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Abstract. In the last decade, machine learning-based side-channel attacks became a
standard option when investigating profiling side-channel attacks. At the same time,
the previous state-of-the-art technique, template attack, started losing its importance
and was more considered a baseline to compare against. As such, most of the results
reported that machine learning (and especially deep learning) could significantly
outperform the template attack. This does not mean the template attack does not
have certain advantages even when compared to deep learning. The most significant
one is that it does not have any hyperparameters to tune, making it easier to use.
We take another look at the template attack, and we devise a feature engineering
phase allowing template attacks to compete or even outperform state-of-the-art deep
learning-based side-channel attacks. More precisely, we show how a deep learning
technique called the triplet model can be used to find highly efficient embeddings
of input data, which can then be fed into the template attack resulting in powerful
attacks.

Keywords: Side-channel Analysis - Similarity learning - Triplet network - Deep
learning - Template attack.

1 Introduction

Side-channel attacks (SCA) exploits weaknesses in the physical implementation of crypto-
graphic algorithms rather than the algorithms themselves [MOPO06]. One common division
of SCAs is based on the assumed attacker power and divides SCAs into direct (non-profiling)
and two-stage (profiling) attacks. Profiling side-channel attacks consider the worst-case
security evaluation. There, the attacker has access to a clone device used to build a model
of a device under attack. After a model is built, the attacker uses it to attack an identical
(or at least similar) copy of that device and obtain the secret information. The first
proposed profiling SCA is the template attack [], and while this attack is the most powerful
one from the information-theoretic perspective [LPB¥15], many real-world settings showed
its limitations. Indeed, protected targets and dataset limitations often result in settings
where machine learning and especially deep learning techniques significantly outperform
template attack [MPP16, PHJT17, PHJ18].

Although template attack cannot compete against deep learning in attack performance,
it still has certain advantages. Since it has no hyperparameters to tune, this makes the
template attack easier to deploy. In contrast, deep learning techniques commonly have
many hyperparameters, and failing to tune them properly could result in poor attack
performance. As such, a large part of the deep learning-based SCA research is oriented
toward hyperparameter tuning and finding efficient neural network architectures [ZBHV19,
WAGP20, RWPP21]. An additional perspective that requires consideration in the context
of template attack is the points of interest selection (i.e., feature engineering). Since the
template attack requires a relatively small number of features (or a very large number of
measurements), one needs to select (craft) the most informative features carefully. This
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step naturally leads to information loss compared to deep learning that works with raw
signals.

Consequently, it sounds intuitive that any improvement in template attack perfor-
mance concerning the feature engineering phase, especially making it a competitive choice
compared to deep learning, would be highly relevant. While during the years variants of
template attacks appeared (e.g., pooled template attack [CK13]), they were commonly not
aimed at improving the attack performance but making the template attack more stable.
The current state-of-the-art template attack uses PCA for feature engineering [LPB*15],
which, while powerful, cannot compete with the deep learning approaches.

This work proposes a novel combination of deep learning and template attack that
we denote deep learning-assisted template attack. More precisely, we use a deep learning
approach called similarity learning to find the most relevant data embedding (transformed
features) and then use such data as the input to a template attack. Our main contributions
are:

1. We propose a similarity learning-based approach capable of finding an efficient
representation of traces in the latent space. We use the triplet model for this goal,
and we obtain a compact data representation resulting in a very successful attack.

2. We propose a deep learning-assisted template attack capable of breaking protected
implementations. What is more, our approach offers comparable or better results
than state-of-the-art deep learning architectures.

3. Since we use template attack, there are no hyperparameters to tune, simplifying
the attack process and making our approach much more straightforward to deploy,
without requiring any special expertise in deep learning.

We conduct experiments on two publicly available datasets and two leakage models and
show our approach to be a highly viable technique capable of outperforming state-of-the-art
neural networks. To foster the reproducibility of our research, we will make our source
code available upon the acceptance of the paper.

2 Preliminaries

In this section, we start by introducing the notation we follow. Next, we discuss the
profiling side-channel analysis and provide details about the template attack and deep
learning-based SCAs. Finally, we provide details on how to evaluate the performance of
side-channel attacks.

2.1 Notation

We use calligraphic letters like X to denote sets. The corresponding upper-case letters
denote random variables (X ) and random vectors (X) over X'. The corresponding lower-case
letters (x, x) represent realizations of X and X, respectively.

A dataset represents a collection of side-channel measurements denoted as T, with
each trace t; associated with an input value (plaintext or ciphertext) d; and a key k;.
We denote with k£ a key candidate that takes its value from the keyspace K, where k*
represents the correct key. Each trace (measurement) t; consists of F' features (samples,
points of interest). We divide the dataset into a training set of size N, a validation set of
size V, and an attack set of size Q.

For the deep learning techniques we consider, 6 denotes the vector of parameters

learned in a profiling model (e.g., the weights in neural networks), and H denotes the set
of hyperparameters defining the profiling model.
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2.2 Profiling Side-channel Analysis

We consider a scenario where a powerful attacker has a clone device that is identical (or at
least similar) to the device to be attacked. The attacker uses N measurements from the
profiling device to build a model, and then (Q measurements from the device to be attacked
to infer the secret information. A general principle of the profiling attack is depicted in
Figure 1. Depending on the profiling technique, one builds different types of profiling
models. The two most common types are a template for the template attack and machine
learning models.
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Figure 1: Profiling side-channel attack.

2.2.1 Template Attack

The best-known profiling attack is the template attack (TA) that uses Bayes theorem to
obtain predictions, dealing with multivariate probability distributions as the leakage over
consecutive time samples is not independent [CRR02]. In the state-of-the-art, template
attack relies mostly on a (multivariate) normal distribution and is parameterized by the
mean and covariance matrix. It consists of two phases: the offline phase during which the
templates are built and the online phase where the matching between the templates and
unseen power leakage happens.

In practice, the covariance matrices’ estimation for each class value of y can be ill-
posed mainly due to insufficient traces for each class. Choudary and Kuhn proposed
to use one pooled covariance matrix to cope with statistical difficulties and thus lower
efficiency [CK13]. Some related works showed that the pooled TA could be more efficient,
in particular for a smaller number of traces in the profiling phase [CK13, PHJT17].

2.2.2 Deep Learning-based SCA

As commonly done in the state-of-the-art [ZBHV19, ZBD"21], we consider supervised
machine learning and the classification task. More precisely, the goal is to learn a function
f mapping an input to the discrete output (f : X — Y')) based on examples of input-output
pairs. The number of classes ¢ for the discrete output depends on the leakage model and
cryptographic algorithm.

The function f is parameterized by 8 € R™, where n represents the number of trainable
parameters. The goal of the profiling phase is to learn the parameters @', minimizing the
empirical risk represented by a loss function L on a dataset of size N. In the attack phase,
the goal is to predict classes (more precisely, the probabilities that a certain class would
be predicted) y based on the previously unseen set of traces x of size ) and the trained
model f.



4 Deep Learning-assisted Template Attack

2.3 Evaluating the Attack Performance

Once a profiling attack is finished, the result is a two-dimensional matrix P with dimensions
equal to @ x c¢. Then, it is common to use the maximum log-likelihood distinguisher, which
is a probability S(k) for any key candidate k:

Q
S(k) =3 log(pi.0). (1)

The value p; ., represents the probability that for a key k and input d;, the result is class v
(derived from the key and input through a cryptographic function C' and a leakage model
D).

The result of an attack is a key guessing vector g = [g1, g2, . .., g|x)] calculated for Q
traces in the attack phase. This vector contains the key candidates in decreasing order of
probability: g is the most likely, and gk, is the least likely key candidate. To reduce the
effect of selected measurements (as commonly, one evaluates the attack performance for
different subsets of () measurements), it is usual to estimate the effort to obtain the secret
key k* with the guessing entropy (GE) metric [SMY09]. Guessing entropy represents the
average position of k* in g.

3 Related Works

Chari et al., in their seminal work in 2002, proposed the template attack, representing
the beginnings of profiling SCA [CRR02]. This attack is the most powerful one from
the information-theoretic perspective and has no hyperparameters to tune. The main
drawbacks of this attack are unrealistic assumptions (unlimited number of traces, noise
following the Gaussian distribution [LPB*15]). Afterward, Schindler et al. proposed
stochastic models [SLP05] and Choudhary and Kuhn pooled template attack [CK13]. For
a number of years, those techniques represented state-of-the-art for profiling SCA. Besides
good attack performance, those techniques also do not have hyperparameters to tune,
making them easier to use. At the same time, to reduce the attack complexity, one needs
to conduct a feature engineering phase to reduce the number of points of interest by either
using feature selection [PHIJB19] or dimensionality reduction like PCA [BHvW12].

Several years later, machine learning-based SCA became popular due to many results
where such techniques surpassed the performance of the template attack. The most
common examples of the machine learning methods are support vector machines [HGM ™11,
HZ12, PHJ*17], random forest [LMBM13, MPP16], Naive Bayes [PHG17, HPGM16], and
multilayer perceptron [GHO15, MZ13]. While the results for machine learning techniques
were in general favorable compared to the previous ones (e.g., template attack), the
complexity of running such attacks was higher. Indeed, most machine learning techniques
have hyperparameters that one needs to tune to reach the best attack performance. At
the same time, to reduce the computational complexity, it was common to use feature
engineering techniques as before.

Finally, in the last few years, profiling SCA mostly moved toward deep learning
techniques that provided even better results than machine learning or template at-
tack [CDP17, KPH"19]. Additionally, deep learning does not require feature engineering,
making the attack preparation simpler. Unfortunately, deep learning algorithms have
significantly more hyperparameter to tune compared to other techniques in profiling SCA,
which again increased the complexity of running those attacks. The first significant progress
was showcasing that convolutional neural networks can efficiently break targets [MPP16].
Additionally, the authors showed that deep learning works well with raw traces (or at least
many more points of interest than before), removing the need for feature engineering. Cagli
et al. demonstrated how deep learning could break implementations protected with a jitter
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countermeasure [CDP17]. Additionally, they introduced the data augmentation approach
to profiling SCA. Kim et al. designed a deep learning architecture that gave excellent
results for several publicly available datasets [KPH™19]. While the developed architectures
differ due to different dataset dimensions (number of features), we can recognize a common
design principle used for all experimental settings.

While the performance of the first deep learning-based side-channel attacks was very
good, the SCA community quickly realized it could be further improved by following
a careful hyperparameter tuning phase. Benadjila et al. investigated hyperparameter
tuning for the ASCAD dataset and proposed several well-performing neural network
architectures [BPST20]. Zaid et al. proposed the first methodology to tune the hyperpa-
rameters related to the size (number of learnable parameters, i.e., weights and biases) of
layers in convolutional neural networks [ZBHV19]. Improving up the work from Zaid et
al. [ZBHV19], Wouters et al. [WAGP20] showed how to reach similar attack performance
with even smaller neural network architectures. Perin et al. investigated deep learning
model generalization and demonstrated how ensembles of random models could perform
better than a single carefully tuned neural network model [PCP20]. Rijsdijk et al. ex-
plored the reinforcement learning paradigm to find small neural networks that perform
well [RWPP21]. While their approach requires a significant tuning effort (computational
time), the authors significantly improved state-of-the-art results.

All those works have in common that they design a specific architecture for each dataset
and leakage model. For some works like [KPH" 19], the difference in the architecture
design is a natural consequence of different dataset shapes (the number of features in each
trace). For others, e.g., [ZBHV19, RWPP21], the architectures are finely tuned for each
experimental setting, and they differ significantly.

4 Experimental Setup

This section provides information about the datasets and leakage models we investigate,
as well as information about the environment setup.

4.1 Datasets

The ASCAD datasets represent a common target for profiling SCA as they contain
measurements protected with masking and settings with fixed or random keys [BPS*20].
More precisely, the ASCAD datasets contain the measurements from an 8-bit AVR
microcontroller running a masked AES-128 implementation. Currently, there are two
versions of the ASCAD dataset. The datasets are available at https://github.com/
ANSSI-FR/ASCAD.

The first dataset version has a fixed key and consists of 50000 traces for profiling and
10000 for the attack. Each trace has 700 features (preselected window corresponding
to the processing of key byte 3, the first masked key byte). We denote this dataset as
ASCAD_F. From 50000 traces in the profiling set, we use 45000 traces for profiling and
5000 for validation.

The second version has random keys, with 200 000 traces for profiling and 100 000 for the
attack. Each trace has 1400 features (preselected window corresponding to the processing
of key byte 3, the first masked key byte). We denote this dataset as ASCAD_ R. We use
45000 traces for profiling and 5000 traces from the attack set for validation (the attack
set has a fixed but a different key from the profiling set).

4.2 Leakage Models

Our work investigates two leakage models:
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1. The Hamming weight (HW) leakage model. In this leakage model, the attacker
assumes the leakage is proportional to the sensitive variable’s Hamming weight. For
the AES cipher, this leakage model results in nine classes for a single intermediate
byte.

2. The Identity (ID) leakage model. In this leakage model, the attacker considers
the leakage in the form of an intermediate value of the cipher. For the AES cipher,
this leakage model results in 256 classes for a single intermediate byte.

4.3 Environment

The machine learning models were implemented in python version 3.6, using TensorFlow
library version 2.0. The model training algorithms were run on a cluster made out of
Nvidia GTX 1080 and GTX 2080 graphics processing units (GPUs), managed by Slurm
workload manager version 19.05.4.

5 Triplet Attack

In this section, we introduce the general concept of the triplet model, and afterward, we
discuss how we adapt it to the context of profiling side-channel analysis.

5.1 Triplet model

Similarity learning belongs to supervised machine learning, where the goal is to learn a
similarity function that measures how similar or related two objects are. One option for
this task is to use a triplet network model to learn useful data representations by distance
comparisons. Triplet network was evolved from the Siamese network [MKR16, GFZ17]
and is first proposed by Wang et al. [WSL*14] in 2014. Then, based on the triplet
network, Schroff et al. developed the well-known Facenet network for face recognition and
clustering [SKP15].

A depiction of a triplet network is shown in Figure 2. An input pair consists of three
samples: positive, anchor, and negative. Among them, positive and anchor samples have
the same label, while that label is different from the negative samples. By training the
deep network with the shared weights, three embeddings (Emb,, Emb,, and Emb,),
corresponding to their input are outputted by the deep network and used for the triplet
loss calculation.

An embedding represents a (relatively) low-dimensional space into which high-dimensional
vectors can be translated. Embedding allows easier machine learning tasks when the in-
puts are large. Ideally, an embedding would capture some input semantics by placing
semantically similar inputs close together in the embedding space. An embedding can be
learned and reused across different models. A triplet model aims to extract these features
while enlarging their inter-class differences. The triplet loss function is defined in Eq. (2).

loss = max(d (a,p) — d (a,n) + margin,0), (2)

where d denotes the Euclidean distance between two feature vectors; a, p, and n stand
for anchor, positive (with a label same as the anchor), and negative samples (with a label
different from the anchor); margin is enforced between positive and negative pairs. Based
on the definition of the loss, there are three categories of triplets:

e Easy triplets: d(a,p) + margin < d(a,n).

e Hard triplets: d(a,n) < d(a,n).

e Semi-hard triplets: d(a,p) < d(a,n) < d(a,p) + margin.

Clearly, margin defines the boundary between the three types of triplets. When margin
reaches zero, only easy and hard triplets exist. From the feature learning perspective,
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Figure 2: The structure of the triplet network.

training on easy triplets could easily reach a low loss value as p and n are easy to distinguish.
However, it may result in the model converging to the local optima and struggling in
differentiating the samples belonging to the different clusters but with a close Euclidean
distance !. Training directly on the hard triplets whose negative sample is closer to
the anchor than the positive may also lead the model to stop learning or collapse (the
embedded output collapses to one feature) [SKP15]. On the other hand, training on
semi-hard triplets increases the learning difficulties but in a reasonable range, thus leading
to more representative extracted embeddings features. We set the margin to 0.2 for all
of the following experiments, enabling us to choose a random semi-hard negative (the
negative lies inside the margin) for every pair of anchor and positive and train on these
triplets. The influence of this parameter is discussed in Section 6.1.7.

5.2 Attack Scheme

The correctly trained triplet model outputs embeddings with a larger Euclidean distance
between each cluster than the raw inputs. Our attack scheme can be divided into two
steps: 1) train a triplet model and extract the embeddings features for the profiling and
attack traces, 2) launch standard profiling attacks using these embeddings features. A
demonstration of the attack scheme is shown in Figure 3.

Compared with the traditional dimensionality reduction methods such as PCA [WEGS87,
APSQO6] or autoencoders [VLLT10, WP20, RAD20], the triplet network is more task-
specific: the label information utilized by the triplet network forces the network to focus
on differentiating leakages (or point of interests), which is directly beneficial for the SCA
attack. Techniques like PCA and autoencoders are unsupervised, which means they do
not utilize the label information.

Additionally, since it is based on the construction of a Probability Density Function
(PDF), a template attack can benefit from using the extracted features as the input. First,
the small triplet embeddings size reduces the computation complexity of the template attack.
Second, the triplet network outputs embeddings with a greater inter-class difference. Then,
using those embeddings as the input would build more separated PDFs. As a result, it would
help to retrieve the key with fewer attack traces. Compared to most of the other profiling
attack methods, template attacks have no tunable hyperparameters. Consequently, there is

1The Euclidean distance between two points in Euclidean space is the length of a line segment between
the two points.
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Figure 3: Triplet-assisted profiling attack.

no algorithmic randomness that can affect the profiling and attack phases. Therefore, after
training the triplet network, we use the extracted embeddings and the corresponding label
to perform the template attack, where the attack does not change for different datasets.

5.3 Neural Network Architectures

Several deep learning architectures, including ResNet [Z520, HZRS16], encoder part of
denoising autoencoder [WP20], CNN__best [BPS*20], and VGG 16 [SZ14] have been tested
and benchmarked with SCA datasets. Consequently, we decide to design the main body
of the triplet network based on the VGG neural network and follow the design principle
from SCA literature [KPH*19, BPS*20]. The neural network tuning is based on the grid
search of different hyperparameter combinations. The search space is listed in Table 1.

Table 1: Hyperparameters search space for triplet network.

Hyperparameter Options
Convolution layers 5 to 13 in a step of 1
Convolution size 64 to 512 in a step of 32
Pooling Type max pooling, avg pooling
Pooling size/stride 2 to 10 in a step of 1
Embedding size 16 to 128 in a step of 16
Learning Rate le-3, 5e-4, le-4, 5e-5, le-5
Activation function (all layers)  ReLU, Tanh, ELU, or SeLU
Loss function RMSProb, Adam
Batch size 32 to 512 in a step of 32
Trainig epoch 1 to 25 in a step of 1

Since the goal of the triplet network is to extract useful embeddings from side-channel
leakages, several adjustments were needed. First, the large dense layers and the final
classification layer are replaced with a single embedding (dense) layer as the goal is feature
extraction but not classification. Note that the size of the embeddings layer is essential
for the triplet network: either too large or too small embeddings size may have side
effects on the extracted embeddings, influencing the attack performance. Here, we set
the size of the embedding to 32 based on the grid search results. The influence of this
parameter is discussed in Section 6.1.6. Besides, we use average pooling as it performs
better for the tested datasets [BPST20, WP21]; the corresponding size and stride are set
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to two. SeLU is used as the activation function to avoid vanishing and exploding gradient
problems [KUMH17]. The batch size is set to 512 for all experiments. The detailed
implementation of the network is listed in Table 2.

Table 2: Triplet architectures used in the experiments.

Layer kernal number/size  neurons
Conv*2+AvgPooling 64/3 -
Conv*2+AvgPooling 128/3 -
Conv*3+AvgPooling 256/3 -
Conv*3+AvgPooling 512/3 -

Conv*3+AvgPooling+flatten 512/3 -

Dense - 32

6 Experimental Results

This section systematically evaluates our attack scheme from two aspects: side-channel
attack performance and triplet parameters’ influence. The analysis is conducted on two
publicly available datasets described in Section 4.1. We consider both the HW and ID
leakage models. In terms of model training, we set the training epoch to 20. Still, it is
worth noting that the original traces can even be broken with one-epoch training. The
detailed discussion is in Section 6.1.4. The optimizer is Adam with a learning rate of le-4.

To evaluate the attack performance, we consider two metrics:

e Guessing entropy (GE): the averaged key rank after applying the maximum number

of attack traces.

e TgEo: the number of traces required to reach GE equal to zero.

GFE and Tgpo metrics are derived from key rank, aiming at evaluating the key recovery
capacity of profiling models by setting a limited number of attack traces. Specifically, the
second metric (Tggo) is designed for cases where the models require fewer traces (than
the maximum number of attack traces) to retrieve the secret key. In this case, even if
GFE equals zero for different settings, we can better estimate the attack performance by
evaluating the number of attack traces to reach it.

6.1 Performance Evaluation

First, we show results for the original (as publicly available) datasets, and afterward, we
provide results for traces with included simulated countermeasures.

6.1.1 Original Datasets

We compare the attack performance of our models with the state-of-the-art models [ZBHV19,
WPP20, RWPP21, PCP20] and different dimensionality reduction techniques such as PCA
(PCA-TA) and autoencoder (AE-TA) with the same feature size (32). The implementation
details for the autoencoder are listed in Appendix A. Note that the model from [ZBHV19]
was optimized for the ID leakage model, and we adjust the output layer by reducing
the number of classes from 256 to 9 and test with the HW leakage model as well. The
benchmarks with ASCAD_F and ASCAD_ R with the Tggg metric are shown in Tables 3
and 4. The best results are denoted in bold style.

Interestingly, although the models from considered literature are optimized for specific
datasets and leakage models, our triplet attack is still comparable as it reaches the best
performance in two out of four scenarios. Meanwhile, compared with PCA and AE, the
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usage of the label information significantly increases the quality of the extracted features
by the triplet network, thus leading to a better attack performance. We also note that
for the ASCAD_ R dataset and the ID leakage model, the best result is obtained from an
ensemble of profiling models. Our approach gives the best results when considering only a
single model performance.

Table 3: Benchmark the attack performance (Tggo) with the ASCAD_F dataset.
[ZBHV19] [WPP20] [RWPP21] PCA-TA AE-TA This work

ow 1346 965 906 542 539 370
1D 191 155 202 337 862 372

Table 4: Benchmark the attack performance (Tggo) with the ASCAD_ R dataset.
[PCP20] [WPP20] [RWPP21] PCA-TA AE-TA This work

HW 470 496 911 >10000 2220 424
1D 105 1568 490 8300 6 085 297

Note that we used template attack as the final stage of triplet attacks, which could
also be switched to other profiling attack methods. However, we believe a template attack
represents a robust and straightforward solution as it does not require additional tuning of
the neural network. In addition, we also tested the pooled template attack on features
extracted by the triplet network. However, this technique works significantly worse than
the template attack (failed to break the target with 10000 traces), so we do not include
the corresponding results in the paper.

6.1.2 Add Gaussian Noise

The Gaussian noise represents the most common type of noise existing in side-channel
traces. It can be introduced by several sources such as the transistor, data buses, the
transmission line to the record devices such as oscilloscopes, or even the work environment.
Gaussian noise can also be used as hiding countermeasures by implementing parallel
operations or a dedicated noise engine. In terms of side-channel attacks, the addition of
noise reduces the signal-to-noise ratio (SNR), thus degrading the attack performance. To
demonstrate the influence of the Gaussian noise, we add a normal-distributed random
value with zero mean and different standard deviations to each point of the original trace.
Since the triplet network is trained with noisy traces, we could evaluate its resilience
towards the perturbation of the Gaussian noise. The pseudocode for constructing traces
with Gaussian noise is shown in Algorithm 1 [WP20].

Algorithm 1 Add Gaussian Noise.

1: function ADD_ GAUSSIAN_ NOISE(trace, mean, variance)
2: new_ trace < ||

3 140

4 while ¢ < len(trace) do

5 level <—randomNumber(mean, variance)

6: new_ trace[i] < traces(i] + level > add noise to the trace
7 14141
8

9

10:

end while
return new_ trace
end function

In terms of test settings, four standard deviation levels (1/3/5/8) were tested. For each
selected noise value, we independently train 20 triplet models and perform the template
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attack. The averaged model (the model with attack performance averaged from 20 attacks)
represents the attack performance with the current test setting. In this way, the effect of
the random weight initialization can be compensated, and we can better estimate the true
performance of the model.

The averaged results are shown in Figure 4. Besides, in Table 5, we list the attack
performance of the best-performing models to demonstrate the maximum attack capability
of our model. As expected, the addition of the Gaussian noise degrades the attack
performance. Still, except for one case for the ASCAD_F dataset (Figure 4a, standard
deviation equals eight), the attacks performed on the extracted embeddings lead to
converging GEs. Interestingly, up to standard deviation level five, from Table 5, the
best performing model can break the target within 10000 attack traces, indicating strong
resilience against the Gaussian noise.

Note that Gaussian noise with a standard deviation of eight can also be partially
removed with a denoising autoencoder [WP20] training with noisy-clean traces pairs.
When comparing their TA performance with ours, our model requires less training effort
but could reach a comparable attack performance with the same level of noise (Figure 4b).
In addition, we also tested PCA-TA and AE-TA? for noisy traces. As a result, besides the
results testing on ASCAD__F with noise level 1 for PCA-TA, none of those techniques lead
to GE converging to zero with 10000 traces. Indeed, both techniques only use the traces
information (and not the label information) to extract the features. Thus, the addition of
the noise has a stronger side-effect on the template construction.

Table 5: The T go of best-performing triplet attacks with different level of Gaussian noise.
Noise level ASCAD_F HW ASCAD_FID ASCAD_R HW ASCAD_R ID

1 738 1283 799 1007
3 1731 2390 1653 1547
5 5883 5122 2759 4767
8 >10000 >10000 >10000 7822

Meanwhile, from Table 5, the best attacks with the HW leakage model require fewer
attack traces than the ones with the ID leakage model. Knowing that both ASCAD_F
and ASCAD_ R work well with both leakage models, this behavior could be explained with
the cluster number’s difference: the triplet model may need additional training effort (i.e.,
more training epochs or training traces) to extract useful embeddings from 256 class (ID)
than nine classes (HW). The same observation is also shown when adding time randomness
to the traces in the next section.

6.1.3 Add Desynchronization

The well-synchronized traces can significantly improve the correlation of the intermediate
data and trace values. The alignment of the traces is, therefore, an essential step for
the side-channel attack. Different from the Gaussian noise, the desynchronization adds
randomness to the time domain. To show the effect of trace desynchronization, we perturb
the traces with different levels of desynchronization. The pseudocode for constructing
traces with desynchronization is shown in Algorithm 2 [WP20].

Three desynchronization levels (20/50/100) were simulated and tested in this section.
Aligned with the previous section, we show the results from 20 averaged models (Figure 5).
The attack performances of the best models are listed in Table 6. Again, we observe the
positive relation between the desynchronization level and attack performance. However,

2We train AE with noisy-noisy traces pair as our goal is to test the feature extraction capability of AE.
Training with noisy-clean traces pairs (as done in denoising autoencoder approach) is not fair to compare.
This training setting is also applied to the next section with desynchronization.
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Figure 4: The effect of Gaussian noise: attack on ASCAD_F and ASCAD_R with the
HW and ID leakage models.

compared with the Gaussian noise, the triplet model is more robust towards the randomness
in the time domain: the best performing models can retrieve the key within 10000 traces
in three out of four cases even with the maximum desynchronization level of 100 (Table 6).
Indeed, literature [CDP17, ZBHV19] indicates that convolution blocks are resilient to
trace misalignment. Benefiting from this property, our triplet network can extract useful
features from data with high time randomness. We also tested PCA-TA and AE-TA, but
again, both work significantly worse than our method.

Table 6: The T g of best-performing triplet attacks with different level of desynchroniza-
tion.

Noise level ASCAD_F HW ASCAD_FID ASCAD R HW ASCAD_RID

20 580 1201 536 1203
50 747 1229 689 2077
100 >10000 6993 3811 3495

Knowing the attack performance of the triplet network, one could be curious about 1)
the features the triplet learns and 2) the factors that influence the attack performance. To
cover the first aspect, we consider the traces with desynchronization level 20 and investigate
the averaged embedding per cluster. The random seed is fixed to avoid the effect of the
random weight initialization. The results are shown in Figure 6.

Interestingly, the triplet network can consistently extract the robust features as well as
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Algorithm 2 Add Desynchronization.

1: function ADD_ DESYNC(trace, desync_level)

2: new__trace < ||
3: level +—randomNumber(0, desync_ level)
4: i+ 0
5: while ¢ + level < len(trace) do
6: new__trace[t] < traces[i + level] > shift the trace
7 i i+1
8: end while
9: return new_ trace
10: end function
250 1 250
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Figure 5: The effect of desynchronization: attack on ASCAD_F and ASCAD_ R with the
HW and ID leakage models.

find variations between clusters from the input. Compared with the original traces per
cluster (see Appendix B), the extracted features significantly help the template attack in
building distinguishable PDFs, thus boosting the attack performance. Meanwhile, one
could notice the embedding difference between the HW and ID leakage models, indicating
that the extracted features are based on the selected leakage model.

For the second aspect, we concentrate on several hyperparameters that could influence
the behavior of the triplet network model. The detailed evaluations are presented in the
following sections.
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Figure 6: Averaged embedding per cluster: extracted from ASCAD_F and ASCAD_R
with the HW and ID leakage models.

6.1.4 The Number of Training Epochs

Accuracy is one of the core metrics to evaluate a deep learning model in the deep learning
domain. Most of the individual examples must be correctly classified to reach high accuracy.
As a consequence, when using the triplet network to extract the features, a high training
effort is required to extract meaningful embeddings (1000 to 2000 CPU hours according
to [SKP15]).

In the SCA domain, instead of focusing on a single data, the evaluator commonly
focuses on the accumulated probability of the samples in clusters. Since the requirement
for the classification accuracy is reduced, the triplet network for SCA may require fewer
training epochs, and the secret information can be successfully retrieved. In this section,
we explore the influence of the number of training epochs on attack performance. Same as
in the previous sections, the results are averaged over 20 independently trained models.

As shown in Figure 7, training epochs have limited influence on the attack performance,
indicating that the leakage-related features have been extracted during the first training
epochs. In other words, our attack could even be finished with one-epoch training and
exhibit the best attack performance (Figures 7a and 7b). Compared with other deep
learning attacks that normally required more than 50 training epochs [BPST20, KPH' 19,
ZBDT21], our attack scheme dramatically speeds up the feature learning process.

Similar to the other deep learning attacks, our attacks also suffer from overfitting.

Specifically, from Figure 7b, more training epochs lead to worse attack performance.
Fortunately, the effect of overfitting has limited effect with the considered attack scenario.
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Figure 7: The effect of training epochs: attack on ASCAD_F and ASCAD_ R with the
HW and ID leakage models.

6.1.5 Training Set Size

Like other deep learning models, the triplet model can require large quantities of data to
perform well. However, the training sets for the triplet network have more constraints:
1) a single training set for a triplet network consists of three individual samples (anchor,
positive, and negative) and 2) the selection of the positive and negative samples is limited
by the margin value. Following this, the triplet network training may require more traces
than the conventional deep learning attacks. To investigate the relation between the
number of training traces and the attack performance, we vary the number of the profiling
traces from 10000 to 50 000 with a step of 10000 traces. The results are shown in Figure 8.
Note that for the ID leakage model, due to the lack of training data, training with 10000
traces (and 20000 traces for ASCAD_R) always leads to an unsuccessful template attack
(singular matrix) so the results are not presented.

In both test scenarios, more training traces lead to better attack performance. Besides,
a significant performance leap can be observed when the number of training traces increases
from 10000 to 20000 for the HW leakage model. Indeed, with a 10000 training set, the
smallest cluster only has 35 samples for the HW leakage model (class imbalance) and 20
for the ID leakage model. Knowing that not all of them can form a triplet due to triplet
margin restriction, the triplet network cannot generalize well for the minority clusters, thus
leading to bad performance or even attack failure for both HW and ID leakage models.
On the other hand, the performance increases slowly when the traces are above 20 000,
indicating that the triplet model reaches its maximum feature extraction capability.
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Figure 8: The effect of training traces: attack on ASCAD_F and ASCAD_ R with the
HW and ID leakage models.

6.1.6 Embedding Size

As mentioned, the embedding size directly impacts the template attack performance as it
determines the dimension of the extracted features. In this section, we tune this hyperpa-
rameter and analyze its effect on the attack performance. Similar to the previous sections’
test setting, we independently train 20 models and present the averaged performance
for each embedding size. The tuning range is from 16 to 128 in a step of 16. We set
the maximal embedding size to 128, as there are only around 140 measurements for the
least represented class, so higher values would trigger a singular matrix problem, and the
template attack would fail.

The embedding tuning results are shown in Figure 9. From the results, a larger
embedding size could actually lead to worse attack performance. Indeed, the additional
features introduced by a larger embedding size may be harmful to the overall attack
performance as they may contain noise learned from the irrelevant raw features. Moreover,
more embedding features would dilute the features extracted by the triplet model, thus
reducing the attack performance.

When evaluating smaller embedding sizes, size 32 performs comparable (Figure 9a)
or even better than size 16. As expected, an overly small embedding size would not
have enough dimensions to represent the characteristic of the raw features. Although the
optimal embedding size would be different when testing other datasets, we believe the
relationship between the embedding size and attack performance follows the observations
in this section. In any case, since it is common to conduct feature engineering when
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Figure 9: The effect of embedding size: attack on ASCAD_F and ASCAD_ R with the
HW and ID leakage models.

running the template attack, we do not consider the effort required to tune the embedding
size more substantial.

6.1.7 Triplet Margin

In this section, we vary the triplet margin and investigate its influence on the attack
performance. The test setting is the same as the previous sections. In the experiments,
we set margin ranges from 0.2 (same as [SKP15]) to 2.0 in a step of 0.2 to explore the
margin effect.

The experimental results are shown in Figure 10. From the results, the increase of
the margin value slightly degrades the attack performance. As mentioned before, when
the margin becomes too large, since too many simple triplets are involved in training,
the model can easily converge to the local optima and stop learning. Meanwhile, from
Figures 10b and 10d, smaller margins does not necessary mean better attack performance.
Still, compared with the effect of the size of the embedding shown in Figure 9, the margin
has a limited effect on the attack performance.

6.2 General Observations

Based on the conducted experiments, we provide several general observations:
e When attacking the original datasets (without noise addition), triplet-assisted tem-
plate attack performs comparably or even better than the state-of-the-art models
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Figure 10: The effect of triplet margin: attack on ASCAD_F and ASCAD_R with the
HW and ID leakage models.

from the literature.

Triplet-assisted template attack is more resilient to noise in horizontal and vertical
dimensions than other commonly used feature engineering techniques (PCA and
autoencoders).

The triplet network can be highly efficient in extracting the leakage-related features.
One-epoch training is sufficient to train a triplet network for the evaluated datasets.
The embedding size has a dominant influence on the attack performance. Either
too large or too small embedding size would lead to the degradation of the attack
performance.

e The number of training traces has a significant impact on the attack performance.
e The embeddings are different for different leakage models, so changing a leakage

model requires re-training a triplet model to find a new embedding.

Increasing margin will increase the triplet loss and provide additional capability
to the triplet network to learn from the data. However, since the semi-hard triplet
selection is also based on the margin value (the negatives lie inside the margin),
greater margin would also include more easy triplet being formed. In general, the
triplet network still has a high tolerance towards the variation of the margin value.
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7 Conclusions and Future Work

This work investigates how to improve the performance of template attacks. To accomplish
this, we use the concepts of triplet networks that have a task to find a well-performing
embedding based on the input traces. We conduct experiments on two publicly available
datasets and two leakage models and show that our deep learning-assisted template
attack can even outperform state-of-the-art deep learning-based SCAs. This result is
especially significant as we compared with a number of deep learning architectures that
were specifically tuned for different experimental settings. Additionally, we show that
our approach is rather resilient to Gaussian noise and desynchronization and significantly
better performing than related techniques for feature engineering (PCA and autoencoders).
Finally, we show that both the profiling set size and the embedding size significantly
influence the attack performance.

We plan to extend our approach to raw traces (and not preselected windows as used
now). Since the raw traces are significantly larger (e.g., 100000 features vs. 700 features),
it is interesting to explore the limitations of triplet networks. Additionally, this work
showed how template attack works well when combined with triplet networks. We aim to
explore the combinations of triplet networks with simpler machine learning techniques like
a random forest or support vector machines in future work.

A Autoencoder Implementation

An autoencoder consists of two parts: encoder (¢) and decoder (v). As shown in Eq. (3),
the encoder transfers the input with more features to its latent space (¢ : X — F), while
the goal of the decoder is to reverse this process (¢ : F — X). The goal of an autoencoder
is to transform inputs into outputs with the least possible amount of distortion [Ball2].
Naturally, the most representative features of the input data are learned and kept in the
latent space (embedding) of the network:

¢,1/J:ar%r£in\|X—(wo¢)X||2. (3)

The design of the autoencoder used in this work follows the related work [WP20].
We simplify the original denoising autoencoder as our goal is not to remove noise from
the traces but to extract the embeddings from the latent space. Intuitively, the latent
space can be considered as the representation of compressed data. For an autoencoder,
the dimension of the latent space is normally defined by the layer in the middle. The
implementation details are listed in Table 7 (BN stands for batch normalization layer).
We use SeLU as the activation function, the loss function is Adam with a learning rate of
le-4, and the number of training epochs is set to 75.

B Averaged Traces per Cluster for the Original Traces

This section shows the averaged traces per cluster for the original traces (triplet input).
The large variation between clusters is caused by the introduced desynchronization (recall
that we use traces with added desynchronization of 20).
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