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Abstract. Division properties, introduced by Todo at Eurocrypt 2015,
are extremely useful in cryptanalysis, are an extension of square attack
(also called saturation attack or integral cryptanalysis). Given their im-
portance, a large number of works tried to offer automatic tools to find
division properties, primarily based on MILP or SAT/SMT. This paper
studies better modeling techniques for finding division properties using
the Constraint Programming and SAT/SMT-based automatic tools. We
use the fact that the Quine-McCluskey algorithm produces a concise
CNF representation corresponding to the division trail table of an Sbox.
As a result, we can offer significantly more compact models, which allow
SAT and Constraint Programming tools to outperform previous results.
To show the strength of our new approach, we look at the NIST lightweight
candidate KNOT and Ascon. We show several new distinguishers with
a lower data complexity for 17-round KNOT-256, KNOT-384 and 19-
round KNOT-512. In addition, for the 5-round Ascon, we get a lower
data distinguisher than the previous division-based results.
Finally, we revisit the method to extend the integral distinguisher by
composing linear layers at the input and output. We provide a formu-
lation to find the optimal number of linear combinations that need to
be considered. As a result of this new formulation, we prove that 18-
round KNOT-256 and KNOT-384 have no integral distinguisher using
conventional division property and we show this more efficiently than
the previous methods.

Keywords: Constraint programming, division property, integral crypt-
analysis, KNOT, Ascon.

1 Introduction

The Square attack was introduced by Daemen et al. in [7] to attack the SQUARE
block cipher. A variant of this attack was applied to the Twofish cipher by Lucks
in [19] and named the Saturation attack. These were formalized by Knudsen and
Wagner in [16], under the name Integral cryptanalysis. The main idea behind the
integral attack is to find different properties of a set of ciphertexts correspond-
ing to a set of plaintexts with a certain structure. These properties propagate
through different operations of the cipher. Let us consider a set of plaintexts P
from (Fm

2 )n and then any element of P can be seen as (p1, p2, · · · , pn) where
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pi ∈ Fm
2 , i.e., vector of m-bit words. Integral distinguisher exploits the propaga-

tion of some simple properties of the words from plaintext to ciphertext. The in-
tegral distinguisher considers the following properties: ALL (If the word position
considers all possible values exactly once), BALANCED (If the word position
is zero in the XOR sum of all elements), CONSTANT (If the word position is
identical for all vectors). Based on these properties, an attacker can distinguish
a cryptographic function from a random function. For example, the well-known
6-round integral distinguisher used in [12], to attack AES [8]. The integral dis-
tinguishers have since been also applied to a variety of ciphers [18,35,37].

The Division property was proposed as a generalization of the integral prop-
erty by Todo at Eurocrypt 2015 [30] and was used in [31] to offer the first
attack on the full MISTY1. The division property proposed by Todo was word-
based division property, i.e., the propagation of the division property captures
information only from the word level. In FSE 2016, Todo and Morii first in-
troduced the bit-based division property [32]. In such bit-based division prop-
erties, the propagation captures information at the bit level which naturally
captures more information than word-based division properties. The idea of
the division property is the same as the integral property: consider an affine
subspace of plaintexts and then check if the resulting set of ciphertexts has
some balanced bits, i.e., their XOR sum is zero. To detect these balanced bits
we consider the algebraic normal form (ANF) of a vectorial Boolean func-
tion. Suppose that f : Fn

2 → Fn
2 is a vectorial Boolean function that maps

x = (x0, x1, · · · , xn−1) to y = (f0(x), f1(x), · · · , fn−1(x)). Let X ⊂ Fn
2 be an

input set and Y = {f(x) : x ∈ X}. The bit-based division property exploits
the fact that, for some i ∈ {0, 1, · · · , n − 1},

⊕
y∈Y yi =

⊕
x∈X fi(x) = 0 is

predictable or not.

1.1 Related Work

The bit-based division property is an important tool for integral cryptanalysis.
However, finding the bit-based division property is a tedious job. Direct program-
ming approach was used in [31] to find bit-based division properties of SIMON-32
and SIMECK-32. Both ciphers have a block size of 32 bits. Unfortunately, this
direct approach fails for larger block sizes used in modern ciphers.

In this case, automatic tools play a significant role. The main idea is to trans-
form this bit-based property search problem into some mathematical problem
and use an automatic tool to solve it. In this direction, Xiang et al. first proposed
to use Mixed Integer Linear Programming (MILP) based tool in [36]. This ap-
proach has been used to attack many ciphers in the last few years [25,27,34]. A
different approach suggested by Sun et al. [26] is to use SAT/SMT modeling [6].
Based on this method, Eskandari et al. studied many block ciphers in [11] and
built a tool called SOLVATORE. In [14], the authors studied the bit-based di-
vision property for the ciphers with complex linear layers and modeled using
SAT/SMT tool. Another approach is the use of Constraint Programming (CP)
based tools. This approach was proposed in [28] to find the integral distinguisher
of the PRESENT [4] block cipher. An extension of the integral cryptanalysis was
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proposed by Lambin et al. in [17], where they proposed to compose linear layers
in the input and output to extend the distinguisher. With this approach, they
found a 10-round distinguisher for the RECTANGLE [38] block cipher.

1.2 Our Contribution

Our work aims at providing compact modeling of Sbox to improve the automatic
search of bit-based division properties. We use the SAT/SMT and the CP-based
automatic approach to find bit-based division properties of all the variants of
the KNOT family [33] and Ascon [10]. we also test again some of the previous
results on GIFT, Rectangle and PRESENT. While we check our approach for
consistency, the comparison allows us to determine that for all tested models,
our approach signficantly reduces the running times of the tools. We express
the propagation of bit-based division properties using Boolean logical formulas.
We observe that modeling a formula in the Conjunctive Normal Form (CNF)
instead of the table-based approach used in [14], gives a significant advantage
in performance. We also provide a comparative analysis of these two methods.
The above-mentioned tool SOLVATORE [11] was also modeled using the CNF,
where the authors used the trivial approach to find the CNF of a function.
Here we propose to use the Quine-McCluskey algorithm [20,22,23] to find the
minimum size CNF. The Quine-McCluskey algorithm was previously used in the
context of differential cryptanalysis in [1]. From our result, we can observe that
for the KNOT and Ascon, the CP-based approach outperforms the SAT-based
approach.

We also provide a concrete algorithm for finding lower data distinguishers.
This algorithm is a formalization of two previous works in [11,26]. We used our
algorithm on the KNOT and Ascon and found many distinguishers, which are
more efficient. Table 1 compares the known results and our results.

We studied the direction provided in [17] to extend distinguishers by com-
posing linear layers at the input and output. For the output layer, we used
linear combinations instead of linear maps to reduce the search space, as sug-
gested in [9]. Here we provide a formal way to find the optimal number of linear
combinations that need to be considered, using Depth First Search (DFS) to
find these. As an application of this theory, we found a new result that 18-round
KNOT-256 and KNOT-384 have no integral distinguisher using conventional
division property and we proved that more efficiently than the usual method.

2 Preliminaries

2.1 Notations

The Hamming weight of a ∈ Fn
2 is wt(a) =

∑i=n
i=1 ai and for any vector a =

(a0, a1, · · · , am−1) ∈ Fl0
2 × Fl1

2 × · · · × Flm−1

2 , the vectorial Hamming weight of a
is W (a) = (wt(a0), wt(a1), · · · , wt(am−1)) ∈ Zm. For any k ∈ Zm and k′ ∈ Zm,
we define k � k′ if ki ≥ k′i for all i. For any integer k ∈ {0, 1, .., n} we define
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Primitive #Rounds Data #Balanced bits Source

KNOT-256
17 2255 1 [33]
17 2254 7 Sec 5
18 Does not exist Sec 7

KNOT-384
17 2383 1 [33]
17 2380 19 Sec 5
18 Does not exist Sec 7

KNOT-512
19 2511 1 [33]
19 2508 139 Sec 5

Ascon
5 216 320 [11]
5 212 2 Sec 6

Table 1: Summary of previous results and our best results

the set Snk = {a ∈ Fn
2 : k ≤ wt(a)} and for any vector k ∈ ({0, 1, .., n})m we

define the set Sm,n
k = {a = (a1, a2, ..., am) ∈ (Fn

2 )m : k � W (a)}. For any
vector u ∈ Fn

2 and x ∈ Fn
2 , we define the bit product πu : Fn

2 → F2 as πu(x) =∏n
i=1 xi

ui and for any vector u ∈ (Fn
2 )m and x ∈ (Fn

2 )m, we define the vectorial

bit product πu : (Fn
2 )m → Fn

2 as πu(x) =
∏m

i=1 πui
(xi) =

∏m
i=1

(∏n
j=1 x

uij

ij

)
.

The Algebraic Normal Form (ANF) of a function f : Fn
2 → F2 can be defined as

f(x) =
⊕

u∈Fn
2
afuπu(x) and the degree of a function f : Fn

2 → F2 is d if d is the

degree of the largest monomial in the ANF of f , i.e., d = maxu∈Fn
2 ,a

f
u 6=0 wt(u). We

define ini1,i2,...,ip is the vector in Fn
2 with all coordinates 1 expect for the positions

i1, i2, ..., ip and we define outj1,j2,...,jp is the vector in Fn
2 with all coordinates 0

expect for the positions j1, j2, ..., jp. Similarly, we use in(k,`) to denote the binary
matrix with all the elements are 1 except for (k, `) position and out(k,`) to denote
the binary matrix with all the elements are 0 except for (k, `) position.

2.2 Definitions

Definition 1. (Division Property [30]) A multi-set X ⊆ Fn
2 is said to have the

division property of order k, Dn
k for some 1 ≤ k ≤ n, if the sum over all vectors

x ∈ X of the product xu = 0, for all vectors u with hamming weight less than k,
i.e., ⊕

x∈X
πu(x) = 0,∀u ∈ Fn

2 with wt(u) < k.

Definition 2. (Vectorial Division Property [30]) A multi-set X ⊆ Fl0
2 × Fl1

2 ×
· · · × Flm−1

2 is said to have the division property Dl0,l1,···lm−1

K for some set of m-
dimensional vectors K whose i-th element takes a value between 0 to li, it fulfills
the following conditions:

⊕
x∈X

πu(x) =

{
unknown, if there is k ∈ K s.t W (u) � k

0, otherwise
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Moreover, if each li is restricted to 1, we will say bit-based division property and
we will denote it by D1,n

K .

Definition 3. (Balanced Position [30]) Let Y ⊆ Fn
2 be a multi-set of vectors. A

coordinate position 0 ≤ i < n is called balanced position if
⊕

y∈Y yi = 0.

Definition 4. (Even Polynomial) Let f be a polynomial in the ring

F2[x0, x1, ......, xm−1]/(x20 + x0, x
2
1 + x1, ......, x

2
n−1 + xm−1)

with the algebraic normal form (ANF) f(xm−1, · · · , x0) =
⊕

u∈Fm
2
afuπu(x). Then

f is called a even polynomial over a multiset X if the following holds ∀u ∈ Fm
2 :

afu
⊕
x∈X

πu(x) = 0.

3 Propagation of Bit-based Division Property

Let us consider a function F : Fn
2 → Fn

2 . This function can be an Sbox, linear
function or even a round function. We are interested in how the division prop-
erty can propagate through this function. We consider the input set X as an
affine subspace. Suppose X has division property D1,n

{k0} and after propagation

through F , we get a division property D1,n
{k1}. If k0 = (k00, k

0
1, · · · , k0n−1) and

k1 = (k10, k
1
1, · · · , k1n−1), then we call (k00, k

0
1, · · · , k0n−1, k10, k11, · · · , k1n−1) a valid

division trail through F . A formal definition of division trail was given in [36].
Here we recall the definition.

Definition 5. Let fr denote the round function of an r round iterative primi-
tive. Suppose the initial division property is D1,n

{k0} and after (i−1)-round propa-

gation, the division property is D1,n
Ki

. Then we have the following chain of division
property propagations:

{k0} := K0
f0−→ K1

f1−→ K1
f2−→ · · ·

Moreover, for any vector ki ∈ Ki (i ≥ 1), there must exist a vector ki−1 ∈ Ki−1
such that ki−1 can propagate to ki by division property propagation rules. For
(k0, k1, · · · , kr−1), if ki−1 can propagate to ki for all i ∈ {1, 2, · · · , r}, we call
(k0, k1, · · · , kr) an r-round division trail.

Our main motivation is to model such a search problem that each solution
of it be a valid division trail. Then we can solve that problem using various tools
like constraint programming, SAT solver, etc. Suppose we are given an r-round
primitive Er : Fn

2 → Fn
2 . Let (a0, a1, · · · , an−1) be the variables denoting the

input division property vectors and (b0, b1, · · · , bn−1) be the variables denot-
ing the output division property vectors. We set values to the input variables
(a0, a1, · · · , an−1) of the first round by a vector k ∈ {0, 1}n of our choice and
find the balanced positions in the output vector from the last round. Once we
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have a set of balanced positions corresponding to an input division property k,
we can distinguish Er from a random function. For this, we take a set X ⊂ Fn

2

of plaintexts and get an output set Y such that Y = {y = Er(x) | x ∈ X}.
The set X is an affine subspace, constructed corresponding to the input division
property k. For each vector x = (x0, · · · , xn−1) ∈ X, if the i-th coordinate of k
is 1 then xi can accepts all possible values from {0, 1} and if the i-th coordinate
of k is 0 then xi is set to a fixed constant ci ∈ {0, 1}. From the division property,
we can guarantee that the balanced positions of the vectors of Y are balanced,
which can distinguish Er from a random function. As the size of the set X is
2wt(k), the data complexity is 2wt(k).

3.1 Modeling the Sbox

From the above discussion, we can observe that modeling a primitive is the
main tool of the attack. We now discuss how to model an Sbox. Let x =
(xn−1, · · · , x1, x0) be the input and y = (yn−1, · · · , y1, y0) be the corresponding
output of an Sbox. Then Algorithm 1 implements the approach to find division
trails of the Sbox [36]. This algorithm takes the input division property vector
k = (k0, k1, · · · , kn−1) as the input and outputs a set of vectors Kk such that the
output multi-set has division property D1,n

Kk
. Here we have denoted the output

set as Kk to attach it with the input property k.

Algorithm 1 SboxDivisionTrail [36]

Require: k = (k0, k1, · · · , kn−1)
Ensure: A set K of vectors
1: Sk = {a | a � k}
2: F (X) = {πa(x) | a ∈ Sk}
3: K = φ
4: for u ∈ Fn

2 do
5: if πu(x) ∩ F (X) 6= φ then
6: Flag = True
7: R = φ
8: for v ∈ K do
9: if v � u then

10: Flag = False
11: else if u � v then
12: R = R ∪ {v}
13: end if
14: end for
15: if Flag = True then
16: K = K\R
17: K = K ∪ {u}
18: end if
19: end if
20: end for
21: return K
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Here let us explain Algorithm 1. Note that πu(y) is an n-variable Boolean
function. Also let us consider a set Sk = {a | a � k} (see Sm,n

k in notation).
If the ANF of πu(y) contains any monomial from F (X) = {πa(x) | a ∈ Sk}
then

⊕
x∈X πu′(y) is unknown for any u′ � u, follows from the definition of

division property. So we have to add u in the set Kk. But before that, we check
if there is any vector v ∈ Kk such that u � v. If such v is there, then u is
redundant, and there is no need to add u. On the other hand, if there is some
vector v such that v � u, then by adding u, v is redundant. We store all such
vectors in the redundant vector’s set R and we remove R after adding u. Thus
Algorithm 1 finds the output division property vectors set as well as reduces its
size by removing redundant vectors.

Given an Sbox and an initial division property vector k = (k0, k1, · · · , kn−1),
Algorithm 1 returns the set Kk. Then for any u ∈ Kk, (k, u) is a valid division
trail. In other words, any (k, u) ∈ Fn

2 × Fn
2 is a valid division trail if and only if

u ∈ Kk, where Kk is the output of Algorithm 1 on input k.

3.2 CNF from Division Trail

As discussed in the previous part we can form a division trail table T , such that

T = {(a, b) ∈ F2n
2 | b ∈ Ka}.

For example let us consider the Sbox of the KNOT permutation [33] S : F4
2 → F4

2

such that S((x3, x2, x1, x0)) = (y3, y2, y1, y0). The algebraic normal form (ANF)
of its 4 coordinates are given in Equation 1 and the table corresponding to T is
given in Table 2.

y0(x) = x0x1x3 + x0x1 + x0x2 + x1x3 + x2x3 + x2 + x3

y1(x) = x0x3 + x1x2x3 + x1 + x2x3 + x2

y2(x) = x0 + x1x2 + x1 + x2 + x3 + 1

y3(x) = x0x1 + x1 + x2 + x3

(1)

From the construction of T it is clear that T c = F2n
2 \T contains all the

invalid division trails. We can consider a Boolean function FS from F2n
2 , corre-

sponding to a given Sbox S with the following property:

FS(a, b) =

{
1, if (a, b) ∈ T
0, if (a, b) ∈ T c

Here we are interested in modeling this function to SAT/CP formula. One idea
of this kind of modeling is the table-based approach, used in [14]. This table-
based approach is the same as considering the disjunctive normal form (DNF) of
FS . However, we observe that the performance of this model is very low. Hence,
we propose modeling using the conjunctive normal form (CNF) of the function
Fs. The difference between the time requirements of these two methods suggests
that we can significantly improve the performance by using the CNF instead
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k Kk

0000 {0000}
0001 {0001, 0010, 0100, 1000}
0010 {0001, 0010, 0100, 1000}
0011 {0001, 0110, 1000}
0100 {0001, 0010, 0100, 1000}
0101 {0001, 0110, 1010, 1100}
0110 {0010, 0100, 1001}
0111 {0111, 1010, 1101}
1000 {0001, 0010, 0100, 1000}
1001 {0001, 0010, 1100}
1010 {0001, 0010, 1100}
1011 {0001, 0110, 1100}
1100 {0001, 0010, 1100}
1101 {0111, 1001, 1010}
1110 {0010, 0101, 1100}
1111 {1111}

Table 2: Valid division trail table of the KNOT Sbox

of the DNF. Let us discuss how to compute the CNF of a given function FS .
We do so by first computing another function G(x) = Fs(x), i.e., G(a, b) = 1 if
(a, b) ∈ T c. The disjunctive normal form (DNF) of the function G can be trivially
found, as used in [11]. Then we can again convert G(x) to G(x) to get the CNF
of Fs(x) using De Morgan’s laws. However, this approach results in a huge CNF
representation. The number of terms in the CNF is the same as the size of T c.
To counter this effect, we propose to use the Quine-McCluskey algorithm [20,22]
to find a minimum size CNF. We provide a note about the Quine-McCluskey
algorithm and the CNF corresponding to the KNOT Sbox resulting from this
algorithm in Appendix C.

We modeled the division property propagation problem using two different
tools: as an SMT problem and as a Constraint programming problem. This
was done to identify which of these two approaches are better for the CNF
clauses. As we report in Section 5, CP based approach on the CNF, is more
efficient. There are many public solvers to solve SAT and SMT problems. Here
we construct our model using the CVC [3] language and give it to an SMT
solver. The SMT solver solves the satisfiability problem with the help of an SAT
solver. We used the STP 2.3.31 [13] as the SMT solver and the Cryptominisat
5.7.1 [24] as the SAT solver. We modeled our CP problem in MiniZinc [21],
which is a solver-independent open-source language that can be used to express
CP models readable by multiple solvers. Then the model is given to the publicly
available solver Chuffed2 0.10.4 [5]. We provided a small tutorial on MiniZinc in
Appendix B.

1 https://stp.github.io/.
2 https://github.com/chuffed/chuffed.
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4 Input Division Property and Output Division Property

Consider an SPN structure block cipher or a permutation. Each round function
of this structure consists of parallel applications of a certain number of Sboxes,
followed by a linear layer. We construct a model for each layer and we repeat
the procedure r times for an r-round primitive. Then we set values to the input
variables a = (a0, a1, · · · , an−1) and the output variables b = (b0, b1, · · · , bn−1)
and solve the model. We now have to choose those values for a and b.

4.1 Input Division Property

Our initial division property is selected on the basis of the embedded property,
introduced in [26], whose definition is recalled as follows.

Proposition 1 (Embedded Property [26]). Let Er be an r-round iterated
encryption algorithm, R be the round function, which only composes of Substi-
tution, Copy, XOR, Split and Concatenation operations. Suppose that the input
and the output take values from Fn

2 and k0, k1 are two initial division properties
with k0 � k1. If the output multi-set under k0 does not have integral property,
then the output multi-set under k1 also has no integral property.

Thus we consider n vectors with Hamming weight n−1 as ini = (1, ..., 1, 0, 1, ..., 1)
(0 is in the i-th position) for 0 ≤ i ≤ n − 1. If we start from each of these ini,
i.e., set a = ini and cannot find any integral distinguisher then we can conclude
that there is no integral distinguisher. We do not to check with the other initial
properties according to the above Proposition 1.

4.2 Output Division Property

The choice of the output division property depends on when we need to stop the
search, i.e., when we get a set without an integral property. This is described in
the following proposition from [36].

Proposition 2 ([36]). Let X be a multi-set with bit-based division property Dn
K,

then X does not have integral property iff K contains all vectors of weight 1.

Thus here, if the output multi-set (set of ciphertexts) has the division prop-
erty K where K contains each outj , then the output multi-set has no integral
distinguishers. So we set the output variable with each outj and solve the model.

4.3 Automatic Algorithm for Finding Division Property

Now we recall an algorithm to find the maximum round r for which we can
find an integral distinguisher from [26]. If for r-round, the system is consistent
(satisfiable) for all ini and outj then we have no distinguisher, because from any
input division property, the set of output division property contains all outj . In
that case, we set r − 1 as the highest possible round. On the other hand, if for
some ini and outj , the model is not consistent with a = ini and b = outj , then
we can conclude that the j-th bit of the output multi-set is balanced. In that
case, we try the search by increasing another round.
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4.4 Reduction of Data Complexity

Till now, we have discussed how to find the maximal number of rounds with a
division property. Suppose that for some ini and outj , the model is inconsistent
with the input variable a = ini and output variable b = outj , i.e., there is an
integral distinguisher. This distinguisher uses a set of plaintext vectors X ⊂ Fn

2

such that the i-th bit is constant and the other bits take all possible ({0, 1})
values. The data complexity of this distinguisher is 2n−1 plaintexts. We now
discuss an idea from [26] to reduce the data complexity.

We first find an index set S such that for each i ∈ S, if we set the initial
division property as ini, we have at least one j such that the j-th bit of the output
multi-set is balanced. The set S = {0, 1, · · · , n− 1}\S is called the necessary
set [26]. This name necessary set follows from the fact that we can get balanced
bit at the output only if we set ai = 1 for all i ∈ S. The set S also called as
sufficient set [26]. To choose an index i such that a = ini, the set S is sufficient.
Now if | S |> 1, then we may set more than one ai = 0 where i ∈ S and still
have some balanced bits. Suppose we choose m indices {i0, i1, · · · , im−1} from S
and set ai = 0 for all i ∈ {i0, i1, · · · , im−1} and still have some balanced bit. In
that case, we have an integral distinguisher with data complexity of 2n−m.

Given the sufficient set S, we can try with all possible subsets from S,
as suggested in [26], to see which offers the best data complexity. If we get a
balanced bit for some subset, we stop this search; otherwise, we continue. This
strategy brute forces all the subsets, i.e., its worst-case time complexity is

(|S|
t

)
calls to the solver.

An improved idea proposed in [11], is to test only those combinations of in-
dices from S which already have common balanced bits. We justify here the idea
with a small example. Consider a function f : F4

2 → F4
2 which maps x3, · · · , x0

to y3, · · · , y0 with degree at most 3. We can write each yi as a polynomial in
x3, · · · , x0. The division property depends on the presence of monomials in the
polynomial representations (ANF) of yi as we discussed in the case of Sbox.
Suppose for both a = in0 and a = in1 we get y0 is balanced. Then it is clear
that the monomials x2x1x0 and x3x1x0 are not present in the polynomial repre-
sentation of y0. Here, we observe that x1x0 can be involved only in the following
monomials:

x1x0, x2x1x0, x3x1x0.

As we already have that the monomials x2x1x0 and x3x1x0 absent in the poly-
nomial representation of y0, if x1x0 is also absent in the polynomial of y0, then
we can set the initial division property a = {0, 0, 1, 1} and still have balanced y0.
This integral distinguisher has a lower data complexity. We alert the reader that
if x1x0 is not absent, then y0 is not balanced with the initial division property
a = {0, 0, 1, 1}, but this heuristics the chance of y0 to be balanced.

Now we discuss the idea from [11] more formally and we provide an algo-
rithm to use this search process. Let us consider a set OUTi of all indices j such
that the j-th bit is balanced when the input division property is ini. We find
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the following set

IN2 = {{i0, i1} : (i0 6= i1) ∧ (OUTi0 ∩OUTi1 6= φ),∀i0, i1 ∈ S}.

We test if there are some balanced bits with initial division property ini0,i1 for
each {i0, i1} ∈ IN2. If we can find some balanced bit for some {i0, i1} then we
have a lower data distinguisher. Note that in this stage we are checking only with
those outj such that j ∈ (OUTi0 ∩ OUTi1), i.e., which are already balanced in
the previous stage. This gives a significant advantage over searching for all outj .
The idea can be trivially generalized to INm where INm = {{i0, i1, · · · , im−1} :
(i0 6= i1 6= · · · 6= im−1) ∧ ((∩m−1j=0 OUTij ) 6= φ),∀i0, · · · , im−1 ∈ S}. According to
this, we can take IN1 = S.

This search starts from lowest value of m, i.e., m = 2 and increases by 1
if there is some balanced bits from an element of INm. To justify this we are
proposing the following new Proposition 3.

Proposition 3. Let m0 and m1 be two non-zero integers with m0 < m1. If
we cannot get any integral distinguisher by setting the initial division property
a = ini0,i1,··· ,im0−1 for each {i0, i1, · · · , im0−1} ∈ INm0 then there is no integral
property from any index set of INm1

.

Proof. If m1 > m0, then for any element {j0, j1, · · · , jm1−1} ∈ INm1
there is

some element {i0, i1, · · · , im0−1} ∈ INm0
such that ini0,i1,··· ,im0−1

� inj0,j1,··· ,jm1−1
.

So the proof follows from the embedded property in Proposition 1.

It was also suggested in [11] to continue the process until we find some m
such that INm is empty. But from the above Proposition 3 it also follows that we
can stop our search when m is such that no element of INm leads to a balanced
bit.

Algorithm 2 captures the above proposition. This algorithm outputs the
size of the maximum possible combination from S for which we can get an
integral distinguisher with data complexity 2n−t. This algorithm also outputs
a set Z = {i0, i1, · · · , it−1} of such a combination. Note that if the algorithm
cannot find any larger combination, we can take any element from IN1, so Z
can be initialized with any one element from IN1. In Algorithm 2 we initialized
Z with an i ∈ IN1 such that it gives a maximum number of balanced bits.
Finally, once we have such a set Z we can get balanced bits corresponding to
the initial division property ini0,i1,··· ,in−1

. Here if we keep track of the list OUT
from Algorithm 2, then we can use that to find balanced bits efficiently. In that
case we search only on ∩i∈{i0,i1,··· ,it−1}OUT [i] for balanced bits.

Remark 1. One important remark is that the time complexity of Algorithm 2
may not be feasible if the size of S is very large. The main work is needed here to
compute the sets OUTi for all i ∈ S. For every element in S we need to call our
model n times. If this is computationally infeasible, one can sample a smaller
subset of S as we show in the next section.
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Algorithm 2 OptimalDistinguisher

Require: SAT/CP model for the primitive, Max round r > 1, Sufficient set S
Ensure: t and Z such that t is the max possible size and Z is one combination of size

t
1: IN1 = S
2: OUT is empty list of sets
3: for i ∈ IN1 do
4: OUTi = φ
5: a = (a0, · · · , an−1) = ini

6: for 0 ≤ j < n do
7: b = (b0, · · · , bn−1) = outj
8: {solve the r-round model with a and b
9: as first round and last round variable, respectively}

10: if not satisfiable then
11: OUTi = OUTi ∪ {j}
12: end if
13: end for
14: OUT [i] = OUTi

15: end for
16: Flag = True
17: t = 1
18: Z = maxi∈IN1 | OUT [i] |
19: while Flag = True do
20: FLAG = False
21: t = t+ 1
22: compute INt

23: for {i0, i1, · · · , it−1} ∈ INt do
24: a = ini0,i1,··· ,it−1

25: B = ∩i∈{i0,i1,··· ,it−1}OUT [i]
26: for (b0, · · · , bn−1) ∈ B do
27: b = (b0, · · · , bn−1) = outj
28: {solve the r-round model with a and b
29: as first round and last round variable, respectively}
30: if not satisfiable then
31: Flag = True
32: Z = {i0, i1, · · · , it−1}
33: break
34: end if
35: end for
36: if Flag = True then
37: break
38: end if
39: end for
40: end while
41: t = t− 1
42: return t, Z
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5 Application to the KNOT permutation

KNOT is a family of bit-slice lightweight authenticated encryption algorithms
and hash functions [33], submitted to the NIST lightweight crypto competi-
tion [29]. The KNOT permutation is the main primitive used in the KNOT
family and comprises three variants with different sizes: 256 bits, 384 bits and
512 bits (denoted by KNOT-b).

5.1 Specification

The underlying permutations iteratively applies an SP-network round transfor-
mation. Each round is the composition of three operations: Add round constants,
Sub Column, Shift Row. The round constants do not affect the division property.
So we do not describe them here and refer the interested reader to [33]. Each
b-bit state of the KNOT-b can be seen as a 4× b

4 matrix, where b = 256, 384 or
512.

The operation of Sub Column is a parallel application of b
4 similar Sboxes

to the 4 bits in the same column. The Sbox S : F4
2 → F4

2 is given in Table 3.
The Shift Row transformation left rotate each row by 0, c1, c2 and c3 bits,
respectively. The offsets c1, c2 and c3 are different for different state size, given
in Table 4.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 4 0 A 7 B E 1 D 9 F 6 8 5 2 C 3

Table 3: KNOT’s Sbox

b c1 c2 c3
256 1 8 25

384 1 8 55

512 1 16 25

Table 4: Shift Row offsets for the KNOT permutation

5.2 Application of Our Model

We applied both SAT and CP models to KNOT. When the state size is b, we have
in total b

4 many 4-bit Sboxes for each round. Thus we have a total b
4 × r many

constraints for r rounds. To implement r-round KNOT we have the variable



14 Shibam Ghosh, Orr Dunkelman

matrices a0, a1, a2, ..., ar of the form

ai =


ai0,0 a

i
0,1 a

i
0,2 · · · ai0, b4−1

ai1,0 a
i
1,1 a

i
1,2 · · · ai1, b4−1

ai2,0 a
i
2,1 a

i
2,2 · · · ai2, b4−1

ai3,0 a
i
3,1 a

i
3,2 · · · ai3, b4−1

∀i ∈ {0, 1, ..., r},
where each aij,k ∈ {0, 1}. In our model, the variables are related with some

constraints. Each column of ai and a(i+1) are related with parallel application
of b

4 Sboxes. Then ai is rotated according to the shift row and we get bi. Note
that as this is only a permutation of variables we do not need to introduce new
variables for bi, instead we can just connect ai and bi according to shift row.
The chain of propagation is as follows (omitted last shift row):

a0
Sbox−−−→ a1

rotation−−−−−→ b1
Sbox−−−→ a2

rotation−−−−−→ · · · br−1 Sbox−−−→ ar.

5.3 Finding the Longest Division Properties

The authors of the KNOT adopted the MILP-based search strategy to analyze
KNOT’s integral properties. They found 17, 17, 19-round integral distinguishers
for the sizes b = 256, 384 and 512, respectively. All of the distinguishers have
data complexity of 2b−1 and in all cases, they found one balanced bit at the (3, 0)
position. To the best of our knowledge, this is the only available result on the
KNOT in the context of the integral attacks. Also, the authors did not provide
any time requirements for these findings.

We obtained several new results on the KNOT-256, KNOT-384 and KNOT-
512. All of our experiments are conducted on the following 64-bit Linux plat-
form: Intel Core i7-3520M CPU @ 2.90GHz, 8.00G RAM. We used the model
proposed in Section 5.2 and solved it using SAT/SMT and CP based tools.
All the source codes are avaiable in public domain at https://github.com/

ShibamCrS/AutomaticSearchforBBDP.
First, for all versions of KNOT, we considered the initial division property

in(k,`) (all coordinates 1 except for the (k, `)-th position) for each 0 ≤ k < 4

and 0 ≤ ` < b
4 . We are getting at least two balanced bits on the output states

after 17-rounds KNOT-256 and KNOT-384 and 19-round KNOT-512. From this
result, we can say that the sufficient index set S defined in Section 4.4 contains
all of the b bits positions for b = 256, 384, 512. Secondly, if we set the input
variables as

a0 = in(3,0) =

{
0, if (k, `) = (3, 0)

1, otherwise

then we can get many balanced bits after 17 rounds for the KNOT-256 and
KNOT-384 and after 19 rounds for the KNOT-512, which spread over all the
four rows, given in Appendix A. These results outperform the previous result
in [33], where the authors found only one balanced bit in each version. The time
requirements with the number of balanced positions are given in Table 5.

https://github.com/ShibamCrS/AutomaticSearchforBBDP
https://github.com/ShibamCrS/AutomaticSearchforBBDP
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KNOT-b #Rounds #Data #Balanced-bits SAT SAT/CNF CP CP/CNF

KNOT-256 17 2255 89 13 hr 19 min >15 hr 12 min

KNOT-384 17 2383 140 >15 hr 45 min >15 hr 17 min

KNOT-512 19 2511 269 >15 hr 2.1 hr >15 hr 70 min

Table 5: Distinguishers for the KNOT with input property a = in(3,0)

5.4 More Efficient Distinguisher

From the previous result, as the sufficient index set S is huge, here we cannot
use the whole set on the data complexity reduction algorithm. Instead we used
a subset S′ of S. If we consider only the first column, i.e., we set constant at
positions S′ = {(0, 0), (1, 0), (2, 0), (3, 0)}.

KNOT-256: For the KNOT-256 we calculated the balanced bits for each con-
stant positions in {(0, 0), (1, 0), (2, 0), (3, 0)}. Then we applied Algorithm 2 with
S′ = {(0, 0), (1, 0), (2, 0), (3, 0)} on 17 round KNOT-256. It gives the output t = 2
and Z = {(0, 0), (1, 0)}. Now we can get balanced positions with input Z. We get
two balanced positions (2, 16) and (2, 56) after 17 rounds. By a similar approach
we can get several distinguishers, a few of them are given in Table 12. In fact
for KNOT-256 we can get two balanced positions in the third row by setting
constant in the first two elements of each column with data complexity 2254.

KNOT-384: For the KNOT-384 we took S′ = {(0, 0), (1, 0), (2, 0), (3, 0)} and
we apply Algorithm 2 for 17 rounds. It gives the outputs t = 4 and Z =
{(0, 0), (1, 0), (2, 0), (3, 0)}. We get in total 19 many balanced bits from Z, spread
over the last two rows given in Table 6.

Constant positions (0,0),(1,0),(2,0),(3,0)

Balanced positions at the third row [24, 31, 38, 39, 40, 77, 78, 79, 80, 86, 87, 89]

Balanced positions at the fourth row [40, 77, 79, 80, 86, 87, 89]

Table 6: Distinguisher on the 17-round KNOT-384 with the data complexity
2380

KNOT-512 For the KNOT-512 also we found a lower complexity distinguisher
on 19 rounds. Here also we took S′ = {(0, 0), (1, 0), (2, 0), (3, 0)} and we apply
Algorithm 2 which outputs t = 4 and Z = {(0, 0), (1, 0), (2, 0), (3, 0)}. We get
in total 139 many balanced bits from Z, spread over all the four rows given in
Table 7.
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constant (0,0),(1,0),(2,0),(3,0)

1st row {0, 7, 8, 15, 16, 30, 31, 32, 40, 47, 55, 56, 64, 79, 80, 88, 112, 127}
2nd row {0, 7, 8, 14, 15, 16, 23, 30, 31, 32, 39, 40, 47, 48, 55, 56, 63, 64, 79, 80, 87, 88, 95, 96, 103, 111, 112, 119, 127}
3rd row {0, 5, 6, 7, 8, 14, 15, 16, 22, 23, 24, 29, 30, 31, 32, 38, 39, 40, 41, 47, 48, 55, 56, 57, 63, 64, 65, 70, 71, 79},

{80, 81, 86, 87, 88, 89, 94, 95, 96, 102, 103, 104, 109, 110, 111, 112, 118, 119, 120, 126, 127}
4th row {0, 5, 6, 7, 8, 14, 15, 16, 23, 29, 30, 31, 32, 39, 40, 41, 47, 48, 55, 56, 57, 63, 64, 65, 71, 79}

{80, 81, 87, 88, 89, 95, 96, 103, 104, 109, 111, 112, 118, 119, 127}
Table 7: Distinguisher on the 19-round KNOT-512 with the data complexity
2508

6 Other Results

To show the strength of our approach, we considered some well-known ciphers
RECTANGLE [38], GIFT [2], PRESENT [4]. While we obtained results that
do not improve the previously known results, they demonstrate the clear ad-
vantage of using CNF models. The difference between the time requirements of
two methods is given in the Table 8. We also implement our model to NIST
lightweight candidate Ascon [10] and we obtain a distinguisher with data com-
plexity 212. This result improves the previous result in [11], where data com-
plexity was 216. The 12 active bit positions in the Ascon state matrix are
(0, 0),(1, 0),(2, 0),(3, 0),(4, 0), (0, 1),(1, 1),(2, 1),(3, 1),(4, 1),(0, 2),(1, 2).

Primitives #Round #Data #Balanced Bits SAT SAT(CNF) CP CP(CNF)

Ascon-320 5 212 2 >15 hr 20 min >15 hr 10 min

RECTANGLE-64 9 260 16 70 s 35 s 50 s 40 s

RECTANGLE-64 10 No Distinguisher* 1.48 hr 41 min 1.44 hr 39 min

PRESENT-64 9 260 1 76 s 21 s 17 min 45 s

PRESENT-64 10 No Distinguisher* 1.5 hr 24 min 1.7 hr 38 min

GIFT-64 9 261 5 103 s 60 s 58 min 62 s

GIFT-64 10 No Distinguisher* 1.49 hr 42 min 1.19 hr 43 min

Table 8: Division property results
*Time required for exhaustive search with all possible ini and outj

7 Extended Integral Attack

In a very recent work in [17], Lambin et al. proposed a new way to extend the
integral distinguisher. The main motivation of these types of extensions is that
the division properties are not linearly invariant. If we consider a linear map L
and an Sbox S then the division properties of L ◦ S and S ◦ L may be different
from those of S and consequently, the division trail table may differ. Thus by
choosing a proper L, we may get new distinguishers which were impossible when
modeling S alone. Thus, for a given r-round primitive Er, the authors of [17]
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proposed to consider Lout ◦Er ◦Lin instead of Er where both Lin and Lout are
linear mappings. This way, we may get some distinguisher on Lout ◦ Er ◦ Lin

which is not possible on Er. Lambinet al. also described some ideas to choose
proper Lin and Lout. Note that the search space of these linear combinations is
huge and this space needs to be reduced. On this direction, Lambinet al.’s first
proposed the following Proposition 4.

Proposition 4. Let S be an invertible m-bit Sbox and P be an m-bit permuta-

tion. Let S1 = S ◦ P and S2 = P ◦ S and k
S−→ k′ be any valid division property

propagation through S. Then both of the propagations

P−1(k)
S1−→ k′ and k

S2−→ P (k′)

are also valid.

Proof of the above proposition is obvious. As we consider the bit-based division
property, bit-permutation just permutes the division property vector. But this
plays a crucial role in reducing the search space.

We focus on linear mapping which are block diagonals, each block corre-
sponds to an m-bit Sbox in the Sbox layer (an m×m matrix). So we can write
Lin = (L0

in, L
1
in, · · · , L

s−1
in ) and Lout = (L0

out, L
1
out, · · · , Ls−1

out ) where each Lj
in

and Lj
out is an m×m matrix. To find the i-th block Li

in Lambinet al. considered
the following permutation equivalence classes

Ein(L) = {L′ ∈ GLm(F2)|∃ permutation P s.t. L′ = L ◦ P}.

Similarly to find Li
out we have

Eout(L) = {L′ ∈ GLm(F2)|∃ permutation P s.t. L′ = P ◦ L}.

The number of these classes can be deduced from
∏m−1

i=0 2m−2i
m! . This number

is much lower than the total number of m × m invertible matrices, which is∏m−1
i=0 2m − 2i. Now if we can find each Ein(L) and Eout(L), we consider only

one linear map from each of the classes. For example, if m = 4, there are in
total 840 of such classes.

7.1 Further Reduction of the Search Space for Lout

We now discuss the method to find an optimal number of Lout. It was suggested
in [9] that finding proper linear combinations of the output bits is enough to find
an integral distinguisher instead of a linear map. Indeed, here our main motiva-
tion is that multiplying the output vectors with a matrix is the same as taking
linear combinations. If we cannot get any balanced bit by linear combinations,
we cannot find by matrix multiplication. Thus, we check all possible nonzero

linear combinations. This reduces the search space from
∏m−1

i=0 2m−2i
m! to 2m − 1.

If m = 4, it reduced from 840 to 15. However, checking for all those 15 linear
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combinations is also a huge task. We now discuss how to further reduce this
formally.

Let us consider an r-round primitive Er as described at the starting of
this section. Here we want to take linear combinations of each Sbox output,
not the whole state. For an m×m Sbox, there are 2m − 1 linear combinations.
If the Sbox S : Fm

2 → Fm
2 maps (xm−1, · · · , x0) to (ym−1, · · · , y0) then any

linear combination of (ym−1, · · · , y0) is also a Boolean function. Its ANF can be
determined from the ANF of yi’s. If c is an integer with binary representation
(cm−1, · · · , c0) then Pc is the linear combination corresponding to c, i.e.,

Pc = (cm−1, · · · , c0) · (ym−1, · · · , y0) =

m−1∑
i=0

ciyi.

So there are 2m − 1 polynomials P1, P2, · · · , P2m−1 corresponding to each Sbox.
Each of these can be written as Pc(xm−1, · · · , x0) =

⊕
u∈Fm

2
aPc
u πu(x). A high-

level overview of our process is as follows:

1. For a given r round primitive first consider the propagation of some initial
property k0 through

Rr−2 ◦ · · · ◦R1 ◦R0.

and the propagation forms the following chain:

k0
R0−−→ K1 R1−−→ K2 R2−−→ · · · Rr−2−−−→ Kr−1.

2. After this each vector kr−1 ∈ Kr−1 propagate through the last Sbox layer
Sr−1 = (Sr−1

0 , · · · , Sr−1
s−1 ).

3. At this stage let us consider the state after Rr−2. let

x = (x0m−1, · · · , x00|x1m−1, · · · , x10| · · · |xs−1m−1, · · · , x
s−1
0 )

be the state after Rr−2 where the block (xim−1, · · · , xi0) is the input to the
i-th Sbox and let Sr−1(x) = y. We can write the following equations

Sr−1
0 (x0m−1, · · · , x00) = (y0m−1, · · · , y00)

...
...

Sr−1
i (xim−1, · · · , xi0) = (yim−1, · · · , yi0)

...
...

Sr−1
s−1 (xs−1m−1, · · · , x

s−1
0 ) = (ys−1m−1, · · · , y

s−1
0 )

4. Now if we consider the linear combinations of the output from any Sbox, say
the i-th Sbox, then the ANF of any linear combination will be a polynomial
in (xim−1, · · · , xi0). To check any linear combination is balanced or not we
have to check the polynomial corresponding to this is even or not.
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7.2 Checking Polynomials

We now discuss the process to check a polynomial is even polynomial or not. To
do so, we check each monomial present in the polynomial by our SAT/CP model.
Suppose that we want to check a monomial xij0x

i
j1
· · ·xijk , where (xim−1, · · · , xi0)

are input to the i-th Sbox of the last round. To check the monomial xij0x
i
j1
· · ·xijk

we set the output property as outj0,j1,··· ,jk , where outj0,j1,··· ,jk is a vector with
all zero except for positions j0, · · · , jk. If we get the system unsatisfiable for some
initial property, then we can say that the monomial is even. Consequently, if all
the monomials in the ANF are even, then the polynomial is even polynomial
and there is an integral distinguisher. One important thing is that we solve the
model for r − 1 rounds to decide balanced bit after r rounds.

Let us consider an Sbox of size m. There are in total 2m−1 linear combina-
tions polynomial P1, · · · , P2m−1. Each Pi corresponds to the linear combination
obtained from the binary representation of i. The 15 linear combinations poly-
nomial corresponding to KNOT sbox 1 are given in Table 9.

c Pc

0001 x3x1x0 + x1x0 + x2x0 + x3x1 + x3x2 + x2 + x3
0010 x3x0 + x3x2x1 + x1 + x3x2 + x2
0011 x3x1x0 + x1x0 + x2x0 + x3x0 + x3x2x1 + x3x1 + x1 + x3
0100 x0 + x2x1 + x1 + x2 + x3 + 1

0101 x3x1x0 + x1x0 + x2x0 + x0 + x2x1 + x3x1 + x1 + x3x2 + 1

0110 x3x0 + x0 + x3x2x1 + x2x1 + x3x2 + x3 + 1

0111 x3x1x0 + x1x0 + x2x0 + x3x0 + x0 + x3x2x1 + x2x1 + x3x1 + x2 + 1

1000 x1x0 + x1 + x2 + x3
1001 x3x1x0 + x2x0 + x3x1 + x1 + x3x2
1010 x1x0 + x3x0 + x3x2x1 + x3x2 + x3
1011 x3x1x0 + x2x0 + x3x0 + x3x2x1 + x3x1 + x2
1100 x1x0 + x0 + x2x1 + 1

1101 x3x1x0 + x2x0 + x0 + x2x1 + x3x1 + x3x2 + x2 + x3 + 1

1110 x1x0 + x3x0 + x0 + x3x2x1 + x2x1 + x1 + x3x2 + x2 + 1

1111 x3x1x0 + x2x0 + x3x0 + x0 + x3x2x1 + x2x1 + x3x1 + x1 + x3 + 1

Table 9: Linear combinations from outputs of the KNOT Sbox

However, here no need to check each of the 2m−1 polynomials. We identify
a subset of polynomials which are sufficient, i.e., if these polynomials are not
even, then there is no division property. We define an order (v) among the
polynomials such that if Pi v Pj then we check if the polynomial Pi is even
polynomial or not. Suppose Pi is not even, then no need to check for Pj . If Pi

is even, we have a distinguisher and for more distinguishers, we can check Pj ’s
such that Pi v Pj . The definition of this order is as follows.

Definition 6. Let us consider two polynomials P and Q from the ring

F2[x0, x1, ......, xm−1]/(x20 + x0, x
2
1 + x1, ......, x

2
n−1 + xm−1).

We say that Q is Dependent on P , denoted by P v Q if any monomial (term)
in P divides at least one monomial (term) of Q.
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Proposition 5. If we have two linear combination polynomials P and Q with
P v Q and we can find that P is not even, then Q is not even.

Proof. If P is not even then according to definition 4 of the even polynomial we
can get some monomials in P which is not even, i.e., there is some u ∈ Fm

2 such
that aPu = 1 and

⊕
x∈Fm

2
πu(x) is unknown. As P v Q, then that unknown term

must divide some term of Q and that term of Q must be unknown according to
the definition of division property. So Q can not be an even polynomial.

For example there are 15 polynomials for the KNOT Sbox. Let us con-
sider P4 and P2, where terms of P4 are {x0, x2x1, x1, x2, x3, 1} and terms of P2

are {x3x0, x3x2x1, x1, x3x2, x2}. We can observe that x0, x3 divides x3x0 and
x1, x2, x1x2 divides x3x2x1. So we can say P4 v P2.

Minimal Number of Polynomials: Finally, we want to decide how many
polynomials we need to check. According to the dependency relation defined
above, we form a few clusters of polynomials so that all the polynomials present
in a cluster depend on a single polynomial and then by checking that single
polynomial, we can decide about all other polynomials in the cluster.

To form this cluster we consider a dependency graph G = (V,E), where
each vertex vP in the vertex set V corresponds to a polynomial P and there is
a directed edge from vP to vQ if and only if P v Q. Then we choose a starting
vertex vP and try to construct a trail. It is clear from transitivity that all the
vertices vQ fall in this trail must satisfy P v Q. Also, We have to find a trail
of size as large as possible. The reason is that if the size of the trail is large, we
can check a large number of polynomials at once. To do this, we use Depth First
Search (DFS) from each vertex one by one, which can find a trail starting from
that vertex.

Length c

11 [4, 2, 3, 7, 11, 15, 6, 10, 14, 5, 13]

11 [8, 1, 3, 7, 11, 15, 5, 13, 9, 10, 14]

9 [12, 3, 7, 11, 15, 5, 13, 10, 14]

8 [1, 3, 7, 11, 15, 5, 13, 9]

8 [2, 3, 7, 11, 15, 6, 10, 14]

8 [6, 2, 3, 7, 11, 15, 10, 14]

8 [9, 1, 3, 7, 11, 15, 5, 13]

6 [5, 3, 7, 11, 15, 13]

6 [10, 3, 7, 11, 15, 14]

6 [13, 3, 7, 11, 15, 5]

6 [14, 3, 7, 11, 15, 10]

4 [3, 7, 11, 15]

4 [7, 3, 11, 15]

4 [11, 3, 7, 15]

4 [15, 3, 7, 11]

Table 10: Trails from each vertex



Automatic Search for Bit-based Division Property 21

7.3 Application on the KNOT

The trails for the KNOT Sbox are given in Table 10 where the first element
is the starting linear combination c. From Table 10 we can see that one of the
maximum length trails can be formed from the polynomial P4 (i.e, from the
vertex vP4

). First we remove all the vertices that are reachable from vP4
, which

are {vP4 , vP2 , vP3 , vP7 , vP11 , vP15 , vP6 , vP10 , vP14 , vP5 , vP13} and then we move to
the next cluster. As the next cluster starts with vP8 and vP8 does not belong
to the previously removed cluster we can start a search from vP8

and construct
a cluster with remaining vertices. If vP8

was already removed, just consider
starting vertex of the next cluster on the list and so on. Finally, we have found
the following trails given in Table 11.

starting trails

4 [4, 2, 3, 7, 11, 15, 6, 10, 14, 5, 13]

8 [8, 1, 9]

12 [12]

Table 11: Final trails of considerations

According to this result first we need to check the following three polyno-
mials given in Equation 2. If this set of polynomials are not even then we need
not check further.

y2(x) = x0 + x2x1 + x1 + x2 + x3 + 1, linear combination for 4 = (0, 1, 0, 0)

y3(x) = x1x0 + x1 + x2 + x3, linear combination for 8 = (1, 0, 0, 0)

y3(x) + y2(x) = x1x0 + x0 + x2x1 + 1, linear combination for 12 = (1, 1, 0, 0)

(2)

Also, we can see that there are only 6 different monomials {x0, x1, x2, x3, x0x1, x1x2}
in all those three polynomials that we need to check. Among these 6, we start
from x0x1 and x1x2 because none of the polynomials are even if these two are
not even.

Let br−1 be the input variables to the rth round Sbox Sr−1 where ar−1
rotation−−−−−→

br−1. Let us take linear combination of the output of the first Sbox. Then to check
x0x1 is even or not we set 1 to the positions br−10,0 and br−11,0 and to check x1x2
we set 1 to br−11,0 and br−12,0 as follows:

br−1 =


1 0 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0

 and br−1 =


0 0 0 · · · 0
1 0 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0

 .
Finally, we solve the model in both cases with all possible input vectors in(k,`)
of weight b− 1.
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Result on the KNOT For the KNOT-256 and KNOT-384, we searched for
all initial vectors for all Sboxes after 17 rounds and we did not get any even
monomial. The implication of this result is two-fold. First of all, this proves that
we can not extend the integral distinguisher to 18 rounds by this method. Also,
with this, we can get the most important result here that the 18-round KNOT-
256 and KNOT-384 has no integral distinguisher using conventional division
property. This follows from the fact that y0, y1, y2, y3 are also belong to the set
of all linear combinations as we have P1 = y0, P2 = y1, P4 = y2 and P8 = y3.
However, note that here for each column, we need to solve a 17-round SAT/CP
model twice per Sbox, whereas in the usual method, we need to solve the 18-
round model four times per Sbox. In other words, not only we proved a strong
result about KNOT-256 and KNOT-384, we did so more efficiently. Our CP
model takes 20 hours for KNOT-256 and 50 hours for KNOT-384 to complete this
search, which is significantly more efficient. The usual method did not complete
the search even after several days. We terminated the process after three days.

Adding Lin We also tried to add a linear layer Lin at the input. But we could
not find any useful information for any versions of the KNOT and Ascon.

8 Conclusion

In this paper we provided several new distinguishers for the KNOT permutation
and Ascon using the SAT and CP-based automatic tools. To model the division
trail table of an Sbox we used the Quine-McCluskey method, which gives the
minimal size CNF. We provided a compact algorithm to find the optimal distin-
guishers. Our model is much more efficient and accurate than the previous result
on KNOT and Ascon. Finally, we provided a way to get the optimal number of
linear combinations for extended integral attack and using this, we have shown
that 18-round KNOT-256 and KNOT-384 have no integral distinguisher.
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A Results on KNOT

A.1 Results on KNOT-256

Results on the 17-round KNOT-256 with S′ = {(0, 0), (1, 0), (2, 0), (3, 0)} and
obtained the following results for OUT [(k, `)].

– a0 = in(0,0) gives the following balanced bits:
Row 0 ⇒ [ ]

Row 1 ⇒ [ ]

Row 2 ⇒ [16, 56]

Row 3 ⇒ [ ]
– a0 = in(1,0) gives the following balanced bits:

Row 0 ⇒ [0, 8, 16, 24]

Row 1 ⇒ [0, 1, 8, 9, 16, 17, 24, 25, 32, 33, 40, 48, 56]

Row 2 ⇒ [0, 1, 8, 9, 16, 17, 24, 25, 32, 33, 40, 41, 48, 49, 56, 57]

Row 3 ⇒ [0, 1, 8, 9, 16, 17, 24, 25, 32, 33, 40, 48, 49, 56, 57]
– a0 = in(2,0) and gives the following balanced bits:

Row 0 ⇒ [ ]

Row 1 ⇒ [ ]

Row 2 ⇒ [8, 16, 24, 32, 40, 48, 56]

Row 3 ⇒ [ ]
– a0 = in(3,0) gives the following balanced bits:

Row 0 ⇒ [0, 1, 8, 9, 10, 16, 17, 24, 25, 32, 33, 40, 41, 48, 49, 50, 56, 57, 58]

Row 1 ⇒ [0, 1, 8, 9, 10, 16, 17, 18, 24, 25, 26, 32, 33, 34, 40, 41, 48, 49, 50, 56,

57, 58]

Row 2 ⇒ [0, 1, 2, 8, 9, 10, 16, 17, 18, 24, 25, 26, 32, 33, 34, 40, 41, 42, 48, 49, 50,

56, 57, 58]

Row 3 ⇒ [0, 1, 2, 8, 9, 10, 16, 17, 18, 24, 25, 26, 32, 33, 34, 40, 41, 42, 48, 49, 50,

56, 57, 58]

Constant positions Balanced positions at third row

(0, 0), (1, 0) [16, 56]

(0, 1), (1, 1) [17, 57]

(0, 2), (1, 2) [18, 58]

(0, 3), (1, 3) [19, 59]

(0, 4), (1, 4) [20, 60]

(0, 5), (1, 5) [21, 61]

(0, 6), (1, 6) [22, 62]

(0, 7), (1, 7) [23, 63]

(0, 8), (1, 8) [0, 24]

(0, 9), (1, 9) [1, 25]

(0, 10), (1, 10) [2, 26]

(0, 11), (1, 11) [3, 27]

(0, 12), (1, 12) [4, 28]

(0, 13), (1, 13) [5, 29]

(0, 14), (1, 14) [6, 30]

(0, 15), (1, 15) [7, 31]

Table 12: Distinguishers on the 17-round KNOT-256 with the data complexity
2254
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A.2 Results on KNOT-384

Results on the 17-round KNOT-384 with S′ = {(0, 0), (1, 0), (2, 0), (3, 0)} and
obtained the following results for OUT [(k, `)].

– a0 = in(0,0) gives the following balanced bits:
Row 0 ⇒ [ ]

Row 1 ⇒ [79]

Row 2 ⇒ [24, 25, 30, 31, 32, 37, 38, 39, 40, 42, 45, 50, 71, 76, 77, 78, 79, 80, 81,

85, 86, 87, 88, 89, 91, 92, 94]

Row 3 ⇒ [1, 30, 31, 32, 38, 39, 40, 41, 77, 78, 79, 80, 81, 86, 87, 88, 89, 90]

– a0 = in(1,0) gives the following balanced bits:
Row 0 ⇒ [32, 38, 40, 77, 79, 80, 81, 87]

Row 1 ⇒ [30, 31, 32, 38, 40, 77, 78, 79, 80, 81, 82, 87]

Row 2 ⇒ [0, 1, 2, 3, 7, 9, 10, 14, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 54, 55, 57, 64, 69, 70,

71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95]

Row 3 ⇒ [0, 1, 2, 9, 23, 24, 25, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41,

42, 43, 46, 47, 48, 49, 50, 54, 55, 56, 57, 71, 72, 73, 77, 78, 79, 80, 81, 82, 83, 85,

86, 87, 88, 89, 90, 91, 92, 93, 94, 95]

– a0 = in(2,0) gives the following balanced bits:
Row 0 ⇒ [ ]

Row 1 ⇒ [79]

Row 2 ⇒ [1, 30, 31, 32, 38, 39, 40, 41, 42, 48, 50, 77, 78, 79, 80, 81, 86, 87, 88,

89, 90]

Row 3 ⇒ [10, 24, 25, 30, 31, 32, 36, 37, 38, 39, 40, 42, 45, 46, 50, 71, 76, 77, 78,

79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 94]

– a0 = in(3,0) gives the following balanced bits:
Row 0 ⇒ [32, 38, 40, 77, 79, 80, 81, 87]

Row 1 ⇒ [30, 31, 32, 38, 40, 77, 78, 79, 80, 81, 82, 87]

Row 2 ⇒ [0, 1, 2, 3, 7, 8, 9, 10, 14, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 54, 55, 57, 64, 65,

69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92,

94, 95]

Row 3 ⇒ [0, 1, 2, 9, 23, 24, 25, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41,

42, 43, 46, 47, 48, 49, 50, 54, 55, 56, 57, 64, 71, 72, 73, 77, 78, 79, 80, 81, 82, 83,

85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95]

A.3 Results on KNOT-512

Results on the 19-round KNOT-512 with S′ = {(0, 0), (1, 0), (2, 0), (3, 0)} and
obtained the following results for OUT [(k, `)].

– a0 = in(0,0) gives the following balanced bits:
Row 0 ⇒ [0, 7, 8, 14, 15, 16, 23, 30, 31, 32, 39, 40, 41, 47, 48, 55, 56, 63, 64, 65,

79, 80, 87, 88, 89, 95, 96, 103, 104, 111, 112, 119, 120, 127]

Row 1 ⇒ [0, 7, 8, 14, 15, 16, 23, 30, 31, 32, 39, 40, 41, 47, 48, 55, 56, 63, 64, 65,
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71, 79, 80, 87, 88, 89, 95, 96, 103, 104, 111, 112, 118, 119, 120, 127]

Row 2 ⇒ [0, 5, 6, 7, 8, 9, 14, 15, 16, 17, 22, 23, 24, 29, 30, 31, 32, 33, 38, 39, 40,

41, 46, 47, 48, 54, 55, 56, 57, 62, 63, 64, 65, 70, 71, 72, 78, 79, 80, 81, 86, 87, 88,

89, 94, 95, 96, 102, 103, 104, 105, 109, 110, 111, 112, 113, 118, 119, 120, 121, 126,

127]

Row 3 ⇒ [0, 5, 6, 7, 8, 14, 15, 16, 17, 23, 24, 29, 30, 31, 32, 33, 38, 39, 40, 41, 47,

48, 55, 56, 57, 63, 64, 65, 71, 72, 79, 80, 81, 86, 87, 88, 89, 94, 95, 96, 103, 104,

105, 109, 110, 111, 112, 113, 118, 119, 120, 121, 127]

– a0 = in(1,0) gives the following balanced bits:
Row 0 ⇒ [0, 1, 5, 6, 7, 8, 9, 14, 15, 16, 17, 22, 23, 24, 25, 29, 30, 31, 32, 33, 38,

39, 40, 41, 47, 48, 49, 55, 56, 57, 62, 63, 64, 65, 71, 72, 73, 79, 80, 87, 88, 89, 94,

95, 96, 97, 102, 103, 104, 105, 110, 111, 112, 113, 118, 119, 120, 121, 126, 127]

Row 1 ⇒ [0, 1, 5, 6, 7, 8, 9, 14, 15, 16, 17, 22, 23, 24, 25, 29, 30, 31, 32, 33, 38,

39, 40, 41, 47, 48, 49, 55, 56, 57, 62, 63, 64, 65, 70, 71, 72, 73, 78, 79, 80, 81, 87,

88, 89, 94, 95, 96, 97, 102, 103, 104, 105, 110, 111, 112, 113, 118, 119, 120, 121,

126, 127]

Row 2 ⇒ [0, 1, 5, 6, 7, 8, 9, 14, 15, 16, 17, 22, 23, 24, 25, 29, 30, 31, 32, 33, 38,

39, 40, 41, 46, 47, 48, 49, 54, 55, 56, 57, 62, 63, 64, 65, 70, 71, 72, 73, 78, 79, 80,

81, 86, 87, 88, 89, 93, 94, 95, 96, 97, 102, 103, 104, 105, 109, 110, 111, 112, 113,

118, 119, 120, 121, 126, 127]

Row 3 ⇒ [0, 1, 5, 6, 7, 8, 9, 14, 15, 16, 17, 22, 23, 24, 25, 29, 30, 31, 32, 33, 38,

39, 40, 41, 46, 47, 48, 49, 54, 55, 56, 57, 62, 63, 64, 65, 70, 71, 72, 73, 78, 79, 80,

81, 86, 87, 88, 89, 94, 95, 96, 97, 102, 103, 104, 105, 109, 110, 111, 112, 113, 117,

118, 119, 120, 121, 126, 127]

– a0 = in(2,0) the following balanced bits:
Row 0 ⇒ [0, 7, 8, 14, 15, 16, 23, 24, 30, 31, 32, 39, 40, 41, 47, 48, 55, 56, 63, 64,

65, 71, 79, 80, 87, 88, 89, 95, 96, 103, 104, 111, 112, 119, 120, 127]

Row 1 ⇒ [0, 6, 7, 8, 14, 15, 16, 23, 24, 30, 31, 32, 39, 40, 41, 47, 48, 55, 56, 63,

64, 65, 71, 79, 80, 87, 88, 89, 95, 96, 103, 104, 111, 112, 118, 119, 120, 127]

Row 2 ⇒ [0, 5, 6, 7, 8, 9, 14, 15, 16, 17, 22, 23, 24, 29, 30, 31, 32, 38, 39, 40, 41,

46, 47, 48, 54, 55, 56, 57, 62, 63, 64, 65, 70, 71, 72, 78, 79, 80, 81, 86, 87, 88, 89,

94, 95, 96, 102, 103, 104, 109, 110, 111, 112, 113, 118, 119, 120, 121, 126, 127]

Row 3 ⇒ [0, 5, 6, 7, 8, 14, 15, 16, 17, 22, 23, 24, 29, 30, 31, 32, 38, 39, 40, 41, 47,

48, 55, 56, 57, 63, 64, 65, 71, 72, 79, 80, 81, 87, 88, 89, 94, 95, 96, 103, 104, 109,

110, 111, 112, 113, 118, 119, 120, 121, 127]

– a0 = in(3,0) gives the following balanced bits:
Row 0 ⇒ [0, 1, 5, 6, 7, 8, 9, 14, 15, 16, 17, 22, 23, 24, 25, 29, 30, 31, 32, 33, 38,

39, 40, 41, 46, 47, 48, 49, 54, 55, 56, 57, 62, 63, 64, 65, 70, 71, 72, 73, 78, 79, 80,

81, 86, 87, 88, 89, 94, 95, 96, 97, 102, 103, 104, 105, 110, 111, 112, 113, 118, 119,

120, 121, 126, 127]

Row 1 ⇒ [0, 1, 5, 6, 7, 8, 9, 14, 15, 16, 17, 22, 23, 24, 25, 29, 30, 31, 32, 33, 38,

39, 40, 41, 46, 47, 48, 49, 54, 55, 56, 57, 62, 63, 64, 65, 70, 71, 72, 73, 78, 79, 80,

81, 86, 87, 88, 89, 94, 95, 96, 97, 102, 103, 104, 105, 110, 111, 112, 113, 118, 119,

120, 121, 126, 127]

Row 2 ⇒ [0, 1, 5, 6, 7, 8, 9, 14, 15, 16, 17, 22, 23, 24, 25, 29, 30, 31, 32, 33, 38,

39, 40, 41, 46, 47, 48, 49, 54, 55, 56, 57, 62, 63, 64, 65, 70, 71, 72, 73, 74, 78, 79,
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80, 81, 86, 87, 88, 89, 93, 94, 95, 96, 97, 102, 103, 104, 105, 109, 110, 111, 112, 113,

118, 119, 120, 121, 126, 127]

Row 3 ⇒ [0, 1, 5, 6, 7, 8, 9, 14, 15, 16, 17, 22, 23, 24, 25, 29, 30, 31, 32, 33, 38,

39, 40, 41, 46, 47, 48, 49, 54, 55, 56, 57, 62, 63, 64, 65, 70, 71, 72, 73, 78, 79, 80,

81, 86, 87, 88, 89, 94, 95, 96, 97, 102, 103, 104, 105, 109, 110, 111, 112, 113, 117,

118, 119, 120, 121, 126, 127]

B Tutorial on MiniZinc

MiniZinc [21] is a solver-independent open-source language which can be used
for modeling the CSP. A complete tutorial on MiniZinc can be found in https:

//www.minizinc.org/doc-2.5.3/en/part_2_tutorial.html#. Here we pro-
vide a small tutorial on the modeling of the division property propagation. To
demonstrate this we consider a small SPN structure as same as the KNOT with
b = 32. The Sbox is given in Table 13 and the shift row offsets are given in Ta-
ble 14. We can view each state of this as a two-dimensional matrix of size 4× 8

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 6 0 11 5 9 4 2 7 14 8 15 1 12 13 3 10

Table 13: Sbox

b c1 c2 c3
32 1 5 7

Table 14: Shift Row offsets

and consequently the variables are denoting round properties, are also matrices
of the same size. As we have explained for the KNOT, we have the following
chain of propagation:

a0
Sbox−−−→ a1

rotation−−−−−→ b1
Sbox−−−→ a2

rotation−−−−−→ · · · br−1 Sbox−−−→ ar.

To denote a two-dimensional variable, MiniZinc has array structure and we can
declare the input variable ai as:

array[0..3,0..7] of var bool : ai;

The next task is to find the logical formula corresponding to the Sbox division
trail table. We can declare this formula in MiniZinc using the “predicate”. Finally
to call the predicate we just have to add a constraint. For example, the first

https://www.minizinc.org/doc-2.5.3/en/part_2_tutorial.html#
https://www.minizinc.org/doc-2.5.3/en/part_2_tutorial.html#
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column of a0 and a1 are connected with the predicate formed by the above
Sbox, so we add :

constraint sbox(a0[3, 0], a0[2, 0], a0[1, 0], a0[0, 0], a1[3, 0], a1[2, 0], a1[1, 0], a1[0, 0]);

A complete MiniZinc code is given below in Table 15 for 2-round of our small
cipher. We named the file as smallKNOT.mzn.

Suppose we want to check with the input property

in(0,0) =


0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1


and the output property

out(3,0) =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

 .
Then we need to write one more file for this data. The data file data.dzn is
given in Table 16.

a0 = array2d ( 0 . . 3 , 0 . . 7 ,
[ | f a l s e , true , true , true , true , true , true , t rue |
true , true , true , true , true , true , true , t rue |
true , true , true , true , true , true , true , t rue |
true , true , true , true , true , true , true , t rue | ] ) ;

a2 = array2d ( 0 . . 3 , 0 . . 7 ,
[ | f a l s e , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e |
f a l s e , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e |
f a l s e , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e |
true , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e , f a l s e | ] ) ;

Table 16: data.dzn

To run this code with the data file we can use the following command:

> minizinc --solver chuffed smallKNOT.mzn data.dzn

C Note on the Quine-McCluskey (QM) Algorithm

If a Boolean function has a greater number of variables, simplification using
Boolean algebra is a hard task. The Quine-McCluskey (QM) algorithm [20,22,23]
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array [ 0 . . 3 , 0 . . 7 ] o f var bool : a0 ;
array [ 0 . . 3 , 0 . . 7 ] o f var bool : a1 ;
array [ 0 . . 3 , 0 . . 7 ] o f var bool : a2 ;
p r e d i c a t e sbox ( var bool : x0 , var bool : x1 , var bool : x2 , var bool : x3 ,
var bool : y0 , var bool : y1 , var bool : y2 , var bool : y3 ) =
( (not x1 )\/(not x2 )\/ y1\/y2 \/(not y3 ) ) /\
( (not x0 )\/ y0\/y1\/y3 ) /\
( x2 \/(not y1 )\/(not y2 ) ) /\
( x1 \/(not y1 )\/(not y2 )\/(not y3 ) ) /\
( x3 \/(not y0 )\/(not y3 ) ) /\
( (not y0 )\/ y1 \/(not y3 ) ) /\
( x2 \/(not y0 )\/(not y2 ) ) /\
( (not y0 )\/(not y1 )\/ y3 ) /\
( x3 \/(not y1 )\/(not y2 )\/(not y3 ) ) /\
( (not x3 )\/ y0\/y1\/y2\/y3 ) /\
( x1\/x3 \/(not y1 )\/(not y2 ) ) /\
( x0\/x1\/x2\/x3 \/(not y0 ) ) /\
( (not x1 )\/(not x2 )\/(not x3 )\/ y1 \/(not y3 ) ) /\
( (not x1 )\/ y0\/y1\/y2\/y3 ) /\
( x0\/x1 \/(not y0 )\/(not y2 ) ) /\
( (not x2 )\/(not x3 )\/(not y1 )\/ y2\/y3 ) /\
( (not x1 )\/(not x2 )\/(not x3 )\/ y2 ) /\
( x2 \/(not y1 )\/(not y3 ) ) /\
( x1\/x3 \/(not y1 )\/(not y3 ) ) /\
( x0\/x3 \/(not y2 )\/(not y3 ) ) /\
( (not x1 )\/(not x3 )\/(not y1 )\/(not y2 )\/ y3 ) /\
( x3 \/(not y0 )\/(not y2 ) ) /\
( (not x2 )\/(not x3 )\/ y1\/y2 \/(not y3 ) ) /\
( x0 \/(not y0 )\/(not y1 ) ) /\
( (not x2 )\/(not x3 )\/ y0\/y1\/y3 ) /\
( x0\/x3 \/(not y1 )\/(not y2 ) ) /\
( x1\/x2\/x3 \/(not y2 ) ) /\
( (not x0 )\/(not x1 )\/(not x3 )\/ y1 \/(not y2 ) ) /\
( (not x0 )\/(not x2 )\/(not x3 )\/ y2\/y3 ) /\
( x0\/x1\/x2\/x3 \/(not y1 ) ) /\
( (not x0 )\/(not x2 )\/ y1\/y2 \/(not y3 ) ) /\
( x2 \/(not y2 )\/(not y3 ) ) /\
( (not x0 )\/(not x1 )\/(not x2 )\/(not y1 )\/ y2\/y3 ) /\
( x0\/x1\/x2\/x3 \/(not y3 ) ) /\
( (not x0 )\/(not x3 )\/ y0 \/(not y3 ) ) /\
( (not x2 )\/ y0\/y1\/y2\/y3 ) /\
( x0\/x3 \/(not y1 )\/(not y3 ) ) ;

c o n s t r a i n t sbox ( a0 [ 3 , 0 ] , a0 [ 2 , 0 ] , a0 [ 1 , 0 ] , a0 [ 0 , 0 ] , a1 [ 3 , 0 ] , a1 [ 2 , 0 ] , a1 [ 1 , 0 ] , a1 [ 0 , 0 ] ) ;
c o n s t r a i n t sbox ( a0 [ 3 , 1 ] , a0 [ 2 , 1 ] , a0 [ 1 , 1 ] , a0 [ 0 , 1 ] , a1 [ 3 , 1 ] , a1 [ 2 , 1 ] , a1 [ 1 , 1 ] , a1 [ 0 , 1 ] ) ;
c o n s t r a i n t sbox ( a0 [ 3 , 2 ] , a0 [ 2 , 2 ] , a0 [ 1 , 2 ] , a0 [ 0 , 2 ] , a1 [ 3 , 2 ] , a1 [ 2 , 2 ] , a1 [ 1 , 2 ] , a1 [ 0 , 2 ] ) ;
c o n s t r a i n t sbox ( a0 [ 3 , 3 ] , a0 [ 2 , 3 ] , a0 [ 1 , 3 ] , a0 [ 0 , 3 ] , a1 [ 3 , 3 ] , a1 [ 2 , 3 ] , a1 [ 1 , 3 ] , a1 [ 0 , 3 ] ) ;
c o n s t r a i n t sbox ( a0 [ 3 , 4 ] , a0 [ 2 , 4 ] , a0 [ 1 , 4 ] , a0 [ 0 , 4 ] , a1 [ 3 , 4 ] , a1 [ 2 , 4 ] , a1 [ 1 , 4 ] , a1 [ 0 , 4 ] ) ;
c o n s t r a i n t sbox ( a0 [ 3 , 5 ] , a0 [ 2 , 5 ] , a0 [ 1 , 5 ] , a0 [ 0 , 5 ] , a1 [ 3 , 5 ] , a1 [ 2 , 5 ] , a1 [ 1 , 5 ] , a1 [ 0 , 5 ] ) ;
c o n s t r a i n t sbox ( a0 [ 3 , 6 ] , a0 [ 2 , 6 ] , a0 [ 1 , 6 ] , a0 [ 0 , 6 ] , a1 [ 3 , 6 ] , a1 [ 2 , 6 ] , a1 [ 1 , 6 ] , a1 [ 0 , 6 ] ) ;
c o n s t r a i n t sbox ( a0 [ 3 , 7 ] , a0 [ 2 , 7 ] , a0 [ 1 , 7 ] , a0 [ 0 , 7 ] , a1 [ 3 , 7 ] , a1 [ 2 , 7 ] , a1 [ 1 , 7 ] , a1 [ 0 , 7 ] ) ;
c o n s t r a i n t sbox ( a1 [ 3 , 7 ] , a1 [ 2 , 5 ] , a1 [ 1 , 1 ] , a1 [ 0 , 0 ] , a2 [ 3 , 0 ] , a2 [ 2 , 0 ] , a2 [ 1 , 0 ] , a2 [ 0 , 0 ] ) ;
c o n s t r a i n t sbox ( a1 [ 3 , 8 ] , a1 [ 2 , 6 ] , a1 [ 1 , 2 ] , a1 [ 0 , 1 ] , a2 [ 3 , 1 ] , a2 [ 2 , 1 ] , a2 [ 1 , 1 ] , a2 [ 0 , 1 ] ) ;
c o n s t r a i n t sbox ( a1 [ 3 , 9 ] , a1 [ 2 , 7 ] , a1 [ 1 , 3 ] , a1 [ 0 , 2 ] , a2 [ 3 , 2 ] , a2 [ 2 , 2 ] , a2 [ 1 , 2 ] , a2 [ 0 , 2 ] ) ;
c o n s t r a i n t sbox ( a1 [ 3 , 1 0 ] , a1 [ 2 , 8 ] , a1 [ 1 , 4 ] , a1 [ 0 , 3 ] , a2 [ 3 , 3 ] , a2 [ 2 , 3 ] , a2 [ 1 , 3 ] , a2 [ 0 , 3 ] ) ;
c o n s t r a i n t sbox ( a1 [ 3 , 1 1 ] , a1 [ 2 , 9 ] , a1 [ 1 , 5 ] , a1 [ 0 , 4 ] , a2 [ 3 , 4 ] , a2 [ 2 , 4 ] , a2 [ 1 , 4 ] , a2 [ 0 , 4 ] ) ;
c o n s t r a i n t sbox ( a1 [ 3 , 1 2 ] , a1 [ 2 , 1 0 ] , a1 [ 1 , 6 ] , a1 [ 0 , 5 ] , a2 [ 3 , 5 ] , a2 [ 2 , 5 ] , a2 [ 1 , 5 ] , a2 [ 0 , 5 ] ) ;
c o n s t r a i n t sbox ( a1 [ 3 , 1 3 ] , a1 [ 2 , 1 1 ] , a1 [ 1 , 7 ] , a1 [ 0 , 6 ] , a2 [ 3 , 6 ] , a2 [ 2 , 6 ] , a2 [ 1 , 6 ] , a2 [ 0 , 6 ] ) ;
c o n s t r a i n t sbox ( a1 [ 3 , 1 4 ] , a1 [ 2 , 1 2 ] , a1 [ 1 , 8 ] , a1 [ 0 , 7 ] , a2 [ 3 , 7 ] , a2 [ 2 , 7 ] , a2 [ 1 , 7 ] , a2 [ 0 , 7 ] ) ;

s o l v e s a t i s f y ;

Table 15: smallKNOT.mzn
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is a systematic approach to find a minimum size CNF from the truth table
of a function. This method is based on the reduction principle. Consider the
expression (X ∧ y) ∨ (X ∧ y) where X can be a variable or product of variables
and y is a variable. Then by the reduction principle we have:

(X ∧ y) ∨ (X ∧ y) = X.

All the terms in a formula can be tested for possible reduction. The irreducible
terms are called Prime Implicant (PI). All the PIs are not necessary to represent
a function. Some PIs can be covered by others. The PIs which are necessary to
cover all the original terms, called Essential Prime Implicant (EPI).

Let us consider a function as we got for the valid division trail table. Let
the function F : Fn

2 → F2 be defined as

F (x) =

{
1, if x ∈ T
0, if x ∈ T c

To use the QM method, the function needs to be given as a sum of minterms.
These minterms can be found by the following mapping from {0, 1} to {x, x}:

m(b) =

{
x, if b = 1

x, if b = 0

For each point in (xn−1, · · · , x0) ∈ T , we add the minterm m(xn−1)∧m(xn−2)∧
· · · ∧ m(x0). For example if (0, 1, 0, 1) ∈ T then we add the minterm m(0) ∧
m(1) ∧m(0) ∧m(1) = x3 ∧ x2 ∧ x1 ∧ x0.

The QM algorithm first finds all the PIs. To do this it combines all the
minterms using reduction principle. For example the minterm corresponding to
0110 and 0100 can be combined to 01− 0, where ’-’ represents the canceled bit.
This is justified as:

(x4 ∧ x2 ∧ x1 ∧ x0) ∨ (x4 ∧ x2 ∧ x1 ∧ x0) = x4 ∧ x2 ∧ x0 ∧ (x1 ∨ x1)

= x4 ∧ x2 ∧ x0

This combination can be formed with the terms which differ in one variable.
These procedure continues until we get all the PIs. Finally, it selects EPIs. These
EPIs are necessary to cover the function but may not be sufficient. In that case,
the next step is to choose some more PIs to represent the Boolean function. This
step is done heuristically. So the reader may get different result for the KNOT
Sbox than we have given in Table 17. Moreover, this method can also Handel
’Don’t-Care’ conditions i.e., there may be some input to a function such that
we don’t care about the corresponding output. Performance of QM algorithm
significantly depends on the data structures used in implementation. For this
direction we refer the interested readers to [15].

The CNF corresponding to the division trail table of the KNOT Sbox is
‘AND’ of the following clauses given in Table 17.



32 Shibam Ghosh, Orr Dunkelman

x3 x2 x1 x0 y3 y2 y1 y0

x̄3∨ x̄2∨ x̄0∨ ȳ2∨ y1∨
x3∨ x2∨ x1∨ x0∨ ȳ3∨
x̄3∨ y3∨ y2∨ y1∨ y0∨

x̄2∨ y3∨ y2∨ y1∨ y0∨
x3∨ x2∨ x1∨ x0∨ ȳ2∨
x3∨ x2∨ x1∨ x0∨ ȳ0∨
x̄3∨ x̄1∨ ȳ3∨ y2∨

x̄0∨ y3∨ y2∨ y1∨ y0∨
x2∨ ȳ2∨ ȳ0∨
x̄2∨ x̄1∨ x̄0∨ ȳ2∨ y0∨

x3∨ x1∨ ȳ2∨ ȳ0∨
x1∨ ȳ2∨ y1∨ ȳ0∨

x̄3∨ x̄2∨ x̄1∨ x̄0∨ y3∨
x̄2∨ x̄1∨ y2∨ y1∨ y0∨

x̄3∨ x2∨ x̄0∨ ȳ3∨ y2∨
x̄1∨ y3∨ y2∨ y1∨ y0∨

x̄2∨ x̄1∨ y3∨ y2∨ ȳ0∨
y2∨ ȳ1∨ ȳ0∨

x̄3∨ x0∨ ȳ3∨ ȳ0∨
x̄1∨ x̄0∨ y3∨ ȳ2∨ y1∨
x1∨ ȳ3∨ ȳ2∨ ȳ1∨

x0∨ ȳ2∨ ȳ1∨
x̄2∨ x̄0∨ y3∨ y2∨ ȳ1∨

x̄3∨ x̄2∨ y3∨ ȳ2∨ y0∨
x̄3∨ x̄1∨ y3∨ y1∨ y0∨

x2∨ x1∨ ȳ2∨ ȳ1∨
x2∨ x1∨ x0∨ ȳ3∨ ȳ2∨
x̄2∨ x̄0∨ y3∨ ȳ2∨ y1∨
x̄2∨ x̄0∨ y2∨ y1∨ y0∨

x̄3∨ x̄2∨ x0∨ ȳ3∨ y2∨
x3∨ x0∨ ȳ2∨ ȳ0∨

x̄2∨ x̄1∨ x̄0∨ y2∨ ȳ0∨
x̄3∨ x̄2∨ x̄0∨ y3∨ y1∨

x̄1∨ x̄0∨ y3∨ y2∨ ȳ1∨
x̄3∨ x̄0∨ y3∨ ȳ2∨ y1∨
x3∨ x0∨ ȳ3∨ ȳ2∨

x2∨ ȳ3∨ ȳ1∨
x2∨ ȳ3∨ ȳ0∨

x3∨ x1∨ ȳ3∨ ȳ0∨
x3∨ x2∨ x1∨ x0∨ ȳ1∨

x0∨ ȳ3∨ ȳ1∨
x3∨ x2∨ ȳ3∨ ȳ2∨
x3∨ ȳ3∨ ȳ1∨ ȳ0∨

Table 17: Clauses corresponding to valid division trail of the KNOT Sbox
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