
When the Decoder Has to Look Twice:
Glitching a PUF Error Correction

Jonas Ruchti, Michael Gruber and Michael Pehl

Chair of Security in Information Technology
Technical University of Munich, Germany

{j.ruchti|m.gruber|m.pehl}@tum.de

Abstract. Physical Unclonable Functions (PUFs) have been increasingly used as an
alternative to non-volatile memory for the storage of cryptographic secrets. Research
on side channel and fault attacks with the goal of extracting these secrets has begun
to gain interest but no fault injection attack targeting the necessary error correction
within a PUF device has been shown so far. This work demonstrates one such attack
on a hardware fuzzy commitment scheme implementation and thus shows a new
potential attack threat existing in current PUF key storage systems. After presenting
evidence for the overall viability of the profiled attack by performing it on an FPGA
implementation, countermeasures are analysed: we discuss the efficacy of hashing
helper data with the PUF-derived key to prevent the attack as well as codeword
masking, a countermeasure effective against a side channel attack. The analysis shows
the limits of these approaches. In particular, it demonstrates the criticality of timing
in codeword masking by confirming the attack’s effectiveness on ostensibly protected
hardware.
Keywords: physical unclonable function · fuzzy commitment scheme · fault attack
· clock glitch · masking

1 Introduction
Suppose you find yourself in the shoes of a vendor needing to protect a device’s firmware
against unauthorised copying and modification. As your product does not have a protected
non-volatile memory (NVM) suitable for the secure storage of an encryption key, you turn
your attention to Physical Unclonable Function (PUF) key storage schemes. PUFs have
gained much attention for similar applications in the last two decades as they can sidestep
the problems of storing a secret in NVM.

By exploiting unavoidable tolerances of the manufacturing process, a PUF provides a
device-unique secret. These variations are measured with a PUF circuit, such as SRAM
cells [HBF07], ring oscillators (ROs) [Gas+02; SD07; YD10], or concurrent delay chains
like in Arbiter PUFs [Gas+04]. In any case, the PUF circuit measurement under different
challenges or of PUF circuits in different positions in a device results in a set of noisy PUF
responses, which—in case of key storage systems—are then error-corrected to arrive at a
sufficiently stable secret.

One big benefit of a PUF-based key storage system is that the secret generated from a
PUF is only made available on the chip on demand. As a consequence, countermeasures
such as tampering sensors can focus on protecting the time window in which the secret
is derived and processed. The existence of invasive attacks such as the ones presented in
[Hel+13; Mer+11a] shows that such countermeasures are needed. However, sensors are
hardly able to detect non-invasive attacks and a variety of possible attacks have thus to be
considered in the PUF context.

2 When the Decoder Has to Look Twice: Glitching a PUF Error Correction

State of the art regarding attacks on PUFs. Attacks on PUFs encompass a large
variety of different attack vectors. The likely most popular attacks are related to machine
learning, e.g. [Rüh+10; Bec15; Gan+16]. Attacks in this domain mostly focus on the
challenge-response behaviour of a PUFs and are therefore not of relevance when storing
a secret key with a PUF where the response is usually not available from outside of the
chip. Even though few works have shown that PUFs with challenge-response behaviour are
also vulnerable through exploiting public helper data needed to enable error correction in
the system [BWG15; SFP21], such attacks are not critical for the majority of key storage
schemes today which only use single-challenge PUFs.

Another class of attacks hinges on observing the PUF measurement through side chan-
nels, including invasive attacks exploiting the photon emission of SRAM cells and Arbiter
PUFs [Hel+13; Taj+14] as well as attacks using localised electromagnetic measurements
of RO PUFs [Mer+11a; SF20]. The latter are not limited to invasive attacks; successful
side-channel attacks on the TERO PUF [TPI19] and on the Loop-PUF [TDP20] show that
even non-invasive attacks are feasible and have to be taken into account through some
protection mechanism when implementing a PUF system.

However, the actual PUF is not the only potential attack target in a PUF-based key
storage system. Similar to any cryptographic algorithm processing a secret, the algorithm
deriving a noise-free key from a noisy PUF response is subject to hardware-related attacks.
For example, the two-metric helper data scheme can enable the derivation of response
bits from side-channel measurements [Teb+21]. In addition, the error correction code
(ECC) decoder circuit itself can also be subject to side channel attacks [Mer+11b; MSS13;
TPS17].

While the feasibility of side-channel attacks (SCAs) on PUFs has already been proven,
Fault Injection Analysis (FIA) of a PUF-based key storage systems has been mostly out of
scope for the community. Only few works like the fault attacks on RO- and Arbiter-based
PUF primitives [Taj+15; DV14] investigated the feasibility of such attacks.

Yet, none of the existing works focused on attacks on the PUF error correction. The
focus of this work lies on, the feasibility of Fault Injection Analysis of the error correction
code of PUF-based key storage systems, which has so far not been explored.

Attacker Model. For the fault attacks discussed in this work, we assume an attacker
who is in possession of the device under attack and can therefore tamper with the device.
Consistent with state of the art, we assume that the helper data used to enable error
correction is public. This is reasonable as it has to be generated per device and—since a
PUF is used—no protected NVM can be expected. We further assume that the attacker
can manipulate the helper data and run (possibly destructive) profiling on a set of devices
of the same kind as the device under attack. Finally, we assume that the attacker can
trigger the reconstruction of the key from the PUF under fault influence on the device an
arbitrary number of times and distinguish whether the correct or a wrong key is derived,
e.g. through observing if the device operates as expected.

Contributions. This work is focused on one concrete implementation of a PUF-based key
storage system. Nevertheless, our conclusions are applicable to a more general scope. This
work’s contributions are:

• This work introduces a theoretical model for a FIA on an error correcting scheme.

• It demonstrates the practical feasibility of the FIA using a code concatenation of a
(7, 1, 3) repetition code and a (127, 64, 10) Bose–Chaudhuri–Hocquenghem (BCH)
code1 implemented on an field-programmable gate array (FPGA).

1The code parameters are taken from [MSS13] to allow for a better comparability of the impact of the
attack.

Jonas Ruchti, Michael Gruber and Michael Pehl 3

• It discusses the applicability of two possible countermeasures, namely of codeword
masking and helper data hashing.

• It demonstrates the limitations of the used masking schemes in hindering FIA.

• It also demonstrates the impact of different guessing strategies for the unprotected
case as well as given protection through codeword masking.

The rest of this work is structured as follows. After preliminaries, i.e. PUF-based key
storage systems and fault attacks, are introduced in Section 2, the attack itself is described
in detail in Section 3. Section 4 justifies the hardware set-up used for validating the attack
experimentally, after which Section 5 presents the experiment results. After the results’
implications have been discussed in Section 6, this work ends with a conclusion and an
outlook in Section 7.

2 Preliminaries
Before describing the actual fault attack, the fundamentals of the underlying system are
defined. This section summarises the fuzzy commitment scheme used for the PUF-based
key storage as well as fault attacks with a focus on glitch-based attacks.

2.1 PUF-based key storage
Since a PUF’s response is subject to noise and environmental effects, typically a helper
data scheme involving an error correction code is used to reliably store a secret. In this
work, we focus on the fuzzy commitment [JW99] helper data scheme. Figure 1 depicts a
sketch of the resulting system, which is based on two phases: the enrolment phase and the
reconstruction phase.

PUF

ECC
encoderKey

Helper data

k c R

W

PUF

ECC
decoder Key

Helper data

k̃c̃R̃

W

Enrolment phase Reconstruction phase

Figure 1: Fuzzy commitment scheme

During the one-time enrolment, the key to be stored k is encoded to a codeword c.
XORing c with a reference measurement of the PUF response R yields the so called helper
data W, which is then stored for later usage.

When the secret k is needed at a later point in time, it is reconstructed from helper data
and PUF response. This process begins with a PUF measurement R̃. As this measurement
differs from the reference R due to noise and environmental effects, its combination with
the helper data, c̃ is also not exactly the same as the codeword calculated during the
enrolment phase. However, the error in c̃ is compensated by the system’s ECC, deriving a
key k̃ which is correct with high probability Pr[k̃ = k].

4 When the Decoder Has to Look Twice: Glitching a PUF Error Correction

All values above the dashed line in Figure 1 are secrets and only exist within the device
during its operation. The helper data W, on the other hand, contains no information
about the secrets and can be stored in a publicly accessible manner.

To extract the secrets from the system, the attack described in this work manipulates
the transmission of the ECC codeword c̃ during a reconstruction phase. By introducing
faults during this transmission and observing the system’s behaviour, information about c̃
and thus R̃ is recovered. Consequently, the attack is also applicable to other helper data
schemes which process PUF and helper data in a comparable manner, like it is the case
for the code offset construction scheme [Dod+08].

2.2 Glitch-based Fault Injection Analysis
Fault Injection Analysis is the generic term for a class of physical attacks as introduced by
Boneh et al. in their seminal work [BDL00]. The underlying principle of these attacks is
the deliberate violation of a device’s specifications to introduce erroneous behaviour. A
low-cost way to cause a violation of the critical path is glitching [Bar+06; Exi14], either
using a voltage drop or a temporary increase of the clock frequency. Both effect a violation
of the set-up time requirement tp + tsu < T [Sap06], by either raising the propagation time
tp or lowering the clock period T so a critical path’s output signal is no longer stable in a
register’s set-up time window tsu.

Several physical glitching setups have been proposed [OC15; Kud+18; SMC20]. In this
work we will focus on on-chip clock glitching, which enables a high temporal precision by
inserting a precisely timed additional clock edge within a regular clock cycle [BGV11].

2.3 Notation
Upright bold-face variables denote bit vectors, as they are used within the device under
attack for storage and transmission of messages and secrets. Ai is the i-th bit of the vector
A and can either be 0 or 1. The bits are defined to be numbered from left to right, in
their order of transmission, i.e. c̃0 will be the first codeword bit to be transmitted to the
ECC decoder and c̃n−1 the last. ei = [0, . . . , 1, . . . , 0] denotes the bit vector which is 1 at
the position i and 0 elsewhere.

Important constants for the secret recovery algorithms outlined later in this section are
the parameters of the ECC, which are often written as a triplet (n, k, t). n is the codeword
length, which coincides with the length of the PUF secret, while k is the length of the
encoded secret. t denotes the number of bit errors the ECC is guaranteed to recover from.

3 The proposed attack
This section first sketches the attack on a PUF key storage system and describes the fault
model used in this work. Thereafter, the process of the attack and all necessary algorithms
are described in detail.

3.1 Fault model
On a fundamental level, the reconstruction of the key from a PUF and in particular the
error correction is carried out by sequential logic, whose memory is provided by registers
capturing their inputs at a clock line’s rising edge.

A possible effect of a set-up time violation is that the register stores the state of its
input before the transition. Figure 2 shows this in an exaggerated fashion by adding a
clock glitch during the propagation time of the previous clock cycle’s signal.

Jonas Ruchti, Michael Gruber and Michael Pehl 5

Clock

Codeword in c̃i−1 c̃i c̃i+1 c̃i+2

tp tsu

TA B

C D E

Figure 2: Codeword transmission as received by the decoder, exhibiting exemplary fault
effect. The clock glitch is highlighted in red.

Evidently, in the example in Figure 2 the time between the first rising clock edge
A and the glitch’s rising clock edge B is sufficiently long, the codeword is stable for a
sufficient time and set-up time is not violated when sampling codeword bit c̃i at time
point C . However, the glitch is too close to the following rising clock edge and the driving
signal cannot propagate to the decoder’s input quickly enough—the i-th codeword bit is
captured again at time point D . The value c̃i+1 arriving at the decoder input is only
available for a short time E as it is quickly replaced by c̃i+2, which began propagating to
the decoder at the rising clock edge D after the glitch. Effectively, the decoder samples c̃i

twice and skips c̃i+1.

3.2 Attack sketch
To justify the relevance of the attack, we outline an exemplary system where we consider
a microcontroller device with application code stored in unprotected NVM.

The manufacturer wants to prevent unauthorised copying, and modification of the
memory contents even for an attacker with physical access to the device and thus encrypts
them using a device-unique key. For the key storage, a PUF system as sketched in Figure 1
is employed. Required helper data for the PUF system is considered public and stored
together with the encrypted application code, where it can be read and modified by the
attacker as per attacker model.

During boot-up, the device reconstructs the secret key from a PUF measurement and
the helper data and uses it to decrypt the memory contents. Because all secrets only exist
during runtime, tamper protection measures have to be active only as long as the device is
powered, which allows the attacker to modify the hardware in a powered-down state in
order to introduce a clock glitch later.

The attacker now manipulates the helper data in such a way that the error correcting
code under attack is at its correction limit, i.e. such that the output key is still correctly
derived but is influenced as soon as a fault injection changes a single codeword bit. Then
they apply power to the device and introduce a clock glitch while the codeword is transferred
to the ECC decoder. Per the previous section’s fault model, this allows them to replace
one codeword bit by the preceding bit’s value2.

By observing the outcome of the reconstruction phase (i.e. pass or fail) after inserting a
glitch, the attacker can then reason about the two bits’ difference. If the device still boots,
the recovered key was unaffected by the bit replacement and both codeword bits can be
concluded to be the same. If the device fails to boot, replacing the targeted codeword
bit with its predecessor evidently changed the codeword and with the ECC at its error
correction limit also the key.

The attacker repeats this experiment, targeting different codeword bits through re-
peatedly power-cycling the device, modifying the helper data, and introducing clock
glitches. This way, they finally recover all bit differences of the ECC codeword and thus

2This work assumes a bit-serial transmission. The attack is also adaptable to larger bus widths, in a
straight-forward way up to the ECC’s error correction capability and even further with additional effort.

6 When the Decoder Has to Look Twice: Glitching a PUF Error Correction

the PUF secret.

3.3 Secret extraction algorithms
The following describes required procedures to extract PUF generated secrets from a
device using the previously described mechanisms. For brevity’s sake, all algorithms in
this section assume a perfectly reproducible glitch effect and no PUF measurement noise
or environmental variation, i.e. R̃ ≡ R and c̃ ≡ c, which makes all interactions with
the device under attack deterministic. This assumption does not limit the applicability,
since PUF measurement noise or independent extraction errors can be compensated by
averaging multiple codeword extractions3.

To represent an interaction with the device under attack, the algorithms below use a
place-holder function Experiment(W′[, g]): using the (modified) helper data word W′

and optionally a glitch position g, a reconstruction phase is carried out on the target. After
a usage of the reconstructed key, Experiment returns whether or not the reconstructed
key matches the key programmed during enrolment of the PUF system. Consequently,
Experiment(W′, g), which introduces a clock glitch during the transmission of bit g,
returns false if replacing c̃g+1 with c̃g leads to k̃ 6= k.

Helper data manipulation. According to our fault model, introducing a clock glitch at
position g data-dependently influences the codeword bit at position g + 1. For this change
to be observable, the ECC decoder needs to be at its error correction limit. In general, an
ECC can recover from more than t bit errors in some cases, which makes the necessary
helper data manipulation dependent on the codeword and glitch position. To bring the
ECC to its correction limit, an attacker can invert bit g+ 1, successively add more bit flips
until Experiment always fails, and then revert the modification of g + 1. The special
structure of the BCH code in the experiments, however, allows to add exactly t bit flips
within the first k bits of the codeword to bring the decoder to its error correction limit,
which simplifies the problem.

Algorithm 1 constructs such a helper data manipulation vector, intelligently placing
the bit flips to the attacker’s advantage. As only the symbol part of the codeword is
modified, the improvements do not hold for redundancy bits, which will become apparent
later. However, we accept this compromise to allow for an easier choice of bit flips.

Algorithm 1 Construct a n-bit vector f which can be used to bring the (n, k, t)-decoder
to its error-correction limit, given a glitch position g and the target hamming weight t.
1: procedure Correction Limit(g, t)
2: N ← {i : 0 ≤ i < k ∧ 0 ≤ |i− g| < t

2} . Define a set of positions near the glitch
3: fi ← 0 ∀i ∈ [0, . . . , k) . Initialise the bit flip vector f to all-zeros
4: Choose fi uniform randomly from {0, 1} ∀i ∈ N \ {g + 1}
5: while HW(f) < t do . Increase hamming weight to t
6: fi ← 1 with i random from [0, k) \ N
7: return f . Return bit flip vector

As a first step, bit positions ‘near’ the glitch position are chosen randomly independent
uniform in line 4, ensuring that there are at most t bit flips. Choosing fg in particular
at random has an advantage, because a helper data bit flip at position g, changing the
codeword bit before the glitch, inverts the outcome of Experiment(W′, g). If, for some
glitch position, the fault effect is not data-dependent, its behaviour will then become
apparent during the attack: for such positions the outcome of Experiment is static, i.e.

3We assume a bit error probabilities of below 50%. Bit error probabilities above 50% correspond to a
PUF response offset and can be compensated by flipping the corresponding helper data bit.

Jonas Ruchti, Michael Gruber and Michael Pehl 7

always failing or always succeeding, while it would be expected to differ depending on the
choice of fg in case of a data dependency.

Randomising a range of helper data bits also helps to counteract the effects of glitch
position jitter: as the codeword bits neighbouring the glitch position are now unbiased and
independent of the codeword, measurement noise caused by imprecisely placed glitches is
independent as well and can be compensated by averaging multiple trials.

Finally, the loop beginning with line 5 ensures the correct hamming weight of f with
additional bit flips at random positions. Bit positions from the set of neighbours N are
excluded here to preserve the previously sampled uniform distribution.

Profiling. For a successful attack, the best parameters, e.g. for alignment and timing of
the clock glitch, need to be determined first. To estimate the exploitable data dependency,
given a parametrisation θ, Algorithm 2 carries out four fault injections, modifying two
adjacent helper data bits in all four bit patterns.

Algorithm 2 Determine a fitness measure of a point θ in the parameter space at a glitch
position g, using the original helper data W.
1: procedure Fitness(W, g, θ)
2: Pick x, y at random from [0, n) \ {g, g + 1} such that x 6= y
3: f ← Correction Limit(g, t− 2), such that fi = 0 ∀i ∈ {x, y}
4: W′ ←W⊕ f
5: r ← 0 0 1 g· · · · · ·n − 1

6: if Experiment(W′ ⊕ ex ⊕ ey , g, θ) fails then r ← r + 1
2

· · · · · ·

7: if Experiment(W′ ⊕ eg ⊕ eg+1, g, θ) fails then r ← r + 1
2

· · · · · ·

8: if Experiment(W′ ⊕ eg ⊕ ey , g, θ) fails then r ← r − 1
2

· · · · · ·

9: if Experiment(W′ ⊕ ex ⊕ eg+1, g, θ) fails then r ← r − 1
2

· · · · · ·

10: return |r|

Two of these experiments will return the same result if an exploitable data dependency
is present: regardless of the actual codeword, two experiments will have a bit difference and
two will have the same bit before and at the glitch position. In this case, r will accumulate
an absolute value of 1. If the results of Experiment do not depend on whether a bit
difference at the glitch position is inserted via the helper data or not, the contributions to
r will cancel out.

Averaging multiple calls to Fitness thus provides an estimate of the observable data
dependency as a value between 0 and 1. An attacker can use this information for a numeric
optimisation of the parameter point. In the simplest case, they evaluate Fitness averages
for random glitch positions over a grid in the parameter space and then pick the optimal θ.

Codeword extraction. Having ensured that the ECC is at its correction limit, Algorithm 3
extracts the codeword by iterating through all bit positions and placing a glitch before
each in turn, observing the result of the fault injection. The first codeword bit is extracted
based on the assumption that the state of the data line before the transmission ĉ−1 = 0, i.e.
ĉ0 is 1 if the first glitch experiments with the clock glitch inserted before the transmission
of bit 0 leads to a reconstruction failure.

The helper data modification of the codeword bit before the glitch position also has to
be accounted for. Lines 6 and 8 invert the recovered bit if Wg had been flipped.

This algorithm only attempts to extract each bit once. To compensate measurement
noise and glitch position jitter, it is sensible to run multiple trials of Attack on the same
device and then use a majority vote on the extracted codeword bit differences.

Data error correction. Due to measurement noise or other imperfections, a perfect
codeword extraction might not be possible in a real-world scenario. Since the attacker

8 When the Decoder Has to Look Twice: Glitching a PUF Error Correction

Algorithm 3 Recover the n-bit codeword c assuming a set-up time violation glitch effect
model, given the original helper data W.
1: procedure Attack(W)
2: ĉ−1 ← 0 . Assumption: Data line is 0 before the transmission
3: for g ← −1 . . . n− 2 do
4: f ← Correction Limit(g, t) . Find suitable helper data bit flip vector
5: if Experiment(W⊕ f , g) fails then
6: ĉg+1 ← not ĉg ⊕ fg . Consecutive bits differ
7: else
8: ĉg+1 ← ĉg ⊕ fg . Current bit is the same as the last one
9: return [ĉ0, . . . , ĉn−1]

has knowledge of the system’s inner construction and thus knows the system’s error
correcting code, they can use it to recover from some bit extraction errors. In the following,
Encode and Decode denote an encoding and error-correcting decoding operation using
an equivalent implementation of the code used in the system under attack.

Since the extraction procedure operates on bit differences instead of the codeword bits
directly, we define a vector of codeword bit differences d,

di := ci−1 ⊕ ci for 0 ≤ i < n, (1)

where c−1 is the state of the data line before the transmission of the first codeword bit
c0, which we assume to be 0 for now; if this information is unavailable, d0 contains the
attacker’s guess of the first codeword bit instead. A vector d̂ for the attacker’s extracted
values is similarly defined using ĉ.

One might be tempted to say that up to t wrongly recovered bits can be recovered by
employing the ECC directly, because the original codeword c is a valid codeword after all.
However, this is not necessarily possible in the general case: a wrong bit in d̂ compared to
d corresponds to bit errors in ĉ from its position onward, often far more than a single bit
flip. Therefore, even a single wrong bit in d̂ might not be correctable.

Still, a number of errors in d̂ can be corrected, depending on the qualities of the
employed error-correction code. An important code class, to which also the BCH code
used in this work belongs to, are cyclic codes, a subset of linear codes. In these, not only
every linear combination of two codewords but also every cyclic shift of a codeword is a
valid codeword, too [Bla03].

Note that the construction of d in Equation (1) almost makes it a cyclic codeword: if
d0 were defined as cn−1 ⊕ c0, d would be a linear combination of c and a cyclic shift of c
and thus a valid codeword. In our case, however, we can think of d as a codeword with
one possible bit error in position 0 (which occurs if cn−1 = 1).

A simple procedure making use of this property is presented as Algorithm 4, which
uses Decode and Encode directly on the vector of extracted codeword bit differences.
To compensate for the possible error due to the ‘imperfect’ cyclic codeword, it attempts
the error correction on two variants, with and without bit 0 flipped and returns the variant
where the error correction changed fewer positions.

A flipped bit 0 in d̂ corresponds to an inversion of ĉ. If the all-ones word is part of the
code, ĉ is just as valid a codeword as its inverted counterpart and an extraction error at
position 0 is thus not detectable. If we assume a bit difference extraction error probability
below 1

2 , a correct extraction of bit 0 is more likely than an extraction error. Thus, the
original value of bit 0 is restored with the flip in line 7.

In case of a code with even minimum distance, the modification of bit 0 cannot
erroneously move the codeword to a point closer to the wrong reconstruction; Algorithm 4
can thus reliably correct t errors apart from any error in position 0. For an odd minimum
distance d = 2t + 1, this cannot be guaranteed and the bit difference error correction
capability drops to t − 1 bits. In the case of the BCH code used in the experiments,

Jonas Ruchti, Michael Gruber and Michael Pehl 9

Algorithm 4 Error-correct a word d̂ of extracted codeword bit differences for a cyclic
code.
1: procedure Correct Differences(d̂)
2: d̂0 ← d̂, d̂1 ← d̂⊕ e0 . Copy to d̂0, invert bit 0 for d̂1
3: d̂′i ← Encode(Decode(d̂i)) ∀i ∈ {0, 1} . Error-correct both variants
4: if HD(d̂′0, d̂0) ≤ HD(d̂′1, d̂1) then . Pick the variant with fewer errors
5: return d̂′0
6: else
7: return d̂′1 ⊕ e0

BCH
decoderSIPO SRG

System under attack

Glitch
generator

UART
interface,
control
logic

PC

ClockTrigger

k̃i

Repetition
decoder

PISO SRGPISO SRGPISO SRGPISO SRGPISO SRGPISO SRGPISO SRG
c̃i

c̃

k̃

Start

Configuration

Artix-7 FPGA

Figure 3: Simplified block diagram of the experiment set-up.

Algorithm 4 was found to reliably correct t errors after bit 0 despite the odd minimum
distance d, because d > 2t+ 1.

4 Experimental set-up
Since the attack is mainly concerned with the serial codeword transmission between PUF
and ECC decoder, no complete key storage system is implemented for the experiments.
In particular, the PUF is replaced with a model and the derived key is not used in a
cryptographic application. This section outlines the design choices behind the hardware
model in terms of its scope and additional features, which facilitate a reasonably fast
validation of the attack while representing a real-world system’s behaviour realistically.

4.1 Basic experiment hardware
Figure 3 shows a block diagram of the experiment set-up: a Xilinx XC7A35T-1CPG236C
FPGA contains both the system under attack and a clock glitch generator; all components
are configured and communicated with using a UART interface. Naturally, this model
carries a number of design choices and simplifications.

PUF model. As the proposed attack only needs the data transmission to the error
correction code, the PUF itself lies beyond the scope of this work and its concrete
implementation is not relevant. As the PUF measurement can be assumed to be done

10 When the Decoder Has to Look Twice: Glitching a PUF Error Correction

c̃i
Syndrome com-
putation LFSRs

Berleykamp–
Massey

algorithm
Chien search k̃i

Input FIFO

s λ(x) ei

Figure 4: Block diagram of the BCH decoder hardware.

by the time the error correction begins, it is replaced with a programmable register.4
Throughout the experiments, the PUF response was held constant, as PUF measurement
noise can be compensated by averaging multiple attack runs.

Error correction code. So far, the exact code used as the PUF system’s error-correction
measure was not important, as long as its codeword was transmitted serially. This work’s
implementation closely mirrors the code used in [MSS13] and [TPS17], i.e. a concatenated
code consisting of a (7, 1, 3)-repetition code as its inner code and a (127, 64, 10)-BCH code
as its outer code. BCH codes have been proposed and used in the context of PUF systems
a number of times [Yu+12; Kan+14], sometimes in combination with a repetition code
[MVV12]. They offer good performance and efficient hardware implementations and are
thus suitable for the task.

Since the PUF value is assumed to be constant and the repetition decoder consists
entirely of combinational logic, it is of little importance for the functional principle of this
attack. It is still included in the hardware design because its propagation delay caused
by its logic has an influence on the exact timing of the system. The manipulation of one
helper data bit in the attack described above corresponds to flipping one 7-bit block at
the repetition decoder input.

The implementation of the BCH decoder has been generated using the software presen-
ted in [Jam97]. This code uses systematic encoding, i.e. the codeword is a concatenation
of the 64-bit symbol part, which correspond to 64 key bits, and the 63-bit redundancy
part, containing error correction information. To derive a 128 bit key two BCH code words
would be used in practice.

Figure 4 presents a block diagram of its structure: linear-feedback shift registers
(LFSRs) are used to compute the syndromes of the bit-serially supplied input, after which
the error locator polynomial is determined. Based on that, the actual bit errors are
calculated, which are than corrected in a stored copy of the input’s first 64 bits. Since the
input first-in first-out (FIFO) and the syndrome LFSRs use only a bit-wise serial input of
c̃, the described attack is directly applicable for this ECC implementation.

In this BCH implementation, the locations of the errors are determined using Chien
search, i.e. by finding the roots of a polynomial of degree t [Jam97]. Since this polynomial
has at most t roots, exactly t bit errors can be corrected if all errors are within the symbol
part of the codeword. Since we assume a constant PUF secret, which is the same for
enrolment and reconstruction, this allows for a simplification of the attack: to bring the
decoder to its error correction limit, Algorithm 1, which inserts exactly t bit flips, can be
used instead of a more generic helper data modification scheme.

Fuzzy commitment scheme implementation. Only the reconstruction phase is imple-
mented, as the enrolment phase is out of the attacker’s control and not relevant to the

4Profiling and experiment results (cf. Section 5) for different configurations agree well with the fault
model. Together with simulations explaining particular behaviours (cf. Section 5.1) they substantiate that
indeed the targeted ECC decoder is attacked and not just the PUF model.

Jonas Ruchti, Michael Gruber and Michael Pehl 11

attack. Thus, only the error correction based on simulated PUF secret and helper data is
necessary. The usage of the reconstructed key is simulated by a comparison to a stored
copy, yielding the pass/fail result.

Because the BCH has a bit-serial input, parallel-in serial-out (PISO) shift registers
(SRGs) are used to convert from the parallel codeword to the serial decoder input, one
for each repetition decoder input. These registers might also be present in a real-world
implementation as part of a FIFO buffer to interface between the slow PUF and fast ECC
decoder. Similarly, a serial-in parallel-out (SIPO) SRG is used to convert the reconstructed
key to a parallel format.

On-chip glitching. In contrast to a real-world attacker, who would use an external
glitch generator, on-chip glitching guarantees perfect glitch alignment. However, with a
intelligent helper data modification scheme, glitch position jitter can be compensated with
averaging (cf. Section 3.3). The architecture, source code, and performance of the glitch
generator, which is based on the ChipWhisperer [OC15], are available as supplementary
material [Mat].

4.2 Masking implementations
Masking is a well-known countermeasure against SCAs [Cha+99; RP10; GMK16]. By
adding a random mask to a secret intermediate value, which is later removed again, masking
effectively makes it useless to the attacker without knowledge of the ephemeral mask.
The principles of masking have also been used to provide protection against Statistical
Ineffective Fault Analysis (SIFA) under the assumption of a SIFA-1 fault model [Sah+20],
which assumes an alternation of parts of the shares.

In the context of PUFs, masking has already been found successful against an SCA
on a system similar to the one under consideration in this work [MSS13]. We adapt this
codeword masking scheme in order to analyse its effectiveness against FIA. The masking
scheme generates a random codeword of the ECC from some random seed and XORs it to
the noisy codeword from the PUF in order to mask the decoding procedure. The mask
is removed after decoding by XORing the random seed to the decoder output, which is
possible due to linearity of the error-correcting code.

On a hardware implementation of a fuzzy-commitment-based PUF key storage system,
masking of the decoder is nearly free in terms of required resources as the random number
generator (RNG) and ECC encoder are likely already present for the enrolment phase and
only an intermediate storage for the masking key and some control logic need to be added.

Masking architecture. The ECC encoder was generated using the same software as the
decoder to ensure a matching code. For the RNG, a 64 bit LFSR was instantiated using a
polynomial from [Alf96]. Note that this is by no means a cryptographically secure RNG,
which could be exploited in a more advanced attack. As the RNG’s potential weaknesses
are not the focus of this work, it is merely important that its output is (approximately)
bias-free. To achieve this, the LFSR is left free-running and sampled once for each
reconstruction phase. During the experiments, the codeword bits are attacked in random
order to ensure any periodicity effects the LFSR might show cannot affect the results.

Two slightly different approaches are analysed in this work, shown in Figure 5. In the
first one, (a), the random mask is applied to the BCH decoder’s input. This scheme might
suffice to protect against side-channel attacks targeting the BCH decoder, as the attacks
target the decoder’s input FIFO, whose contents are now randomised.

A second, more complete variant, (b), applies the mask before the repetition decoder,
thus masking the complete concatenated code. This implementation has the disadvantage

12 When the Decoder Has to Look Twice: Glitching a PUF Error Correction

of needing one XOR gate for each repetition decoder input and thus comes with a slightly
higher hardware overhead.

Repetition
decoder

PISO SRGPISO SRGPISO SRGPISO SRGPISO SRGPISO SRGPISO SRG
c̃ BCH

decoder
SIPO
SRG k̃

BCH
encoder

PISO
SRG

Register

LFSR

127 64 64

(b) (a)

64

64

64

Figure 5: Masking block diagram with control and clock signals omitted for brevity and the
already present reconstruction phase circuit drawn in grey. Two masking implementations
are tested: the codeword mask is either added (a) before the BCH decoder or (b) before
the repetition decoder.

4.3 Experiment procedure
For a representative evaluation, experiments were carried out on 15 FPGA boards. For all
tested implementation variants, an attack procedure based on two phases was carried out
independently for each board:

• Profiling. Before a codeword was extracted, the optimal glitch parameters were
determined using Algorithm 2. To match a realistic scenario, where an attacker
cannot choose or change the system’s codeword, as closely as possible, a single random
codeword per FPGA board was used5. To limit operator bias, the maximum was
found using a peak search on Fitness evaluations of uniformly random parameters,
which required a comparatively high number of 250 000 samples. An attacker can
employ a guided search or pick the timings manually, requiring considerably fewer
data points. Results of the profiling step, available as supplementary material,
provide additional support to our fault model.

• Attack. Using the per-FPGA optimal glitch timings, the attack was carried out
using Algorithm 3. 250 trials of this algorithms were used for 100 random attacked
codewords per FPGA. To monitor the attack as it progressed, the extracted codeword
bit differences were computed on-line based on the average of the current trials.

4.4 Attack success metrics
After extracting a secret codeword from a device, the number of bit extraction errors gives
a first indication for the attack’s success. However, since the position of any extraction
errors is unknown to the attacker, they need, in general, to guess more than this number
of bits to reach the correct secret. This section discusses different metrics for bit guessing
after the attack, used during the experiments to assess the attack’s power.

Since the attacker can only extract bit differences between subsequent bits, it is sensible
to judge their success based on the number of correct bit differences. In the following, ‘bit
extraction errors’ refer to errors in the bit differences of codeword and, respectively, key.

5A cross-check repeating the experiments on a subset of the FPGAs with different codewords did not
reveal any dependence on the particular codeword.

Jonas Ruchti, Michael Gruber and Michael Pehl 13

Residual guess entropy (RGE). Lacking any further information, a sensible approach
for an attacker would be to guess codewords based on their error count, i.e. the attacker
would try all codewords with one bit flip respective to their extracted value, then two
additional bit flips, and so on. An upper bound of the number of bits the attacker needs
to guess to find x bit errors in an l-bit word is the max-entropy:

RGE(x, l) = log2

 x∑
i=0

(
l

i

) . (2)

If the system under attack uses systematic encoding, i.e. the key bits are available
directly as a subset of the codeword bits, the attacker can try to only extract these key
bits. If x bit extraction errors were made during that process, the residual guess entropy
for the key-only attack becomes

RGEk̂(x) := RGE(k, x). (3)

As previously discussed, if a cyclic code is used, its decoder can be used by an attacker
to error-correct their extracted codeword. For simplicity, we assume that the attacker will
always guess bit 0 due to its special role and will be able to correct t bit extraction errors
among the remaining codeword bits. The RGE thus becomes

RGEĉ(x1+) :=
{

1 for x1+ ≤ t
1 + RGE(n− 1, x1+ − t) otherwise , (4)

where x1+ is the number of bit extraction errors for the codeword bits 1 to n− 1.
Note that either strategy can be better. For low extraction error counts, a significant

part can be error-corrected if the complete codeword is extracted, whereas RGEĉ > RGEk̂
for higher error counts, since the attacker has to find the errors within n > k bit positions.
For example, for the (127, 64, 10)-code used for the experiments, extracting the whole
codeword leads to a lower residual guess entropy only if there are less than 16 bit extraction
errors (assuming an equal distribution of errors within the codeword).

Smart guessing strategies. If additional information about the system is known, an
attacker can guess bits more intelligently. We consider two approaches:

Maximum-variance (MV) guessing. As multiple fault injection experiments are carried out
for each codeword bit to compensate for measurement noise by averaging, estimating
the measurement variance per bit is possible. This variance intuitively maps to a
confidence in the extracted bit and an attacker can try to guess bits in order of
decreasing measurement variance.
This metric is computed as the number of bits, as ordered by their measurement
variance, which need to be adapted for all extraction errors to be compensated or
until the remaining errors can be corrected using the ECC. As with the residual
guess entropy, bit 0 is always adapted first in the case of a codeword extraction.

Maximum error probability (ME) guessing. In some cases, an attacker might be able to
profile the attack more extensively or in other ways obtain information at which
positions a secret extraction is less likely succeed. They would then adapt the bit
positions with the highest extraction error probability first.
In the experiments, this metric is calculated a-posteriori, using the collected data
from all boards to estimate all bit positions’ extraction error probabilities. The
number of bits to be flipped to reach a correct key/codeword is then determined
analogously to the MV guess count.

14 When the Decoder Has to Look Twice: Glitching a PUF Error Correction

5 Experiment results
Using the procedure outlined in Section 4.3, 15 FPGA boards were used to carry out 100
attacks on randomly chosen secret keys each. This section presents the results of each
implementation variant’s 1 500 attack experiment results, highlighting four boards showing
representative behaviour.

5.1 Unprotected implementation
Before examining the proposed countermeasure, we first demonstrate the attack’s feasibility
on an unprotected implementation. This section begins with a short analysis of the clock
glitch’s influence on the system before proceeding with the actual attack results.

Error correction limit under glitch influence. Following the argumentation of Section 3.1,
we would expect a clock glitch to have no effect at all for fewer than t bit flips in the
(fault-less) codeword because the decoder can always recover from a single additional error.
However, reconstruction failures were already observed for much fewer helper data bit flips.

To analyse this behaviour, 250 random 64-bit keys were encoded and the effects of a
glitch at each codeword bit position was recorded for different number of helper data bit
flips. The previously determined optimum glitch timing was used and the 0 to 11 helper
data bit flips’ positions were chosen at random within the k symbol bits of the codeword,
excluding the glitch position g and g − 1.

0 8 17 26 35 44 53 62 71 80 89 98 107 116 125
0

50

100

Glitch position gR
ec
on

st
ru
ct
io
n
fa
ilu

re
s
(%

)

Additional bit flips 0 1 2 3 4 5 6 7 8 9 10 11

(a) Share of reconstruction failures when introducing a clock glitch at a specific position.

0 1 2 3 4 5 6 7 8 9 10 11

60

80

100

48.33

69.13

88.37 88.44 88.44 88.44 88.44 88.44 88.44 88.44 88.44

50.04

Number of helper data bit flips

D
at
a
de

pe
nd

en
cy

(%
)

(b) Observed data dependency of the fault injection results.

Figure 6: Fault injection behaviour depending on the number of inserted helper data bit
flips, based on experiments with 250 random codewords.

Figure 6a shows the share of the recorded reconstruction failures for each glitch position;
the number of additional bit flips at which the reconstructions start to fail is indicated by

Jonas Ruchti, Michael Gruber and Michael Pehl 15

0 9 18 27 36 45 54 63 72 81 90 99 108 117 1260

25

50

Bit error position

Pr
ob

ab
ili
ty

(%
)

Figure 7: Bit extraction error probability over the bit position, estimated from all experi-
ments.

the bars’ colours. As expected, all reconstructions fail at t + 1 bit errors, since the flip
positions do not permit a compensation by the clock glitch.

However, reconstructions start to fail much earlier than at t bit flips. First, a number
of glitch positions, visible as regularly spaced black vertical bars, lead to a reconstruction
failure in every case, even without any helper data manipulation. These glitch positions
thus cannot exhibit any useful data dependency6. Since they coincide with two control
signals with 9-bit period, it is likely that a glitch at these positions disturbs the decoder’s
internal control logic, affecting the reconstructed key.

Second, even with one bit of helper data manipulation, a significant share of clock-
glitched reconstructions begins to fail. Even more so, with the exception of a few cases
at three bit flips (drawn in red), the experiment’s outcomes do not change from two to
ten bit flips and Figure 6a remains mostly colourless. This is more directly visible in
Figure 6b, where the share of pass/fail results in line with the set-up time violation model
is shown depending on the number of additionally inserted bit flips. In simulations, a
similar behaviour occurred when some syndrome LFSRs were left unaffected by the clock
glitch, which also fits the intuition: as soon as the syndrome computation units become
desynchronised, the error correction capability suffers.

However, since a behaviour like this cannot be presumed from a general system under
attack, the attacks in the remainder of this section are carried out as they were described
earlier, with helper data manipulation bringing the error-correcting code to its error
correction limit before the insertion of clock glitches. Since the observable data dependency,
as Figure 6b shows, is not worse for this case, this approach does not degrade the attack’s
performance. Further implications of the evidently exploitable data dependency for fewer
artificially introduced bit flips are discussed later, in Section 6.

Attack results. As expected, the bit positions with no or limited data dependency
highlighted in Figure 6a and discussed in the previous section also appear during the attack
as bit positions with high extraction error probability. Figure 7 shows the indeterminable
bits (i.e. with 50% error probability) with their regular 9-bit spacing.

Apart from these positions, Figure 7 only has a very small ‘error floor’, indicating that
the attack performs well with respect to measurement noise. This is corroborated by the
attack’s progress on the number of extraction errors within a codeword over the number
of trials in Figure 8a, which is mostly constant despite a growing number of averages.

To find the locations of enough of the on average 14.9 bit errors to arrive at a correctable
codeword, the maximum-variance strategy is well-suited for a majority of the cases. Because
the indeterminable bits always result in a reconstruction failure, the compensation of the
uniformly chosen helper data bit flip immediately before the glitch position results in

6A glitch timing optimisation specific to these glitch positions could not reveal any beneficial timings,
either. Thus, data extraction with the proposed method seems to be impossible for these bits.

16 When the Decoder Has to Look Twice: Glitching a PUF Error Correction

Table 1: Result statistics after 250 trials for different FPGA board subsets.

Statistic/metric Board(s)
ĉ extraction k̂ extraction

min. avg. max. min. avg. max.

Bit extraction errors
best 6 14.2 18 2 7.4 11
all 6 14.8 27 2 7.7 15

worst 9 15.4 27 4 8.2 15

RGE (in bits)
best 1 21.5 41.3 11 30.3 39.8
all 1 24.7 67.2 11 31.1 47.7

worst 1 27.9 67.2 19.4 32.4 47.7

MV guesses
best 0 8.2 72 5 14.4 16
all 0 10.4 97 5 19.7 62

worst 0 12.7 97 11 38.8 62

ME guesses
best 0 7.9 16 6 14.3 16
all 0 8.6 19 6 14.5 16

worst 0 9.4 19 10 14.7 16

maximum measurement variance. As Figure 8b shows, the majority of the errors can be
found by this strategy after the variances have been determined with a few averaged trials.

Figure 8b also reveals a few faint black lines in its upper half, though. Because
Algorithm 1 used for the helper data modification places bit flips only within the key part
of the codeword, the stuck bits in the final 63 bits of the codeword cannot be detected
by high measurement variance—instead, they have almost zero variance. Consequently,
the naïve MV guessing strategy cannot economically recover codewords with too many
zero bit differences at always-failing bit positions within the codeword’s redundancy part.
Though, in the experiments, these cases merely make up 3% of all 1 500 codewords.

If the likely error positions are known, this information can be used by means of the
ME guessing strategy. As expected, the outlier codewords of Figure 8b do no longer appear
in Figure 8c, dropping the worst-case guess count to 19 bit. Naturally, the attack also
performs better on average, decreasing from 10.4 bit to 8.6 bit guesses.

Table 1 summarises the attack’s performance. There, the final number of bit errors,
residual guess entropy, and guess numbers using the two strategies outlined before, are
juxtaposed for an attack targeting the complete 127-bit codeword or only the 64-bit secret
key. As, depending on the scenario, an attacker might depend on extracting data from a
single device or could run the attack on multiple devices, it also includes statistics for the
best- and worst-performing FPGA boards for each metric.

In the average case, extracting the codeword yields better results than only the key,
as the average error count is below 16 bit and using the system’s error correction is
advantageous. Also note, again, the uneconomically high worst-case guess counts for the
maximum-variance strategy, even with the best-performing hardware. However, even if
more complete profiling and the ME strategy are not available, MV-guessing within the
key on a range of devices could work around this issue, as the best-board worst-codeword
value of 16 bit indicates.

5.2 Codeword masking variants
Having shown the feasibility of the attack on an unprotected implementation, we direct
our attention towards masking as a possible countermeasure. This section attempts the
same attack first on a key storage system where the random mask is applied after the
repetition decoder, before the BCH decoder, and second on the same system with the
repetition decoder’s input masked as well.

Mask applied to BCH decoder input. First, we investigate the slightly lower-cost mask-
ing variant, which applies the random mask to the BCH decoder’s input.

Jonas Ruchti, Michael Gruber and Michael Pehl 17

0 10 20 30 40 50 60 70 80 900

64

127

N

Ex
tr
ac
tio

n
er
ro
rs board 6 board 9 board 10 board 15

(a) Number of extraction errors within the codeword bit differences.

0 10 20 30 40 50 60 70 80 900

64

127

N

M
V

gu
es
se
s

board 6 board 9 board 10 board 15

(b) Number of codeword maximum-variance guesses necessary.

0 10 20 30 40 50 60 70 80 900

64

127

N

M
E

gu
es
se
s

board 6 board 9 board 10 board 15

(c) Number of necessary codeword maximum extraction error probability guesses.

Figure 8: Progress of the attack over the first 100 trials. Values for all codewords are
shown as thin lines in the background, means for FPGA boards as coloured lines.

0 10 20 30 40 50 60 70 80 900

64

127

N

Ex
tr
ac
tio

n
er
ro
rs board 6 board 9 board 10 board 15

Figure 9: Attacking the configuration with the BCH decoder input masked, the extraction
error count quickly converges to zero for all boards.

18 When the Decoder Has to Look Twice: Glitching a PUF Error Correction

Clock

Mask mi−1 mi mi+1 mi+2

Codeword c̃i−1 c̃i c̃i+1 c̃i+2

Figure 10: Waveform sketches for a set-up time violation fault attack assuming an
imperfectly aligned codeword mask.

0 10 20 30 40 50 60 70 80 900

64

127

N

Ex
tr
ac
tio

n
er
ro
rs board 6 board 9 board 10 board 15

Figure 11: Attack progress over the first 100 trials on the fully masked implementation.

Since the attack targets the now-masked codeword input, we would expect it to be
mitigated by this countermeasure. However, Figure 9 shows that the opposite is the case:
the attack performs much better than on the unprotected implementation and even for
the worst-case board 6, the extraction error count quickly converges to zero. In fact, all
1 500 tested codewords were perfectly extractable after 250 trials.

To explain this behaviour, we can take a look at the serial transmission of the secret
codeword and the mask as seen by the BCH decoder’s input, ignoring the XOR gate’s
propagation delay for now. Because the codeword has to propagate through the repetition
decoder while the mask arrives directly from the BCH encoder’s output register, we expect
each clock cycle’s codeword bit to be slightly delayed with respect to the mask bit. A clock
glitch can now be inserted as shown in Figure 10: the codeword transmission is affected in
the same way as for the unprotected implementation while the mask, due to its shorter
propagation time, is received unaltered. Any bit difference of the masked codeword caused
by the fault injection thus is only based on the secret codeword—the mask cannot hinder
the attack at all.

If we also take the XOR gate’s propagation delay into account, we can reason why this
masked implementation is even easier to attack than the unprotected system. The XOR
gate increases the secret codeword’s propagation time, thus providing the attacker with
more room to place a clock glitch without disturbing the decoder’s internal critical paths.
With the timing less critical and unwanted side effects less likely, the secret extraction
then functions closer to the idealised model.

Complete masking of the concatenated decoder. Based on this reasoning, we expect
masking the repetition decoder input to yield a more effective countermeasure, because
both mask and codeword have now to propagate through the repetition decoder and thus
have a better-matched signal delay. Indeed, the average of the attacks on board 10 shown
in Figure 11 stays close to half of the codeword length—the fault injections provide the
attacker close to no information about the secret codeword.

However, the countermeasure does not seem to work equally well on all FPGA boards.
Board 6, for example, arrives at an average of 21.1 bit extraction errors.

Curiously, board 9’s curve bends upwards, indicating an inverted data dependency

Jonas Ruchti, Michael Gruber and Michael Pehl 19

of Experiment. Note that this behaviour is distinct from an inverted codeword, i.e. a
flipped extracted bit difference 0. In the case of board 9, a reconstruction failure correlates
with two identical consecutive codeword bits while a success correlates with a bit change.

This apparent contradiction to the fault model can be explained if we presume a
situation opposite to the previous masking variant. If the mask arrives after the codeword,
a clock glitch can be inserted such that the codeword is transferred normally while one
mask bit is replaced by its predecessor. In half of the cases, the random mask bits around
the glitch position do not differ and this glitch will not have an effect. If they did differ
before the replacement, the reconstruction will fail, but only if the change was not offset
by a relative difference of codeword bits.

The attack results suggest that the propagation delays of mask and codeword are, on
average, indeed closely matched. However, due to hardware tolerances, they differ slightly
between devices. In some cases, like board 6, the mask arrives slightly earlier like with the
previous implementation; in other cases, like board 9, the codeword arrives earlier at the
BCH decoder. Intermediate degrees of protection, like the exemplary board 15, also occur.

An attacker can naturally also make use of the inverted data dependency. For the
attack on this variant, an additional bit guess is included in the metrics, since the attacker
cannot know the polarity. Table 2 summarises the results.

Table 2: Attack statistics for the fully masked concatenated decoder.

Statistic/metric Board(s)
ĉ extraction k̂ extraction

min. avg. max. min. avg. max.

Bit extraction errors
best 11 21.1 35 2 4.9 10
all 11 47.3 63 2 21.3 40

worst 48 58.9 63 19 29.8 40

RGE (in bits)
best 2 51 87.4 12 23.4 38.4
all 2 104.3 123.5 12 54.2 65

worst 109.1 120.3 123.5 54.7 63 65

MV guesses
best 2 30.1 48 4 19 43
all 2 78.1 116 4 51.2 65

worst 88 103.5 116 57 63.7 65

ME guesses
best 2 46.7 103 3 36.9 65
all 2 95.1 116 3 60.8 65

worst 91 105.4 116 59 64 65

Because of the overall higher extraction error probabilities, extracting the key only
is advantageous in this case, as the two result columns in Table 2 show. As the errors
are now not mostly concentrated on a few constant positions like with the unprotected
bitstream, the ME guessing strategy based on global statistics performs worse than the
MV strategy operating on the current codeword’s measurements only. All in all, even this
countermeasure cannot be considered too effective with an average of 19 bit MV guesses
on the best-attackable FPGA board.

6 Result discussion
Although the attack was only carried out on simplified model hardware, more general
conclusions can be drawn from the results.

Necessity of helper data manipulation. Since the attack depends on artificially bringing
the ECC decoder to its error correction limit, it can be prevented by helper data manipu-
lation detection. If, for example, a hash of the helper data is added to the reconstructed
key, any change to the helper data will immediately let the reconstruction fail7.

7For further helper data modification detection schemes, we refer the reader to [Del+15].

20 When the Decoder Has to Look Twice: Glitching a PUF Error Correction

However, the initial experiments with the unprotected implementation showed some
interesting behaviour: the data dependency was apparent for a wide range of bit flips
within the codeword. Because a small number of bit errors might be present due to the
devices’s ageing (or the attacker heating it up) anyway, this would enable the described
attack even without helper data manipulation. Naturally, this would introduce some
complications for the attacker:

• The codeword the attacker extracts is offset by the present bit errors, which limits
the correction of additional extraction errors.

• A glitch position jitter can no longer be compensated by averaging. The helper data
manipulation previously ensured that fault injection results with a small position
offset lead to uncorrelated results, which is no longer the case.

• The profiling step becomes much more difficult without helper data manipulation
and can also generate false positives: a seemingly optimal glitch timing might just
perturb the decoder internally, yielding promising statistics without the behaviour
fitting the fault effect model. Without influencing the codeword, the glitch’s effect
cannot be examined thoroughly.

Masking complications. The experiment results could establish the importance of
matched propagation delays for the efficacy of masking as a fault attack countermeasure.
This is similar to the effects of glitches in the context of side channel attacks [MPG05],
though the data dependency occurs not because of an attacked gate’s non-linearity but
because of the observability of a fault-induced input change.

For a designer, these propagation delay asymmetries are hard to compensate. Initial
experiments in compensating the skew with manually inserted look-up tables (LUTs)
used as delay elements were fruitless, as the adjustment was too coarse-grained. FPGA
synthesis and implementation tools do not offer help equalising delays beyond the usual
limits for synchronous designs, so a fully manual routing would have been required. In
application-specific integrated circuit (ASIC) design, these issues are similarly hard to
avoid, as [MPG05] argues.

Even if the delays are nominally matched, hardware variations can upset the designer’s
plans. Despite all FPGAs using the same bitstream, delay mismatches in both directions
were apparent in the last experiment, both enabling an exploitable data dependency. This
might be evaded by shortening the paths as much as possible to decrease the influence of
routing element propagation delay variation, which naturally adds additional strain to the
design process or might not be feasible at all.

Using multiple masking codewords, i.e. with one’s bits arriving before and one’s after
the codeword, would do away with the issues of the precise mask timing. However, requiring
twice the randomness and additional logic would also significantly complicate the design.

7 Conclusion and outlook
While side channel leaks had already been investigated in the context of PUF key storage
systems, this work sheds some light onto the power of FIA in this domain. In contrast
to previous attacks targeting PUF primitives, it focused on the vulnerability of the error
correction code required by such schemes to reliably reconstruct a secret key. Theoretical
consideration showed a possible attack threat, which was then validated with practical
experiments. The investigation of two countermeasures showed their limitations and the
need for further research in this direction: we discussed, in theory, that hashing the helper
data with the corrected PUF secret prevents the attack completely only if helper data
manipulation is the only means to bring the error correcting code to its correction limit;

Jonas Ruchti, Michael Gruber and Michael Pehl 21

codeword masking can, in principle, be used to counter the attack, yet the experiments
showed that the timing of the mask can be too critical for this countermeasure to be
practical. Thus, further research is needed to investigate the possible attack without helper
data manipulation and to develop more effective countermeasures. Nevertheless, this work
is another step towards understanding threats for PUF-based key storage systems and,
thus, towards increasing their security.

Acknowledgement
This work was partly funded by the Federal Ministry of Education and Research with the
project APRIORI through grant number 16KIS1389K.

References
[Alf96] Peter Alfke. Efficient Shift Registers, LFSR Counters, and Long Pseudo-

Random Sequence Generators. XAPP 052. Xilinx, 7th July 1996. url: https:
//www.xilinx.com/support/documentation/application_notes/xapp052.
pdf.

[Bar+06] Hagai Bar-El et al. ‘The Sorcerer’s Apprentice Guide to Fault Attacks’. In:
Proceedings of the IEEE 94.2 (Feb. 2006), pp. 370–382. issn: 0018-9219, 1558-
2256. doi: 10.1109/JPROC.2005.862424. url: http://ieeexplore.ieee.
org/document/1580506/.

[BDL00] Dan Boneh, Richard A. DeMillo and Richard J. Lipton. ‘On the Importance of
Eliminating Errors in Cryptographic Computations’. In: Journal of Cryptology
14.2 (Nov. 2000), pp. 101–119. doi: 10.1007/s001450010016.

[Bec15] Georg T. Becker. ‘The Gap Between Promise and Reality: On the Insecurity
of XOR Arbiter PUFs’. In: Cryptographic Hardware and Embedded Systems –
CHES 2015. Ed. by Tim Güneysu and Helena Handschuh. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 535–555. isbn: 978-3-662-48324-4.

[BGV11] Josep Balasch, Benedikt Gierlichs and Ingrid Verbauwhede. ‘An In-depth and
Black-box Characterization of the Effects of Clock Glitches on 8-bit MCUs’.
In: 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography. IEEE,
Sept. 2011. doi: 10.1109/fdtc.2011.9.

[Bla03] Richard E. Blahut. Algebraic codes for data transmission. OCLC: 76956531.
Cambridge University Press, 2003. isbn: 978-0-511-07429-5.

[BWG15] Georg T. Becker, Alexander Wild and Tim Güneysu. ‘Security analysis of
index-based syndrome coding for PUF-based key generation’. In: Hardware
Oriented Security and Trust (HOST), 2015 IEEE International Symposium
on. IEEE. 2015, pp. 20–25.

[Cha+99] Suresh Chari et al. ‘Towards Sound Approaches to Counteract Power-Analysis
Attacks’. In: Advances in Cryptology — CRYPTO’ 99. Ed. by Michael Wiener.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 398–412. isbn: 978-
3-540-48405-9.

[Del+15] Jeroen Delvaux et al. ‘Helper Data Algorithms for PUF-Based Key Generation:
Overview and Analysis’. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 34.6 (June 2015), pp. 889–902. issn: 0278-0070,
1937-4151. doi: 10.1109/TCAD.2014.2370531. url: http://ieeexplore.
ieee.org/document/6965637/.

https://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
https://doi.org/10.1109/JPROC.2005.862424
http://ieeexplore.ieee.org/document/1580506/
http://ieeexplore.ieee.org/document/1580506/
https://doi.org/10.1007/s001450010016
https://doi.org/10.1109/fdtc.2011.9
https://doi.org/10.1109/TCAD.2014.2370531
http://ieeexplore.ieee.org/document/6965637/
http://ieeexplore.ieee.org/document/6965637/

22 When the Decoder Has to Look Twice: Glitching a PUF Error Correction

[Dod+08] Yevgeniy Dodis et al. ‘Fuzzy Extractors: How to Generate Strong Keys from
Biometrics and Other Noisy Data’. In: SIAM Journal on Computing 38.1
(Jan. 2008), pp. 97–139. doi: 10.1137/060651380.

[DV14] Jeroen Delvaux and Ingrid Verbauwhede. ‘Fault Injection Modeling Attacks
on 65 nm Arbiter and RO Sum PUFs via Environmental Changes’. In:
IEEE Transactions on Circuits and Systems I: Regular Papers 61.6 (June
2014), pp. 1701–1713. issn: 1549-8328, 1558-0806. doi: 10.1109/TCSI.2013.
2290845. url: https://ieeexplore.ieee.org/document/6728716/.

[Exi14] Exide. Glitching for n00bs. 2014. url: https://recon.cx/2014/slides/
REcon2014-exide-Glitching_For_n00bs.pdf.

[Gan+16] Fatemeh Ganji et al. ‘Strong Machine Learning Attack Against PUFs with No
Mathematical Model’. In: Proceedings of the 18th International Conference
on Cryptographic Hardware and Embedded Systems — CHES 2016 - Volume
9813. New York, NY, USA: Springer-Verlag New York, Inc., 2016, pp. 391–
411. isbn: 978-3-662-53139-6. doi: 10.1007/978-3-662-53140-2_19. url:
https://doi.org/10.1007/978-3-662-53140-2_19.

[Gas+02] Blaise Gassend et al. ‘Silicon physical random functions’. In: CCS ’02: Proceed-
ings of the 9th ACM conference on Computer and communications security.
Washington, DC, USA: ACM, 2002, pp. 148–160. isbn: 1-58113-612-9.

[Gas+04] Blaise Gassend et al. ‘Identification and authentication of integrated circuits’.
In: Concurrency and Computation: Practice and Experience 16.11 (2004),
pp. 1077–1098.

[GMK16] Hannes Gross, Stefan Mangard and Thomas Korak. Domain-Oriented Mask-
ing: Compact Masked Hardware Implementations with Arbitrary Protection
Order. Cryptology ePrint Archive, Report 2016/486. https://eprint.iacr.
org/2016/486. 2016.

[HBF07] Daniel E. Holcomb, Wayne P. Burleson and Kevin Fu. ‘Initial SRAM State
as a Fingerprint and Source of True Random Numbers for RFID Tags’. In:
Proceedings of the Conference on RFID Security. 2007.

[Hel+13] Clemens Helfmeier et al. ‘Cloning Physically Unclonable Functions’. In: Pro-
ceedings of the IEEE Int. Symposium of Hardware-Oriented Security and
Trust. IEEE, June 2013.

[Jam97] Ernest Jamro. ‘The Design of a VHDL Based Synthesis Tool for BCH Codecs’.
Master Thesis. University of Huddersfield, Sept. 1997. url: http://home.
agh.edu.pl/~jamro/bch_thesis/bch_thesis.html.

[JW99] Ari Juels and Martin Wattenberg. ‘A fuzzy commitment scheme’. In: Proceed-
ings of the 6th ACM conference on Computer and communications security
- CCS ’99. the 6th ACM conference. Kent Ridge Digital Labs, Singapore:
ACM Press, 1999, pp. 28–36. isbn: 978-1-58113-148-2. doi: 10.1145/319709.
319714.

[Kan+14] Hyunho Kang et al. ‘Cryptographic key generation from PUF data using
efficient fuzzy extractors’. In: 16th International Conference on Advanced
Communication Technology. 2014 16th International Conference on Advanced
Communication Technology (ICACT). Pyeongchang, Korea (South): Global
IT Research Institute (GIRI), Feb. 2014, pp. 23–26. isbn: 978-89-968650-3-2.
doi: 10.1109/ICACT.2014.6778915. url: http://ieeexplore.ieee.org/
document/6778915/.

https://doi.org/10.1137/060651380
https://doi.org/10.1109/TCSI.2013.2290845
https://doi.org/10.1109/TCSI.2013.2290845
https://ieeexplore.ieee.org/document/6728716/
https://recon.cx/2014/slides/REcon2014-exide-Glitching_For_n00bs.pdf
https://recon.cx/2014/slides/REcon2014-exide-Glitching_For_n00bs.pdf
https://doi.org/10.1007/978-3-662-53140-2_19
https://doi.org/10.1007/978-3-662-53140-2_19
https://eprint.iacr.org/2016/486
https://eprint.iacr.org/2016/486
http://home.agh.edu.pl/~jamro/bch_thesis/bch_thesis.html
http://home.agh.edu.pl/~jamro/bch_thesis/bch_thesis.html
https://doi.org/10.1145/319709.319714
https://doi.org/10.1145/319709.319714
https://doi.org/10.1109/ICACT.2014.6778915
http://ieeexplore.ieee.org/document/6778915/
http://ieeexplore.ieee.org/document/6778915/

Jonas Ruchti, Michael Gruber and Michael Pehl 23

[Kud+18] Christian Kudera et al. ‘Design and Implementation of a Negative Voltage
Fault Injection Attack Prototype’. In: 2018 IEEE International Workshop on
Physical Attacks and Inspection of Electronics (PAINE). 2018, pp. 1–6.

[Mat] Supplementary Material. Will be published after acceptance of the paper.
[Mer+11a] Dominik Merli et al. ‘Semi-invasive EM Attack on FPGA RO PUFs and Coun-

termeasures’. In: 6th Workshop on Embedded Systems Security (WESS’2011).
Taipei, Taiwan: ACM, Oct. 2011.

[Mer+11b] Dominik Merli et al. ‘Side-Channel Analysis of PUFs and Fuzzy Extractors’.
In: Trust and Trustworthy Computing. Ed. by Jonathan M. McCune et al.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 33–47. isbn: 978-3-
642-21599-5.

[MPG05] Stefan Mangard, Thomas Popp and Berndt M. Gammel. ‘Side-Channel Leak-
age of Masked CMOS Gates’. In: Topics in Cryptology – CT-RSA 2005.
Ed. by Alfred Menezes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 351–365. isbn: 978-3-540-30574-3.

[MSS13] Dominik Merli, Frederic Stumpf and Georg Sigl. Protecting PUF Error Cor-
rection by Codeword Masking. Fraunhofer AISEC, May 2013. url: http:
//eprint.iacr.org/2013/334;.

[MVV12] Roel Maes, Anthony Van Herrewege and Ingrid Verbauwhede. ‘PUFKY: A
Fully Functional PUF-Based Cryptographic Key Generator’. In: Cryptographic
Hardware and Embedded Systems – CHES 2012. Ed. by Emmanuel Prouff
and Patrick Schaumont. Vol. 7428. Series Title: Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 302–319.
isbn: 978-3-642-33026-1. doi: 10.1007/978-3-642-33027-8_18.

[OC15] Colin O’Flynn and Zhizhang Chen. ‘ChipWhisperer: An OpenSource Platform
for Hardware Embedded Security Research’. In: IN: CONSTRUCTIVE SIDE-
CHANNEL ANALYSIS AND SECURE DESIGN - COSADE. 2015.

[RP10] Matthieu Rivain and Emmanuel Prouff. ‘Provably Secure Higher-Order Mask-
ing of AES’. In: Cryptographic Hardware and Embedded Systems, CHES 2010.
Ed. by Stefan Mangard and François-Xavier Standaert. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 413–427. isbn: 978-3-642-15031-9.

[Rüh+10] Ulrich Rührmair et al. ‘Modeling attacks on physical unclonable functions’. In:
Proceedings of the 17th ACM conference on Computer and communications
security. CCS ’10. Chicago, Illinois, USA: ACM, 2010, pp. 237–249. isbn:
978-1-4503-0245-6. doi: http://doi.acm.org/10.1145/1866307.1866335.
url: http://doi.acm.org/10.1145/1866307.1866335.

[Sah+20] Sayandeep Saha et al. ‘A Framework to Counter Statistical Ineffective Fault
Analysis of Block Ciphers Using Domain Transformation and Error Correction’.
In: IEEE Transactions on Information Forensics and Security 15 (2020),
pp. 1905–1919. doi: 10.1109/TIFS.2019.2952262.

[Sap06] Sachin S. Sapatnekar. ‘Static timing analysis’. In: EDA for IC implementation,
circuit design, and process technology. CRC press, 2006, pp. 6–1.

[SD07] Gookwon Edward Suh and Srinivas Devadas. ‘Physical Unclonable Functions
for Device Authentication and Secret Key Generation’. In: ACM/IEEE Design
Automation Conference (DAC). 2007, pp. 9–14.

[SF20] Mitsuru Shiozaki and Takeshi Fujino. ‘Simple electromagnetic analysis attack
based on geometric leak on ASIC implementation of ring-oscillator PUF’. In:
Journal of Cryptographic Engineering (2020), pp. 1–12.

http://eprint.iacr.org/2013/334;
http://eprint.iacr.org/2013/334;
https://doi.org/10.1007/978-3-642-33027-8_18
https://doi.org/http://doi.acm.org/10.1145/1866307.1866335
http://doi.acm.org/10.1145/1866307.1866335
https://doi.org/10.1109/TIFS.2019.2952262

24 When the Decoder Has to Look Twice: Glitching a PUF Error Correction

[SFP21] Emanuele Strieder, Christoph Frisch and Michael Pehl. ‘Machine Learning
of Physical Unclonable Functions using Helper Data - Revealing a Pitfall in
the Fuzzy Commitment Scheme’. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems 2021.2 (2021).

[SMC20] Albert Spruyt, Alyssa Milburn and Łukasz Chmielewski. ‘Fault Injection
as an Oscilloscope: Fault Correlation Analysis’. In: IACR Transactions on
Cryptographic Hardware and Embedded Systems 2021.1 (Dec. 2020), pp. 192–
216. doi: 10.46586/tches.v2021.i1.192-216. url: https://tches.iacr.
org/index.php/TCHES/article/view/8732.

[Taj+14] Shahin Tajik et al. ‘Physical Characterization of Arbiter PUFs’. In: Crypto-
graphic Hardware and Embedded Systems – CHES 2014. Ed. by Lejla Batina
and Matthew Robshaw. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
pp. 493–509. isbn: 978-3-662-44709-3.

[Taj+15] Shahin Tajik et al. ‘Laser Fault Attack on Physically Unclonable Functions’.
In: 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).
2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).
Saint Malo, France: IEEE, Sept. 2015, pp. 85–96. isbn: 978-1-4673-7579-5. doi:
10.1109/FDTC.2015.19. url: http://ieeexplore.ieee.org/document/
7426155/.

[TDP20] Lars Tebelmann, Jean-Luc Danger and Michael Pehl. ‘Self-secured PUF: pro-
tecting the loop PUF by masking’. In: International Workshop on Constructive
Side-Channel Analysis and Secure Design. Springer. 2020, pp. 293–314.

[Teb+21] Lars Tebelmann et al. Analysis and Protection of the Two-metric Helper
Data Scheme. Cryptology ePrint Archive, Report 2021/830. https://eprint.
iacr.org/2021/830. 2021.

[TPI19] Lars Tebelmann, Michael Pehl and Vincent Immler. ‘Side-Channel Analysis
of the TERO PUF’. In: Constructive Side-Channel Analysis and Secure
Design. Ed. by Ilia Polian and Marc Stöttinger. Vol. 11421. Cham: Springer
International Publishing, 2019, pp. 43–60. isbn: 978-3-030-16349-5. doi: 10.
1007/978-3-030-16350-1_4.

[TPS17] Lars Tebelmann, Michael Pehl and Georg Sigl. ‘EM Side-Channel Analysis
of BCH-based Error Correction for PUF-based Key Generation’. en. In:
Proceedings of the 2017 Workshop on Attacks and Solutions in Hardware
Security - ASHES ’17. Dallas, Texas, USA: ACM Press, 2017, pp. 43–52. isbn:
978-1-4503-5397-7. doi: 10.1145/3139324.3139328. url: http://dl.acm.
org/citation.cfm?doid=3139324.3139328.

[YD10] Meng-Day (Mandel) Yu and Srinivas Devadas. ‘Recombination of Physical
Unclonable Functions’. In: 35th Annual GOMACTech Conference. Reno, NV:
United States. Dept. of Defense, Mar. 2010.

[Yu+12] Meng-Day Yu et al. ‘Performance metrics and empirical results of a PUF cryp-
tographic key generation ASIC’. In: 2012 IEEE International Symposium on
Hardware-Oriented Security and Trust. 2012 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST 2012). San Francisco, CA:
IEEE, June 2012, pp. 108–115. isbn: 978-1-4673-2341-3. doi: 10.1109/HST.
2012.6224329. url: https://ieeexplore.ieee.org/document/6224329/.

https://doi.org/10.46586/tches.v2021.i1.192-216
https://tches.iacr.org/index.php/TCHES/article/view/8732
https://tches.iacr.org/index.php/TCHES/article/view/8732
https://doi.org/10.1109/FDTC.2015.19
http://ieeexplore.ieee.org/document/7426155/
http://ieeexplore.ieee.org/document/7426155/
https://eprint.iacr.org/2021/830
https://eprint.iacr.org/2021/830
https://doi.org/10.1007/978-3-030-16350-1_4
https://doi.org/10.1007/978-3-030-16350-1_4
https://doi.org/10.1145/3139324.3139328
http://dl.acm.org/citation.cfm?doid=3139324.3139328
http://dl.acm.org/citation.cfm?doid=3139324.3139328
https://doi.org/10.1109/HST.2012.6224329
https://doi.org/10.1109/HST.2012.6224329
https://ieeexplore.ieee.org/document/6224329/

	Introduction
	Preliminaries
	PUF-based key storage
	Glitch-based Fault Injection Analysis
	Notation

	The proposed attack
	Fault model
	Attack sketch
	Secret extraction algorithms

	Experimental set-up
	Basic experiment hardware
	Masking implementations
	Experiment procedure
	Attack success metrics

	Experiment results
	Unprotected implementation
	Codeword masking variants

	Result discussion
	Conclusion and outlook

