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Abstract. Lattice sieving is currently the leading class of algorithms for solving the shortest
vector problem over lattices. The computational difficulty of this problem is the basis for
constructing secure post-quantum public-key cryptosystems based on lattices. In this paper,
we present a novel massively parallel approach for solving the shortest vector problem using
lattice sieving and hardware acceleration. We combine previously reported algorithms with
a proper caching strategy and develop hardware architecture. The main advantage of the
proposed approach is eliminating the overhead of the data transfer between a CPU and a
hardware accelerator. The authors believe that this is the first such architecture reported in
the literature to date and predict to achieve up to 8 times higher throughput when compared
to a multi-core high-performance CPU. Presented methods can be adapted for other sieving
algorithms hard to implement in FPGAs due to the communication and memory bottleneck3.

1 Introduction

Over the last decade, post-quantum cryptography (PQC) has emerged as one of the most important
topics in the area of theoretical and applied cryptography. This new branch of cryptology is
considered an answer to the threat of quantum computers. A full-scale quantum computer will be
able to break popular public-key cryptosystems, such as RSA and ECDSA, using Shor’s algorithm.

In 2016, the United States National Institute of Standards and Technology (NIST) announced
the Post-Quantum Cryptography Standardization Process (NIST PQC), aimed at developing new
cryptographic standards resistant to attacks involving quantum computers. In January 2019, 26
of these candidates (including results of a few mergers) advanced to Round 2, and in July 2020,
15 of them were qualified for Round 3.

The biggest group of submissions during all rounds were lattice-based algorithms. The difficulty
of breaking these cryptosystems relies on the complexity of some well-known and computationally-
hard problems regarding mathematical objects called lattices. One of these problems is the Shortest
Vector Problem (SVP). Lattice sieving, which is the subject of this paper, is a family of algorithms
that can be used to solve SVP (at least for relatively small to medium dimensions of lattices).

Recently, significant progress in lattice sieving has been made, especially due to Albrecht et
al. [4]. Although multiple types of lattice sieving algorithms emerged in recent years, all of them
share a single fundamental operation called vector reduction. As a result, an efficient acceleration
of vector reduction is likely to work with most of the sieves and give them a significant boost in
performance. Modern CPUs have vector instructions, pipelining, and multi-threading capabilities,
all of which have been used in the past to improve the performance of lattice sieving. Specialized
hardware seems to be the next frontier necessary to achieve a substantial further speed-up.

Sieving is a popular technique in cryptography. It was used previously, for example, for factoring
large integers. However, it is a memory-intense method, so there exists a data transfer bottleneck
disrupting any potential hardware acceleration, which is the biggest problem.

3 This is an extended version of the paper published as [5]
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1.1 Contribution

To take full advantage of modern hardware parallel capabilities, we propose a modified approach
to lattice sieving algorithms and present a massively parallel FPGA sieving accelerator. In the
modified sieving algorithm, due to proper caching techniques on the hardware side, there is no
data transfer bottleneck. Thus, the accelerator works with full performance, and a significant
speed-up is achieved. In the end, the cost comparison for solving SVP instances with Amazon
AWS is presented.

2 Mathematical background

A lattice L is a discrete additive group generated by n linearly independent vectors b1,b2, . . . ,bn ∈
Rm

L(b1,b2, . . . ,bn) =
{∑

xibi | xi ∈ Z
}

(1)

The vectors b1, . . . ,bn are called a basis of the lattice, and we define B as a m×n matrix consisting
of basis vectors as columns. In this paper, we consider only the case of m = n.

The lattice, understood as a set of vectors, can be written as

L(B) = {xB | x ∈ Zn} (2)

We define the length of a vector as the Euclidean norm ‖x‖ =
√∑

x2
i . The Shortest Vector

Problem (SVP) aims at finding a linear combination of basis vectors with the shortest length
possible. For a given basis B ∈ Zn×m, the shortest vector v ∈ L(B) is a vector for which

∀x ∈ Zn ‖v‖ ≤ ‖xB‖ (3)

The shortest vector in a lattice is also called the first successive minimum and is denoted λ1(L).
There are known estimates on boundaries of the length of the shortest vector in a given lattice.
For the most well-known SVP Challenge [1], a found vector v should be shorter than

‖v‖ ≤ 1.05 · (Γ (n/2 + 1))
1/n

√
π

· (det L)1/n, (4)

where Γ is Euler’s gamma function, and det is determinant of the basis B generating the lattice
L.

If two different vectors v, u ∈ L(B) satisfy ‖v ± u‖ ≥ max(‖v‖, ‖u‖), then v,u are called
Gauss-reduced. If every pair of two vectors (v,u) from the set A ∈ L(B) is Gauss-reduced, then
the set A is called pairwise-reduced.

In this paper, we denote vectors as bold lowercase letters. Matrices are denoted as bold upper-
case letters. Lattice points and vectors are used alternatively.

3 Lattice sieving

SVP is one of the best-known problems involving lattices. Due to its computational complexity,
it can be used as a basis for the security of lattice-based cryptosystems. Lattice sieving is one
of several approaches to solve SVP. It is not a single algorithm, but rather a class of algorithms.
These algorithms are similar to one another and rely on a similar basic operation, but differ in
terms of their time and space complexity.

The term ”lattice sieving” was proposed in the pioneering work of Ajtai—Kumar—Sivakumar
( [2], [3]). In 2001, these authors introduced a new randomized way for finding the shortest vector
in an n-dimensional lattice by sieving sampled vectors.

The main idea was to sample a long list L = {w1, . . . ,wN} of random lattice points, and
compute all possible differences among points from this list L. As the algorithm progresses, during
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reduction, shorter and shorter vectors are discovered. By repeating this step many times, the
shortest vector in the lattice is being found as a result of subtracting two vectors vi − vj .

The method proposed by Ajtai et al. is the main element of lattice sieving algorithms. Other
algorithms differ mostly in the way of handling lattice vectors, grouping them, or using some
techniques of prediction. However, the main idea is still to sample new random vectors and reduce
them using those already accumulated.

3.1 The GaussSieve

In 2010, Micciancio and Voulgaris [12] presented two new algorithms: ListSieve with the time
complexity 23.199n and the space complexity 21.325n, and GaussSieve, able to find a solution in the
running time 20.52n, using memory space in the range of 20.2n. The GaussSieve is shown below
as Algorithm 1. The key idea is taken from Ataji’s work and is based mostly on pairwise vector
reduction. The GaussSieve starts with an empty list of lattice points L and an empty stack S.
The stack is the first source of points to be processed in the next iteration of reduction. In the
case of an empty stack, a new point is sampled using Klein’s method for sampling random lattice
points [10], with modifications and extensions from [8].

Algorithm 1: GaussSieve(B) — algorithm that can compute the shortest vector. The
.pop() operation returns the first vector from a given queue. KleinSampler() is a method
for random sampling of new vectors. GaussReduce reduces vector by other vectors from
the set L.
Data: B - lattice basis, c - maximum number of collisions, λ1(B)- targeted norm
Result: t : t ∈ L(B) ∧ ‖t‖ ≤ λ1(B)

1 begin
2 L←− ∅, S ←− ∅, i←− 0, t←− KleinSampler(B)
3 while i < c and ‖t‖ > λ1(B) do
4 if S 6= ∅ then
5 vnew ← S.pop()
6 else
7 vnew ← KleinSampler(B)
8 end if
9 vnew ← GaussReduce(vnew, L, S)

10 if ‖vnew‖ = 0 then
11 i← i+ 1
12 else
13 L← L ∪ {vnew}
14 if ‖vnew‖ < ‖t‖ then
15 t← vnew

16 end if

17 end if

18 end while
19 return t

20 end

Next, a sampled lattice point v is pairwise reduced by every vector from the list L. The
reduction method called GaussReduce returns vectors u,v satisfying max(‖u‖, ‖v‖) ≤ ‖u ± v‖.
This method is shown below as Algorithm 2. Thus, the list L is always Gauss reduced, so in the
case of reducing a vector already on the list, the vector is moved to the stack. If the vector v is
non-zero after reducing by the whole list, it is added to L. Otherwise, the number of collisions i
is incremented. A collision occurs when the point is reduced to zero, which means that the same
point has been sampled before. The algorithm stops when the number of collisions exceeds the
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given boundary c, or the shortest vector already found is at least as short as the targeted estimate.

Algorithm 2: GaussReduce(p, L, S)

Data: p - lattice vector, L - list of already reduced vectors, S - list of vectors to reduce
Result: p - reduced vector

1 begin
2 for vi ∈ L do
3 Reduce(p,vi)
4 end for
5 for vi ∈ L do
6 if Reduce(vi,p) then
7 L← L\{vi}
8 S.push(vi − p)

9 end if

10 end for
11 return p

12 end

By analyzing Algorithm 1 and Algorithm 2, the number of Reduce() calls can be approximated
as k2 for the case of k vectors.

There have been many papers improving the complexity of presented algorithm and propos-
ing modifications that speed up the computations by several orders of magnitude by applying
additional techniques. However, the GaussSieve is still a part of newer methods and the vector
reduction step is crucial for every lattice sieving algorithm.

3.2 Parallel sieves

There have been several papers devoted to developing a parallel version of a lattice sieve. In
addition to the gsieve and fplll libraries, Milde and Schneider [13] proposed a parallel version of
the GaussSieve algorithm. Their main idea was to use several instances of the algorithm connected
in a circular fashion. Each instance has its own queue Q, list L, and stack S. When a vector is
reduced by one instance, it is moved to another one. The stacks contain vectors that were reduced
in a given instance and need to pass the instance’s list once more. During the algorithm, vectors
in the instances lists are not always Gauss reduced.

Ishiguro et al. [9] modified the idea of the parallel execution of the GaussSieve algorithm. The
stack is only one, global for all instances (threads). The execution of the algorithm is divided into
three parts. In the first part, sampled vectors in the set V (new or from the stack) are reduced
by vectors in the local instance lists. After reduction, the reduced vectors are compared. If any
vector is different than before the reduction step, it is moved to the global stack. In the next step,
sampled vectors are reduced by themselves. In the last step, vectors from the local lists are reduced
by the sampled vectors. The procedure ends with moving vectors from the set V to local lists in
instances. A new batch of vectors is sampled, and the procedure starts from the beginning. The
advantage of this approach for parallel execution is that vectors in local lists are always pairwise
reduced.

In [6], Bos et al. combined ideas from [13] and [9]. As in Milde and Schneider, each node main-
tains its own local list, but the rounds are synchronized between nodes. During synchronization,
the vectors are ensured to be pairwise reduced as in the Ishiguro et al. approach.

Yang et al. [14] proposed a parallel architecture for GaussSieve on GPUs. A single GPU
executes a parallel approach proposed by Ishiguro et al. Communication and data flow between
multiple GPUs is performed by adopting ideas from Bos et al.
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Every paper listed above targeted a multi-thread or multi-device implementation, but due to
FPGAs structure, some ideas might be also adapted to hardware.

As for FPGAs, there is no publicly available paper about hardware implementation of lattice
sieving. FPGAs have been used for solving SVP, but using a class of enumeration algorithms.
In 2010, Detrey et al. proposed an FPGA accelerator for the Kannan-Fincke-Pohst enumeration
algorithm (KFP) [7]. For a 64-dimensional lattice, they obtained an implementation faster by a
factor of 2.12, compared to a multi-core CPU, using an FPGA device with a comparable cost
(Intel Core 2 Quad Q9550 vs. Xilinx Virtex-5 SXT 35). For a software implementation, the fplll
library was used.

4 Hardware acceleration of vector reduction

Lattices used in cryptography are usually high-dimensional. The hardest problem solved in the
SVP Challenge, as of April 2021, is for a 180-dimensional lattice [1]. This dimension is still signif-
icantly smaller than the dimensions of lattices used in the post-quantum cryptography public-key
encryption schemes submitted to the NIST Standardization Process. However, it is still a challenge,
similar to RSA-Challenge, to solve as big a problem as possible. Thus, a hardware acceleration
might help to find solutions for higher dimensions in a shorter time.

Algorithm 3 describes a common way of implementing the Reduce function in software. This
method is dependant on the lattice dimension, which affects the dot product computation and
the update of the vector’s value. The number of multiplications increases proportionally to the
dimension. A standard modern CPU requires more time to perform the computations as the
lattice dimension increases. However, both affected operations are highly parallelizable. Almost all
multiplications can be performed concurrently by utilizing low-level parallelism. Thus, specialized
hardware can be competitive even for modern CPUs capable of performing vectorized instructions
and can offer a higher level of parallelism.

Algorithm 3: Reduce(v, u) – vector reduction. The return value is true or false, de-
pending on whether reduction occurs or not.

Data: v,u - lattice vectors
Result: true or false

1 begin
2 dot =

∑
vi · ui

3 if 2 · |dot| ≤ ‖u‖2 then
4 return false
5 else

6 q =
⌊

dot
‖u‖2

⌉
7 for i = 0; i < n; i+ + do
8 vi− = q · ui

9 end for
10 ‖v‖2+ = q2 · ‖u‖2 − 2 · q · dot
11 return true

12 end if

13 end

In this section, we present a new hardware architecture for lattice vector reduction. A novel
approach to use FPGAs for low-level parallelism is suggested. The most frequently used operation
in lattice sieves – the Reduce function is analyzed and accelerated. The analysis is performed step
by step, line by line, and the corresponding hardware is proposed.
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4.1 Computing a vector product

Computing the product of two vectors and updating the vector’s value are the two most time-
consuming operations during reduction. However, there is a chance for FPGAs to accelerate these
computations with massive parallelism. The proposed hardware circuit for obtaining a vector
product is shown in Fig. 1. The first step is a multiplication of corresponding coefficients. This
multiplication is performed in one clock cycle, even for a very large lattice. After executing the
multiplication step, the results are moved to an addition tree, consisting of dlog2(n)e addition
layers. For the majority of FPGAs, the critical path for addition is shorter than for multiplication.
Thus, it is possible to perform more than one addition in a single clock cycle without negatively
affecting the maximum clock frequency. Let β denote the number of additions performed in one
clock cycle, with a shorter latency path than multiplication. This parameter depends on an FPGA
vendor and device family. For our target device, β = 4 addition layers are executed in one clock
cycle, and the latency of the addition tree for an n-dimensional vector is dlog2(n)/βe clock cycles.

The proposed design also offers an option for the pipelined execution. It is possible to feed new
vectors to registers v and u in each clock cycle, reaching the highest possible performance for a
given set of vectors. The total latency required for computing the vector product is 1+dlog2(n)/βe
cycles. Using this approach, the maximum level of parallelism is achieved.

Fig. 1. Hardware module for the pipelined vector product computation. v and u are input vectors stored
in registers.

4.2 Division with rounding to the nearest integer

The next operation performed in the proposed accelerator for the Reduce function is a division
with rounding to the nearest integer. The division involves the computed vector product, dot,
and the square of the norm of the second vector ‖u‖2. Instead of performing normal division,
we take advantage of the fact that the result of the division is rounded to the nearest integer in
a limited range, so several conditions can be checked instead of performing a real division. The
comparisons being made are listed in Table 1 and are easily executed in hardware by using simple
shifts, additions, and subtractions.

The full range of possible results is not covered. The selection of the results range is based on
statistical data and the chosen assumption. Assuming that sampled vectors provided to the sieving
algorithm are no longer than x times the approximate shortest vector, the rounded division will
never generate a result bigger than x.

The following lemma describes this approach:
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Table 1. Conditions checked for the rounded division with the restricted result range

Division result Value Condition

< 0; 0.5) 0 2 · |dot| < ‖u‖2

< 0.5; 1.5) 1 ‖u‖2 ≤ 2 · |dot| < 3 · ‖u‖2

< 1.5; 2.5) 2 3 · ‖u‖2 ≤ 2 · |dot| < 5 · ‖u‖2

< 2.5; 3.5) 3 5 · ‖u‖2 ≤ 2 · |dot| < 7 · ‖u‖2

< 3.5; 4.5) 4 7 · ‖u‖2 ≤ 2 · |dot| < 9 · ‖u‖2

Lemma 1. For any two vectors v,u ∈ Rn in a lattice, with the Euclidean norm no larger than x

times the norm of the shortest vector, the result |〈v,u〉|‖u‖2 is at most x.

Proof. Let’s assume, that u is the shortest vector. For the Euclidean inner product 〈·, ·〉 and any
v,u ∈ Rn we have:

|〈v,u〉| ≤ ‖v‖ · ‖u‖ (5)

Thus, if
‖v‖ = x · ‖u‖ (6)

then
|〈v,u〉|
‖u‖2

≤ x (7)

Based on experiments, x = 4 is sufficient to accept all sampled vectors. The division in the
selected range is necessary to make the comparison with CPU implementations more accurate
and avoid rare events when the vector is required to be reduced again, which may lead to data
desynchronization in the accelerator. One may ask if there will never be any two vectors that
produce a different result than expected. This issue is handled by an overflow signal that is
asserted when the result is out of range. If that happens, vectors are reduced once again.

The hardware module performing rounded division is shown in Fig. 2. The dot product is
converted to its absolute value, and the sign is saved to be applied at the end of division. The
necessary comparisons are performed in parallel. A look-up table decides about the absolute value,
based on the results of comparisons. In the last step, a stored sign is applied to the result. All
operations are performed in one clock cycle.

4.3 Update of vector values

Having all the necessary values, it is possible to update the reduced vector element and its norm.
These two operations can be performed in parallel.

The element update function simply subtracts the product q · u from v. This operation can
also be executed in parallel. Fig. 3 presents the hardware realization of this part. In the first step,
the products q · ui are calculated. They are then subtracted from vi in the second step. Each step
is executed in a separate clock cycle to decrease the critical path’s length and obtain a higher
maximum clock frequency.

In hardware, the norm update function is executed in three steps, taking one clock cycle each.
At first, 2 · dot and q · ‖u‖ are computed. Secondly, the multiplication by q is applied to both
partial results. At the end, the subtraction and addition operations are performed.

4.4 Reduce module

The described above parts were used to develop the entire Reduce algorithm. The hardware block
diagram combining previously discussed steps is shown in Fig. 4.

Taking into account the capabilities of modern FPGAs, it is possible to execute two reductions
at once: the reduction of vector u by vector v (u ± v) and the opposite reduction of vector v
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Fig. 2. Hardware module for the division with rounding with the restricted range of possible results.
Results from arithmetic operations are pushed to logic responsible for the comparisons. Next, based on
the comparison results, a decision about the value of |q| is made, and using the stored sign value, the
result is converted to a final signed value.

Fig. 3. Hardware module for the vector elements value update. v and u are input vectors, mi denotes the
multiplication and si the subtraction logic. ri denotes a register used to store an intermediate value after
multiplication.

by vector u (v ± u). We call them branched operations due to utilizing the same dot product,
computed in the first step. The logic required for the branched computations is shaded in Fig. 4,
and can be omitted in the standard implementation. Moreover, not every algorithm can take
advantage of the branched execution of a vector reduction. Some algorithms have a strict schedule
for the vector reduction and are not able to process data from the branched execution.

With additional shift registers required to store data for further steps of the algorithm, it is
possible to start computations for a new vector pair in each clock cycle, utilizing pipeline properties
of used building blocks, and increasing the total performance.

The latency for one pair of vectors depends only on the dimension of a lattice. For an n-
dimensional lattice, the latency fcl(n) equals exactly

fcl(n) =

⌈
log2(n)

β

⌉
+ 5 (8)
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Fig. 4. The architecture of the reduce accelerator with pipelining and branching. The shaded part denotes
logic implemented in the branched version and omitted in the standard implementation.

clock cycles. This is also the number of pairs of vectors being processed in the module concurrently.
Therefore, for the 200 MHz clock frequency, the pipelined version can perform up to 200,000,000
vector reductions per second, and the branched version can perform twice as many reductions.
This calculation does not include the communication overhead, so the practical performance for a
standard approach will be lower.

5 Theoretical performance analysis

5.1 Data transfer costs

The biggest issue with current algorithms is the data transfer cost. Even the largest FPGAs are not
able to store all required data to run sieving standalone for currently attacked dimensions. Thus,
only a hybrid solution is considered. However, with only a part of the algorithm being executed
on the FPGA side, some data is required to be exchanged between both sides. In lattice sieving,
the transferred data will consist mostly of lattice points. For a simple vector expressing the lattice
point, its size depends on the dimension of the lattice.

In the presented accelerator, each vector element is stored in 16 bits. It can be extended to 32
bits if needed, but due to our experiments on reduced lattices, 16 bits is sufficient. Additionally,
the squared value of a vector length is also stored in another 32 bits. Thus, the number of bits
fnb(n) required for a simple n-dimensional vector is expressed as:

fnb(n) = n · 16 + 32 = (n+ 2) · 16 (9)

This number also matches the number of bits required for one vector transfer in any direction
between CPU and FPGA. The communication time depends on the size of data and on the width
of a data bus. The commonly used data buses are w = {32, 64, 128, 256}-bits wide and are able
to deliver a new data in every FPGA clock cycle. The data transfer latency ftl for one vector is
expressed as the number of clock cycles and can be obtained from the equation:

ftl(n,w) =

⌈
fnb(n)

w

⌉
=

⌈
(n+ 2) · 16

w

⌉
(10)
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5.2 Scenario I — basic vector reduction acceleration

Knowing the accelerator performance and communication costs, two use case scenarios can be
analyzed.

The first use case involves performing a simple vector reduction in FPGA every time this
operation is required during an algorithm execution on CPU. The required data is sent to FPGA,
and the result is sent back to CPU. An FPGA does not store any additional vectors; it only
computes a single result.

The clock latency includes the time required for two vector transfers from CPU to FPGA, the
time of the operation itself, and one transfer of the result back from FPGA to CPU. The total
latency fel(n,w) can be computed as:

fel(n,w) = 3 · ftl(n,w) + fcl(n) = 3 ·
⌈

(n+ 2) · 16

w

⌉
+

⌈
log2(n)

β

⌉
+ 5 (11)

This formula describes the lower bound for the time of the data transfer and computations. In
some cases, there is no need to transfer the result back, e.g., because there is no reduction between
the two input points.

The performance of the accelerator can be expressed as a number of reductions per second.
With the known clock frequency H, the exact performance PFPGA for an n-dimensional lattice
and the selected bus width w is described by the equation:

PFPGA(n,w) =
H

fel(n,w)
(12)

In Fig. 5, a comparison of the performance between solutions with different bus widths and
CPU scenarios is presented. The clock frequency is set to 200 MHz, a little below the maximum
possible clock frequency obtained from compilation tools for the presented design. The performance
of CPU is marked with dots. The red dots represent the performance of CPU with vectors that fit
in the processor’s cache (Experiment #1), the orange dots represent the performance for a larger
set of vectors that have to be stored outside of the processor’s cache (Experiment #2).

Fig. 5. Performance comparison between designs with different bus widths and two different experiments,
involving a different number of vectors, on the same CPU. The performance of CPU is an average result
from 5 trials in the same dimension and the FPGA performance is taken from Eq. 12 and 200 MHz clock.
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5.3 Scenario II — sending a set of vectors for reduction

In the second scenario, a j-elemental set of vectors is sent to FPGA first. In the next step, the
reduction is performed in the same way as in the GaussSieve algorithm, so that the result is a
Gauss-reduced set of vectors. In the last step, the entire set is transferred back to CPU, so the total
communication overhead for an n-dimensional lattice and a w-bit data bus is 2 · ftl(n,w) · j clock
cycles. The total number of the Reduce function calls equals at least j2 (according to Section 3.1).
With these numbers and the known CPU performance PCPU (n), it is possible to derive a formula
for the minimum size of a set, that can be Gauss-reduced in a shorter time with the help of an
FPGA accelerator than by using only CPUs.

Let us assume that for a set of the size j, the time required to execute the algorithm is longer
when using only CPUs, namely:

tCPU ≥ tFPGA (13)

Then, extending and modifying the equations to find a proper value:

j2

PCPU (n)
≥ 2 · j · ftl(n,w) + j2 · fcl(n)

H
(14)

j2 ·H ≥ 2 · j · ftl(n,w) · PCPU (n) + j2 · fcl(n) · PCPU (n) (15)

j ·H ≥ 2 · ftl(n,w) · PCPU (n) + j · fcl(n) · PCPU (n) (16)

j ·H − j · fcl(n) · PCPU (n) ≥ 2 · ftl(n,w) · PCPU (n) (17)

j · (H − fcl(n) · PCPU (n)) ≥ 2 · ftl(n,w) · PCPU (n) (18)

and, as a result, the size of the set must be at least:

j ≥ 2 · ftl(n,w) · PCPU (n)

H − fcl(n) · PCPU (n)
(19)

and j ∈ Z. This equation is always valid for j ≥ 6 and n ≥ 50, so the set can fit FPGAs memory.
The required set is rather small. Percentage wise, the communication overhead plays a smaller part
in total latency than in the first use case scenario and the performance for hardware acceleration
in first use case are not that different from CPUs.

In this scenario, vectors are stored in FPGA memory cells, with negligible latency access to
minimize data access costs. The internal memory has some space limitations. Thus, in the described
scenario, the reduce module has an upper acceleration boundary, directly affected by the size of the
available memory M . One lattice vector requires fnb(n) bits of memory. Thus, assuming that only
vectors are stored in FPGA memory, the maximum possible number of lattice vectors Nlv(n,M)
to store in FPGA, can be obtained from a simple equation:

Nlv(n,M) =
M

fnb(n)
(20)

In Fig. 6, the maximum number of vectors capable of being stored is presented. The considered
dimensions range from 60 to 90. The entries represent an FPGA device with the biggest amount
of memory in each family for Intel’s two high performance families. The third line represents
the theoretical memory requirements for GaussSieve algorithm. For lattices with more than 86
dimensions, no FPGA device is able to fit all necessary data to perform GaussSieve algorithm.
Thus, this use case cannot be used directly in practice (as of 2021). The data complexity of lattice
sieves is so high, that even doubling the FPGAs memory size will not allow to solve problems of
significantly larger lattices.



12 M. Andrzejczak, K. Gaj.

Fig. 6. The maximum size of a vector set able to fit in FPGA memory for selected devices from two major
FPGA families. The green line represents theoretical memory requirements.

6 Caching approach to lattice sieving for multi-platform environment

In the previous section, simple approaches for the hardware acceleration use case for the vector
reduction were introduced. The next step is to develop more efficient way of using this accelerator
to increase the performance of any sieve. Due to the communication overhead, a simple call to
the accelerator for every occurrence of the reduce operation will not give any speedup. The data
transfer takes almost 90% of the total execution time, and the performance is lower than on
standard CPU. Moreover, it is not possible to run the entire algorithm on an FPGA due to its
lack of sufficiently large memory to perform standalone sieving on FPGAs. Thus, in this section,
a caching approach for lattice sieving algorithms in a multi-platform environment is presented.
Our modification allows eliminating the communication delays, omitting the memory limitations,
and fully utilizing the proposed parallel architecture for lattice sieving by combining previously
reported methods with caching techniques. The proposed techniques will also work for other kinds
of sieves.

A software/hardware approach is considered, where only a part of computations is performed
in FPGAs, the rest of an algorithm is executed on CPU, and the majority of necessary data is
stored on CPU. Currently, there are several approaches to combining CPUs with FPGAs. Thus,
the calculations are not focused on any particular solution, but rather on a universal approach,
applicable to each practical realization of the system combining both device types.

6.1 Reducing newly sampled vectors by a set

In large lattice dimensions, the total required memory is significantly larger than the memory
available in any FPGA device. For dimensions larger than 85, the accelerator must cooperate with
CPU during the reduction of the newly sampled vectors due to memory limitations. The vectors
will be processed in smaller sets, and an efficient way to manage the data transfer is required.



A Multiplatform Parallel Approach for Lattice Sieving Algorithms 13

In this approach, every new vector is used for reduction at least 2 · |L| times. Assuming that
the set L is going to be divided into smaller sets Li, capable of fitting in FPGA memory, the data
transfer costs may reduce or even eliminate the acquired acceleration.

In the most basic approach, the newly sampled vector vn is reduced by the set Li that fits
FPGA’s memory. In the first step, vn is reduced sequentially by elements from Li, while the
reduction of elements from Li by vn in the second step is executed in parallel. Elements used
in the first step of the reduction are replaced by other elements from L. This approach is not
efficient due to the data transfer requirements, and several changes must be made to achieve the
best performance.

6.2 On-the-fly reduction

It is not necessary to wait until all data is available on the FPGA side. The designed algorithm
should take advantage of the fact that reductions may start right after sending the first two vectors.
Every new vector will be reduced by those transferred so far, and the communication will happen
in the background. This approach will allow to reduce the combined time of computations and
data transfers.

The gains from the on-the-fly reduction depend on the approach for sieving. Applying ideas
from Bos et al. [6] or Milde and Schneider [13] will require a different data transfer schedule and
will be affected differently by the continuous memory transfer. The ideal algorithm should allow
avoiding any data transfer costs.

6.3 Maximizing performance with the proper schedule of operations

To efficiently accelerate any sieving with FPGAs (or any other devices), the aforementioned ele-
ments must be included in the algorithm’s design.

Taking ideas from literature for parallel sieve, let us divide the GaussSieve execution into three
parts, as proposed by Ishiguro et al. [9] and extend it to meet our requirements.

The algorithm will operate on a set S of newly sampled vectors, instead of only one vector.
The first part is the reduction of the set S by already reduced vectors in the list L. A data transfer
latency for one lattice vector depends on the lattice dimensions and the data bus width w, as
shown in Eq. 10. Thus, to avoid the data transfer overhead, one reduced lattice vector should be
processed during the exact time required for a new one to be transferred. This can be done by
extending the size of the set S from one to k = ftl(n,w). Then, taking into account the pipelining
capabilities of the reduce function accelerator, during the first reduction, after k clock cycles, the
accelerator should be able to start processing a new vector. The algorithm can take advantage of
the pipelined execution of instructions due to the lack of any data dependency between vectors
from the set S and an already used vector from the list L. The state of registers during the first
step of sieving is visualized in Fig. 7, 8 and 9. The number of reductions in the first step is equal
to k · |L|, and this is also the number of clock cycles spent on computations. The communication
cost will include only sending first k + 1 vectors, where the remaining vectors will be transferred
during computations. The FPGA latency will be then:

fp1el (n,w) = k2 + k · |L|+ fcl(n) (21)

In the second step, elements from the set S are reduced by themselves. The set is already in
FPGA memory, so there is no transfer overhead. The accelerator is going to execute the normal
GaussSieve algorithm. Without the transfer overhead, the latency of computations is

fp2el =
k2

2
· fcl(n) +

k2

2
+ fcl(n) (22)

During the second stage computations, a new batch S′ of sampled vectors can be transferred
to FPGA. The number of clock cycles required to transfer a new data consisting of k vectors is
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expressed as k · ftl(n,w) = ftl(n,w)2 = k2, and is smaller than the computational latency of the
second step.

In the last step, all vectors from the list L are reduced by vectors from the set S, which is already
in the FPGA memory. Each vector v ∈ L is going to be reduced by k vectors, and reductions may
be performed in parallel. Again, there is no communication overhead. If any reduction occurs, the
lattice vector is transferred back to CPU in the background. Otherwise if no reduction happens,
there is no need for moving a given vector back to CPU. The latency of the third step is then

fp3el = k · |L|+ fcl(n) (23)

Fig. 7. The state of the accelerator and registers after the first clock cycle. The first part of the next
vector u′ is loaded, while the remaining parts of the SIPO unit contain parts of the previously loaded u.
The first vector v0 from the internal set is delivered to the reduce module to be reduced by the vector u.
FIFO contains k − 1 elements and is smaller by one element than the SIPO unit.

Fig. 8. The state of the accelerator and registers after z = fcl(n) clock cycles.The reduction of the first
vector is finished and the vector v0 is going to be put in the FIFO queue. In every part of the reduce
module, the same vector u is used for reduction. Only z parts from k parts of the new vector u′ had been
transferred so far. The FIFO queue contains k − z elements.

By adding all the three steps together, it is possible to compute the latency of adding k new
vectors to the list L of already Gauss-reduced vectors. The latency for the first execution will be
then

fel(n,w) = k2 + 2 · k · |L|+ k2

2
· fcl(n) + k2 + 3 · fcl(n) (24)

As the new batch S′ of sampled vectors is transferred during the second step, for every next
execution, the cost of data transfer can be omitted and then the final latency becomes:

fel(n,w) = k2 + 2 · k · |L|+ k2

2
· fcl(n) + 3 · fcl(n) (25)
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Fig. 9. The state of the accelerator and registers after k clock cycles. The entire new vector u′ is on the
FPGA side and will be used in the next run. Only vi remaining in the reduce module had not been
reduced by u so far and will be reduced in the next z clock cycles.

Compared to CPU, the expected acceleration can be computed as

A =
2 · |L|+ k

PCPU (n)
·

H

k + 2 · |L|+ k
2 · fcl(n) +

3 · fcl(n)

k

(26)

where the PCPU (n) is the performance of CPU for n dimensional lattice, expressed as the maximum
number of reduce operations per second, and H is the maximum clock frequency of the hardware
accelerator.

To determine the acceleration for the targeted platforms, we first measured the performance
of software implementation. We took advantage of the fplll library, that was used as a basis of
g6k code for computing the best result in the TU Darmstadt SVP Challenge (as of May 2021,
dimensions from 158 to 180). Thus, the sieving operations implemented in fplll were used for
constructing experiments aimed at measuring performance of software sieving.

In the designed experiment, a large set of vectors is sampled and pairwise reduced. Only the
reduction time is measured. The size of the set is large enough to exceed the processor’s cache
memory, which allows us to measure the performance in a real scenario.

For the experiments, an Amazon Web Service c5n.18xlarge instance, equipped with a 72-core,
3.0 GHz Intel Xeon Platinum processor was used.

In Fig. 10, an expected acceleration for the targeted lattice dimensions is presented, as the
combined visualisation of Eq. 26 and obtained experimental data. For dimensions being currently
considered in the SVP challenge (dimensions between 158 and 180), the expected acceleration
from the proposed FPGA accelerator, compared to one CPU core, is around 45x. As for FPGA,
clock frequency was set to 200 MHz, and in our algorithm, there is no visible difference between
the considered data bus widths. The number of elements in L was set to 10,000.

The accelerator almost always performs the pipelined vector reduction. Only in a small part
of the second stage, the reductions are not pipelined. The communication bottleneck has been
completely eliminated. Almost the maximum theoretical performance of the proposed accelerator
(i.e., the performance without taking into account the communication overhead) has been achieved
with this approach. Moreover, the accelerator can be adapted to other parallel sieves and work
with other devices. It is possible to use the proposed accelerator in the parallel implementation of
g6k as one of the devices performing the basic step of sieving, a vector reduction.

Some of the algorithms (e.g., [6]) allow immediately reducing both processed vectors (v − u
and u−v) in the next consecutive steps. In that case, a branched version of the accelerator can be
used. Then, the third scenario changes, reducing the execution only to the two first steps. In the
branched version, the first and the last steps are computed at a time. Thus, the total acceleration
can increase by around 1.5 times.
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Fig. 10. Expected acceleration offered by FPGA in the third use case scenario for a single core FPGA
clocked with 200 MHz compared to a pure software implementation of the fplll code, run on a single
thread. Each dot represents the possible theoretical acceleration for given trial in the experiment. Red line
represents the linear approximation of possible acceleration.

7 Multiple parallel instances of the accelerator in one FPGA

During the second stage, a new batch of sampled vectors is transferred to an FPGA. However,
communication requires less time than the computations during the second stage. After all k
vectors are transmitted, the data bus waits unused until the third stage of the algorithm. The
clock latency for the data transfer CT (n) is k2 cycles, whereas the computational latency CC(n) is

k2 · fcl(n) + k2 + fcl(n)) cycles. Then, the ratio CC(n)
CT (n) indicates how many times the computations

are longer. A difference between the two times can be used to send several other sets S to other
accelerators implemented in the same FPGA. The maximum number of accelerators working in
parallel is expressed then as:

CC(n)

CT (n)
=
k2 · fcl(n) + k2 + fcl(n)

k2

= fcl(n) + 1 +
fcl(n)

k2

≈ fcl(n) + 1

(27)

The term fcl(n)
k2 for large dimensions is always lower than 1 and can be omitted. Then, for the

targeted dimensions, n > 64, the computations are fcl(n) + 1 times longer than the communica-
tion. This number is also the maximum number of accelerators working in parallel with the full
performance each. It is possible to connect more accelerator instances, but some of them will have
to wait until all new sets S′ are transferred. The other way to maximize the performance and
avoid data transferr bottlenecks is to extend the computation latency fcl.

In Fig. 11, a schedule representing the execution of the algorithm using several accelerators
working in parallel is presented. The number of accelerators is denoted as σ, and every accelerator
is denoted as Ai. The execution of the first and the second stage starts at the same time in
every accelerator. Vectors used for reduction are everywhere the same. The last stage differs.
Every next accelerator starts sieving k + fcl(n) clock cycles after the previous one and takes as
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an input an output vector from the previous unit. The k + fcl(n) clock cycles are required for
processing the first vector by an accelerator and pushing it further. The last accelerator starts
working (σ − 1) · (k + fcl(n)) clock cycles after the first one. This approach is different from the
first stage because the reduction vi−uj is performed instead of uj−vi, where vectors vi are loaded
from CPU.

Fig. 11. The activity diagram for multiple accelerators in one FPGA. Ai denotes an i-th instance of the
accelerator in FPGA, and σ is the number of accelerators. k is the size of sampled vectors sets S and S′.
S is currently used, where S′ will be used in the next run. fcl(n) is a function representing the reduction
latency for n-dimensional vectors.

The inbound transmission is divided into two parts. In the first and the last stage, the previously
reduced vectors, marked by small rectangles, are transferred to FPGA. In the second stage, a new
batch of sampled vectors divided into σ sets, marked as a bigger rectangle, is transferred.

The outbound transmission starts in the third stage and can proceed until the end of the second
stage. At first, the Gauss-reduced sets Si of vectors from the second stage are sent back to CPU.
As for results from the third stage, only shortened vectors are pushed back to CPU. It is hard
to estimate the number of shortened vectors. To avoid data loses, the output FIFO queue should
have a large enough memory available. Fortunately, there is only one FIFO queue, receiving data
from the last accelerator.

The performance of multiple accelerators, implemented in one FPGA, scales with their number.
For σ accelerators, the performance will be ≈ σ times higher compared to a single one. The
acceleration is not exactly σ times better due to the (σ− 1) · (k+ fcl(n)) clock cycles delay for the
last module and proportionally less for other modules in the third step.

A single instance of the accelerator is presented in Fig. 12. This instance is able to perform the
parallel version of GaussSieve in a way described in this paper. The serial-in, parallel-out (SIPO)
unit is used to concatenate arriving data into one vector.

After the entire vector is transferred, this vector may be saved to one of the internal FIFO
queues, currently not used by the reduce module, or directly provided as one of the input vectors
for reduction. Vectors from CPU are saved in queues only in the second stage of the algorithm.
When the reduction is applied, there are two options. In the first and the second stage, vectors
are always written back to the currently used internal queue. In the second and the third stage,
vectors that were shortened during the reduction are placed in the output FIFO queue. In the
second step, all vectors are transferred back to CPU, but in the third stage, only the reduced
vectors are moved back. If vectors stay the same (i.e., there was no reduction), then they are
overwritten in FPGA.

A multi-core version consists of several instances connected into a chain of accelerators. An
output from one element is connected to the input of the next element. The last instance is
responsible for the data transfer back to CPU.
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Fig. 12. The reduce accelerator with supporting logic and input/output interface. Shaded part is one
instance of the accelerator, while the remaining parts are required for data concatenation and transfer. A
pipelined version without branching is used.

7.1 Final results

To measure the highest possible acceleration, we tried to fit as many instances as possible in
one FPGA. The final number for 160-dimensional lattices is 20 accelerators working in parallel.
This number is bigger than the boundary in Eq. 27, so we extended the fcl latency to 12 to
achieve higher clock frequency (150 MHz) and this way mitigated the second stage data transfer
bottleneck. The design was described in the VHDL language and verified in simulation. Our code
passes all stages of the FPGA design process. However, the actual run would be too long to be
attempted with the current equipment and algorithm for a 160-dimensional lattice. Then, we used
a proposed in the literature method for comparing cross-platform implementations [11], and we
cost-compared our estimated results using two Amazon AWS instances: f1.2xlarge equipped with
Xilinx FPGAs and c5.18xlarge aforementioned Intel Xeon. The results are presented in Table 2.
The FPGA-based AWS instance can solve an equivalent problem for only 6% of the CPU-based
instance price.

Table 2. The normalized cost comparison for GaussSieve executed on CPU and FPGAs. The performance
of one core is used as a reference value to compute the acceleration for multiple cores. The total acceleration
refers to the acceleration obtained by fully utilizing a device, and it denotes a number of cores multiplied
by their acceleration, which is equivalent to the number of CPU cores that matches the same performance.
The normalized acceleration compares FPGA designs to a multi-core CPU. The price per acceleration is
in row E. This price is compared to the price for CPU in row F.

No. Device CPU FPGA

A # of cores 72 20
B acceleration per core 1 30
C total acceleration (A · B) 72 600
D normalized acceleration 1 8.32
E AWS price ($/h) 3.05 1.65
F price per acceleration (E/D) 3.05 0.20
G compared to CPU (F/F.CPU) 1 0.06

7.2 Comparison to other results

It is hard to compare cross-platform implementations. Looking only at the performance, the pre-
sented implementation achieves more than 8x speed-up compared to a 72-core CPU for a 160-
dimensional lattice, so the implementation has the performance of around 576 CPU cores. The [14]
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achieved 21.5x acceleration for a 96-dimensional lattice when compared to [9] (2x CPUs with 8
cores), so it has the performance of around 344 cores (in a lower dimension). And the cost of power
consumption will be very likely probably lower for FPGA when compared to GPU.

8 Conclusions

This paper introduces a new approach to lattice sieving by using a massively parallel FPGA design
to accelerate the most common operation in every lattice sieving algorithm – vector reduction. As
an example, the GaussSieve algorithm was accelerated. The acceleration is possible only with the
proposed modification to parallel versions of sieving algorithms. The modification is devoted to
eliminating the communication overhead between the specialized circuit, implemented in FPGA,
and the CPU, running the rest of the algorithm, by using a caching strategy. The acceleration
depends on the lattice dimension and increases linearly as a function of that dimension. For
the targeted 160-dimensional lattice, the proposed solution is estimated to achieve 8.32 better
performance compared to CPU. The results were obtained from FPGA simulation and CPU
experiments. Comparing the cost of solving the SVP problem in AWS, the presented architecture
will require only 6% of the CPU-based costs. Our project is also the first attempt reported to date
to accelerate lattice sieving with specialized hardware.

The proposed hardware accelerator can be used directly for almost any lattice sieve performing
a vector reduction operation. In this paper, the GaussSieve algorithm was investigated as an
example algorithm. The parallel hardware architecture with the proposed caching strategy can be
adapted to other GaussSieve modifications reported in the literature [13], [6], [9], as well as for
other lattice sieving algorithms with a better complexity. As a part of future work, the adoption
of the presented solution to algorithms other than GaussSieve will be explored. Additionally, an
application of the proposed solution to other algorithms hard to implement in FPGAs due to the
communication and memory bottleneck will be investigated.
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