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Abstract.
Single-trace attacks are a considerable threat to implementations of classic public-key
schemes, and their implications on newer lattice-based schemes are still not well
understood. Two recent works have presented successful single-trace attacks targeting
the Number Theoretic Transform (NTT), which is at the heart of many lattice-based
schemes. However, these attacks either require a quite powerful side-channel adversary
or are restricted to specific scenarios such as the encryption of ephemeral secrets. It
is still an open question if such attacks can be performed by simpler adversaries while
targeting more common public-key scenarios.
In this paper, we answer this question positively. First, we present a method
for crafting ring/module-LWE ciphertexts that result in sparse polynomials at the
input of inverse NTT computations, independent of the used private key. We then
demonstrate how this sparseness can be incorporated into a side-channel attack,
thereby significantly improving noise resistance of the attack compared to previous
works. The effectiveness of our attack is shown on the use-case of CCA2 secure Kyber
k-module-LWE, where k ∈ {2, 3, 4}. Our k-trace attack on the long-term secret can
handle noise up to a σ ≤ 1.2 in the noisy Hamming weight leakage model, also for
masked implementations. A 2k-trace variant for Kyber1024 even allows noise σ ≤ 2.2
also in the masked case, with more traces allowing us to recover keys up to σ ≤ 2.7.
Single-trace attack variants have a noise tolerance depending on the Kyber parameter
set, ranging from σ ≤ 0.5 to σ ≤ 0.7. As a comparison, similar previous attacks in
the masked setting were only successful with σ ≤ 0.5.
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1 Introduction
Current public-key cryptographic schemes are based on the premise that the mathematical
problems underlying them are hard to solve for the chosen parameters. With the advent
of a quantum computer however, these classical hard problems will be efficiently solvable
by applying Shor’s algorithm [Sho94]. As a result, there is rising interest in post-quantum
cryptography (PQC) algorithms, which are based on mathematical problems conjectured
to resist quantum attack. To facilitate the standardization of such algorithms, the National
Institute of Standards and Technology (NIST) in 2017 put out a call to submit PQC
candidates [Nat] with the aim to be standardized. Currently, there are 15 candidates in
Round 3 of the evaluation, a few of which are expected to be standardized over the next
years.

One promising candidate is Kyber [BDK+18]. It is part of the class of lattice-based cryp-
tography, and in particular a module-Learning With Errors (module-LWE) scheme. Kyber
implementations rely on the fact that its ring, the cyclotomic ring Rq = Zq[x]/(xn + 1),
allows for polynomial multiplication to be performed by the Number Theoretic Transform
(NTT), a discrete variant of a Fast Fourier Transform (FFT).

The threat of side-channel attacks, introduced by [KJJ99], on cryptographic implemen-
tations is widely acknowledged. Many types of side-channel attacks are known, ranging
from exploiting the timing to Electromagnetic (EM) radiation, from exploiting visible key
bits to distinguishing subtle differences using machine learning, and from requiring millions
of scope traces down to only one. Because post-quantum cryptography is a relatively new
field, the landscape of threats has not been mapped as thoroughly.

Related Work For lattice-based constructions side-channel work so far is mostly focused
on applying masking to implementations, which is aimed at increasing the difficulty of
various degrees of differential attacks [RRVV15, RdCR+16, RRdC+16, OSPG18, BPO+20].

On the attack side, observations on using the properties of an NTT to recover ring-LWE
keys from partial key recovery were made in [BBPS19, DGKS20]. In [RBRC20] an attack
for the message recovery in unprotected NIST PQC LWE/LWR schemes is presented. They
extend their attack to a masked implementation, but can only perform message recovery.
Very recently, a 16-trace attack against a first-order masked implementation of IND-CCA
secure Saber KEM was presented in [NDGJ21]. It describes how to both recover the session
key and the long-term secret key by applying deep learning techniques. This removes
the limitations of [RBRC20]. Some attacks can even compromise a message or private
key using only a single trace. In particular, [PPM17] and [PP19] recover data passed
through an NTT by templating the multiplications or other intermediate values within
the NTT. An extensive description of these attacks, including the used belief propagation
technique, is presented in Section 3. These single-trace attacks are still limited in that
they either require extensive profiling efforts or in that they are only applicable in specific
scenarios like the encryption of ephemeral keys. The question of whether a variant of
these attacks could be used for key recovery in public-key decryption while requiring only
modest profiling efforts was so far unanswered.
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Contributions In this work we show that a sparse Chosen Ciphertext Attack (CCA),
combined with belief propagation can more efficiently recover (CCA2-secure masked)
Kyber keys from side-channel information on the NTT computations. The attack requires
k traces on the inverse NTT step of Kyber decryption, where k ∈ {2, 3, 4} is the module
dimension, for a noise tolerance σ ≤ 1.2 in the Hamming weight leakage. More specifically:

• We present a novel sparse-vector CCA strategy, which leads to full long-term key
recovery. This strategy improves the effectiveness of belief propagation of [PPM17,
PP19] by allowing larger noise levels in the traces without reducing the recovery rate,
also in the masked case.

• We demonstrate how to choose the number of traces in our attack from 1 to k to
increase the noise tolerance from σ ≤ 0.5− 0.7 up to σ ≤ 1.2 in the Hamming weight
leakage. Our simpler sparse vector generation based on the NTT structure can still
handle noise up to σ ≤ 0.9 in a k-trace attack. For Kyber1024 we are even able to
handle noise up to σ ≤ 2.2 in an 2k-trace attack. With repeating failed runs we can
further increase the noise up to σ ≤ 1.4 for Kyber512 and Kyber768, and σ ≤ 2.7 for
Kyber1024.

• We show that the attack is applicable to masked implementations of Kyber, when
the masking is applied to the secret key. This is a common masking strategy and
used as a part of the masking in, for instance, [RRdC+16, OSPG18].

• We provide an implementation of the attack, to showcase its effectiveness. Despite
its reliance on chosen ciphertexts, our implementation shows that it can be applied
to CCA2-secure constructions.

Open Source The open-source implementation of our attack can be found at
https://github.com/BayesianSCA/k-trace-CCA.

Outline The remainder of this paper is organized as follows. In Section 2 we review
the necessary preliminaries on Kyber and the NTT. In Section 3 we explain the belief
propagation SCA presented in [PPM17, PP19], as well as its limitations. In Section 4
we put forth our novel sparse-vector NTT attack which improves on that attack, the
effectiveness of which is shown in Section 5. In Section 6 we discuss countermeasures and
possibilities of extending out attack to other lattice-based schemes. We conclude our paper
in Section 7.

2 Preliminaries
In this section we introduce the module Learning With Errors problem, go into some detail
of Kyber, and introduce the Number Theoretic Transform.

2.1 Learning With Errors
The Learning With Errors (LWE) problem [Reg05] and its instantiation over rings [LPR10]
or modules are the basis of multiple NIST PQC candidates.

Let Zq be the ring of integers modulo q and for given degree n, defineRq = Zq[x]/(xn+1)
as the polynomial ring of polynomials modulo xn + 1. Let also βη denote the centered
binomial distribution with parameter η and U the uniform distribution over Zq. A module-
LWE distribution now consists of tuples (a, b = aT s + e) ∈ Zkq ×Zq (resp. Rkq ×Rq), where
coefficients of s are drawn from βη once, and for each sample e is freshly drawn from βη
and the coefficients of a from U . The module-LWE based schemes rely on the hardness of
recovering s from several of such tuples.

https://github.com/BayesianSCA/k-trace-CCA
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2.2 Kyber
Kyber [BDK+18] is a Key Encapsulation Mechanism (KEM) submitted to the NIST
standardization process. It is among the 7 finalists of the 15 schemes in Round 3 [Nat].
Its security is based on the module-LWE problem. For the three parameter sets in the
proposal, Kyber512, Kyber768, and Kyber1024, the parameters are all set to n = 256
and q = 3329. For most parameters η = 2 is used, except for Kyber512, where η = 3.
The parameter sets differ in their module dimension k = 2, 3, and 4 respectively. Since
our focus is on its NTT (see Section 2.3), a simplified version suffices, omitting details
such as how coefficients are packed. Kyber also supports “90s” versions of each parameter
set, which substitute AES and SHA2 for SHAKE and SHA3, but this distinction doesn’t
affect our attack because we target only the NTT. For further details on Kyber, we refer
to [BDK+18]. Kyber’s CCA2-KEM Key Generation, PKE- and CCA2-KEM-Encryption,
and CCA2-KEM-Decryption are summarized in Algorithms 1, 2, 3 and 4.

Algorithm 1 Kyber-CCA2-KEM Key Generation (simplified)
Output: Public key pk, secret key sk
1: Choose uniform seeds ρ, σ, z
2: Rk×kq 3 Â := SampleU(ρ) . Generate uniform Â in NTT domain
3: Rkq 3 s, e := SampleB(σ) . Sample from binomial distribution
4: ŝ := NTT(s) . NTT for efficient multiplication
5: t̂ := Â ◦ ŝ + NTT(e) . t := As + e
6: return (pk := (̂t, ρ), sk := (̂s, pk,Hash(pk), z))

In these algorithms, and in the rest of this paper, the notation a · b means ordinary
multiplication, whereas a ◦ b means “pairwise-pointwise” multiplication of polynomials,
or vectors or matrices of polynomials, in the NTT domain. Compression is defined as
Compress(u) := bu · 2d/qe mod 2d. This lossily compresses an element of Zq to d bits,
where d varies across the element being compressed and across Kyber instances.

The PKE-Encryption is shown in Algorithm 2. The seed τ used for the noise sampling
is made explicit to allow the re-encryption required for the CCA2 transform in Algorithm 3.
The ciphertext c consists of two compressed parts, where the second component c2 contains
m encoded as an element in Rq. The decryption process (Algorithm 4) requires the
recipient to recover this m from a noisy version.

Algorithm 2 Kyber-PKE Encryption (simplified)

Input: Public key pk = (̂t, ρ), message m, seed τ
Output: Ciphertext c
1: Â ∈ Rk×kq := SampleU(ρ) . Regenerate uniform Â
2: r, e1 ∈ Rkq , e2 ∈ Rq := SampleB(τ) . Sample noise r, e1, e2 (binomial)
3: u := NTT−1(Â

T
◦ NTT(r)) + e1 . u := AT r + e1

4: v := NTT−1(̂tT ◦ NTT(r)) + e2 + Encode(m) . v := tT r + e2 + Encode(m)
5: c1, c2 := Compress(u, v) . Round off lower bits (lossy)
6: return c := (c1, c2)

Kyber uses a variant of the Fujisaki-Okamoto transform [FO13] to build an IND-CCA2
secure key-encapsulation mechanism (KEM). This transform applies an additional re-
encryption of the decrypted message (cf. Algorithm 4, l. 4), using the same randomness as
used for the encryption of the received ciphertext. The decryption is only deemed valid if
the re-computed ciphertext matches the received ciphertext. As our attack exploits leakage
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Algorithm 3 Kyber-CCA2-KEM Encryption (simplified)

Input: Public key pk = (̂t, ρ)
Output: Ciphertext c, shared key K
1: Choose uniform m
2: (K̄, τ) := Hash(m||Hash(pk)) . Embed pk into encryption
3: c := PKE.Enc(pk,m, τ) . CPA encryption with fixed seed
4: K := KDF(K̄||Hash(c)) . Derive shared key
5: return (c,K)

Algorithm 4 Kyber-CCA2-KEM Decryption (simplified)
Input: Secret key sk = (̂s, pk, h, z), ciphertext c = (c1, c2)
Output: Shared key K
1: u, v := Decompress(c1, c2) . Expand to full modulus
2: m := Decode(v − NTT−1(̂sT ◦ NTT(u))) . m := Decode(v − sTu)
3: (K̄, τ) := Hash(m||h) . Regenerate seed for encryption
4: c′ := PKE.Enc(pk,m, τ) . Assert valid ciphertext
5: K := KDF(K̄||Hash(c)) if c = c′, . Derive shared key
6: else K := KDF(z||Hash(c)) . Implicit rejection on failure
7: return K

that occurs before the re-encryption, i.e. NTT−1 in line 2, the check does not mitigate our
attack.

2.3 Number Theoretic Transform
For lattice-based schemes using polynomial rings, the polynomial multiplication is the most
computationally expensive step. The Number Theoretic Transform (NTT) is a technique
that enables efficient computation of this multiplication.

The NTT is similar to the Discrete Fourier Transform (DFT), but instead of over the
field of complex numbers, it operates over a prime field Zq. It can be seen as a mapping
between the coefficient representation of a polynomial from Rq (the normal domain) to
the evaluation of the polynomial at the n-th roots of unity (the NTT domain). This
bijective mapping is typically referred to as forward transformation. The mapping from the
NTT domain to the normal domain is referred to as backward transformation or inverse
NTT. In the NTT domain, multiplication of polynomials can be achieved by point-wise
multiplication, which is much cheaper than multiplication in the normal domain. Typically,
one would perform the forward transformation, multiply the polynomials (point-wise) in
the NTT domain, and go back using the backward transformation.

For Rq with a 2n-th primitive root of unity ζ, the NTT transformation of an n-degree
polynomial f =

∑n−1
i=0 fix

i is defined as:

f̂ = NTT(f) =
n−1∑
i=0

f̂ix
i, where f̂i =

n−1∑
j=0

fjζ
(2i+1)·j . (1)

Similarly,

f = NTT−1(f̂) =
n−1∑
i=0

fix
i, where fi = n−1

n−1∑
j=0

f̂jζ
−i·(2j+1). (2)

The NTT transform (and its inverse) can be applied efficiently by using a chaining of
log2 n butterflies. It is a divide and conquer technique that splits the input in half in each
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step and solves two problems of size n/2. For n = 2k after k steps, the problems are of size
1 and can be trivially solved. The way the splitting is done is referred to as decimation
and typically in practice, either the Cooley-Tukey [CT65] or the Gentleman-Sande [GS66]
butterfly is used. The construction for a 8-coefficient NTT using the Cooley-Tukey butterfly
with decimation in time is depicted in Figure 2.1 (cf. [CT65]), with the output being in
bit-reversed order.
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Figure 2.1: 8-coefficient Cooley-Tukey decimation in time NTT

Schemes like Kyber and Dilithium [DKL+18] use an NTT-friendly ring. But in Kyber,
only n-th primitive roots of unity exist, therefore the modulus polynomial Xn + 1 only
factors into polynomials of degree 2. Hence, the last layer of the NTT is skipped (nearest
neighbors) and in NTT domain multiplication is not purely pointwise, but multiplications
of polynomials of degree one (pairwise-pointwise). That is, the Kyber ring is effectively
Fq2 [y]/(y128+1), where Fq2 is the field Zq[x]/(x2−ζ). Also note that in Kyber, polynomials
in NTT domain are always considered in bit-reversed order (cf. Figure 2.1). Therefore,
in the following bit-reversal is implicitly expected in the NTT domain and indices for
NTT-coefficients are noted in regular order.

It was recently shown that schemes like NTRU [ZCH+20], Saber [DKR+20], and NTRU
Prime [BBC+20] can also benefit from the NTT by applying a transformation from their
NTT-unfriendly-ring to a friendly one [ACC+21b, CHK+21].

2.4 Masked Implementations

Several previous works propose DPA-secured implementations of lattice-based schemes
that use masking as their main protection mechanism. The first masking scheme for
ring-LWE decryption was presented by Reparaz et al. [RRdC+16] and was later extended
to a CCA2-secure version by Oder et al. [OSPG18]. An alternative countermeasure, more
in line with classical blinding techniques, utilizes the additively homomorphic nature of
ring-LWE and is presented in [RdCR+16].

For the purpose of this paper, we are only interested in the initial decryption of the
ciphertext, containing the inverse NTT operation, as we do not exploit leakage of subsequent
computation steps. Here, the application of classical masking is rather straightforward as
the NTT itself is a linear operation. Hence, one can simply (1) split the secret key into
two (or more) shares, (2) multiply the NTT-domain ciphertext by each share, (3) compute
the inverse NTTs independently for each share, and (4) finally add the shares back again if
needed [RRdC+16, OSPG18]. The same strategy is also applicable for module-LWE-based
schemes like Kyber. We give a more detailed description of masked Kyber decryption in
Section 5.1.
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3 Soft-Analytical Side-Channel Attacks (SASCA)
In this section, we first give a generic description of Soft-Analytical Side-Channel Attacks
(SASCA) and the Belief Propagation algorithm (BP), which are frequently used in profiled
power analysis attacks. We base our descriptions of BP on MacKay [Mac03, Chapter 26]
and on previous works using SASCA [VGS14, PP19]. We then outline previous works that
study profiled power analysis attacks on (masked) NTT computations and point out their
limitations. We do not discuss DPA attacks, as masking is generally considered to be an
effective countermeasure against these kinds of attacks.

3.1 Belief Propagation
Profiled power analysis attacks in the single/few-trace setting often face the problem
that measurements alone are not sufficient to determine the exact values of an analyzed
computation. A common way to reduce the remaining guessing entropy is to build systems
of equations which relate multiple intermediate values, and to solve them using SAT
solvers or sophisticated brute force algorithms. In 2014, this idea was extended by Veyrat-
Charvillon et al. [VGS14] proposing soft-analytical side-channel attacks (SASCA). This
class of attacks treats the reduction of the remaining guessing entropy in combination
with algorithm knowledge as a noisy decoding problem. Belief propagation is an inference
algorithm which has proven to be very useful when decoding these kinds of problems.
Knowledge about the algorithm is transformed into a so called factor-graph. This factor-
graph models intermediate values of the algorithm as variable nodes and the relations
or transformations between the intermediate values as factor nodes. Each variable node
represents a local marginal probability distribution of the global joint distribution of
all intermediate values. The variable nodes hold the initial probabilities - also called
beliefs - which were gained via classical template matching. Variable and factor nodes
then alternately exchange messages about their beliefs. This iterative process reduces
intractable decoding solutions and could disclose the true values of each intermediate of
the secret. A more thorough and formal explanation of BP is given in Appendix A.

The application of BP in side-channel analysis has proven to be very powerful [VGS14,
PPM17, KPP20, PP19, GRO18]. However, BP only decodes the correct marginals if
the factor graph has no cycles. If BP is used in cyclic graphs, we refer to it as loopy
Belief Propagation. The quality of the solutions of loopy BP is inversely proportional to
the length of the loops. Short loops can introduce overconfidence, which could lead to
oscillations or incorrect solutions within local minima [PP19]. Therefore, it is beneficial to
overcome short loops by clustering or remodeling of factor nodes which introduce these
short loops. Additional attention has to be paid with respect to iteration number and
break conditions in loopy BP.

3.2 Prior Work
As shown in prior work [PPM17, PP19], attacks can recover sensitive NTT inputs after
observing just a single trace. More concretely, they recover the inputs to the forward/inverse
NTT during ring-LWE encryption/decryption respectively. While decryption is generally
the more interesting attack target since it involves the usage of a long-term private key,
single-trace attacks on the encryption are also plausible attack scenarios for KEMs where
ephemeral secrets are being encrypted.

Fig. 3.1 illustrates some options to construct a factor graph for an NTT computation.
Fig. 3.1a shows a single butterfly which is equivalent to a length-2 NTT and transforms
an input polynomial with coefficients x0, x1 into the corresponding output polynomial in
the NTT domain with coefficients x̂0, x̂1. Fig. 3.1b depicts the corresponding factor graph
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as constructed in [PPM17]. In this graph, variable nodes (intermediate values) and factor
nodes (computations) are represented by circles and squares, respectively.

𝜔
𝑥1

𝑥0

�̂� 1

�̂� 0

-1

(a) Single butterfly

𝑓add

𝑥1

𝑥0

𝑓sub

𝑓𝓁

�̂� 0

�̂� 1

(b) Simple factor graph rep-
resentation of a butterfly
as used in [PPM17]

𝑓bf𝑓𝓁

𝑓𝓁 

𝑥0

𝑥1

�̂� 0

�̂� 1

(c) The factor graph used
in [PP19] and in our work.

Figure 3.1: Comparison of a single butterfly with possible factor-graph representations
(illustration from [PP19]).

The factor nodes can be further split into two groups. The first group of factors f`
model the observed side-channel information, i.e., the outcome of the template matching
f`(i) = Pr(x = i|`) where x is the matched intermediate and ` is the observed side-channel
leakage. In [PPM17] the template matching was performed on the modular multiplication
with ω (corresponding to the powers of ζ in the NTT, cf. Figure 2.1), and hence where
they receive information on x1. In this case, modeling the effects of multiplication on the
beliefs simply corresponds to shuffling their probabilities since ω is publicly known.

The second group of factors, consisting of fadd and fsub, model the deterministic
relationships between the variable nodes as specified by the NTT. E.g., for the addition in
the upper branch, we get:

fadd(x0, x1, x̂0) =
{

1 if x0 + x1ω = x̂0 mod q
0 otherwise

As later observed in [PP19], modeling these operations individually causes many small
loops in the factor graph which results in reduced BP convergence. Instead, they propose
to merge the computations of a butterfly into a single factor node fbf. When combining
this optimization with an improved message schedule and a certain amount of message
damping, the BP convergence performance can be significantly improved.

3.3 Limitations of Prior Work
While [PPM17, PP19] demonstrate the possibility of side-channel attacks on the NTT,
their presented attacks either fall somewhat short of being practical or are only applicable
in certain scenarios.

The attack in [PPM17] relies on template matching of modular multiplication operations
which requires close to a million different templates. Furthermore, although not strictly
required, they also exploit a certain time-invariance of the multiplication operation since it
has a data-dependent behavior on their target device. Finally, they analyze a fairly simple
and generic NTT implementation that misses several performance optimizations, such as
lazy reductions, that are nowadays commonly used.

The attack from [PP19] can be seen as a significant improvement over [PPM17] in
terms of practicality, but it also comes with restrictions to certain scenarios. First and
foremost, their presented BP improvements allow them to replace value-based templates
with generic noisy Hamming weight templates. They also show a practical attack using
power traces of an ARM Cortex M4 device. On the downside, they rely on additional
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information about the narrow support (value range) of polynomial coefficients at the
NTT input which is only present during ring-LWE encryption. Even in this case, their
evaluation shows that they can only handle noise levels with σ ≤ 0.4 when considering
masked implementations.

4 Chosen Ciphertext k-Trace Attack
In this section we present our new attack that overcomes the limitations described in
Section 3.3. We first give an outline of the attack, then give details on the different aspects
in the subsequent sections.

4.1 Attack Outline - Improving BP for the NTT
Our attack targets Kyber’s decryption step, i.e. line 2 of Algorithm 4 with the aim
of recovering the victim’s long-term private key ŝ. Previous work has observed that
SASCA can recover the coefficients used in the NTT if sufficient additional information
is available [PP19]. We provide that information by way of a Chosen Ciphertext Attack
(CCA). Our attack ensures the inverse NTT (NTT−1) will be given sparse input, meaning
that most of the NTT coefficients are known to have a value of zero. Our attack works by:

1. Creating a ciphertext c = (c1, c2) such that the inverse NTT operations will be
performed on sparse input involving the secret ŝ, which combined with the highly
structured NTT gives much additional information.

2. Extracting the sparse, secret data from (a) SCA trace(s) on the inverse NTT.

3. Recovering the private key from the recovered information.

In NewHope and Kyber, to decrypt a message the recipient has a secret key ŝ in the
NTT domain, and calculates NTT−1(̂sT ◦ û), where û is the decompressed ciphertext
in the NTT domain. Since ŝT ◦ û is taken pairwise-pointwise, it will be sparse if û is
pairwise-sparse. For NewHope, this is easily achieved because the ciphertext is sent as û,
i.e. in the NTT domain. For Kyber however, the ciphertext is sent compressed as c1 in
the standard domain (cf. Algorithm 2, l. 5), so it is necessary to find a ciphertext c1 such
that û is sparse and u = Decompress(Compress(u)). In the remainder, we will refer to a
ciphertext meeting this condition as compressible.

4.2 Creating Sparse NTT Values
We aim to find a compressible ciphertext c = (c1, c2) where û is zero on some subset S of
the coefficients. The component c1 consists of k independent ring elements c1,i ∈ R2d . We
will explain two methods of forcing the NTT ûi of one such component’s decompressed
image, ui ∈ Rq, to be sparse. In the following we will omit the subscript i for clarity.

Note that due to Kyber’s field Zq lacking a 512th root of unity, its NTT has only 7
layers instead of 8, and the even and odd coefficients never mix. It can therefore be seen
as two parallel “half-NTTs” each on 128 coefficients: one half-NTT on the even coefficients
and the other half-NTT on the odd coefficients. We can aim for the output of one half-NTT
to be sparse, and the other to be zero. Furthermore, the even and odd coefficients will be
mixed during the pairwise-pointwise multiplication step, where a pair of one even and one
odd coefficient are multiplied by the corresponding position of the NTT’d private key. So
we don’t need to set half the ciphertext to zero: the attack will work just as well if we set
the two halves of the ciphertext so that their half-NTTs have the same sparse support. In
any case, working with half-NTTs improves the speed of our methods.
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The first method is to solve a short vector problem, since the set of uncompressed
ciphertexts u for which û are zero on S form a lattice. We have

c1 = Compress(u) =
⌊
u · 2d/q

⌉
mod 2d,

where d = 10 for Kyber512 and Kyber768, and d = 11 for Kyber1024. We therefore want to
construct pairs of vectors (u,Compress(u)) where û is sparse and ũ = u ·2d−Compress(u) ·q
is a short vector. If all the coefficients of ũ are small then u will be compressible. Using
BKZ-2.0 [CN11] with block size 70, we were able to find ciphertexts (c1, c2) where each
half-NTT component of ĉ1 is zero in all but 32 out of its 128 positions, and which are
compressible with d = 10. BKZ is somewhat slow with such a large block size, but it
only needs to be run once. For Kyber1024 with d = 11, it is possible to generate sparser
vectors, with only 16 non-zero coefficients instead of 32. We were able to generate such
vectors in some instances of BKZ-80 by shuffling the rows of the basis randomly. Note
however, that an attacker only needs to generate this once in advance, independent of the
private key. For better performance of the belief propagation, we further distributed the
non-zero coefficients within each vector and matched them pairwise in the second set of
128 coefficients, due to the pointwise-pairwise product.
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Figure 4.1: Generating sparse NTT values. (simplified for 8 even coefficients and
multiplications by ζ omitted) The inputs of the NTT (left) need to be compressible, while
the right side should be sparse. A sparse polynomial is found by iterating through a
single intermediate value in layer ` (here: ` = 1, highlighted by the dashed box) until a
compressible input of the NTT is found. This automatically results in a sparse output in
the NTT domain (right side). Note, in Kyber the same has to be performed independently
for the odd-indexed coefficients.

We also developed a faster approach, which is depicted in Figure 4.1; it takes advantage
of the layered structure of the NTT. To achieve a sparse half-NTT output, we set a single
intermediate value û`,j in layer ` to a non-zero value, and all other values in that layer
to zero. This creates an input with 2` non-zero coefficients whose half-NTT has 27−`

non-zero coefficients. Setting ` = 2 for Kyber512 or Kyber768, we find that the resulting 4
coefficients will be compressible with probability of approximately (2d/q)4 ≈ 1/112 ≈ 30/q.
This estimate indicates that approximately 30 possible intermediates in each position result
in compressible ciphertexts. In our experiments we were able to find 32 such possible
intermediate values for every position. Each of these results in 27−2 = 32 out of 128
coefficients in the NTT domain which are non-zero. The positions of these non-zero
coefficients are determined by the first ` bits of the index j ∈ {0, . . . , 28 − 1}. E.g., with
` = 2 and j = 42=01010102 the non-zero NTT coefficients are indexed 01xxxxxx2. As
a result, we can set multiple intermediates within the same block to non-zero values,
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while still obtaining a sparse half-NTT result. The compressibility is assured, as the
coefficients in the normal domain are disjoint. By using this technique, we can produce
an exponentially large family of compressible ciphertexts whose NTT is non-zero in 32
of its 128 pairs of coefficients. Most of these ciphertexts have no non-zero coefficients in
the normal domain. For Kyber1024, because d = 11 instead of 10, we can apply the same
technique with ` = 3 to generate compressible ciphertexts with as few as 16 out of 128
coefficients in the NTT domain which are non-zero.

This second approach can generate ciphertexts essentially instantaneously, but the
non-zero output coefficients are all in a contiguous block. This leads to worse performance
in our belief propagation step, because there are steps where the inputs to a butterfly are
statically known to be zero, so the attacker gains no information from that step. However, it
also allows faster reconstruction of the key from the partial information gained by the belief
propagation step. We attempted to generalize this approach using different decimations of
the NTT. But our attempts didn’t work, for reasons described in Appendix C.

Either approach can be applied to each of the k components ui of c1, setting ν non-zero
coefficients in each of their decompressed NTT-domain representations. In Kyber, the
decryption step first take the sum over the components as

ŵ := ŝT ◦ û = ŝ0 ◦ û0 + . . .+ ŝk−1 ◦ ûk−1.

If the values û0, . . . , ûk−1 have non-zero values in the same ν pairs of positions, then ŵ will
have non-zero values in those positions, which will then contain linear combinations of the
coefficients of ŝ0, . . . , ŝk−1. Therefore, if we recover the coefficients of k different ŵ values
using a side-channel attack on the inverse NTT, we can solve for ν pairs of coefficients of
each of ŝ0, . . . , ŝk−1.

Another approach is to set the coefficients of û0, . . . , ûk−1 to be non-zero in disjoint
positions. In that case, ŵ will have k · ν pairs of non-zero coefficients, e.g. 96 pairs of
non-zero coefficients for Kyber768. With this method the belief propagation will have worse
noise immunity, but if successful it will recover ν coefficients from each of ŝ0, . . . , ŝk−1 in a
single trace. This will lead to a single-trace attack when the signal-to-noise ratio is high
enough.

4.3 Belief Propagation Details
After computing a compressible ciphertext u that is sparse in NTT domain, we replace the
vector c1 of a honestly generated ciphertext (c1, c2) by the compression of u and send it to
the target device. The leakage in the butterfly operations of the inverse NTT is exploited
by template matching, and the resulting probability distributions are used as input to the
belief propagation. As û is pairwise-sparse and the multiplication is pairwise-pointwise,
the input to the inverse NTT ŵ is sparse. This reduces the entropy at variable nodes at
positions with û,j = 0 to zero. If we are attacking a masked implementation, we perform
those steps for both shares and recover the result, ŝT ◦ û, from the recovered shares.

Apart from attacking the decryption instead of the key generation, our belief propagation
is similar to that of Pessl and Primas [PP19], using the merged butterfly nodes but not
applying message damping. Also, in the case of masking, we did not improve our belief
propagation by adjoining the graphs for both shares. As the coefficients of the input to
the inverse NTT, ŵ = ŝT ◦ û are not small and the coefficients of the output of the inverse
NTT, w = sT ◦ u, are given by s convoluted with u, factor nodes ensuring the consistency
for each coefficient individually seem infeasible. Therefore, our belief propagation graphs
for both shares are completely independent. As Kyber’s NTT uses only 7 instead of 8
layers, each share consists of two separate connected graphs, resulting in four separate
graphs for the masked case and two separate graphs for the unmasked graph.
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4.4 Recovering the Private Key from Secret Data
The last step of our algorithm is to recover the private key s from the recovered secret
data. This recovered data consists of the value ŝT ◦ û, where û is sparse, having only n
non-zero pairs of values contained in some set S. Since all non-zero elements of Fq2 are
invertible, we can divide by û to obtain the corresponding pairs of coefficients in ŝ.

We therefore know ν coefficients of ŝ, and we want to recover s, which we know has
small coefficients. Again, the even and odd coefficients don’t interact, so we can consider a
128-element half-NTT. In Kyber768 and Kyber1024 the coefficients of s are in {0,±1,±2},
so there are 5128 possibilities, and in Kyber512 they are in {0,±1,±2,±3}, leading to
7128 possibilities. The solution is likely to be nearly unique if qn > 5128 or qn > 7128,
meaning that at least 26 or 31 coefficients are recovered, respectively. As with finding
sparse ciphertexts, this can be written as a shortest vector problem and solved with BKZ.

As before, there is also a more efficient approach when S is a contiguous block. If the
coefficients of ŝ in a 27−`-sized block are all known, then we can unwind the last 7 − `
steps of the half-NTT, and learn the intermediate values after the first ` steps, as depicted
in Figure 4.2. Note that this is possible as blocks only depend on known coefficients for
the last 7− ` layers. Each of these known intermediate values is a function of 2` unknown
coefficients of s, independent of the other intermediates.

The coefficients of s are sampled from a small distribution, so they can be recovered
by an exhaustive attack, or more simply a look-up table. We can use ` = 2, where each
intermediate depends on 22 = 4 coefficients of s, and each coefficient is drawn from a set
of size 5 for Kyber768 or Kyber1024, or 7 for Kyber512. So we can recover each coefficient
of s using a lookup table or search of size 54 or 74 for these two cases.
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Figure 4.2: Recovering the private key from partial knowledge of ŝ. After inference
of e.g. the upper half of ŝ, the original key can be recovered as follows. First note, that
the last layers of the NTT can be reversed inside the upper half up to the intermediate
polynomial s̃. From here, each coefficient can be independently brute forced by its original
inputs, which are sampled from small binomial distributions, e.g. {−2, . . . , 2}. Here
s̃0 = s0 + ζ4 s8 which results in only 52 = 25 possible combinations.

For Kyber1024, it is possible to generate sparser vectors, with only 16 pairs of non-zero
coefficients per polynomial instead of 32 (see Section 4.2). This allows an attack with an
even lower signal-to-noise ratio. However, knowledge of only 16 pairs of coefficients of
ŝ does not yield a unique solution; instead there are more than 100 possibilities of the
8 coefficients of s for each of the 16 intermediates. Even by sorting by likelihood of the
SCA results, we could not reduce this to a computational feasible level. Therefore, for
this variant of the attack, we need 8 traces instead of 4, so that we recover 32 pairs of
coefficients of ŝ per polynomial.
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5 Results

First, in Section 5.1 results showing the effectiveness and allotted noise levels for our attack
variants are presented. Additionally, we provide estimates for the remaining security after
partial-key recovery in Section 5.2.

5.1 Key Recovery Attack

We evaluate the full attack strategy on Kyber512, Kyber768 and Kyber1024 via simulated
leakage experiments. The choice of relying on simulated experiments is mainly motivated
by (1) easy reproducibility and comparability of our results, (2) the fact that practical
attacks have already shown in a similar attack setting. More precisely, the authors of [PP19]
have shown that SPA attacks on the NTT operation are possible on a 32-bit STM32F405
microprocessor if the σ in a corresponding noisy Hamming weight leakage simulation is
below 2 (unmasked scenario). Our attacks supersede these results both in terms of noise
resistance and versatility. As we will show, our attacks can work up to noise level of about
σ = 3.1/2.7 in unmasked/masked scenarios and are, in contrast to [PP19], applicable in
public-key decryption scenarios. The codebase itself is written in Rust and Python.

Leakage Model In the noisy Hamming weight leakage model an attacker can observe the
Hamming weight (HW) with an additive Gaussian noise of certain intermediate variables
of an analyzed computation. More precisely, for an intermediate a the simulated leakage
results in HW(a) +N (0, σ), with N being a normal distribution with a mean of zero and
standard deviation σ. In a recent paper [KPP20] the authors performed actual power
measurements to show that this leakage model is a quite suitable approximation for
load/store instructions on current microcontrollers. For an 8-bit target (XMEGA 128D4)
their measured leakage closely matches the noisy Hamming weight model with a σ of 0.5.
In the 32-bit scenario (STM32F405) the authors measured a σ in a broader range between
0.4 in the best case and 3.0 in the worst case. These numbers can be lowered by averaging
multiple measurement traces (10 traces have been averaged in their evaluation) to a σ in
the range of 0.2 to 1.3. Please note that averaging is only possible in an unmasked setting.

Target Implementation Details Our simulation is based on the current Kyber reference
implementation [ABD+], which is very similar to the implementation targeted in [PP19],
allowing for direct comparison. We re-implemented the relevant functions in python/numpy
to generate simulated noisy HW leakages of the relevant 16-bit signed integer values. In
practice this step would require building templates of the load/store instruction for the
HWs from 0 to 16. The leakage is taken of the intermediate values between each layer, i.e.
the input to each butterfly operation (cf. Figure 3.1c). Analog to [PP19] we target the
load (LDR) and store (STR) operations of the individual coefficients, which corresponds to
the above-mentioned leakage model. Note that in contrast to [PP19] we target the inverse
NTT in the Kyber decryption (cf. Algorithm 4, l. 2).

To the best of our knowledge, there is no published masked implementation specifically
for Kyber. Therefore, we consider a masked implementation that follows the generic ring-
LWE masking strategy from [RRdC+16, OSPG18], which is also summarized in Section 2.4.
Hence, the secret key ŝ is assumed to be additively masked in two shares, ŝ− m̂ and m̂,
with the coefficients of m̂ sampled uniformly from {−(q−1)/2, . . . , (q−1)/2}. A simplified
depiction of masked Kyber decryption is shown in Figure 5.1.
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Figure 5.1: Simplified depiction of a masked Kyber decryption operation. Parts that are
unnecessary for our analysis are omitted. The side channel leakage is taken from the
NTT−1, highlighted by the dashed orange box.

Belief Propagation Instantiation We built an optimized, multi-threaded implementation
of belief propagation in Rust. We structured the graph according to our Python simulation
of the inverse NTT, with the masking split in two independent shares. We highlight
further algorithmic optimizations in Section 4.3. As discussed in Section 3.1, loopy belief
propagation needs break conditions. We employ a number of conditions based on empirical
experiments to allow for a reasonable trade-off between inference and runtime. We set the
maximum number of iterations to 1000. Additionally, we abort if the Shannon entropy of
all nodes is less than 0.1 bits, or the entropy change is less than 0.05 bits after 20 iterations.
We further abort if after 200 iterations less than one more correct coefficient became the
most probable or we found all correct coefficients, which requires knowledge of the secret
and hence would not be available to an attacker. With these break conditions, a belief
propagation run takes on average 20 minutes using two Intel Xeon E5-2650 v4 2.20GHz
with 24 cores and hyper-threading.

Attack Results The chosen ciphertext c1 is generated according to Section 4.2, resulting
in a sparse vector û generated according to the two approaches. First, the sparse vectors
generated with BKZ allowed us to distribute the non-zero coefficients. Note however,
due to the nature of the NTT in Kyber, the coefficients are only distributable pairwise.
Second, we used the faster generation approach depicted in Figure 4.1, which results in
the non-zero coefficients aligned in contiguous blocks. The number of non-zero coefficients
per polynomial ûi could be set to either 256, 128, 64, and 32, with the last only applicable
for Kyber1024. Combining these polynomials in the vector û results in sparse inputs to
the inverse NTT ŵ = ŝT ◦ û with 256, 192, 128, 64, and 32 non-zero coefficients. Note
that for the final key recovery it is important in which vector components the non-zero
coefficients are placed in order to reduce the required number of attack traces (see Final
Key Recovery below). Also, further intermediate combinations with 32 non-zero coefficients
(e.g. 96 non-zero coefficients) were omitted, as it is only applicable to Kyber1024 and
would only marginally reduce the number of traces needed (e.g. 3 instead of 4) for the
final key recovery.

We ran experiments for a range of σ from 0 up to 3.2 in steps of 0.1. For every value
of σ in the relevant range where the observed probability of success was not 0 or 1, we
repeated the experiments 25 times. We used the same strategy in both the masked and
unmasked scenario and the two different sparse vector sets. After reaching our abort
condition, we compared the output of the belief propagation to the correct secret key,
and counted the individual run as successful if all correct coefficients had the highest
probability.

The results for the distributed non-zero coefficients are shown in Figure 5.2 with the
legend highlighting the number of non-zero coefficients. The shaded area around each of
the lines represents the confidence interval of the experiments for a confidence level of 95%.
Since the number of experiments is not large, we use the Wilson score interval [Wil27]



Side-Channel Attack Team of Lorentz Center “PQC for ES” Workshop 15

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
σ

0.0

0.2

0.4

0.6

0.8

1.0
su

cc
es

s
ra

te
256
192
128
64
32

(a) With masking

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
σ

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

256
192
128
64
32

(b) Without masking

Figure 5.2: Attack results for different noise levels σ with distributed non-zero
coefficients. The figures show the attack success rate for the masked (a) and unmasked
(b) implementations, where the sparse vectors are generated with BKZ. Each data point
within the relevant area is the average of 25 runs with a step-size of 0.1 for σ. The shaded
area marks the 95% confidence interval. It can be seen that with a decreasing number of
non-zero coefficients (given in the legend) the achievable noise tolerance is significantly
increased.

that performs better than the normal approximation interval in such cases.
We draw the following conclusions from the experiments. In the non-sparse case

(256 non-zero coefficients) we observed a success rate of 1 only for σ ≤ 0.4. This agrees
with the Hamming weight leakage model results of [PPM17], targeting a 256-coefficient
ring-LWE inverse NTT. Applying our sparseness strategy to the input ciphertext c, we
can increase the noise tolerance significantly. For example, with 64 distributed non-zero
NTT coefficients, the noise level can go up to σ = 1.2, while the probability of success
stays within a confidence interval of 0.75 to 0.97 for the masked and 0.80 to 0.99 for the
unmasked version.

By setting even more coefficients to zero, the noise level can be further increased, while
keeping a solid success rate. For example, for Kyber1024 by setting all but an eighth (i.e.
32) of the coefficients to zero with BKZ, at σ = 2.2 the confidence interval is 0.75 to 0.98
for the masked and 0.80 to 0.99 for the unmasked version.

As the graphs show, we can further increase the achievable σ by allowing a lower
success rate. Note however, that as the success rate reduces, the required number of attack
traces will increase as we have to evaluate several runs until we find one where we achieve
successful convergence for the belief propagation.
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Figure 5.3: Attack results for different noise levels σ with non-zero coefficients
in contiguous blocks. The figures show the attack success rate for the masked (a)
and unmasked (b) implementations with the non-zero values in a contiguous block (see
Figure 4.1). Each data point within the relevant area is the average of 25 runs with a
step-size of 0.1 for σ. The shaded area marks the 95% confidence interval. In comparison to
Figure 5.2, the noise tolerance is mainly decreased for a low number of non-zero coefficients
(i.e. 64 and 32). Note, that the graph for 256 non-zero coefficients is identical to Figure 5.2,
as this is the non-sparse case.

Our attack shows similar results for the masked and unmasked case, because each
masking share can be attacked individually with the same technique as in the unmasked
case. In particular, as can be seen from Figure 5.1, masking the secret key as (m̂, ŝ− m̂)
does not influence the sparsity of û. Further, if û is sparse then m̂ ◦ û and (ŝ− m̂) ◦ û
are both sparse with the same support. We can separately recover them with belief
propagation, and we add them together to obtain the (again sparse with the same support)
ŝ ◦ û. From this step onwards the attack continues as in the unmasked case. We then run
our sparse key recovery on that value.

Also note that the mask is thus removed in each attack trace, allowing us to repeat
and combine the coefficients recovered in multiple traces as in the unmasked case.

The results for sparse vectors with non-zero coefficients in contiguous blocks (see
Figure 4.1) are shown Figure 5.3. Here, with 64 non-zero coefficients in a contiguous
block, our approach still shows a non-zero success rate up to σ = 1.2, with a success
rate confidence above 0.87 up to σ = 0.9. This can again be increased for Kyber1024 up
to a σ = 1.7 by reducing the number of non-zero coefficients to 32, with a success rate
confidence between 0.80 and 0.99 for unmasked, and between 0.75 and 0.98 for masked.



Side-Channel Attack Team of Lorentz Center “PQC for ES” Workshop 17

Table 5.1: Overview of the required number of traces for a full secret key recovery given the
number of non-zero coefficients and the resulting noise tolerance level for a Success Rate
(S.R.) > 0.7 and > 0 for all Kyber security levels with masking. The first number is with
sparse vectors generated with BKZ, the second with easier generation with the non-zero
coefficients in contiguous blocks. As the final key recovery for Kyber512 using BKZ is
computationally expensive, an attacker could opt for an extra attack trace (numbers in
brackets) for a fast final key recovery. The k-trace attack (k ∈ 2, 3, 4) is applicable with 64
non-zero coefficients and a noise level of 1.2|0.9 or 1.4|1.2.
Sparseness Kyber512 Kyber768 Kyber1024 S.R. > 0.7 S.R. > 0
# non-zero coeffs. # traces # traces # traces max. σ max. σ
32 – – 8 2.2 | 1.7 2.7 | 1.9
64 − k-trace attack − 2 (3) 3 4 1.2 | 0.9 1.4 | 1.2
128 1 (2) 2 2 0.6 | 0.6 0.8 | 0.9
192 1 1 2 0.5 | 0.6 0.7 | 0.7
256 1 1 1 0.5 | 0.5 0.5 | 0.5

For larger numbers of the non-zero coefficients the faster generation of the sparse vectors
did not decrease the noise tolerance significantly. Note, that for 256 non-zero coefficients
the graphs are identical as for the distributed sparse coefficients, as the location of non-zero
coefficients is not relevant in this non-sparse case.

In [PP19] the unmasked case allowed a success rate above 0.9 up to σ = 1.5, slightly
exceeding our achieved noise tolerance for Kyber512 and Kyber768. This is mainly because
[PP19] targets the NTT in the encryption, whereas we target inverse NTT in decryption. In
the former case, the input distribution is sampled from a small binomial distribution, which
acts as an additional constraint for belief propagation (cf. Section 3.3). But our attack
extract the long-term secret key s, in comparison to the ephemeral secret r. Additionally,
the advantage of [PP19] disappears in the masked setting, as here the inputs the NTT are
not small, dropping the success threshold to σ ≤ 0.4.

Final Key Recovery As a final attack step, we implemented key recovery according to
Section 4.4, inverting the pairwise-pointwise scalar product and the half-NTT. For a simpler
separation of the k dimensions, we opted for non-zero values in disjoint positions for each
dimension. This allows us to directly recover the corresponding segment of coefficients of ŝ
by dividing out the non-zero section of our sparse vector û.

For the case of pairwise distributed non-zero coefficients in the sparse polynomials
ui, this can be written as a shortest vector problem and solved with BKZ. With a block
size 70 we were able to solve 92.7% out of 590 attempts for a half-vector component of
Kyber768/Kyber1024 with 32 out of 128 non-zero coefficients. By increasing the block
size to 80, we were able to increase the recovery success rate to 100% out of 100 attempts.
For Kyber512 the task is more difficult due to the larger binomial distribution, but we are
still able to succeed in 54% out of 100 attempts with block size 80. This can most likely
be increased further by larger block sizes, however an alternative would be to increase the
number of coefficients recovered to 48 out of 128. With this we could solve it in 100% out
of 100 attempts, employing only BKZ-40. Hence, for Kyber768 and Kyber1024 an attack
yielding a total of 64 coefficients per vector component allows for a full key recovery. For
Kyber512 the computational cost for key recovery was only feasible for us in half of the
cases, but by increasing the number of coefficients recovered to 96 per vector component,
only minimal efforts are needed for a full key recovery.

In the case of the non-zero coefficients in a contiguous block, the faster approach
highlighted in Figure 4.2 is possible. We ran 1000 experiments for each Kyber parameter
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set, in which we attempted to determine the key from a recovered ŵ = ŝT ◦ û, with
k · 64 non-zero coefficients in û. For Kyber768 and Kyber1024 the key was uniquely
determined in all our tests. For Kyber512, a few coefficients of each key were not uniquely
determined. This resulted in 212 possible values for the entire private key on average, up
to a maximum of 222 in our experiments. However, the private key could be recovered by
checking these possibilities against the known public key. In total, key recovery from k · 64
known coefficients of ŝ took at most a few seconds on a laptop.

Note that for each dimension, 64 coefficients suffice to uniquely recover all coefficients
of s. Here, a trade-off has to be taken between the sparseness in the inverse NTT and the
number of coefficients recovered with each trace. In Table 5.1 the necessary number of
traces needed is summarized for the different security levels of Kyber together with our
achieved noise tolerance threshold on σ for a masked implementation. The first numbers
are for the sparse vectors generated with BKZ, with the non-zero coefficients distributed
pairwise to improve the belief propagation. The second numbers show the results with
sparse vectors generated with the faster approach employing the butterfly structure of the
NTT, here the non-zero coefficients are in contiguous blocks. With the contiguous block
sparseness we are able to perform a successful single-trace attack on Kyber512 up to a σ
of 0.6 and fully recover the secret key in a 2k-trace attack for Kyber1024 up to a σ of 1.7
(Success Rate S.R. above > 0.7). The k-trace attack with full key recovery is possible up
to a σ of 0.9 for all Kyber security levels. By generating the sparse vectors with BKZ this
can be increased up to a σ of 1.2. Note however, for Kyber512 using BKZ for the final
key recovery step, the number of traces might need to be increased by one (numbers in
brackets), in order to allow for faster solving for the original key. With repeating failed
runs (Success Rate S.R. between 0 < S.R. < 0.7) we can further increase the noise level in
the k-trace attack setting up to σ ≤ 1.4 and for Kyber1024 even to σ ≤ 2.6 in the 2k-trace
attack setting. All results are given considering masking of the secret key s.

5.2 Security Estimates from Partial Key-Recovery
For full key recovery, the attack presented in Section 4 either requires a single chosen
ciphertext trace to be measured with low noise (σ ≤ 0.5− 0.7) or k traces with a noise up
to σ ≤ 1.2. We saw the effectiveness of such an attack in the previous section. However, it
might not always be possible or practical to get the full k traces in the case of an assumed
noise level of σ ≈ 1.2. Therefore, an estimate of the remaining security after less than k
traces is shown in the following, assuming 64 coefficients recovered per trace.

To estimate the remaining security in these cases we use the same methodology as was
used for the security estimates of Kyber; core-SVP hardness for the primal attack. Note
that core-SVP estimates are particularly conservative, and a b-bit security estimate is not
equivalent to a b-bit remaining key entropy. As is also noted in [ABD+17], more refined
estimates of the security can be made. Since this is not the purpose of this paper, we
restrict ourselves to the estimates below.

In Table 5.2 it can be seen that even with a single trace recovered in the k-trace attack,
the estimate for the remaining security shows a significant drop. We emphasize again that
these numbers do not necessarily mean that 2 traces in the k-attack on Kyber768 leads to
a practical break of the full Kyber key. Even for the 2 traces, sieving records are currently
still well out of range recovering a short vector of a 1023-dimensional lattice [DSvW21].

Recovery of LWE keys from partial key recovery is out-of-scope of this paper, but is
an active area of research. E.g. in [DDGR20] it was shown that knowledge of a partial
key can be incorporated into the u-SVP lattice of the LWE key recovery. We leave the
adaptation of these techniques to the module-LWE setting as future work.

We do however see that the security estimates for classical and quantum hardness
for 1 trace already drop well under the desired 128-bit security levels, and for 2 traces
gives an alarming drop in security. For Kyber512 similar estimates shown that even 1
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Table 5.2: Security estimates for the remaining security after partial k-trace key recovery
for Kyber768 (k = 3), assuming 64 non-zero coefficients of ŝ recovered per trace.
# Traces 0 1 2 3
Dimension d 1423 1238 1023 0
BKZ-blocksize β 625 381 152 –
core-SVP (classical) 182 111 44 0
core-SVP (quantum) 165 101 40 0

trace reduces the security estimates from 118 / 107 bits of security to 47 / 43 bits in the
respectively classical / quantum setting. For Kyber1024, 1 trace in the k-trace attack
drops the security to the Kyber768 case. From thereon the reduction of security declines
comparably to Kyber768. For completeness the full table is included in Appendix B.1.

6 Discussion
In the previous sections, we demonstrated how simple power analysis attacks on lattice-
based cryptographic schemes can be significantly improved over previous works, both in
terms of noise resistance and wider applicability. We now briefly discuss how our attack
could be applied to lattice-based schemes other than Kyber and NewHope, and options for
countermeasures against our attack.

Application to other Schemes Kyber and NewHope explicitly mention the usage of
NTT computations in their specification, and therefore Kyber was an obvious focus of
our presented attack. However, it has been shown in [CHK+21] that the NTT can be
used to implement the polynomial multiplication of NIST finalists Saber [DKRV18] and
NTRU [CDH+20]. The same is the case for NIST alternate NTRU Prime [BCLvV17]
in [ACC+21a]. Even though these schemes operate in rings that are less “NTT-friendly”,
their polynomial multiplication can be lifted to a larger ring (in degree and/or modulus)
that both allows the application of an NTT and ensures that reductions do not affect the
correctness of the result.

We also conjecture that belief propagation techniques presented in this paper could
increase the effectiveness of simple power analysis attacks on other systems. Different
multiplication algorithms that process secret coefficients in blocks (e.g. Karatsuba [KO63]
or Toom-Cook [Too63, Coo66]) can likely be forced to have sub-blocks be “special”, e.g.
small or sparse. In this case, belief propagation can be used to learn more information from
side channels, similarly to the attack presented in this paper. The structures of underlying
rings like existing automorphism and sub-rings might also help the effectiveness of belief
propagation, however this is left for future work.

Application to other Implementations The choice of our target implementation (and
leakage model) is mainly motivated by the fact that we want to allow accurate comparisons
with previous works [PPM17, PP19, KPP20], and by the fact that the attack in [PP19]
has already been reproduced on a real Cortex-M4 device. Nevertheless, it is natural to ask
how our attack could be adapted to more recent, optimized Kyber implementations such as
the one from pqm4 [KRSS]. This implementation mainly differs from the implementation
that is considered in this paper in two aspects. First, the pqm4 implementation stores two
NTT coefficients within one 32-bit word and then uses vectorized instructions such as
uadd16 to perform two halfword additions concurrently. Second, the pqm4 implementation
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uses a register allocation strategy that reduces the amount of load/store instructions to
only occur every third NTT layer.

When adapting the factor graph to the situation where two NTT coefficients are
stored within the same word, one could make use of a strategy that is already used in the
single-trace attack on 32-bit implementations on Keccak in [KPP20]. There, the authors
use a clustering approach to represent one 32-bit word as two halfwords in the factor graph,
not because the algorithmic description of Keccak requires it, but because BP runs into
serious runtime issues when performing message passing for 32-bit variable nodes. This
will however come at the cost of reduced convergence performance.

To accommodate for a potential lack of load/store instructions, one could instead
opt for templating the multiplication with twiddle factors, as done in [PPM17]. This
will likely increase the complexity of template generation to some extent but would also
have the advantage that multiplications need to be executed separately for each halfword,
eliminating the need for clustering. We leave a more concrete evaluation of our attack
approach against more optimized implementations for future work.

Masking of the Input Masking is first and foremost a countermeasure against differential
attacks but also somewhat affects the performance of profiled attacks. Most notably,
masking randomizes data during computations, which effectively prevents an attacker
from performing averaging. Consequently, side-channel attacks in this setting either need
to work with single measurements or find ways to combine information from multiple
computations using different masks. In our case, we are able to retrieve the unmasked
intermediate values by individually attacking each masking share. However, this is possible
for each trace individually, and we are thus able to combine coefficients recovered from
multiple traces also in the masked case. Hence, our attack shows similar results for the
masked and unmasked case (cf. Figure 5.2). It is important to point out that our attack
on Kyber is only applicable for masking schemes that mask the key but not the input
(during decryption), which is the common case [RRdC+16, OSPG18]. With masking of
the input, however, our assumption of a sparse input to the inverse NTT does not hold
anymore. In this case, our noise tolerance is reduced to the non-sparse case (cf. Figure 5.2
with 256 non-zero coefficients).

Hiding As mentioned in previous works that study belief propagation based side-channel
attacks, a rather straight forward and effective protection against such attacks can be
achieved by using hiding techniques such as shuffling [PPM17, PP19, KPP20, RPBC20].
By randomizing the order of executed operations within an NTT computation, leakage
points cannot be trivially assigned to the correct variable nodes anymore. This then leads
to contradictions during belief propagation and prevents convergence. In a similar spirit,
the insertion of random dummy operations inside the NTT can increase the difficulty of
attacks.

7 Conclusion
We presented a method for crafting ring/module-LWE ciphertexts that result in sparse
polynomials at the input of inverse NTT computations, and present a novel attack that
uses this sparseness to significantly improve side-channel attacks. Our attack shows that
side-channel security of lattice-based schemes cannot be neglected and that relying on
(key) masking alone does not offer protection at a reasonable cost. While this work focuses
on Kyber, variations of our attack are also applicable to other lattice-based schemes like
NewHope, and potentially to implementations of NTRU, SABER, LAC etc. which use
Number Theoretic Transforms.
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A Belief Propagation
What follows is a more thorough description of the belief propagation (BP) algorithm that
was taken from [PP19]:

BP allows efficient marginalization in certain probabilistic models. Given is a function
P ∗(x) =

∏M
m=1 fm(xm), which is defined over a set of N variables x ≡ {xn}Nn=1 and

the product of M factors. Each of the factors fm(xm) is a function of a subset xm of
x. The problem of marginalization is then defined as computing the marginal function
Zn(xn) =

∑
{xn′},n′ 6=n P

∗(x), or the normalized version Pn(xn) = Zn(xn)/Z, with Z =∑
x
∏M
m=1 fm(x).

BP solves this task efficiently by exploiting the known factorization of P ∗. First, it
represents the factorization in a probabilistic graphical model called factor graph. Factor
graphs are comprised of variable nodes, each representing one variable xn ∈ x, and factor
nodes, each representing one fm. Factor fm and variable xn are connected in the graph if
fm depends on xn. Second, it performs message-passing on the factor graph. Concretely,
it iteratively runs the following two steps until convergence is reached:

1) from variable to factor:

un→m(xn) =
∏

m′∈M(n)\{m}

vm′→n(xn), (3)

whereM(n) denotes the set of factors in which n participates.

2) from factor to variable:

vm→n(xn) =
∑
xm\n

fm(xm)
∏

n′∈N (m)\m

un′→m(x′n)

 , (4)

where N (m) denotes the indices of the variables that the m-th factor depends on and
xm\n denotes the set of variables in xm without xn.

After convergence, the marginal function Zn(xn) can be computed by multiplying
all incoming messages at each node: Zn(xn) =

∏
m∈M(n) vm→n(xn). The normalized

marginals are given by Pn(xn) = Zn(xn)/Z, where Z =
∑
xn
Zn(xn).
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B Remaining Entropy Partial Key-Recovery for Kyber1024

Table B.1: Security estimates for the remaining security after partial k-trace key recovery
for Kyber1024 (k = 4), assuming 64 non-zero coefficients of ŝ recovered per trace.
# Traces 0 1 2 3 4
Dimension d 1885 1680 1495 1280 0
BKZ-blocksize β 877 625 381 152 –
core-SVP (classical) 256 182 111 44 0
core-SVP (quantum) 232 165 101 40 0

C Failed approach: custom decimations
We had hoped to use a different decimation of the NTT as shown in Figure C.1, to
produce non-zero coefficients in a pattern other than a contiguous block. For example,
Kyber is implemented using decimation-in-frequency, so we might try to implement our
technique on a decimation-in-time implementation of NTT. It is also possible to use a
custom decimation, where some steps of the NTT are decimated in time and others in
frequency.
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Figure C.1: Rearranged generation of sparse inputs. By rearranging the layers of
the NTT, i.e. creating a custom decimation, we hoped to create a different distribution of
non-zero values in the sparse NTT. This doesn’t work, because performing the layers in
the order shown doesn’t implement an NTT.

However, this approach doesn’t work, because decimation-in-time and decimation-
in-frequency are actually the same algorithm, differing only in memory layout, and the
same is true for a custom decimation. Changing the computation graph, so that different
intermediates are produced, doesn’t compute the NTT. Perhaps there is another way to
make this technique work, but we didn’t find one.
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