖 | 𝑝 + 𝜖 , that is, 𝑝 = 𝑐 · ∏𝑛

𝑖=1 ℓ𝑖 − 𝜖 with 𝑐 a cofactor making 𝑝
prime. In the case 𝑑 = 1, this is exactly the optimization that is key to making CSIDH practical.

Remark 4. It would be interesting to look for an expression for the group action operating directly on the parameters
in the Hasegawa families of §3.1 and §3.2.

5 THE SUPERSINGULAR ISOGENY GRAPH
We can now describe the structure of the isogeny graph Γ(D𝑑,𝜖 (𝑝)). Factoring isogenies, it suffices to describe

Γℓ (D𝑑,𝜖 (𝑝)) for prime ℓ. The class group actions of Theorem 2 imply the isogeny counts in Table 1.

Table 1: The number of horizontal, ascending, and descending ℓ-isogenies from each vertex in the ℓ-isogeny graph.
Prime ℓ Conditions on (𝑑, 𝑝) Vertex (sub)set Horizontal Ascending Descending

ℓ = 2

−𝑑𝑝 ≡ 1 (mod 8) Dmax
𝑑,𝜖 (𝑝) 2 0 1

Dsub
𝑑,𝜖 (𝑝) 0 1 0

−𝑑𝑝 ≡ 3 (mod 8) Dmax
𝑑,𝜖 (𝑝) 0 0 3

Dsub
𝑑,𝜖 (𝑝) 0 1 0

−𝑑𝑝 . 1, 3 (mod 8) D𝑑,𝜖 (𝑝) 1 0 0
ℓ > 2 — D𝑑,𝜖 (𝑝) 1 + (−𝑑𝑝/ℓ) 0 0

Examples. Figures 1, 2, and 3, display ℓ-isogeny graphs on D3,1 (101), D3,−1 (97), and D3,1 (83) for various ℓ
generating the class groups. These figures also form examples of the various 2-isogeny structures listed in Table 1.

𝐴

−𝐴 𝐵

−𝐵𝐵 (𝑝)

−𝐵 (𝑝)

𝐶

−𝐶 𝐶 (𝑝)

−𝐶 (𝑝)

𝐷

−𝐷𝐷 (𝑝)

−𝐷 (𝑝)

𝐸

−𝐸𝐸 (𝑝)

−𝐸 (𝑝) 𝐹

−𝐹

Figure 1: Γ2 (D3,1 (101)) for ℓ = 2. The class group ofQ(
√
−303) is isomorphic toZ/10Z, and generated by an ideal

over 2 (we see this in the length-10 cycle). The correspondence between vertex labels and parameters for the degree-3
Hasegawa family of §3.2 (withΔ = 2) is 𝐴↔ 0, 𝐵 ↔ 6,𝐶 ↔ 24,𝐷 ↔ 25, and 𝐸 ↔ 42; the special vertex 𝐹, which
has no Hasegawa parameter, is (E, 𝜓) with E : 𝑦2 = 𝑥3 + 1 and 𝜓 : (𝑥, 𝑦) ↦→ ((67𝑥3 + 66)/𝑥2, (89𝑥3 + 96)

√
2𝑦/𝑥3).

Note that 𝐴(𝑝) = −𝐴 and 𝐹 (𝑝) = −𝐹. The underlying curves of 𝐵 and 𝐶 are isomorphic.

Involutions. There are two obvious involutions onΓ(D𝑑,𝜖 (𝑝)), negation and conjugation. These are generally not
the only involutions. Every prime ℓ dividing the discriminant ramifies inO𝐾 (andZ[

√
−𝑑𝑝]); the prime 𝔩 over ℓ gives

an element of order 2 in Cl(O𝐾 ) (and Cl(Z[
√
−𝑑𝑝])), and thus an involution on Γ(D𝑑,𝜖 (𝑝)). Let 𝔡1, . . . , 𝔡𝑛 be the

primes above the prime factors of 𝑑, and 𝔭 the prime above 𝑝; note that [𝔡1] · · · [𝔡𝑛] = [𝔭], because 𝔡1 · · · 𝔡𝑛𝔭 = (𝜇).
If −𝑑𝑝 ≡ 1 or 2 (mod 4) then Cl(O𝐾 ) [2] = ⟨[𝔡1], . . . , [𝔡𝑛], [𝔭]⟩, so Cl(O𝐾 ) [2] � (Z/2Z)𝑛. If −𝑑𝑝 ≡ 3
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𝐴

−𝐵 −𝐶 𝐷 −𝐴(𝑝)

𝐵 (𝑝) 𝐶 (𝑝) −𝐷 (𝑝)

𝐴(𝑝)

−𝐵 (𝑝) −𝐶 (𝑝) 𝐷 (𝑝)

−𝐴

𝐵 𝐶 −𝐷

Figure 2: The isogeny graphs Γ2 (D3,−1 (97)) (solid) and Γ5 (D3,−1 (97)) (dotted). We have Cl(Q(
√
−3 · 97)) �

Z/4Z, generated by an ideal over 5. The 2-isogenies are ascending/descending up/down the page; the 5-isogenies
are horizontal. The correspondence between vertex labels and parameters for the degree-3 Hasegawa family of §3.2
(with Δ = 5) is 𝐴↔ 47, 𝐵 ↔ 1, 𝐶 ↔ 14, and 𝐷 ↔ 22. The underlying curves of 𝐴 and 𝐶 are isomorphic.

𝐶 (𝑝)
𝐴 −𝐶

−𝐵 (𝑝)

𝐷𝐵

𝐶

−𝐴 −𝐶 (𝑝)

−𝐵
𝐷 (𝑝)𝐵 (𝑝)

Figure 3: Γℓ (D3,1 (83)) for ℓ = 2 (solid), ℓ = 3 (dashed) and ℓ = 5 (dotted). All isogenies are horizontal. We
have Cl(Q(

√
−3 · 83)) � Z/2Z × Z/6Z, with the Z/2Z-factor generated by the ideal above 3, and the Z/6Z-factor

generated by an ideal above 5 (we see this in the length-6 cycles); the ideal above 2 is the cube of an ideal above 5.
The correspondence between vertex labels and parameters for the degree-3 Hasegawa family of §3.2 (with Δ = 2)
is 𝐴↔ 0, 𝐵 ↔ 32, 𝐶 ↔ 40; the special vertex 𝐷, which has no Hasegawa parameter, is (E : 𝑦2 = 𝑥3 + 1, 𝜓) where
𝜓 maps (𝑥, 𝑦) to (((72

√
2 + 14)𝑥3 + (39

√
2 + 56))/𝑥2,

√
2(35𝑥3 + 52)𝑦/𝑥3). Note that −𝐴 = 𝐴(𝑝) .

(mod 4), then Cl(O𝐾 ) [2] = ⟨[𝔞], [𝔡1], . . . , [𝔡𝑛], [𝔭]⟩ where 𝔞 is the ideal above 2, and Cl(O𝐾 ) [2] � (Z/2Z)𝑛+1.
In each case, the action of the ideal class

∏
𝑖 [𝔡𝑖] = [𝔭] on any (𝑑, 𝜖)-structure (E, 𝜓) is realised by the isogeny

𝜓 : (E, 𝜓) → (E (𝑝) , 𝜓 (𝑝) ), and is therefore equal to the conjugation involution.
Since the group actions are free, each of the involutions that come from nontrivial 2-torsion elements in the

class groups—including conjugation—has no fixed points. Negation, on the other hand, can have fixed points:
for example, if 𝑝 ≡ 3 (mod 4) and E is the curve with 𝑗-invariant 1728, and 𝑖 is an automorphism of degree 4,
then (E, 𝑖) is a (1, 1)-structure, and (E, 𝑖) � (E,−𝑖). This is the only fixed point among (1, 1)-structures, and its
existence is implied by the fact that the class number of Cl(√−𝑝) is odd when 𝑝 ≡ 3 (mod 4).

Remark 5. If −𝑑𝑝 ≡ 5 (mod 8), then there is an order-3 automorphism 𝑇 of Dsub
𝑑,𝜖 (𝑝) cycling the triplets of

vertices with ascending 2-isogenies to the same vertex in Dmax
𝑑,𝜖 (𝑝). We will see that 𝑇 is induced by the action of an

ideal class in Cl(Z[
√
−𝑑𝑝]). The ideal 𝔱 = (4,

√
−𝑑𝑝 − 1)Z[

√
−𝑑𝑝] has order 3 in Cl(Z[

√
−𝑑𝑝]), but capitulates

to become the principal ideal (2) in O𝐾 (because
√
−𝑑𝑝 − 1 = 2𝜔, where 𝜔 is the unit 1

2 (
√
−𝑑𝑝 − 1)); indeed, 𝔱

generates the kernel of the canonical homomorphism Cl(Z[
√
−𝑑𝑝]) → Cl(O𝐾 ). Since 𝔱 meets the conductor, its

action on Dsub
𝑑,𝜖 (𝑝) is not well-defined, but we can consider the action of an equivalent ideal in the class group. Let∏

𝑖 ℓ
𝑒𝑖
𝑖 be the prime factorization of (𝑑𝑝 + 1)/4 (and note that each ℓ𝑖 is odd); then (

√
−𝑑𝑝 − 1) = 𝔱 · ∏𝑖 𝔩

𝑒𝑖
𝑖 where

𝔩𝑖 := (ℓ𝑖 ,
√
−𝑑𝑝 − 1); the product

∏
𝑖 𝔩
𝑒𝑖
𝑖 is equivalent to 𝔱 in Cl(Z[

√
−𝑑𝑝]), prime to the conductor, and its action

on Dsub
𝑑,𝜖 (𝑝) induces the automorphism 𝑇 . In the case where 𝑑 = 1 (CSIDH), this is explained at length in [39].

Crossroads. The map (E, 𝜓) ↦→ E defines a covering from Γ(D𝑑,𝜖 (𝑝)) onto a subgraph of the isogeny graph of
all supersingular curves over F𝑝2 . For 𝑑1 ≠ 𝑑2 the images of Γ(D𝑑1 , 𝜖 (𝑝)) and Γ(D𝑑2 , 𝜖 (𝑝)) can intersect, forming
“crossroads” where we can switch from walking in Γ(D𝑑1 , 𝜖 (𝑝)) into Γ(D𝑑2 , 𝜖 (𝑝)), and vice versa.

Definition 4. Let 𝑑1 ≠ 𝑑2 be squarefree integers such that 𝑑1𝑑2 is squarefree. We say that a supersingular curve
E/F𝑝2 with #E(F𝑝2 ) = (𝑝 + 𝜖)2 is a (𝑑1, 𝑑2)-crossroad if there exist isogenies 𝜓1 : E → E1 and 𝜓2 : E → E2 such
that (E, 𝜓1) is a (𝑑1, 𝜖)-structure and (E, 𝜓2) is a (𝑑2, 𝜖)-structure.

If (E, 𝜓) is a (𝑑1, 𝜖)-structure, then we can easily check whether E is a (𝑑1, 𝑑2)-crossroad by evaluating
the classical modular polynomial Φ𝑑2 at ( 𝑗 (E, ), 𝑗 (E) 𝑝). However, (𝑑1, 𝑑2)-crossroads are generally very rare.
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Indeed, if E is a (𝑑1, 𝑑2)-crossroad, then it has an endomorphism of degree 𝑑1𝑑2 with cyclic kernel (in particular,
(𝑑1, 𝑑2)-crossroads with 𝑑1𝑑2 <

√
𝑝

2 appear in the isogeny “valleys” described in [35]). We can therefore enumerate
the entire set of (𝑑1, 𝑑2)-crossroads over a given F𝑝2 by computing the set of roots 𝑗 of Φ𝑑1𝑑2 (𝑥, 𝑥) in F𝑝2 , and
then checking for which 𝑗 we have Φ𝑑1 ( 𝑗 , 𝑗 𝑝) = 0. The polynomial Φ𝑑1𝑑2 (𝑥, 𝑥) has degree

∏
ℓ (ℓ + 1) where ℓ

ranges over the prime factors of 𝑑1𝑑2, so there are only 𝑂 (𝑑1𝑑2) (𝑑1, 𝑑2)-crossroads (up to isomorphism) among
the O(

√
𝑑𝑝) vertices in Γ(D𝑑1 , 𝜖 (𝑝)).

But while crossroads are rare, computing the few examples is relatively easy, and computing (𝑑1, 𝑑2)-crossroads
gives us a useful way of quickly constructing some vertices in Γ(D𝑑1 , 𝜖 (𝑝)) (and in Γ(D𝑑2 , 𝜖 (𝑝))). Suppose we
want to construct a vertex in Γ(D𝑑1 , 𝜖 (𝑝)). Since the vertices in Γ(D𝑑1 , 𝜖 (𝑝)) correspond to curves with an
endomorphism subring isomorphic to Z[

√
−𝑑1𝑝], we might try to construct a vertex from a root in F𝑝2 of the

Hilbert class polynomial for Q(
√
−𝑑1𝑝); but the degree of this polynomial, which is the order of the class group, is

exponential with respect to log 𝑝, so this approach is infeasible for large 𝑝. Instead, we choose a small squarefree
𝑑2 such that 𝑝 does not split in the maximal order of Q(

√
−𝑑1𝑑2). If there exists a (𝑑1, 𝑑2)-crossroad E/F𝑝2 , then

its 𝑗-invariant is a root in F𝑝2 of a quadratic factor of the Hilbert class polynomial for Q(
√
−𝑑1𝑑2), because the

composition of the 𝑑1-isogeny E → E (𝑝) with the conjugate 𝑑2-isogeny E (𝑝) → E is a cyclic endomorphism of
degree 𝑑1𝑑2. All other vertices in Γ(D𝑑1 , 𝜖 (𝑝)) can then be reached through the class group action.

6 CRYPTOGRAPHIC APPLICATIONS
The action of Cl(O𝐾 ) onDmax

𝑑,𝜖 (𝑝) and Cl(Z[
√
−𝑑𝑝]) onDsub

𝑑,𝜖 (𝑝) makesΓ(D𝑑,𝜖 (𝑝)) a natural candidate setting
for group-action/HHS-based postquantum cryptosystems following Stolbunov [43, 45, 46] and Couveignes [18].
For example, for each 𝑑 > 1, we can define a key exchange algorithm on D𝑑,𝜖 (𝑝) generalizing CSIDH [11],
which uses the action of Cl(Z[√−𝑝]) on Dsub

1,1 (𝑝) and CSURF [10], which uses the action of Cl(Q(√−𝑝)) on
Dmax

1,1 (𝑝). Despite the prominence of orientations, the relationship between key exchange in D𝑑,𝜖 (𝑝) and the
OSIDH protocol [16] is distant. The O-orientations in OSIDH involve orders O with massive conductors in O𝐾
where O𝐾 has tiny class number; here, O has tiny conductor and O𝐾 has massive class number.

6.1 HARD PROBLEMS
The conjectural hard problems for the action of Cl(O𝐾 ) on D𝑑,𝜖 (𝑝) are vectorization (the analogue of the DLP)

and parallelization (the analogue of the CDHP) from Couveigne’s Hard Homogenous Spaces framework [18].

Definition 5 (Vectorization). Given (E, 𝜓) and (E ′, 𝜓 ′) inD𝑑,𝜖 (𝑝), find 𝔞 ∈ Cl(O𝐾 ) such that 𝔞· (E, 𝜓) = (E ′, 𝜓 ′).

Definition 6 (Parallelization). Given (E0, 𝜓0), (E1, 𝜓1), and (E2, 𝜓2) in D𝑑,𝜖 (𝑝), compute the unique (E3, 𝜓3) in
D𝑑,𝜖 (𝑝) such that (E3, 𝜓3) = (𝔞1𝔞2) · (E0, 𝜓0) where (E𝑖 , 𝜓𝑖) = 𝔞𝑖 · (E0, 𝜓0) for 𝑖 = 1 and 2.

Solving Vectorization immediately solves Parallelization. In the opposite direction, no classical reduction is
known, but the quantum equivalence of these two problems is shown in [25].

An extensive study of the possible classical and quantum attacks on Vectorization for 𝑑 = 1 can be found
in [11]; all of these attacks extend to 𝑑 > 1 with a slowdown at most polynomial in 𝑑 for class groups of the same
size, with that slowdown due to potentially more complicated isogeny evaluation and comparison algorithms. The
best classical attack known on Vectorization is to use random walks in Γ(D𝑑,𝜖 (𝑝)), exactly as in the 𝑑 = 1 case
in [21], which gives a solution after an expected 𝑂 ((𝑑𝑝)1/4) isogeny steps. Since Vectorization is an instance
of the Abelian Hidden Shift Problem, the best quantum attack is Kuperberg’s algorithm [32, 42, 33] using the
Childs–Jao–Soukharev quantum isogeny-evaluation algorithm as a subroutine [15], adapted to push 𝜓 through the
ℓ-isogenies. This adaptation may incur a practically significant but asymptotically negligible cost; the result is a
subexponential algorithm running in time 𝐿𝑑𝑝 [1/2,

√
2]. Even for 𝑑 = 1, there is some debate as to the concrete

cost of this quantum algorithm, and the size of 𝑝 required to provide a cryptographically hard problem instance for
common security levels [5, 8, 41]. (If and) when some consensus forms on secure parameter sizes for CSIDH, the
same parameter sizes should make Vectorization and Parallelization in D𝑑,𝜖 (𝑝) cryptographically hard, too.

We should also consider the impact of the various involutions on Γ(D𝑑,𝜖 (𝑝)). The negation involution already
exists for 𝑑 = 1, where it essentially flips between a curve and its quadratic twist over F𝑝 . This involution has
not yet been exploited to give an interesting speedup in solving Vectorization or Parellization in the case 𝑑 = 1; a
speedup for any 𝑑 would be an interesting result. For 𝑑 > 1, however, there is at least one new involution: namely,
conjugation. We note that solving Vectorization modulo conjugation solves Vectorization, because a vertex and
its conjugate are always connected by the action of an ideal of norm 𝑑. Working modulo conjugation allows us
to shrink search spaces by a factor of 2, yielding a speedup by a factor of up to

√
2 analogous to working modulo

negation when solving the classical ECDLP (as in [4]). When 𝑑 has 𝑛 prime factors, we get more involutions that
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would allow us to work with equivalence classes of 2𝑛 vertices, shrinking the search spaces by a factor of 2𝑛. Prime
𝑑 therefore seems the simplest and strongest case to us.

Finally, we note that if a random walk should wander into a crossroad, then we have found an isogeny to a
supersingular curve with much known on its endomorphism ring. In this case, attacks analogous to that of [27]
should apply. But as we have seen, crossroads are vanishingly rare; their existence should not create any weakness
for schemes based on Γ(D𝑑,𝜖 (𝑝)), no more than they do for CSIDH.

6.2 NON-INTERACTIVE KEY EXCHANGE
We now describe a non-interactive key-exchange protocol based on the class group action on Γ(D𝑑,𝜖 (𝑝)),

generalizing CSIDH (the case 𝑑 = 1). The public parameters are a prime 𝑝, a prime 𝑑, an 𝜖 in {1,−1}, a set of
primes {ℓ𝑖}𝑛𝑖=1 prime to 𝑑𝑝 and splitting in Q(

√
−𝑑𝑝), together with a prime ideal 𝔩𝑖 above each ℓ𝑖 , and a “starting”

vertex (E0, 𝜓0) in D𝑑,𝜖 (𝑝) (constructed using the crossroad technique, for example). We also fix a secret keyspace
K ⊂ Z𝑛 of exponent vectors such that #K ≥ 22𝜆 to provide 𝜆 bits of security against meet-in-the-middle attacks
(though smaller K may suffice: see [14]). The prime 𝑝 must be large enough that Vectorization and Parallelization
cannot be solved in fewer than 2𝜆 classical operations, or a comparable quantum effort.

For key generation, each user randomly samples their private key as a vector (𝑒𝑖)1≤𝑖≤𝑛 from K, representing
the ideal class [𝔞] = [∏𝑛

𝑖=1 𝔩
𝑒𝑖
𝑖 ] in Cl(O𝐾 ). Their public key is a vertex (E, 𝜓) representing [𝔞] · (E0, 𝜓0), which

we can compute using the methods of §4.4. The public key may be compressed to a single element of F𝑝 plus a
few bits using the modular techniques of §3.

For key exchange, suppose Alice and Bob have key pairs ([𝔞], (E𝐴, 𝜓𝐴)) and ([𝔟], (E𝐵, 𝜓𝐵)), respectively.
Alice receives and validates (E𝐵, 𝜓𝐵), and computes 𝑆𝐴𝐵 = (E𝐴𝐵, 𝜓𝐴𝐵) = [𝔞] · (E𝐵, 𝜓𝐵); Bob receives and
validates (E𝐴, 𝜓𝐴), and computes 𝑆𝐵𝐴 = (E𝐵𝐴, 𝜓𝐵𝐴) = [𝔟] · (E𝐴, 𝜓𝐴). The commutativity of the group action
implies that 𝑆𝐴𝐵 � 𝑆𝐵𝐴, so Alice and Bob have a shared secret up to isomorphism. To obtain a unique shared
value for cryptographic key derivation, they can derive a modular “compressed” representation of the shared secret
as in §3 (for example, when 𝑑 = 2 or 3, the parameter 𝑢 for the family of §3.1 or §3.2 and a sign bit suffice), or
simply take 𝑗 (E𝐴𝐵) = 𝑗 (E𝐵𝐴) with a minimal security loss.

Remark 6. When ideal classes represent cryptographic secrets, it is important to compute their actions in constant
time. A number of techniques have been proposed for this in the context of CSIDH [36, 40, 12, 9, 3]. Each of these
methods generalizes in a straightforward way to compute class-group actions on (𝑑, 𝜖)-structures. The only real
algorithmic difference when evaluating an isogeny 𝜙 : (E, 𝜓) → (E ′, 𝜓 ′) is that the isogeny 𝜓 must be pushed
through 𝜙 in constant-time as well. For 𝑑 = 2 and 3, this amounts to pushing the 𝑥-coordinate of a single point
through the isogeny, something that is already part of constant-time CSIDH implementations. For 𝑑 > 3 the kernel
polynomial of 𝜓 can be pushed through 𝜙 using symmetric functions.

6.3 KEY VALIDATION AND SUPERSINGULARITY TESTING
Public key validation is an important step in many public-key cryptosystems, notably in non-interactive key

exchanges where it is a defence against active attacks. In our situation, this amounts to proving that a pair (E, 𝜓)
represents an element of D𝑑,𝜖 (𝑝) (or Dmax

𝑑,𝜖 (𝑝), or Dsub
𝑑,𝜖 (𝑝)). The first step is to check that (E, 𝜓) is a (𝑑, 𝜖)-

structure: specifically, we must check that 𝜓 is indeed an isogeny from E to E (𝑝) and that 𝜓 = 𝜖𝜓 (𝑝) . This can be
done with two 𝑑-isogeny computations, which costs very little when 𝑑 is small.

Verifying supersingularity is more complicated. For 𝑑 = 1 (CSIDH), we just check whether a curve over F𝑝 has
order 𝑝 + 1, which can be done efficiently by probabilistically generating a point of order 𝑚 | 𝑝 + 1 with 𝑚 > 4√𝑝
(see [11, §5]). But this technique does not extend to 𝑑 > 1, where we must check if E/F𝑝2 has (𝑝 + 𝜖)2 points: our
valid curves have E(F𝑝2 ) � (Z/(𝑝 + 𝜖)Z)2, and therefore no points with the required order > 4𝑝.

Instead, for 𝑑 > 1 we can specialize the deterministic supersingularity test of Sutherland [47]. Let 𝜋E be the
Frobenius endomorphism of E/F𝑝2 . The discriminant of Z[𝜋E] is bounded by 4𝑝2, so the conductor of Z[𝜋E] in
O𝐾 is bounded by 2𝑝; hence, if E is ordinary, then the maximal height of the 2-isogeny volcano containing E is
log2 (𝑝) + 1. Sutherland’s supersingularity test takes random non-backtracking 2-isogeny walks starting from each
of the three 2-isogeny neighbours of E. If E is ordinary, then at least one of these walks will descend the 2-isogeny
volcano, and will therefore terminate (with no non-backtracking step defined over F𝑝2 ) after at most log2 (𝑝) + 1
steps. Conversely, if no walk terminates after log2 (𝑝) + 1 steps, then E must be supersingular.

In our case, we know that End(E) ⊃ Z[𝜇] ⊃ Z[𝜋E], and the conductor of Z[𝜋E] in Z[𝜇] is the integer |𝑟 | of
Proposition 1, which is bounded by 2

√
𝑝/𝑑. We can therefore reduce the walk length limit from log2 (𝑝) + 1 to

1
2 (log2 (𝑝) − log2 (𝑑)) + 1. We can also use the fact that Z[𝜇] ⊂ End(E) to ensure that we choose a “descending”
path within at most two steps, and omit the other two paths. Thus, we can determine if a (𝑑, 𝜖)-structure (E, 𝜓) is
supersingular for the cost of computing two 𝑑-isogenies and ( 1

2 (log2 (𝑝) − log2 (𝑑)) + 5) 2-isogenies.
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We can determine whether (E, 𝜓) is in Dmax
𝑑,𝜖 (𝑝) or Dsub

𝑑,𝜖 (𝑝) (if required, and only if −𝑑𝑝 ≡ 1 (mod 4)) by
computing the action of 𝜇 on the 2-torsion (at the cost of one or two 𝑑-isogeny evaluations) or by computing the
2-neighbours of (E, 𝜓) in Γ2 (D𝑑,𝜖 (𝑝)).

6.4 GENERALIZED DELFS–GALBRAITH ALGORITHMS
Let 𝑆𝑝 be the set of supersingular curves over F𝑝2 , up to isomorphism. The general supersingular isogeny

problem is, given E1 and E2 in 𝑆𝑝 , to compute an isogeny 𝜙 : E1 → E2.
In [21], Delfs and Galbraith use the subset of supersingular curves defined over F𝑝 , which we can identify with

D1,1 (𝑝), to improve classical isogeny-finding algorithms based on random walks. Their algorithm has two phases:
1. Compute a random non-backtracking isogeny walk from E1 resp. E2 until we land on a curve E ′

1 resp. E ′
2

in D1,1 (𝑝). These walks yield isogenies 𝜙1 : E1 → E ′
1 and 𝜙2 : E2 → E ′

2. The isogeny graph on 𝑆𝑝 has
excellent mixing properties, and since #𝑆𝑝 ≈ 𝑝/12 and #D1,1 (𝑝) = 𝑂 (√𝑝), this first phase takes an expected
𝑂 (√𝑝) random isogeny steps.

2. Find an isogeny 𝜙′ : E ′
1 → E ′

2 using the action of Cl(Q(√−𝑝)) acting on D1,1 (𝑝) (that is, solve Vectorization
with 𝑑 = 1). Under the Generalized Riemann Hypothesis, Cl(Q(√−𝑝)) is generated by the set L of ideals
of prime norm up to 6 log ( |Δ|)2, where Δ is the discriminant of Q(√−𝑝) (see [2]) though in practice we do
not need so many primes. The L-isogeny graph on D1,1 (𝑝) is therefore connected, and we can use random
walks in this subgraph to construct 𝜙′. By the birthday paradox, this phase takes an expected𝑂 ( 4

√
𝑝) random

steps before finding the collision yielding 𝜙′.
The Delfs–Galbraith algorithm exploits the action of Cl(Q(√−𝑝)) on D1,1 (𝑝) to solve the isogeny problem

in 𝑆𝑝 . We can generalize their algorithm by replacing the distinguished subgraph Γ(D1, 𝜖 (𝑝)) with a union of
subgraphs ⊔𝑑∈𝐷Γ(D𝑑,𝜖 (𝑝)) where 𝐷 is a set of coprime squarefree integers prime to 𝑝. In Phase 1, we now take
random walks from E1 and E2 into ⊔𝑑∈𝐷D𝑑,𝜖 (𝑝).3 In Phase 2, if E ′

1 is in D𝑑1 , 𝜖 (𝑝) and E ′
2 is in D𝑑2 , 𝜖 (𝑝), then we

need to compute a (𝑑1, 𝑑2)-crossroad E ′
3 and find a path E ′

1 → E ′
3 in D𝑑1 , 𝜖 (𝑝) and a path E ′

2 → E ′
3 in D𝑑2 , 𝜖 (𝑝).

(In particular, we should ensure that there exist supersingular (𝑑1, 𝑑2)-crossroads before including 𝑑1 and 𝑑2 in 𝐷.)
This is not worthwhile for large 𝑑 or large 𝐷. Asymptotically, #D𝑑,𝜖 (𝑝) is in 𝑂 ((∑𝑑∈𝐷

√
𝑑)√𝑝), so the

expected number of steps in Phase 1 is reduced by a factor of 𝑂 (∑𝑑∈𝐷
√
𝑑). However, the individual steps become

more expensive: if we use modular polynomials to check membership of each D𝑑,𝜖 (𝑝), then the number of F𝑝2 -
operations per step grows linearly with

∑
𝑑∈𝐷 𝑑, overwhelming the benefit of the shorter walks. Asymptotically,

therefore, there is no benefit in taking large 𝑑 or large 𝐷 in Phase 1. (For more analysis of random walks into
(𝑑,±1)-structures, in different contexts, see [22] and [13].)

Generalized Delfs–Galbraith can become interesting for 𝐷 consisting of a few small 𝑑, however, precisely
because the asymptotic 𝜅(𝑑, 𝑝) := #D𝑑,𝜖 (𝑝)/#D1, 𝜖 (𝑝) ≈

√
𝑑 no longer holds. For 𝑑 < 10, for example, we

can have 𝜅(𝑑, 𝑝) substantially greater than
√
𝑑 (and also substantially less than 1). For example, if 𝑝 is the toy

SIDH-type prime 252 ·333−1, then 𝜅(5, 𝑝) ≈ 4.916. If we can test for an isomorphism or 5-isogeny to the conjugate
faster than we can compute six 2-isogenies, then we can take 𝐷 = {1, 5} and walk into D1, 𝜖 (𝑝) ⊔ D5, 𝜖 (𝑝) faster
than walking into D1, 𝜖 (𝑝) alone. This speedup is counterbalanced by a slowdown in Phase 2, because walking in
Γ(D5, 𝜖 (𝑝)) costs more, and because the walks there need to be a square-root of 𝜅(5, 𝑝) longer—though we can
work modulo conjugation to mitigate this cost.

6.5 (𝑑, 𝜖)-STRUCTURES AND SIDH GRAPHS
As we noted above, the probability of a random walk in the supersingular ℓ-isogeny graph hitting a vertex that

is the image of a (𝑑, 𝜖)-structure is very low. It is even lower when we consider SIDH/SIKE graphs, which cover
only a very small proportion of the full isogeny graph, resembling trees of walks of short, fixed length.

Nevertheless, when we look at specific SIKE graphs, we see that they contain sections of Γ2 (D𝑑,𝜖 (𝑝)) and
Γ3 (D𝑑,𝜖 (𝑝)) for various 𝑑. For example, the starting curve in SIKEp434 has a 𝑑-isogeny to its conjugate for
𝑑 ∈ 𝐷 = {5, 13, 17, 29, 37, 41} (and also for much higher, but less practical values of 𝑑). If we consider the
2-isogeny graph, then we find that Γ2 (D𝑑,𝜖 (𝑝)) passes through the starting curve and continues down through the
tree towards a public key for 𝑑 = 17 and 41. Hence, if we can find a 2-isogeny path from a SIKEp434 public key
to a vertex in the image of D17, 𝜖 (𝑝) or D41, 𝜖 (𝑝), then we have an express route to the starting curve. Such an
attack succeeds in a reasonable time with only a very small probability, but it is still devastatingly effective for a
tiny proportion of SIKEp434 keys.

3To measure the feasability of this attack, we need to estimate the average number of steps from a general supersingular elliptic curve E/F𝑝2

to a curve in (the image of) D𝑑,𝜖 (𝑝) . This distance follows a binomial law (𝑚, P) where𝑚 is the number of steps and P =
√
𝑑/𝑝. Hence, the

probability P(𝑋 > 1) that we reach at least one element in D𝑑,𝜖 (𝑝) after 𝑚 steps from E is P(𝑋 > 1) = 1 − P(𝑋 = 0) = 1 − (1 −
√
𝑑/𝑝)𝑚.

When 𝑑 = 1, this addresses some of the heuristic observations in [1], notably the distance to the F𝑝-spine.
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