
1

Soteria: Privacy-Preserving Machine Learning for
Apache Spark

Cláudia Brito, Pedro Ferreira∗, Bernardo Portela†, Rui Oliveira, João Paulo
INESC TEC

∗INESC TEC & Faculty of Sciences, University of Porto
†NOVA LINCS & University of Porto

Abstract—Privacy and security are prime obstacles to the
wider adoption of machine learning services offered by cloud
computing providers. Namely, trusting users’ sensitive data to
a third-party infrastructure, vulnerable to both external and
internal malicious attackers, restricts many companies from
leveraging the scalability and flexibility offered by cloud services.

We propose SOTERIA, a system for distributed privacy-
preserving machine learning that combines the Apache Spark
system, and its machine learning library (MLlib), with the confi-
dentiality features provided by Trusted Execution Environments
(e.g., Intel SGX). SOTERIA supports two main designs, each
offering specific guarantees in terms of security and performance.
The first encapsulates most of the computation done by Apache
Spark on a secure enclave, thus offering stronger security. The
second fine-tunes the Spark operations that must be done at
the secure enclave to reduce the needed trusted computing base,
and consequently the performance overhead, at the cost of an
increased attack surface.

An extensive evaluation of SOTERIA, with classification, regres-
sion, dimensionality reduction, and clustering algorithms, shows
that our system outperforms state-of-the-art solutions, reducing
their performance overhead by up to 41%. Moreover, we show
that privacy-preserving machine learning is achievable while
providing strong security guarantees.

Index Terms—Privacy-preserving, Machine Learning, Apache
Spark, SGX

I. INTRODUCTION

The ubiquitous environment provided by the cloud com-
puting paradigm offers a scalable, reliable, and performant
solution to deploy data analytics applications (e.g., Apache
Spark [79], Hadoop [32]). As the amount of data and complex-
ity of analytical processing grows, these third-party services
become increasingly desirable while avoiding the extra costs
and concerns of owning a private infrastructure.

However, data and computation outsourcing to cloud com-
puting services leaves users vulnerable to attacks that may
compromise the integrity and confidentiality of their sensitive
information [80], [45], [81]. Also, with the increasing number
of regulations such as HIPAA and GDPR, sensitive data from
users cannot be processed or sent to untrusted third-party
infrastructures without users’ consent and the adoption of
strong security policies [59], [88].

Machine learning (ML) provides a strong use-case for the
aforementioned challenges since it deals with the analysis
of sensitive data. Also, machine learning requires significant
computational power as data is iterated over and over until

models are fully optimized. The common machine learn-
ing workflow presents three main phases: data preparation,
training, and inference. During such phases, users’ data is
susceptible to several attacks that must be prevented such
as adversarial attacks, model extraction, and inversion, recon-
struction attacks, among others [49], [90], [26], [3].

The adoption of software-based cryptographic techniques
(e.g., homomorphic encryption, secure multi-party computa-
tion [2], [28], [60], [64]) intends to overcome these set-
backs while offering privacy-preserving machine learning so-
lutions [66], [58], [36]. Despite that, such techniques limit
the operations that can be conducted over encrypted data
and/or impose a significant performance toll that restricts
their applicability to practical scenarios [6]. Trusted Execution
Environments (TEEs) (e.g., Intel SGX [55], AMD-SEV [5],
ARM TrustZone [4]) are increasingly considered as an alterna-
tive solution to deliver a secure processing environment where
data can be handled in its original form (i.e., plaintext) at an
untrusted storage server [72], [14]. Though, choosing which
data and computations must be done at the secure enclave
is not a trivial task. Ideally, all operations should be done
in a secure space in order to have strong security guarantees.
However, as the amount of operations and data increases at the
enclave so does the performance overhead of the solution [18],
[96]. Indeed, there is a balance in terms of security guarantees
and performance that needs to be further explored. Such
balance is highly dependent on the true definition of which
data is sensitive and which computations do not leak sensitive
information.

Previous solutions based on TEEs focused their efforts on
building new secure frameworks from the ground-up [75],
[62] or on providing privacy-preserving systems that are only
applicable to a small subset of ML operations [97], [31] or
other specific fields such as neural networks [48].

Contrarily, this paper is the first to cover a larger spectrum
of machine learning attacks while providing two TEE-based
designs that balance different trade-offs in terms of security
and performance. Also, it supports a wide variety of machine
learning algorithms while not changing how users build and
run their algorithms within the Apache Spark framework.
Namely, we present SOTERIA1 , a system for distributed
privacy-preserving machine learning. It leverages the scalabil-

1SOTERIA was known as the greek goddess of safety and salvation,
deliverance, and preservation from harm.

2

ity and reliability provided by Apache Spark and its machine
learning library (MLlib) while combining these with TEEs to
promote a privacy-preserving solution.

SOTERIA introduces two new designs that showcase dif-
ferent levels of confidentiality, integrity, and performance one
can expect from a full-fledged machine learning pipeline (i.e.,
including both training and inference phases) supported by
Apache Spark. The first ensures that all operations done at the
untrusted Spark backend are performed on secure enclaves.
Thus, sensitive data is only processed in plaintext inside the
enclave, while being encrypted in the remainder data flow
(e.g., network, storage). This design enables robust security
guarantees while covering a larger spectrum of attacks than in
current related work [40], [42], [31].

The second design aims at reducing the trusted computing
base (TCB) that must be executed in a secure space, thus
lowering the respective number of processing operations and
data being transferred to the enclave. When compared to the
first approach, this decision enables better performance at the
cost of relaxing the offered security guarantees. Nevertheless,
we argue that such is possible while still ensuring that all
sensitive computation is executed inside trusted enclaves, thus
never disclosing users’ plaintext data at the untrusted servers.
Indeed, our experimental results demonstrate that performance
overhead can be significantly reduced by just offloading non-
sensitive statistical operations to the untrusted Spark backend.
We conduct an extensive evaluation over seven different ma-
chine learning algorithms with HiBench [44] to demonstrate
the feasibility and usability of our system. The results show
that SOTERIA outperforms the state-of-the-art SGX-Spark
solution [31], [73]. In general, SOTERIA’s first design offers
better security guarantees than SGX-Spark, while exhibiting a
similar performance behavior. In contrast, the second design
is able to surpass SGX-Spark by up to 41% in execution time,
however, it relaxes the security guarantees when compared
with the first design. Also, when compared to a non-secure
baseline deployment of Apache Spark, SOTERIA exhibits a
performance overhead ranging from 1.7x to 30.8x.

Our contributions are summarized as follows:
• We propose SOTERIA, a novel twofold privacy-preserving

machine learning system based on Apache Spark that
leverages TEEs for secure execution of machine learning
pipelines.

• SOTERIA is provided as an open-source prototype that
resorts to the Graphene-SGX Library OS [85] to ease the
integration of Intel SGX within Apache Spark’s workflow.
Our implementation benefits from the increased security
isolation and host platform compatibility provided by
Graphene-SGX. The source code can be found here
https://github.com/claudiavmbrito/Soteria.

• We conduct an extensive evaluation resorting to seven
machine learning algorithms within HiBench. The results
show that SOTERIA’s prototype outperforms state-of-the-
art solutions by up to 41%, while providing stronger
security guarantees.

The paper is structured as follows: Section II presents
relevant background. Section III defines our threat model
and security properties. Section IV discusses SOTERIA design

principles and details implementation decisions. Section V
establishes the chosen evaluation methodology and Section VI
presents the experimental results. Section VIII concludes the
paper.

II. BACKGROUND

This section overviews Apache Spark, MLlib, and Intel
SGX as these are used by SOTERIA to provide a distributed
and secure machine learning solution.

A. Apache Spark and MLlib

Apache Spark is an open-source distributed cluster com-
puting framework, which uses in-memory data processing en-
gines that support Extraction, Treatment, and Loading (ETL),
analytical, machine learning, and graph processing over large
volumes of data. Spark can be deployed on a large cluster of
servers that may access several data sources (e.g., HBase [34],
Hive [38], Cassandra [25], HDFS [32]) for reading the data
to be processed and store the corresponding output and logs
[95], [79]. Spark is commonly compared to Hadoop’s two-
stage disk-based MapReduce computation engine. However, it
is able to perform most of the computation in-memory, thus
promoting better performance for data-intensive applications
such as machine learning ones [94]. In general, Spark follows
a distributed architecture composed of a Master and sev-
eral Worker nodes, typically deployed across distinct cluster
servers. Further details about this architecture are discussed in
Section IV-A.

The MLlib library provides machine learning capabilities to
the latter framework allowing the development of end-to-end
machine learning pipelines [57], [56]. The data workflow of
MLlib is similar to the one found in other machine learning
solutions, with the addition of the initial data collection stage.
It also provides a set of tools and utilities for feature extraction,
model persistence, among others. Figure 1 shows the typical
machine learning workflow for data engineers, whereas the
first step goes from the collection of data to its treatment.
Alongside the creation of a new machine learning algorithm or
choosing a pre-defined one (e.g., Logistic Regression, Random
Forest), in the second stage, data is transformed into two
datasets, a training dataset and a test dataset. The third stage
represents the training stage, where data is iterated to, in the
end, deliver an optimized trained model, depicted in the fourth
stage. In a fifth stage, this trained model can then be saved
(persisted) and loaded (accessed) for further inference.

B. Intel Software Guard Extensions (SGX)

Intel SGX provides a set of new instructions, available on
Intel processors, that applications can use to create protected
and trusted memory regions. These regions (enclaves) are
isolated from any other code at the host system, thus not
allowing other processes, even the ones running at higher
privilege levels, to access their content [55], [62]. To ensure
that the desired computation was correctly executed in a secure
enclave, the integrity of computational results, as well as the
identity of the enclave, can be verified remotely via the remote
attestation mechanism provided by SGX [83].

https://github.com/claudiavmbrito/Soteria

3

Since SGX protects code and data from privileged access
(i.e, host OS, hypervisor, BIOS), sensitive plaintext infor-
mation can be processed at the enclave without compromis-
ing its privacy. Also, these TEEs enable better performance
than traditional cryptographic computational techniques (e.g.,
searchable encryption, homomorphic encryption) [17].

The enclave has a limited memory capacity (128MB per
CPU) before requiring memory swapping, which is a costly
mechanism in terms of performance [14]. Solutions must
balance the number of I/O operations and the amount of
data handled by SGX enclaves in order to optimize their
performance.

In this paper, we chose Intel SGX over other TEE’s (e.g.,
ARM TrustZone [4]) due to its broad use in academia [72],
[47], [97], [41] and industry [8], [43] as well as its security
guarantees and computing reliability. However, our solution
is generic, in the sense that it can be applied to other TEE
technology that follows similar design principles to SGX. Sim-
ilarly, novel research and optimizations for SGX, which are
orthogonal to the work discussed in this paper and that solve
issues such as Denial of Service (DoS), side-channel attacks,
or memory access patterns, can be applied to SOTERIA [92],
[33], [63], [87].

III. SECURITY PROPERTIES AND THREAT MODEL

Many applications have demonstrated how Intel SGX can be
used to design provably secure solutions for secure outsourced
computation. Our work builds upon the work of Bahmani
et. al. [9], where Intel SGX behaves as a trusted anchor
in untrusted environments for general secure computation.
Fundamentally, their guarantees rely on building protocols
for secure computation following a very specific construction:
a bootstrapping stage, where the client establishes a secure
channel with the remote enclave, and an online stage, where
the client provides inputs and receives outputs via this secure
channel, and the enclave is simply executing an arbitrary
function.

In this work, we extend this notion by considering the
access of enclave workers to external untrusted storage. This
is achieved via standard mechanisms for authenticated encryp-
tion, using a key provided by the client via secure channels.
We demonstrate that his entails the same level of security.

SOTERIA is designed to behave as a service for privacy-pre-
serving machine learning. As such, we assume the following
deployment model. The client will be trusted. It will provide
the input for processing, and submit queries for machine
learning tasks. Then, we will have a Master node, and N
Worker nodes. These will be deployed in untrusted environ-
ments, equipped with Intel SGX technology. Externally, we
also consider a distributed data storage backend. The protocol
assumes a previous setup where the client has stored its input
data securely within this backend, which is also considered to
be untrusted throughout the protocol execution.

In particular, we want our protocol to ensure that clients can
provide input data for training and inference in a way that is
not vulnerable to breaches in confidentiality, for both Master
and Worker nodes. Concretely, we want our system to behave

as a black-box for executing ML scripts according to Apache
Spark specifications.

Our model considers semi-honest adversaries, which means
that security is presented considering an adversary that at-
tempts to break the confidentiality of data and model, but
that will not actively deviate from the protocol specification.
This a common adversary for cloud-based systems, where
vulnerability data breaches allow for malicious entities to read
internal processing data. Additionally, we provide counter-
measures against adversarial queries and the injection of data
samples into the storage backend or the model being trained
(i.e., breaches in data integrity).

However, we assume that the number and duration of
computation steps, and the size of output data, are explicit
leakage. This is because, despite using secure channels, all
of these parameters can be inferred by our adversary, by
observing network communication between Spark Nodes and
their storage accesses. Ensuring the privacy of such data would
require additional steps to ensure constant-round execution and
fixed-size outputs, which we consider to be relevant future
work but outside the scope of this paper.

Formally, our security goal is defined using the real-versus-
ideal world paradigm, similarly to the Universal Compos-
ability [16] framework. We prove that SOTERIA is indistin-
guishable from an idealized service for running ML scripts
to an arbitrary external environment that can collude with
a malicious insider adversary. Concretely, we specify this
idealized service as a black-box functionality parametrized
with the input data, which simply executes the tasks described
in the ML task script, and returns the output via a secure
channel.

In the real-world, we run the SOTERIA as specified in Sec-
tion IV, and the adversary can observe all messages exchanged
between participants, as well as requests to external storage
by the Worker nodes. In the ideal world, we instead run the
idealized service, and the adversary is instead presented with
a simulated view of the world. The security reasoning is that,
if the views provided to the adversary in both worlds are
indistinguishable, then SOTERIA reveals no information other
than network and storage I/O patterns, number of computation
steps, and output sizes.

A. Machine Learning Workflow Attacks

Overall, SOTERIA is aimed at scenarios where machine
learning pipelines are outsourced to untrusted environments,
e.g., cloud infrastructures. By default, ML datasets and models
are stored and processed in plaintext which leads to leaking
sensitive information to adversaries at the untrusted premises.
However, even if this information is encrypted, there are other
types of attacks that may compromise ML confidentiality,
namely Adversarial Samples, Model Extraction, Model Inver-
sion, Reconstruction Attacks, and Membership Inference, as
depicted in Figure 1.

Adversarial Samples This attack, also known as Data
Poisoning, relies on the injection of adversarial samples into
the machine learning model. These examples are intentionally
built to control the model by introducing noisy samples and

4

Data
Source

Data
Treatment

Trained
Model

Inference

Train Data

Test Data

Model

Trusted Site Untrusted Site Model Extraction
Model Inversion

Membership
InferenceAdversarial

Samples
Reconstruction

Attacks

1st stage 2nd stage 3rd stage 4th stage 5th stage

Fig. 1: Machine learning pipeline attacks compromising data
and model. The figure represents the attacks defined within
our security and threat model.

making the model incorrectly label the samples [49], [39],
[13]. These attacks occur when the client loses control of its
initial dataset and allows adversarial samples to be introduced
inside its own data or at any stage of the model training.

Model Extraction The intellectual property of a model
relies on its architecture and its ability to learn. In a Machine
Learning-as-a-Service setting, the importance of keeping the
model unknown to its users leverages its potential and market
value. In a model extraction attack, an adversarial client learns
a close approximation of the objective function of the trained
model (f) using as few queries as possible, finding f ’(x) =
f(x). This close approximation is based on the exact confidence
values and response labels obtained by inference [84]. On the
same note, this attack has also been proposed for disclosing
the hyperparameters of ML models [90], [61].

Model Inversion These attacks rely on the capacity to
invert the objective of the trained model; the output is used as
input to understand the raw train data. This attack is based on
the confidence results in comparison to the model extraction
attack. Following the basis of this attack, researchers have been
able to perform the reconstruction of facial images from the
original dataset [26], [37].

Reconstruction Attacks In this attack, the adversary in-
tends to reconstruct raw data used for building the model. The
reconstruction attack is most common in ML algorithms that
use feature vectors, such as Support Vector Machines or K-
Nearest Neighbor. This exploit is seen as a white-box access
attack since the adversary must have access to the feature
vectors. The goal of this attack is similar to model inversion
ones, i.e., reconstruction of the original data [3].

Membership Inference This attack implies querying the
trained model on adversarial points and record the answer and
with this, detect if the sample was used as training data [7],
[77]. Thus, it is intended to infer whether a sample was in the
training set based on the model output.

Unlike previous works [40], [42], [75], [31], which typically
consider a small subset of these attacks, our proposal aims at
providing mechanisms that cover the full range of mentioned
exploits. Table I presents the relevant state-of-the-art solutions
and the type of security attacks covered by these. Further, it
shows the attacks addressed by the two SOTERIA’s designs
(SML-1 and SML-2). It is important to note, however, that
attacks analogous to model extraction or model inversion that
rely on knowing network and storage I/O patterns and, with

these, inferring the number of computation steps or output
sizes, are not covered by SOTERIA. As stated previously, we
leave such attacks to future research work, which can be built
on top of the proposed solution.

TABLE I: Comparison between state-of-the-art solutions and
SOTERIA regarding the safety against ML attacks.

Systems

Attacks C
hi

ro
n

[4
0]

M
ye

lin
[4

2]

SG
X

-B
ig

M
at

rix
[7

5]
SG

X
-S

pa
rk

[3
1]

SO
T

E
R

IA
SM

L-
1

SO
T

E
R

IA
SM

L-
2

Adversarial Samples 7 7 7 72 3 3
Model Extraction 3 3 7 3* 3* 7
Model Inversion 3 3 3 3* 3* 7
Reconstruction Attacks 7 3 7 3 3 3
Membership Inference 7 7 7 7 3 3

*Vulnerable to model extraction and inversion attacks if such exploits are
based on access patterns, training time or output sizes.

IV. SOTERIA

SOTERIA is a system for distributed privacy-preserving
machine learning, which leverages Apache Spark’s design and
its MLlib APIs.

A. Apache Spark - Architecture and Flow

Our solution was designed to avoid changing the archi-
tecture and processing flow of Apache Spark, keeping its
scalability and fault tolerance properties. As depicted in Figure
2 by the gray boxes, a Spark cluster is composed of a Master
and several Worker nodes. Before submitting ML tasks (e.g.,
machine learning training and inference operations) to the
Spark cluster, the user must load its local datasets and models
to a distributed storage backend supported by Apache Spark.

After the data loading step, the user can then submit
ML processing tasks to Spark’s client that is responsible for
forwarding these tasks (scripts) to the Master node. Namely,
tasks are submitted to the Spark Driver component which
generates a Spark Context allowing to access the resource
manager and then distribute the tasks to a set of Worker nodes
accordingly to its needs. Therefore, the Spark Driver must
have direct access to the computations, processing logic, or
ML task scripts, before delegating the tasks to the Workers to
optimizing resources’ usage.

A task can be divided into smaller processing steps, each
done by an independent Worker in parallel. Furthermore, each
Worker launches one or more executors (JVM processes) that
can further increase parallelism by doing local processing con-
currently (e.g., locally training the ML model, and collecting
train statistics in parallel).

2Data encryption is not a module on the open-source version.

5

When the Worker nodes require accessing data at the storage
backend (e.g., for reading and training an ML dataset, for load-
ing a stored model and data for inference) they usually use an
abstraction called Resilient Distributed Datasets (RDD) [93].
This representation eases the partitioning of data into shards
that, ideally, are collocated with the Worker nodes requesting
them, thus improving storage I/O latency. To improve storage
performance, data is also kept at an in-memory cache at each
executor process.

As Workers may be executing concurrently different steps
of a given task, these need to be able to transfer information,
through the network, among each other. For example, in a
distributed ML training task, this information can contain
model parameters that must be exchanged frequently across
Workers to increase training’s accuracy.

After finishing the desired computational steps, the wor-
kers send back their outputs to the Master node, which is
responsible for merging the outputs and replying to the client.

Next, we describe the main modifications required by SOTE-
RIA to the original Apache Spark’s design, depicted in Figure
2 by the white dashed and solid line boxes.

Similar to the regular flow of Apache Spark, also SOTERIA
can be divided into two main components or sides, the
SOTERIA Client or trusted side and the SOTERIA Cluster or
untrusted side. With this, the SOTERIA Client represents the
user and its site and the SOTERIA Cluster represents the cloud
environment.

Vanilla Apache Spark

Untrusted SideTrusted Side

b

1

2

Enclave New Components

3

6

4Client
Task ScriptManifest

1

Data
a

2

Encryption Module

Data Loading

Encryption Module

MLlib Distributed
Data

Storage6

Master

Spark Context
Spark Driver ...

5

5

E
xe

cu
to

r

C
ac

heTasks

Worker N

Encryption Module
Data Loading

E
xe

cu
to

r

C
ac

heTasks

Worker 1

Encryption Module
Data Loading

Fig. 2: SOTERIA architecture and operations flow. Main com-
ponents of Apache Spark vanilla are depicted in gray boxes,
whilst dashed boxes represent the components inside enclaves
and white boxes depict the new components implemented in
SOTERIA.

B. SOTERIA Client

Although SOTERIA provides an extended version of the
Spark client module and MLlib, these modifications are trans-
parent to users, thus not changing the way they usually load
data into the distributed storage backend, build new ML
algorithms, and execute ML tasks (e.g., training and inference)
at the Spark cluster. The only exception is that users must
specify additional information in a Manifest configuration file
as further described next.

SOTERIA’s modified client module is used by the users
for three main operations: i) loading data into the distributed
storage backend, ii) sending ML training tasks to the Spark

cluster, and iii) sending ML inference tasks to the Spark
cluster.

a) Data Loading: For the first operation, similarly to the
regular usage of Apache Spark, the user must specify the data
to be loaded to the storage backend, however, this data has
to be encrypted before leaving the trusted user premises. This
step is done by extending Spark’s data loading module, which
is responsible for this operation, with a transparent encryption
module (Figure 2- a). This module is responsible for encrypt-
ing the data being loaded into the distributed storage backend
with a symmetric-key encryption scheme (Figure 2- b). Note
that the data to be loaded may be the train and validation
dataset, for training purposes, or the model and data to be
inferred, for inference purposes.

b) Tasks submission: This stage has two main steps and
two main files, namely, the ML task script and the Manifest
file. For these operations, the transparent encryption module is
integrated with MLlib. It is then used to encrypt the ML task
script (Figure 2- 1), which may contain sensitive arguments
(i.e, model parameters) and processing logic, and to decrypt
the outputs (e.g., trained model or inference result) returned
by Spark’s Master node after completing the corresponding
tasks. The Manifest file, which requires user input, contains
the location (e.g., directory) at the storage backend where
the corresponding training or inference data is kept (Figure
2- 2). Also, and as further discussed below, the encryption
module is responsible for exchanging the user’s symmetric
encryption key, task’s scripts, and Manifest file with the Master
node’s SGX enclave (Figure 2- 1 2). This is done only once,
at the task’s bootstrapping phase, and requires establishing a
secure channel between the client and Master’s enclave. This
secure channel guarantees the secure exchange of the user’s
encryption key and the Manifest file whilst the encrypted tasks
scripts can be safely sent via a regular channel.

With the previous design, we ensure that sensitive data,
including users’ encryption keys, and data, the information
contained in ML task scripts, and the output of executing these
tasks, is only accessed in its plaintext format at the trusted user
premises or inside trusted enclaves.

C. SOTERIA Cluster

As mentioned previously, the training and inference ML task
scripts are sent encrypted to Spark’s Master node to avoid
revealing sensitive information. However, the node requires
access to the plaintext information contained in these cryp-
tograms to distribute the required computational load across
several Worker nodes. Therefore, the Spark Driver and Context
modules must be deployed in a secure SGX enclave where the
cryptograms can be decrypted and the plaintext information
can be accessed without breaching security. Note that the
cryptograms can only be decrypted if the secure enclave has
access to the user’s encryption key, thus explaining why the
key must be sent through a secure channel established directly
between the trusted client module and the secure enclave.

For inference operations, the Master node needs to access
the distributed storage backend to retrieve the stored ML
model. As so, the user’s encryption key is again necessary

6

so that the encrypted model is only decrypted and processed
at the secure enclave. Moreover, the Manifest file, also sent
by the trusted client through the established secure channel,
ensures that the Master node only has access to the storage
locations specified at the file (Figure 2- 2). This is important
to prevent malicious attackers from accessing stored data (e.g,
datasets, models) that these should not have access to.

After processing the ML task scripts, the Master’s enclave
establishes secure channels with the enclaves of a set of
Worker nodes to send the necessary computational instruc-
tions3 along with the user’s encryption key and Manifest file
(Figure 2- 3). Secure channels are established between secure
enclaves to avoid external attackers from gaining access to
sensitive information passing through the channels.

The user’s encryption key is needed at the Worker nodes so
that these can read encrypted data (e.g., train dataset or data
to be inferred) from the storage backend while decrypting and
processing it in a secure enclave environment (Figure 2- 4).
The Manifest file is used, once again, to prevent unwanted
accesses to stored data. Furthermore, the enclaves at the
Worker nodes are also able to establish secure channels across
each other for transferring sensitive metadata information such
as model training parameters (Figure 2- 5).

a) SOTERIA Workers: Secure SGX enclaves are applied
in two distinct ways at the Worker nodes. The main rationale
for this is to enable two designs that offer a different balance
in terms of security guarantees and performance.

SML-2SML-1

Worker

SG
X

-E
xe

cu
to

r

C
ac

he1
Tasks

Encryption Module
Data Loading

Enclave New ComponentsVanilla Apache Spark

Worker

E
xe

cu
to

r

C
ac

he

Tasks

Encryption
Module

Data Loading

Executor

C
ac

he

Statistics

Fig. 3: Comparison between SML-1 and SML-2 designs.
b) Secure ML Design 1 (SML-1): The first design aims

at ensuring that all computation done by Spark Workers
is done in a trusted environment. In more detail, executor
processes launched by each Worker node are deployed inside
an enclave, as depicted in Figure 3. Since data read from the
storage backend is always encrypted and is only decrypted
at the enclave, this design ensures that all computation over
plaintext information is done in a trusted enclave environment.
Therefore, this design provides the best security guarantees.
However, as shown in Section VI-A, this extra security has a
toll on performance due to the extra amount of computation
and I/O calls done at the enclave.

c) Secure ML Design 2 (SML-2): The second design
is based on the observation that ML inference and training
operations are composed of different computational steps.
Ones that must operate directly over plaintext information
(e.g., train and inference datasets and model), and by others
that do not require access to this data and are just calculating

3The same metadata sent by a vanilla Spark deployment so that Workers
know what computational operations they must perform.

and collecting general statistics about the operations being
done.

Following this observation, SML-2 decouples statistical
processing, used for assessing the performance of inference
and training tasks (e.g., the calculation of confidence results,
loss functions, table summaries, and probability distributions),
from the actual computation of the ML algorithms done over
plaintext information. As depicted in Figure 3, statistical pro-
cessing is therefore done by executor processes at the untrusted
environment, while the remaining processing endeavors are
done by another set of executors inside a trusted enclave
(Figure 3- 1).

With this approach, one is relaxing security guarantees,
as further discussed next in Section IV-D, while improving
execution time of ML tasks, as discussed in Section VI-B. It
is important to note that both SML-1 and SML-2 designs can
be used transparently by users, thus not affecting the way ML
tasks are submitted and the API to do so.

Finally, after completing the desired computational tasks,
the Worker nodes send the corresponding inference or training
outputs to the Master node, through the established secure
channel (Figure 2- 6). The Master node is then responsible for
merging the partial outputs into the final result and sending
it encrypted, with the user’s encryption key, to the trusted
client module (Figure 2- 7). At the trusted client module, the
result (i.e., trained model or inference output) is decrypted by
the transparent encryption module and returned to the user in
plaintext.

D. Security Analysis

Our security proof is dependent on an intermediate result
that follows naturally from [9], which states that if a func-
tionality can be securely computed via SGX, then the same
functionality using inputs from external storage can also be
securely computed. Next, we provide the main arguments for
SOTERIA’s proof while the full description is in Appendix A.

The role played by SOTERIA’s Master node can be seen
as an extension of the client, establishing secure channels,
providing storage encryption keys, and receiving outputs.
Given that this follows the methodology described in [9],
the Master node can be replaced by a reactive functionality
performing these tasks. Following the same reasoning for the
ML processing stage, each SOTERIA Worker behaves simulta-
neously as a processing node, and as a client providing inputs
to the computation of other Workers (e.g., model training
parameters). This enables us to do a hybrid argument, where
SOTERIA Worker nodes are sequentially replaced by idealized
reactive functionalities executing their respective role within
the ML task script. At this stage, we have a client interacting
with a functionality that forwards encryption keys to other
functionalities that are performing ML processing.

Given that all processing is done in ideal functionalities,
and that all access to external storage is fixed by the ML
Task script, we can have the functionalities processing over
hardcoded client data and replace the secure data storage with
dummy encryptions. Finally, we can collapse the Master node
functionality as part of the Client, since it is only forwarding

7

the client requests, and we reach the ideal world, where all ML
computation is performed in an ideal black-box functionality,
and all other protocol interactions are simulated given the Task
Script and Manifest files. We note that, for simplicity, our
analysis refers to SML-1. The reasoning for SML-2 is exactly
the same, with the caveat that the non-sensitive statistical data
is explicitly revealed as leakage by the functionality to the
simulator in the ideal world.

We now focus on the ML attacks mentioned in Section III-A
and on discussing how SOTERIA aims at mitigating these.

a) Adversarial Samples and Membership Inference:
Authenticated data encryption and the Manifest file aid SML-
1 and SML-2 to preserve the confidentiality and integrity
of the input dataset. These mechanisms ensure that a ma-
licious attacker cannot introduce new or modified samples
to the input dataset when the corresponding model is being
trained. Namely, the input dataset is encrypted by the user
and explicitly defined in the Manifest file at the user’s trusted
premises. The Worker enclaves are bound to only access the
data specified at the Manifest file during the training phase.
Since the model is fully trained inside secure enclaves, a
malicious attacker, at the untrusted servers, does not have
access to query the model being trained.

b) Model Extraction and Model Inversions: SML-1 pre-
vents both of these attacks by protecting the confidence values
for the model being trained. Namely, these values are, again,
computed inside the trusted enclave and never revealed in
plaintext to external attackers at the untrusted servers.

However, SML-2 is not able to prevent these two attacks.
This is a consequence of outsourcing statistical computation,
specifically, the confidence intervals to an untrusted environ-
ment that can be accessed by external attackers.

As mentioned in Section III, analogous attacks to the previ-
ous two that explore instead I/O access patterns or computing
output sizes and time, are not protected by SOTERIA and
should be considered as future research work.

c) Reconstruction Attack: This attack requires access to
the algorithm’s feature vectors. In both SML-1 and SML-2, the
feature vectors are only disclosed inside the trusted enclaves,
thus preventing attackers from accessing them.

E. Implementation

SOTERIA’s open-source prototype is implemented in Java
and Scala, the preferred languages of Apache Spark, and on
top of Apache Spark 2.3.0. Both SML-1 and SML-2 designs
are implemented without requiring any modifications to the
core Apache Spark implementation. Namely, our implementa-
tion only requires modifying Spark’s data loading and MLlib
libraries. Thus, our prototype does not change the distributed
and fault-tolerant nature of the original Spark framework.

Spark’s data loading library was extended to include trans-
parent encryption and decryption. This library is used by the
Client when loading data into the distributed storage backend,
submitting ML task scripts to the Master node, and receiv-
ing the corresponding inference and training results. Data
encryption and decryption are done by resorting to the AES-
GCM-128 authenticated encryption cipher mode, which is

standardized by NIST and provides both privacy and integrity
guarantees [21].

We recall that our current prototype assumes a bootstrapping
phase for establishing a secure channel between the trusted
Client module and the Master’s node SGX enclave, which
is used to securely exchange messages between these nodes.
The establishment of this secure channel is not currently
supported by our prototype, as the main goal of this paper
is to analyze the extra performance overhead of doing server-
side ML computations with the aid of Intel SGX enclaves.
Nevertheless, this channel could be implemented with one
of many key exchange protocols for SGX, with minimal
performance overhead [54], [9].

Nevertheless, it is important to note that the remaining
secure channels used by the Master node enclave to communi-
cate with the Workers’ enclaves, and for Workers’ enclaves to
exchange information among each other, are fully supported
by our prototype and their overhead is considered in our
experimental evaluation. Indeed, these secure channels are
provided by resorting to Graphene-SGX [85].

Graphene-SGX. SOTERIA’s prototype uses version 1.0 of
Graphene-SGX [85], which is an open-source library OS that
facilitates the portability of native applications and libraries to
run inside SGX enclaves. Briefly, the Graphene-SGX library
works similarly to a paravirtualization environment, enabling
native applications and libraries to run unmodified on an
isolated enclave space. I/O and other system calls from the
application are replaced by Graphene-SGX to ensure their
security. For instance, I/O operations to store data at a storage
backend can be encrypted transparently by Graphene-SGX,
while also enabling the creation of secure encrypted channels
to communicate with other enclaves.

Graphene-SGX is based on Drawbridge’s picoprocess [68],
which provides an isolated address space for generic appli-
cations. One of the main components of Graphene-SGX is
its Manifest file. It ensures that applications, running within
Graphene-SGX, can attest the integrity of libraries and data
being used/read by them and, moreover, cannot access other
libraries or data that are not specified in this file.

Applying Graphene-SGX in SOTERIA’s prototype. It must
be noted that the Manifest file, discussed at Section IV-B, is
directly mapped to a Graphene-SGX file in our prototype. For
SML-1’s implementation, besides the path to the data and
ML task scripts inputted by the users, this file also has the
necessary MLlib and core Spark libraries that must run on
a secure SGX enclave at the untrusted cluster deployment.
Briefly, these libraries are the ones that are used by the Spark
Master and Worker nodes to perform ML tasks, including
statistical computation. Note that these are already included
in the file and the user does not need to add them manually.
Furthermore, by using Graphene-SGX, SOTERIA does not
change any of the implementation code at the Spark libraries.
The only exception is that we use our modified data loading
package, which is also used at the Master and Worker nodes
to transparently decrypt data read from the distributed storage
backend and encrypt inference and training results before
sending them back to the client.

8

For the SML-2 implementation, a distinct Manifest file is
used which does not include the MLlib statistical libraries.
To accomplish this, we needed to be intrusive and change the
original MLlib’s implementation, decoupling it into two sub-
libraries, one that contains the statistical logic, and another
with the remaining ML computational logic.
Both designs leverage Graphene-SGX capabilities to ensure
the establishment of secure channels between the enclaves at
the Master and Worker nodes. This is attained by resorting to
the TLS-PSK with AES-GCM cryptographic protocols [30].
We highlight that our prototype fully supports both these
designs and the user can choose which one to use by just
selecting the corresponding Manifest file.

V. METHODOLOGY

We define our evaluation to answer the following questions:
1) How do the two SOTERIA’s designs impact the execution

time of ML workloads?
2) How does SOTERIA compares, in terms of performance,

with state-of-the-art solutions?
3) Can SOTERIA handle different algorithms and dataset

sizes efficiently?

A. Environment

For the evaluation of our solution, we use a Cloudera 6.3
cluster with eight Dell OptiPlex 3070 Small-Form Desktops,
with a 6-core 3.00 GHz Intel Core i5-9500 CPU, 16 GB RAM,
and a 256GB NVMe. The host OS is Ubuntu 18.04.4 LTS, with
Linux kernel 4.15.0. Each machine uses a 10Gbps Ethernet
card connected to a dedicated local network. We use Apache
Spark 2.3.0 and version 2.6 of the Intel SGX Linux SDK and
driver 1.8 [74]. For this environment we increase the memory
of SGX to 4GB, providing a memory swapping space of 4GB.
In our use case, we chose one server as client and Master and
the remaining seven servers as Spark Workers.

B. Workloads

We resort to the HiBench benchmark [44], which allows eval-
uating different machine learning algorithms broadly used and
natively implemented on top of MLlib. Namely, our evaluation
considers seven algorithms, which are detailed in Table II. For
each algorithm, the benchmark suite offers different workload
sizes ranging from Tiny to Gigantic configurations, as seen in
Table II.

C. Setups and metrics

To validate SOTERIA’s performance, we compare both our
architectures, namely SML-1 and SML-2, with a vanilla de-
ployment of Apache Spark that does not provide any privacy
guarantees (Vanilla). Moreover, we compare our solution with
SGX-Spark [31], [73], a state-of-the-art SGX-based secure
Spark solution that shares similar goals with SOTERIA. SGX-
Spark aims at protecting both analytical and ML computation
done at Apache Spark. Implemented with SGX-LKL [69],
this solution is designed to process sensitive information
inside SGX enclaves. Therefore, this is the design that can

be considered as the most similar to the one proposed in
this paper. However, SGX-Spark can only ensure that UDFs
processing is done at a secure enclave. This decision leaves a
large codebase of Spark outside the protected memory region
and, consequently, limits the users to only be able to execute
privacy-preserving machine learning algorithms that leverage
the UDF mechanism.
For each experiment discussed in the next section, we include
the average algorithm execution time and standard deviation
for 3 independent runs. Moreover, the dstat [67] monitoring
tool was used to collect the CPU, RAM, and network con-
sumption at each cluster node.

VI. EVALUATION

We split our evaluation into two different stages to present
our results more clearly. Section VI-A summarizes the main
evaluation observations, while Section VI-B further analyzes
these observations and provides key insights.

A. Performance Overview

Figure 4 shows the execution time of all the setups for the 7
algorithms when using a huge-sized workload configuration.
Moreover, Figures 5a, 5b, 5c and 5d present the performance
evaluation for PCA, GBT, ALS and Linear algorithms for
different workload sizes.
Next, we list our main observations to aid in the characteriza-
tion of these results. Unless stated otherwise, the performance
overhead values discussed in this section correspond to the
number of times that the algorithm’s execution time increases
for a given setup, when compared to the Vanilla Spark de-
ployment results. Observations 1 to 8 correspond to Figure 4,
whilst Observations 9 to 12 refer to Figure 5.
Observation 1. The vanilla Spark deployment’s execution
times for ALS, LDA, Kmeans, PCA, Bayes, Linear, and GBT
algorithms, are, respectively, 55, 401, 155, 655, 33, 657, and
189 seconds.
Observation 2. The execution time for the ALS algorithm
is increased by 3.62x and 4.35x for SML-2 and SML-1,
respectively. SGX-Spark incurs an execution overhead of 4x.
Thus, the three setups have similar results while requiring
approximately more 150 seconds of processing time than the
vanilla deployment. Nevertheless, SML-2 performs slightly
better than the other two approaches.
Observation 3. When executing with the LDA algorithm the
results show a higher execution overhead of 17.40x, 8.89x,
and 15.08x for the SML-1, SML-2, and SGX-Spark setups,
respectively. Moreover, SML-2 outperforms SGX-Spark by a
difference of 41.5 minutes.
Observation 4. Both SOTERIA’s designs surpass the state-
of-the-art solution when evaluating Kmeans. Namely, when
compared with the vanilla deployment, SML-1 increases exe-
cution time by 9.37x and SML-2 by 6.68x. SGX-Spark has an
overhead of 9.7x, which, in comparison with SML-2, requires
more 468 seconds (7.8 minutes) to execute.
Observation 5. When evaluated with PCA, SML-1 and SML-
2 have an execution time of 3.67x and 2.85x, respectively,

9

TABLE II: Representation of the corresponding tasks and time complexity of each algorithm and the data sizes for different
workload configurations.

Algorithms Tasks Time Complexity Workloads
Tiny Large Huge Gigantic

Alternating Least Squares (ALS) [71] Recommendation
Systems

O((m + n)k3 + mnk2)
[35]

193KB 345MB 2GB 4GB

Principal Compt. Analysis (PCA) [91] Dimensionality Reduction O(nm∗min(n,m)+m3)
[22]

256KB 92MB 550MB 688MB

Gradient Boosted Trees (GBT) [27] Prediction O(n ∗ y ∗ ntrees) [78] 36KB 46MB 92MB 183MB
Linear Regression (LR) [89] Classification & Predic-

tion
O(m ∗ n2 + n3) [19] 11GB 134GB 335GB 894GB

Sparse Naive Bayes (Naive Bayes) [98] Multi-class classification O(nm) [23] - - 5GB -
Latent Dirichlet Allocation (LDA) [11] Dimensionality Reduction O(mnt+ t3) [15] - - 2GB -
K-means clustering (K-means) [20] Clustering O(n2) [65] - - 56GB -

0

50

100
150

200

250

E
xe
cu
ti
on

 T
im
e
(s
ec
o
n
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

5
2
se
c.

4
01

 s
ec
.

1
55

 s
ec
.

65
5
se
c.

33
 s
ec
.

13
 s
ec
.

18
9
se
c.

0

1500

3000
4500

6000

7500

E
xe
cu
ti
on

 T
im
e
(s
ec
o
n
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

5
2
se
c.

4
01

 s
ec
.

6
55

 s
ec
.

3
3
se
c.

13
 s
ec
.

18
9
se
c.

0

340

680
1020

1360

1700

E
xe
cu
ti
on

 T
im
e
(s
ec
o
n
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

5
2
se
c.

4
01

 s
ec
.

6
55

 s
ec
.

3
3
se
c.

13
 s
ec
.

18
9
se
c.

0

540

1080
1620

2160

2700

E
xe
cu
ti
on

 T
im
e
(s
ec
o
n
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

5
2
se
c.

4
01

 s
ec
.

6
55

 s
ec
.

3
3
se
c.

13
 s
ec
.

18
9
se
c.

0

50

100
150

200

250

E
xe
cu
ti
on

 T
im
e
(s
ec
o
n
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

5
2
se
c.

4
01

 s
ec
.

6
55

 s
ec
.

3
3
se
c.

13
 s
ec
.

18
9
se
c.

0

5000

10000

15000

20000

E
xe
cu
ti
on

 T
im
e
(s
ec
o
n
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

5
2
se
c.

4
01

 s
ec
.

6
55

 s
ec
.

3
3
se
c.

13
 s
ec
.

18
9
se
c.

0

300

600
900

1200

1500

E
xe
cu
ti
on

 T
im
e
(s
ec
o
n
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

5
2
se
c.

4
01

 s
ec
.

6
55

 s
ec
.

3
3
se
c.

13
 s
ec
.

18
9
se
c.

Fig. 4: Execution time for each algorithm with Huge workload.
The legend is as follows: Vanilla Spark; SML-1; SML-2;

SGX-Spark.

over the vanilla results, while SGX-Spark increases the com-
putational time by 3.95x. Similar to Kmeans, both SML-1 and
SML-2 surpass SGX-Spark. Moreover, when comparing SML-
2 with SGX-Spark, we observe a decrease of 768 seconds,
nearly 12 minutes, in execution time.
Observation 6. With the Huge workload and Naive Bayes,
SOTERIA exhibits an overhead of 6.24x for SML-1, which is
higher than the 5.33x observed for SGX-Spark. Also, SML-2
continues to present lower overhead (3.58x) when compared
with SGX-Spark. The absolute difference of execution time
between SML-2 and SML-1 is 88 seconds, whilst with SGX-
Spark, SML-2 decreases the execution time by 61 seconds.
Observation 7. For the Linear Regression algorithm, SML-1
shows an average overhead of 27.31x and SML-2 lowers this
execution time to 18.2x, whilst SGX-Spark shows an overhead
similar with SML-1. These results portray the greatest decrease
in execution time when comparing SML-2 and the SGX-
Spark state-of-the-art solution, corresponding to 1.4 hours of
execution time.
Observation 8. With the GBT algorithm, SML-1 shows sim-
ilar execution times when compared with SGX-Spark, with a
7.04x and 6.64x increase, respectively. Following the previous
results, SML-2 outperforms both approaches, presenting an
overhead of 4.79x, about 248 seconds less than SGX-Spark.
Observation 9. For Tiny and Large workloads with the
PCA algorithm, SOTERIA performs similarly for our two
approaches, while outperforming SGX-Spark. When dealing
with larger workload sizes, the overhead imposed by our
solutions increases, however, it continues to show better per-
formance than SGX-Spark. SML-1 has an overhead of 1.96x to

5.15x, for Tiny and Gigantic workloads, whilst SML-2 incurs
an overhead of 1.72x to 3.79x. When compared with SGX-
Spark, these results portray an absolute difference of 4 and
436 seconds, for SML-1, and 7 seconds and 33 minutes, for
SML-2.
Observation 10. Regarding the GBT algorithm, SOTERIA
shows significant variance in terms of execution time when
dealing with different workload sizes. For the Tiny workload,
the overhead of SML-1, SML-2, and SGX-Spark are similar.
However, when increasing the workload size, the difference
between the three approaches is more visible. Namely, SML-2
(Tiny-2.13x and Gigantic-5.88x) outperforms both approaches
while SML-1 (Tiny-2.18x, Gigantic-9.35x) and SGX-Spark
(Tiny-2.3x, Gigantic-10.34x) maintain a similar overhead.
Observation 11. With the ALS algorithm, SOTERIA maintains
a more constant increase of the execution time between the
four workload size configurations. SML-2 shows an execution
time for the Tiny and Gigantic workloads of 2.04x and 3.28x
when compared with the vanilla Spark. Also, SML-2 continues
to present a lower overhead than SML-1 and SGX-Spark
for all the workloads, with the execution time decreasing
8 seconds for the Tiny workload and 191 seconds for the
Gigantic workload.
Observation 12. For the linear regression algorithm, SOTERIA
exhibits more overhead for increasing data sizes. With the
Tiny workload, SML-1 has an overhead of 14.39x and SML-2
shows an overhead of 12.95x. As for the Gigantic workload,
SML-1 incurs an overhead of 30.04x and SML-2 of 23.89x. If
one compares with SGX-Spark, our second design decreases
the execution time in 43 seconds for the Tiny workload and
4.31 hours for the Gigantic workload.
Observation 13. Overall, the resource consumption (CPU and
memory) and network traffic for both SOTERIA designs are
similar to the vanilla Spark baseline. In more detail, the SML-1
design with Linear Regression presents the upper-bound limit
for both memory and CPU, showing an increase of 9% in both
when compared with the vanilla Spark. Whilst the network
shows an upper-bound limit of 15% in SML-1 with LDA
due to the extra encrypted data paddings being sent between
Worker nodes.
Observation 14. As a set point, we do not intend to trade-
off accuracy for security. The metrics used for evaluation
(e.g., accuracy, root mean square error, ROC) are the ones

10

commonly used for each algorithm. The accuracy results
obtained corroborate such claims were both SML-1 and SML-
2 show accuracy results similar to the Vanilla version.

B. Analysis

We now further analyze the experimental observations ac-
cording to three main topics, i) dataset size; ii) algorithm
complexity; iii) size of trusted computing base (TCB).
a) Dataset size: Figure 5 shows the performance degradation
expected for the PCA, GBT, ALS, and Linear Regression
algorithms with increasing dataset sizes. Namely, the results
show that, for PCA, GBT, and ALS workloads with smaller
datasets, SML-1 and SML-2 perform similarly. On the other
side, as the size of the datasets increases, the more operations
and data must be transferred to the SGX enclave, thus having
a more noticeable toll on the overall performance. Indeed,
the page swapping mechanism of SGX, which occurs due
to its memory limitations, incurs a significant performance
penalty [18], [96]. For example, when compared to the vanilla
setup, the PCA algorithm overhead for SML-1 varies between
1.96x, for Tiny workload, and 5.15x, for Gigantic workload.
While for SML-2, the execution time increases 1.78x in
the Tiny workload and 3.79x in the Gigantic workload. The
most expensive algorithm in terms of performance is Linear
Regression as it is the one that processes more data for the
distinct workload sizes (Table II).
When compared with SGX-Spark, our second design deals
better with the increase of data volume. Indeed, as seen in
Observations 9-12, we are able to reduce the execution time
from a few seconds to more than 4 hours when compared to
the state-of-the-art solution.
b) Algorithm Complexity: The execution times of ALS and
LDA algorithms are very different even though their dataset
size is similar. These results are explained by the computa-
tional complexity of each algorithm. For the ALS algorithm,
the synthetic workload data generated by the benchmark has
a low hidden k dimension with a low ranking of 10, simplify-
ing the required computation and decreasing execution time.
Whilst, for the LDA algorithm, the computational complexity,
and consequently the execution time, are increased due to
the higher number of dependencies between values at the
generated synthetic workload data. Observations 2 and 3
emphasize the performance of these two algorithms for a
similar workload size.
Similarly to LDA, Observations 5 and 9 show that PCA
complexity and performance overhead also increase with the
processed data volume. Commonly classified as regression
and classification algorithms, Bayes and GBT have a similar
performance, as seen in Observation 6 and Observation 8. The
data sizes of these two algorithms are completely different,
where GBT uses 91.7MB and Bayes has 5.2GB. However,
the Bayes algorithm iterates only one time over the data,
while GBT iterates over several decision trees to find its
best model. Kmeans performance is highly dependent on the
chosen dataset size. This is also true for the Linear Regression
algorithm (Observations 4 and 7).

c) Size of TCB: By analyzing the results from Section
VI-A, we can observe that SGX-Spark outperforms SML-
1 for some of the evaluated algorithms (Observation 2, 3,
6-8). As SGX-Spark only protects User Defined Functions
(UDFs)4, the performance overhead imposed by the larger
trusted computing base of our solution is naturally higher.
Nevertheless, when compared to SGX-Spark, SML-1 never
surpasses a performance overhead superior to 1.15x, while
covering a wider range of machine learning attacks. Indeed, for
algorithms such as PCA, and Kmeans, SML-1 has a similar or
slightly inferior execution time (Observations 4 and 5). This
happens because, for these algorithms, both SGX-Spark and
SML-1 perform similar computations at the secure enclaves.
For instance, in PCA, the eigenvalue decomposition needs to
be performed inside the enclave.
Finally, SML-2 always outperforms SGX-Spark and SML-
1 (Observations 2-8). This is possible because of the TCB
reduction and security guarantees relaxation present in our
second design. Indeed, the results show that this solution can
outperform SGX-Spark by up to 41% for algorithm LDA with
the Huge workload (Observation 3).

C. Discussion

The results discussed in this section show that SOTERIA can
surpass a state-of-the-art solution, namely SGX-Spark, regard-
ing performance and coverage of machine learning attacks
(Table I).
In more detail, SOTERIA’s SML-1 design provides a more
robust solution in terms of security, when compared with
the state-of-the-art approaches, by being the first approach
to consider the adversarial samples, model extraction, model
inversion, reconstruction, and membership inference attacks
discussed at Section III-A. Notably, this design is able to do
so while exhibiting similar performance to SGX-Spark.
The SML-2 design relaxes security guarantees in order to offer
significantly better execution times for all tested algorithms.
This is possible because the TCB for this solution is reduced,
thus mitigating the performance bottlenecks imposed by the
SGX technology. Interestingly, this solution is still able to
cope with adversarial samples, reconstruction, and member-
ship inference attacks.
With this, choosing which design to use relies on the user’s
needs regarding security and performance. The first design
should be chosen if the main goal is to guarantee the confi-
dentiality and integrity of both models’ intellectual property
and sensitive data. On the other hand, the second design, while
relaxing the security guarantees, discards the need to protect
the model. So, if a user wants to train a common model without
novel and state-of-the-art parameters, the second design still
guarantees the protection of sensitive data while ensuring that
a malicious attacker is unable to introduce adversarial samples
to the training set.

4User Defined Functions are a feature offered by Apache Spark where the
user can define a new Spark function by defining a Scala function, these
functions, contrarily to Spark predefined functions, are not optimized [86].

11

0
10
20
30
40
50
60

E
xe
cu
ti
o
n

 T
im
e
(s
ec
on
d
s)

Tiny Large

Huge Gigantic

11
5

 s
ec
.

6
5
5

 s
ec
.

11
2
8

 s
ec
.

0

100

200

300

400

500
Tiny Large

Huge Gigantic

11
5

 s
ec
.

6
5
5

 s
ec
.

11
2
8

 s
ec
.

0

600

1200

1800

2400

3000

Tiny Large

Huge Gigantic

11
5

 s
ec
.

6
5
5

 s
ec
.

11
2
8

 s
ec
.

0

1500

3000

4500

6000

7500

Tiny Large

Huge Gigantic

11
5

 s
ec
.

6
5
5

 s
ec
.

11
2
8

 s
ec
.

(a) PCA

0

10

20

30

40

50

E
xe
cu
ti
o
n

 T
im
e
(s
ec
on
d
s)

Tiny Large

Huge Gigantic

11
0

 s
ec
.

1
8
9

 s
ec
.

2
6
6

 s
ec
.

0

100

200

300

400

500
Tiny Large

Huge Gigantic

11
0

 s
ec
.

1
8
9

 s
ec
.

2
6
6

 s
ec
.

0
200
400
600
800
1000
1200
1400

Tiny Large

Huge Gigantic

11
0

 s
ec
.

1
8
9

 s
ec
.

2
6
6

 s
ec
.

0
500
1000
1500
2000
2500
3000

Tiny Large

Huge Gigantic

11
0

 s
ec
.

1
8
9

 s
ec
.

2
6
6

 s
ec
.

(b) GBT

0

10

20

30

40

50

E
xe
cu
ti
on

 T
im
e
(s
ec
on
d
s)

Tiny Large

Huge Gigantic

3
1

 s
ec
.

5
2

 s
ec
.

1
4
8

 s
ec
.

0

50

100

150

200
Tiny Large

Huge Gigantic

3
1

 s
ec
.

5
2

 s
ec
.

1
4
8

 s
ec
.

0

50

100

150

200

250

Tiny Large

Huge Gigantic

3
1

 s
ec
.

5
2

 s
ec
.

1
4
8

 s
ec
.

0

200

400

600

800

Tiny Large

Huge Gigantic

3
1

 s
ec
.

5
2

 s
ec
.

1
4
8

 s
ec
.

(c) ALS

0

50

100

150

200

250

E
xe
cu
ti
on

 T
im
e
(s
ec
o
n
d
s)

Tiny Large

Huge Gigantic

1
3

 s
ec
.

1
4
1

 s
ec
.

6
5
7

 s
ec
.

1
9
3
6

 s
ec
.

0

500

1000

1500

2000

2500
Tiny Large

Huge Gigantic

1
3

 s
ec
.

1
4
1

 s
ec
.

6
5
7

 s
ec
.

1
9
3
6

 s
ec
.

0

5000

10000

15000

20000

Tiny Large

Huge Gigantic

1
3

 s
ec
.

1
4
1

 s
ec
.

6
5
7

 s
ec
.

1
9
3
6

 s
ec
.

0

13000

26000

39000

52000

65000

Tiny Large

Huge Gigantic

1
3

 s
ec
.

1
4
1

 s
ec
.

6
5
7

 s
ec
.

1
9
3
6

 s
ec
.

(d) LR

Fig. 5: Runtime execution for PCA, GBT, ALS and Linear Regression for Tiny, Large, Huge and Gigantic workloads. The
legend is as follows: Vanilla Spark; SML-1; SML-2; SGX-Spark.

VII. RELATED WORK

Secure machine learning solutions can be classified into four
main groups based on the privacy-preserving techniques being
used: i) encryption-based [12], [6], [29], ii) secure multi-party
computation [58], [70], [53], iii) differential privacy [76], [1]
and, iv) trusted execution environments (TEEs) [62], [83],
[40], [82], [42]. This paper is included in group iv).

Privacy-preserving machine learning with TEEs. Chiron
[40] enables training machine learning models on a cloud ser-
vice without revealing information about the training dataset.
Also, once the model is trained, only the data owners can
query it. Myelin [42] offers a similar solution to Chiron while
adding differential privacy and data oblivious protocols to the
algorithms to mitigate the exploits from side-channels and the
information leaked by the parameters.
SOTERIA differs from these works as it is able to cover
both training and inference phases while providing additional
protection against adversarial samples, reconstruction, and
membership inference attacks (Table I).
In [62], five machine learning algorithms are re-implemented
with data oblivious protocols.
These protocols are combined with TEEs to ensure strong
privacy guarantees while preventing the exploitation of side-
channel attacks that observe memory, disk, and network access
patterns to infer private information. Unlike this solution,
SOTERIA aims at transparently supporting all machine learning
algorithms built within the MLlib Spark’s API. Also, we
underline that side-channel attacks are currently not considered
by, and are therefore orthogonal, to our work. Nevertheless,
solutions such as LibSodium [52] would work as countermea-
sures to these attacks [24].

Privacy-preserving analytics with TEEs. TEEs have also
been applied to ensure privacy-preserving computation and
storage for general-purpose analytic frameworks [14], [50],
[75].
In comparison to SGX-Spark [31], detailed in Section V-C,
SOTERIA supports a broader set of algorithms (i.e., any
algorithm that users can build with the MLlib API) while
protecting users from a more complete set of common attacks
to the machine learning pipeline, as shown in Table I.
Opaque [97] and Uranos [46] also resort to SGX to provide
secure analytics but only support a very restricted set of
ML algorithms. Briefly, the first solution combines SGX with

oblivious protocols while requiring the re-implementation of
default Apache Spark UDF operators. The second solution
aims at simplifying the combination of Big Data applica-
tions with SGX enclaves. Namely, it addresses an Apache
Spark use-case where it is shown that UDF processing can
be ported to secure enclaves. However, the proposed use-
case only contemplates a single machine learning workload.
SOTERIA differs from these works since it supports a broader
spectrum of machine learning algorithms (i.e., it is not limited
to algorithms built on top of Spark UDFs) while avoiding
changing internal Spark operators to achieve privacy.

Privacy-preserving deep learning with TEEs. It is also
worth mentioning that TEEs have also been applied to en-
sure privacy for the training and inference of deep neural
networks[83], [82], [48], [51]. However, there is a substantial
difference between the internals of ML and DL frameworks
and algorithms. Therefore, the privacy-preserving considera-
tions and designs must be adapted to each scenario.

To the best of our knowledge, SOTERIA is the first framework
to cover a large spectrum of machine learning exploits (Table
I) and to provide two TEE-based designs that balance different
trade-offs in terms of security and performance. Also, it
supports a wide variety of machine learning algorithms, as
shown in our evaluation, while not changing how users build
and run their algorithms with Spark MLlib.

VIII. CONCLUSION

This paper presents SOTERIA, a system for distributed privacy-
preserving machine learning. Our solution builds upon the
combination of Apache Spark and TEEs to protect sensitive
information being processed at third-party infrastructures dur-
ing the machine learning training and inference phases.
In more detail, we propose two different designs with different
balances in terms of performance and security. The first (SML-
1) builds on the idea that to propose robust security guarantees
and cover a larger spectrum of attacks than related work, SGX
must be used for a majority of Apache Spark processing steps.
The second design (SML-2), trades off security guarantees to
reduce the Apache’s trusted computing base that must be exe-
cuted on a secure enclave. This entails a smaller performance
overhead at the cost of not being able to protect users from
model extraction and inversion attacks.

12

We perform an extensive evaluation of SOTERIA and compare
it with the SGX-Spark state-of-the-art solution. Results show
that SOTERIA’s SML-1 is able to maintain similar performance
to SGX-Spark while covering a wider range of known machine
learning attacks. However, by relaxing the security offered
by SOTERIA’s first design, while still providing stronger
guarantees than SGX-Spark, SML-2 surpasses the state-of-the-
art results by up to 41%. Also, for both designs, we show
that the performance overhead for seven different algorithms
ranges from 1.7x to 30.8x when compared to a non-secure
baseline deployment of Apache Spark.
We strongly believe that SOTERIA’s twofold approach is a
fundamental asset to push forward a wider usage of secure
machine learning in third-party cloud computing services
while enabling users to choose the best compromises in terms
of performance and security for their data and workloads.

ACKOWLEDGEMENT

We thank Ricardo Macedo, Tânia Esteves, Rogério Pontes,
Mariana Miranda and Vı́tor Enes for their comments and sug-
estions to improve the paper. This work was supported by the
Portuguese Foundation for Science and Technology through
a PhD Fellowship (SFRH/BD/146528/2019 – Cláudia Brito)
and the project AIDA - Adaptive, Intelligent and Distributed
Assurance Platform (reference POCI-01-0247-FEDER-045907
- João Paulo), co-financed by the ERDF - European Regional
Development Fund through the Operacional Program for Com-
petitiveness and Internationalisation - COMPETE 2020 and by
the Portuguese Foundation for Science and Technology - FCT
under CMU Portugal.

REFERENCES

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 308–318.

[2] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Comput. Surv., vol. 51, no. 4, pp. 79:1–79:35, Jul. 2018.

[3] M. Al-Rubaie and J. M. Chang, “Reconstruction attacks against mobile-
based continuous authentication systems in the cloud,” IEEE Transac-
tions on Information Forensics and Security, vol. 11, no. 12, pp. 2648–
2663, 2016.

[4] T. Alves, “Trustzone: Integrated hardware and software security,” White
paper, 2004.

[5] AMD, “Amd secure encrypted virtualization (sev),” https://developer.
amd.com/sev/, (Last accessed on 24/02/2021).

[6] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving deep
learning via additively homomorphic encryption,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2017.

[7] G. Ateniese, G. Felici, L. V. Mancini, A. Spognardi, A. Villani, and
D. Vitali, “Hacking smart machines with smarter ones: How to extract
meaningful data from machine learning classifiers,” arXiv preprint
arXiv:1306.4447, 2013.

[8] M. Azure, “Azure confidential computing,” https://azure.microsoft.com/
en-us/solutions/confidential-compute/, (Last accessed on 05/01/2021).

[9] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R. Sadeghi, G. Scerri,
and B. Warinschi, “Secure multiparty computation from sgx,” in In-
ternational Conference on Financial Cryptography and Data Security.
Springer, 2017, pp. 477–497.

[10] ——, “Secure multiparty computation from sgx,” in Financial Cryptog-
raphy and Data Security, A. Kiayias, Ed. Cham: Springer International
Publishing, 2017, pp. 477–497.

[11] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
the Journal of machine Learning research, vol. 3, pp. 993–1022, 2003.

[12] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data.” in NDSS, vol. 4324, 2015, p. 4325.

[13] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
in International Conference on Learning Representations, 2018.

[14] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt, M. Lorenz, C. Fetzer,
P. Pietzuch, and R. Kapitza, “Securekeeper: confidential zookeeper
using intel sgx,” in Proceedings of the 17th International Middleware
Conference, 2016, pp. 1–13.

[15] D. Cai, X. He, and J. Han, “Training linear discriminant analysis in
linear time,” in 2008 IEEE 24th International Conference on Data
Engineering. IEEE, 2008, pp. 209–217.

[16] R. Canetti, “Universally composable security: a new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, 2001, pp. 136–145.

[17] J. I. Choi and K. R. Butler, “Secure multiparty computation and trusted
hardware: Examining adoption challenges and opportunities,” Security
and Communication Networks, vol. 2019, 2019.

[18] T. Dinh Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schiavoni, P. Felber,
and D. Hagimont, “Everything you should know about intel sgx perfor-
mance on virtualized systems,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, vol. 3, no. 1, pp. 1–21, 2019.

[19] J. Dowling, “Id2223 lecture 2: Distributed ml and linear
regression,” https://www.kth.se/social/files/5a040fe156be5be5f93667e9/
ID2223-02-ml-pipelines-linear-regression.pdf, november 2017, (Last
accessed on 01/12/2020).

[20] R. Dubes and A. K. Jain, “Clustering techniques: the user’s dilemma,”
Pattern Recognition, vol. 8, no. 4, pp. 247–260, 1976.

[21] M. J. Dworkin, Recommendation for block cipher modes of operation:
Galois/counter mode (gcm) and gmac. National Institute of Standards
& Technology, 2007.

[22] T. Elgamal and M. Hefeeda, “Analysis of pca algorithms in distributed
environments,” arXiv preprint arXiv:1503.05214, 2015.

[23] C. Elkan, “Boosting and naive bayesian learning,” in Proceedings of the
International Conference on Knowledge Discovery and Data Mining,
1997.

[24] T. Esteves, R. Macedo, A. Faria, B. Portela, J. Paulo, J. Pereira, and
D. Harnik, “Trustfs: An sgx-enabled stackable file system framework,”
in 2019 38th International Symposium on Reliable Distributed Systems
Workshops (SRDSW). IEEE, 2019, pp. 25–30.

[25] T. A. S. Foundation, “Apache cassandra,” https://cassandra.apache.org/,
(Last accessed on 24/02/2021).

[26] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1322–1333.

[27] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[28] C. Gentry and D. Boneh, A fully homomorphic encryption scheme.
Stanford University Stanford, 2009, vol. 20, no. 09.

[29] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International Conference on
Machine Learning. PMLR, 2016, pp. 201–210.

[30] Graphene-SGX, “Performance tuning and analysis — graphene docu-
mentation,” https://graphene.readthedocs.io/en/latest/devel/performance.
htmls, (Last accessed on 07/02/2021).

[31] L.-S. D. . S. L. Group, “Sgx-spark,” https://github.com/lsds/sgx-spark,
(Last accessed on 15/02/2021).

[32] A. Hadoop.
[33] M. Hahnel, W. Cui, and M. Peinado, “High-resolution side channels

for untrusted operating systems,” in 2017 USENIX Annual Technical
Conference (USENIX ATC 17), 2017, pp. 299–312.

[34] A. HBase, https://hbase.apache.org/, (Last accessed on 24/02/2021).
[35] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, “Fast matrix factorization

for online recommendation with implicit feedback,” in Proceedings
of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval, 2016, pp. 549–558.

[36] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-
preserving machine learning as a service,” Proceedings on Privacy
Enhancing Technologies, vol. 2018, no. 3, pp. 123–142, 2018.

[37] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 603–618.

[38] A. Hive.

https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://www.kth.se/social/files/5a040fe156be5be5f93667e9/ID2223-02-ml-pipelines-linear-regression.pdf
https://www.kth.se/social/files/5a040fe156be5be5f93667e9/ID2223-02-ml-pipelines-linear-regression.pdf
https://cassandra.apache.org/
https://graphene.readthedocs.io/en/latest/devel/performance.htmls
https://graphene.readthedocs.io/en/latest/devel/performance.htmls
https://github.com/lsds/sgx-spark
https://hbase.apache.org/

13

[39] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar, “Ad-
versarial machine learning,” in Proceedings of the 4th ACM workshop
on Security and artificial intelligence. ACM, 2011, pp. 43–58.

[40] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel, “Chi-
ron: Privacy-preserving machine learning as a service,” arXiv preprint
arXiv:1803.05961, 2018.

[41] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed
sandbox for untrusted computation on secret data,” ACM Transactions
on Computer Systems (TOCS), vol. 35, no. 4, pp. 1–32, 2018.

[42] N. Hynes, R. Cheng, and D. Song, “Efficient deep learning on multi-
source private data,” arXiv preprint arXiv:1807.06689, 2018.

[43] IBM, “Data shield - ibm cloud data shield,” https://www.ibm.com/cloud/
data-shield, (Last accessed on 05/01/2021).

[44] Intel, “Intel-bigdata/hibench: Hibench is a big data benchmark
suite.” https://github.com/Intel-bigdata/HiBench, (Last accessed on
21/02/2021).

[45] S. Iqbal, M. L. M. Kiah, B. Dhaghighi, M. Hussain, S. Khan, M. K.
Khan, and K.-K. R. Choo, “On cloud security attacks: A taxonomy and
intrusion detection and prevention as a service,” Journal of Network and
Computer Applications, vol. 74, pp. 98–120, 2016.

[46] X. J. Jiang, C. Tzs, O. Li, T. Shen, and S. Zhao, “Uranus: Simple,
efficient sgx programming and its applications,” in Proceedings of the
15th ACM ASIA Conference on Computer and Communications Security
(ASIACCS ‘20), 2020.

[47] S. Kim, Y. Shin, J. Ha, T. Kim, and D. Han, “A first step towards
leveraging commodity trusted execution environments for network ap-
plications,” in Proceedings of the 14th ACM Workshop on Hot Topics
in Networks, 2015, pp. 1–7.

[48] R. Kunkel, D. L. Quoc, F. Gregor, S. Arnautov, P. Bhatotia, and
C. Fetzer, “Tensorscone: a secure tensorflow framework using intel sgx,”
arXiv preprint arXiv:1902.04413, 2019.

[49] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine
learning at scale,” in 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings, 2017.

[50] D. Le Quoc, F. Gregor, J. Singh, and C. Fetzer, “Sgx-pyspark: Secure
distributed data analytics,” in The World Wide Web Conference, 2019,
pp. 3564–3563.

[51] T. Lee, Z. Lin, S. Pushp, C. Li, Y. Liu, Y. Lee, F. Xu, C. Xu, L. Zhang,
and J. Song, “Occlumency: Privacy-preserving remote deep-learning
inference using sgx,” in The 25th Annual International Conference on
Mobile Computing and Networking, 2019, pp. 1–17.

[52] LibSodium, “Introduction - libsodium documentation,”
https://libsodium.gitbook.io/doc/, (Last accessed on 03/02/2021).

[53] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 619–631.

[54] T. Machida, D. Yamamoto, I. Morikawa, H. Kokubo, and H. Kojima,
“Poster: A novel framework for user-key provisioning to secure enclaves
on intel sgx.”

[55] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” Hasp@ isca, vol. 10, no. 1,
2013.

[56] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning
in apache spark,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235–1241, 2016.

[57] MLlib, https://spark.apache.org/mllib/, (Last accessed on 07/02/2021).
[58] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-

preserving machine learning,” in 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 2017, pp. 19–38.

[59] U. D. of Heatlh and H. Services, “Hipaa for professionals — hhs.gov,”
https://www.hhs.gov/hipaa/for-professionals/index.html, last accessed on
21/02/2021.

[60] M. Ogburn, C. Turner, and P. Dahal, “Homomorphic encryption,”
Procedia Computer Science, vol. 20, pp. 502–509, 2013.

[61] S. J. Oh, M. Augustin, M. Fritz, and B. Schiele, “Towards reverse-
engineering black-box neural networks,” in International Conference on
Learning Representations, 2018.

[62] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning
on trusted processors,” in 25th USENIX Security Symposium (USENIX
Security 16), 2016, pp. 619–636.

[63] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer, “Varys:
Protecting sgx enclaves from practical side-channel attacks,” in 2018
Usenix Annual Technical Conference (USENIX ATC 18), 2018,
pp. 227–240.

[64] C. Orlandi, “Is multiparty computation any good in practice?” in
ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing - Proceedings, 2011.

[65] M. K. Pakhira, “A linear time-complexity k-means algorithm using
cluster shifting,” in 2014 International Conference on Computational
Intelligence and Communication Networks. IEEE, 2014, pp. 1047–
1051.

[66] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “Sok: Security
and privacy in machine learning,” in 2018 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2018, pp. 399–414.

[67] A. Pollock, “dstat(1) - linux man page,” Dec. 2020, (Last accessed on
03/02/2021). [Online]. Available: https://linux.die.net/man/1/dstat

[68] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C.
Hunt, “Rethinking the library os from the top down,” in Proceedings
of the sixteenth international conference on Architectural support for
programming languages and operating systems, 2011, pp. 291–304.

[69] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov,
and P. Pietzuch, “Sgx-lkl: Securing the host os interface for trusted
execution,” arXiv preprint arXiv:1908.11143, 2019.

[70] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation frame-
work for machine learning applications,” in Proceedings of the 2018 on
Asia Conference on Computer and Communications Security, 2018, pp.
707–721.

[71] R. Sands and F. W. Young, “Component models for three-way data:
An alternating least squares algorithm with optimal scaling features,”
Psychometrika, vol. 45, no. 1, pp. 39–67, 1980.

[72] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “Vc3: Trustworthy data analytics in the cloud
using sgx,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 38–54.

[73] C. Segarra, R. Delgado-Gonzalo, M. Lemay, P.-L. Aublin, P. Pietzuch,
and V. Schiavoni, “Using trusted execution environments for secure
stream processing of medical data,” in IFIP International Conference on
Distributed Applications and Interoperable Systems. Springer, 2019,
pp. 91–107.

[74] I. SGX, “Intel(r) software guard extensions for linux* os,” https://github.
com/intel/linux-sgx, (Last accessed on 21/12/2020).

[75] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan, “Sgx-bigmatrix: A
practical encrypted data analytic framework with trusted processors,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1211–1228.

[76] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1310–1321.

[77] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 2017, pp. 3–18.

[78] S. Si, H. Zhang, S. Keerthi, D. Mahajan, I. Dhillon, and C.-J. Hsieh,
“Gradient boosted decision trees for high dimensional sparse output,” in
International conference on machine learning, 2017.

[79] A. Spark, “Overview - spark 2.4.0 documentation,”
https://spark.apache.org/docs/2.4.0/, last accessed on 20/02/2021.

[80] S. J. Stolfo, M. B. Salem, and A. D. Keromytis, “Fog computing:
Mitigating insider data theft attacks in the cloud,” in 2012 IEEE
Symposium on Security and Privacy Workshops, 2012, pp. 125–128.

[81] H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and privacy challenges
in cloud computing environments,” IEEE Security & Privacy, vol. 8,
no. 6, pp. 24–31, 2010.

[82] S. Tople, K. Grover, S. Shinde, R. Bhagwan, and R. Ramjee, “Privado:
Practical and secure dnn inference,” arXiv preprint arXiv:1810.00602,
2018.

[83] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private ex-
ecution of neural networks in trusted hardware,” arXiv preprint
arXiv:1806.03287, 2018.

[84] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016, pp. 601–618.

[85] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical
library os for unmodified applications on sgx,” in 2017 USENIX Annual
Technical Conference (USENIX ATC 17), 2017, pp. 645–658.

https://www.ibm.com/cloud/data-shield
https://www.ibm.com/cloud/data-shield
https://github.com/Intel-bigdata/HiBench
https://libsodium.gitbook.io/doc/
https://spark.apache.org/mllib/
https://www.hhs.gov/hipaa/for-professionals/index.html
https://linux.die.net/man/1/dstat
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx

14

[86] S. U. D. F. (UDFs), “Spark 3.0.1 documentation,” https://spark.
apache.org/docs/latest/sql-ref-functions-udf-scalar.html, (Last accessed
on 03/02/2021).

[87] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel sgx kingdom with transient out-of-
order execution,” in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 991–1008.

[88] P. Voigt and A. Von dem Bussche, “The eu general data protection regu-
lation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer International
Publishing, 2017.

[89] H. M. Wagner, “Linear programming techniques for regression analysis,”
Journal of the American Statistical Association, vol. 54, no. 285, pp.
206–212, 1959.

[90] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine
learning,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 36–52.

[91] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp.
37–52, 1987.

[92] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 640–656.

[93] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Presented
as part of the 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12). San Jose, CA: USENIX, 2012, pp.
15–28.

[94] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark : Cluster Computing with Working Sets,” Proceedings of the
USENIX conference on Hot topics in cloud computing, p. 10, 2010.

[95] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[96] C. Zhao, D. Saifuding, H. Tian, Y. Zhang, and C. Xing, “On the
performance of intel sgx,” in 2016 13Th web information systems and
applications conference (WISA). IEEE, 2016, pp. 184–187.

[97] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), 2017, pp. 283–298.

[98] Z. Zheng, Y. Cai, Y. Yang, and Y. Li, “Sparse weighted naive bayes
classifier for efficient classification of categorical data,” in 2018 IEEE
Third International Conference on Data Science in Cyberspace (DSC).
IEEE, 2018, pp. 691–696.

APPENDIX

We now discuss the privacy-preserving security of the SOTE-
RIA protocol. The goal is to reduce the security of our system
to the security of the underlying security mechanisms, namely
the isolation guarantees of Intel SGX and the bootstrapped
secure channels, and the indistinguishability properties of
encryption schemes.
The security goal consists in demonstrating that SOTERIA
ensures privacy-preserving machine learning. Concretely, this
means that the behavior displayed by SOTERIA in the real-
world is indistinguishable from the one displayed by an ide-
alized functionality in the ideal-world, that simply computes
over the task script and provides an output via secure channel.
The only information revealed during this process is the length
of I/O, and the access patterns to the external storage where
data is kept. Formally, this security goal is defined using the
real-versus-ideal world paradigm, similarly to the Universal
Composability [16] framework.
We begin with a more formal description of our security
model. Then, we present an intermediate result for ensuring
the security of enclaves relying on external storage. We can

finally specify the behavior of the Client, Master and Workers,
and present the full proof.

A. Formal Security Model

Our model considers external environment Z and internal
adversary A. Π denotes the protocol running in the real world,
and S and F denote the simulator and functionality, respec-
tively, running in the ideal-world. The real-world considers a
Client C, a Master node M and 2 Worker nodes W1 and W2.
This is for simplicity, as the definition and proof can be easily
generalized to consider any number of Worker nodes. We also
consider a global storage G, which is initialized by Z before
starting the protocol. The Ideal functionality is parametrised by
this external storage F¡G¿, and will reveal the access patterns
via leakage function L.5

In the real-world, Z begins by providing public inputs to C
in the form of (s,m), where s is the task script, and m is
the manifest detailing data in G to be retrieved.6 The Client
will then execute protocol Π, sending messages to M , W1 and
W2. When the script is concluded, output is provided to C,
finally being returned to Z . A can observe all communication
between C,M,W1,W2 and G.
In the ideal world, (s,m) are provided to dummy Client C,
which in turn forwards them to F¡G¿. The functionality will
simply run the protocol and forward the output to C, which
in turn is returned to Z . All the communication observed by
A must be emulated by simulator S, which receives (s,m),
leakage L produced from the functionality interaction with
storage G, and the size of the output.
Security is predicated on ensuring that S does not require
any sensitive information (contained in G) to emulate the
communication to A. Given that we consider a semi-honest
adversary, we can simplify the interaction with the system
and instead discuss equality of views, as Z and A are unable
to deviate the system from its expected execution. This is
captured by the following definition.
Definition 1: Let Real denote the view of Z in the real-world,
and let Ideal denote the view of Z in the ideal-world. Protocol
Π securely realizes F for storage G if, for all environments
Z and all adversaries A,

RealZ,A,Π(G) ≈ IdealZ,A,S,F (G)

B. Intermediate Result

For convenience, SOTERIA does not require the Client to
provide input data at the time of the ML processing, and
instead the Workers are given access to an external storage
from which to retrieve this data. When discussing the security
in the context of secure outsourced computation for SGX,
this is functionally equivalent to classical scenarios where the
Client provides these inputs via secure channel (Theorem 3
in [10]). The reasoning is simply that, if a protocol securely

5Reasoning for the security of SML-2 instead would only require this
function to also reveal statistical data to the simulator, which we consider
to be non-sensitive.

6SOTERIA Clients are trusted. As such, we assume (s,m) to both be valid,
in the sense that they are correct ML scripts and data sets in G, and thus can
be interpreted by ideal functionality F .

https://spark.apache.org/docs/latest/sql-ref-functions-udf-scalar.html
https://spark.apache.org/docs/latest/sql-ref-functions-udf-scalar.html

15

Algorithm Setup(i,m)¡G¿:
k←$ Θ.Gen()
c←$ Θ.Enc(k, i)
G[m]← c
Return (m, k)

Fig. 6: Secure external storage setup.

Algorithm AC():
k←$ Θ.Gen()
Return S1.AC()

Algorithm Send(l):
Return S1.Send(l)

Algorithm Get(l):
i← {0}l
c←$ Θ.Enc(k, i)
Return c

Fig. 7: Simulator for Π2.

realises a functionality with a given input provided via secure
channel, then the same functionality can be securely realized
with the same input fixed in an external storage, securely
accessed by the enclave.
Consider a protocol Π1 that securely realizes some function-
ality F with simulator S1 according to Theorem 3 of [16]. We
construct protocol Π2 built on top of this secure protocol Π1,
where input data is pre-established and provided to the enclave
via an initial Setup stage where inputs are stored in encrypted
fashion (Figure 6 describes a simplified version of the process
for a single entry). Inputs to Π2 are exactly the same as those
for Π1, but instead of being transmitted via the secure channel
established with Attested Computation, they are retrieved from
storage using a key sent via the same channel. The Client-
server communication increases by a constant (the key length),
which can be trivially simulated, and the rest of the input can
be simulated in a similar way using the IND-CPA properties
of Θ. This protocol behavior will be key for all SOTERIA
Workers. Our theorem is as follows.
Theorem 1: Let Π1 be a protocol that securely realises
functionality F according to Theorem 3 in [10]. Then Π2,
constructed as discussed above, securely realizes F according
to Definition 1.

PROOF. To demonstrate this result, we construct simulator S2

using S1, then argue that, given that S1 is a valid simulator
for the view of Π1, then the simulated view must be indistin-
guishable from the one of the real world of Π2.
We begin by deconstructing S1 in two parts: S1.AC() will
produce the view for the establishment of secure channel,
while S1.Send(l) will produce a simulated view of Client
inputs, given their length. In turn, our simulator will share the
same functions, but also include a third S2.Get(l) to simulate
information being retrieved from G, given its length. Our
simulator is depicted in Figure 7.
The view presented to A is composed of three different types
of messages:
• Messages exchanged during the secure channel establish-

ment are exactly the same as in Π1. Thus they remain
indistinguishable from Π2.

• Outputs received via the secure channel follow the exact
same simulation strategy than Π1, and thus are indistin-
guishable from Π2.

• Messages produced from G in Π2 are encryption of data
in G[m], while the values presented by S2 are dummy

encryptions with the same length. We can thus reduce
the advantage of A to distinguish these views to the
advantage of the same adversary to attack the IND-CPA
guarantees of encryption scheme Θ, which is negligible.

As such, if S1 is a valid simulator for Π1 to A, then the view
presented by S2 must also be indistinguishable for Π2 to A.
Let

AdvDist
Z,A,Π,S,F (G) =

|Pr[RealGZ,A,Π2
⇒ T]− Pr[IdealGZ,A,S2,F ⇒ T]|

To conclude, we have that, for negligible function µ,

AdvDist
Z,A,Π2,S2,F (G) = AdvDist

Z,A,Π1,S1,F () + AdvIND-CPA
Θ,A ()

≤ µ()

and Theorem 1 follows.

C. SOTERIA Client, Master and Workers
The SOTERIA components follow standard methodologies for
ensuring secure outsourced computation using SGX. As such,
and given the complexity of ML tasks described in the script,
we consider the following set of functions.
Secure channels are established with enclaves. We define
init(P) as the bootstrapping process, establishing a channel
with participant P . This produces an object that can be used to
send and receive data via send and receive. Untrusted storage is
not protected with secure channels, and can be accessed using
the call uGet(G,m), which retrieves data from G considering
manifest file m. Concretely, this is achieved using the open-
source library Graphene-SGX, which we assume to correctly
implement this mechanism. Finally, the script s defines the
actual computation that must be performed by the system,
and will be executed collaborative with both Workers. As
such, we define s as a stateful object with the main method
Run(id, i1, i2), where input id is the identifier of the Worker, i1
is input from storage and i2 is intermediate input (e.g. model
parameters), returning (o1, o2), where o1 is the (possibly)
final output, and o2 is the (optional) intermediate output for
dissemination. For simplicity, we also define method Complete
that returns T if the task is complete, or F otherwise.
The SOTERIA components can be analysed in Figure 8 and are
as follows. The Client C (left of Figure 8) simply establishes
the channel with M , sends the parameters (manifest file,
task script and storage key), and awaits computation output.
Observe that we assume that the key k has been previously
initialized, and that the actual data has been previously en-
crypted in G using it. The Master M (middle of Figure 8) will
receive the parameters from C and establish channels with W1

and W2, forwarding them the same parameters and awaiting
computation output. When it arrives, it is forwarded to the
Client.7 Worker W1 (right of Figure 8) receives the parameters
from M and starts processing the script: retrieves encrypted
data from G, decrypts, processes and exchanges intermediate
results with the other Worker. When the script is concluded,
it returns its output to M . The behavior of W2 is the same,
but connection is established instead with W1.

7In the actual protocol, the Master has additional steps to process the output.
We describe it like this for simplicity, as it does not change the proof.

16

Algorithm C(m, s, k):
sc← init(M)
sc.send(m, s, k)
o← sc.receive()
Return o

Algorithm M():
scc ← init(C)
(m, s, k)← scc.receive()
sc1 ← init(W1)
sc1.send(m, s, k)
sc2 ← init(W2)
sc2.send(m, s, k)
o1 ← sc1.receive()
o2 ← sc2.receive()
scc.send((o1, o2))

Algorithm W1():
m← ε
scm ← init(M)
(m, s, k)← scm.receive()
scw ← init(W2)
While !s.Complete:
c← uGet(G,m)
i← Θ.Dec(k, c)
(o,m)←$ s.Run(W1, i, ε)
scw.send(m)
m← scw.receive()

scm.send(o)

Fig. 8: SOTERIA Components. Client C (left), Master node
M (middle) and Worker node 1 W (right).

Algorithm W1():
m← ε
scm ← init(M)
(m, s, k)← scm.receive()
scw ← init(W2)
While !s.Complete:
c← uGet(G1,m)
i← Θ.Dec(k, c)
(o,m)←$ s.Run(W1, i, ε)
scw.send(m)
m← scw.receive()

scm.send(o)

Algorithm W2():
m← ε
scm ← init(M)
(m, s, k)← scm.receive()
scw ← init(W1)
While !s.Complete:
c← uGet(G2,m)
i← Θ.Dec(k, c)
(o,m)←$ s.Run(W1, i, ε)
scw.send(m)
m← scw.receive()

scm.send(o)

Fig. 9: SOTERIA Workers with split storage.

D. Full Proof

Given the description of SOTERIA components in Figure 8,
the SOTERIA protocol Πsot is straightforward to describe.
Considering a pre-encrypted storage G, the Client C, Master
M and Workers W1,W2 execute following their respective
specifications. Our theorem for the security of SOTERIA is as
follows.
Theorem 2: Πsot, assuming the setup of Figure 6 and con-
structed as discussed above, securely realizes F according to
Definition 1.
The proof is presented as a sequence of four games. We begin
in the real-world, and sequentially adapt our setting until we
arrive in the ideal world. We then argue that all steps up to
that point are of negligible advantage to A, and thus the views
must be indistinguishable to Z .
The first is a simplification step, where, instead of using a
single storage G, we slice the storage to consider G1 and G2.
Figure 9 represents this change. This enables us to split the
execution environment of W1 and W2 seamlessly, and can
be done trivially since manifest file m by construction will
never require different Workers to access the same parts of G.
Since these two games are functionally equal, the adversarial
advantage is exactly 0.
The second step is a hybrid argument, where we sequentially
replace both Workers by ideal functionalities performing par-
tial steps of the ML script. Concretely, we argue as follows.
Replace W1 with a functionality for its part of the ML script
FW1, according to Definition 1. From Theorem 1 we can
establish that this adaptation entails negligible advantage to A
provided that the protocol without external access realises the
same functionality. However this is necessarily the case, as it
follows the exact structure as the constructions in [10]. We can

repeat this process for W2.8 As such, using the intermediate
result, we can thus upper bound the advantage adversary to
distinguish these two scenarios by applying twice the result
of Theorem 1.
The third step replaces the Master by an ideal functionality
FM that simply forwards requests to the Worker functional-
ities. This one follows the same logic as the previous one,
without requiring the external storage, as the protocol also
follows the exact structure as the constructions in [10].
In the final step, we have 3 functionalities (FM ,FW1,FW2)
playing the roles of (M,W1,W2), respectively. We finalize
by combining them to a single functionality F for ML script
processing. This can be done by constructing a big simulator S
that builds upon the simulators for the individual components
(SM , SW1, SW2). The simulator S behaves as follows:
• Run SM to construct the communication trace that emu-

lates the first part of F .
• Run the initial step of SW1 and SW2 to construct the

communication trace for establishing secure channels
between Workers and Master.

• Call leakage function L to retrieve the access patterns
to G. Use the result to infer which part of the storage
is being accessed, and run SW1 or SW2 to emulate the
computation stage.

Given that the view produced by S is exactly the same as the
one provided by the combination of SM , SW1 and SW2, the
adversarial advantage is exactly 0.
We are now exactly in the ideal world specified for Defini-
tion 1.
Let

AdvDist
Z,A,Π,S,F (G) =

|Pr[RealGZ,A,Πsot
⇒ T]− Pr[IdealGZ,A,S,F ⇒ T]|

To conclude, we have that, for negligible function µ,

AdvDist
Z,A,Π,S,F (G) = 2 · AdvDist

Z,A,ΠW1,SW1,FW1
(G)

+ AdvDist
Z,A,ΠM ,SM ,FM

()

≤ µ()

and Theorem 2 follows.

8Again, this technique extends for an arbitrary number of Workers. N
number of Workers would just require us to adapt the multiplication factor in
the final formula, which would still be negligible.

	Introduction
	Background
	Apache Spark and MLlib
	Intel Software Guard Extensions (SGX)

	Security Properties and Threat Model
	Machine Learning Workflow Attacks

	Soteria
	Apache Spark - Architecture and Flow
	Soteria Client
	Soteria Cluster
	Security Analysis
	Implementation

	Methodology
	Environment
	Workloads
	Setups and metrics

	Evaluation
	Performance Overview
	Analysis
	Discussion

	Related Work
	Conclusion
	References
	Appendix
	Formal Security Model
	Intermediate Result
	Soteria Client, Master and Workers
	Full Proof

