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4 Babeş-Bolyai University, Cluj-Napoca, Romania

{alexandru.barcau,cristian.lupascu,vicentiu.pasol,george.turcas}@certsign.ro

Abstract. The present work investigates morphisms between encryp-
tion schemes, called bridges. By associating an encryption scheme to
every such bridge, we define and examine their security. Inspired by the
bootstrapping procedure used by Gentry to produce fully homomorphic
encryption schemes, we exhibit a general recipe for the construction of
bridges and we give various examples. We shall also present an example
of a bridge that does not fall in this category.
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1 Introduction

Homomorphic encryption is a type of encryption which subsequently allows one
to perform certain computations on encrypted data without decrypting it. A fully
homomorphic encryption scheme, briefly, is an encryption scheme that allows
evaluation of any boolean circuit on encrypted data (see [1]). The problem of
finding a fully homomorphic encryption scheme was first introduced by Rivest,
Adleman and Dertouzos in [26]; however the first candidate was constructed by
Gentry thirty years later in [15,16].

Before Gentry’s breakthrough, there were several partial results [20,25,5,23].
The authors of [5] propose an interesting idea for the realisation of FHE. Roughly
speaking, if one possesses two encryption schemes, each homomorphic with re-
spect to an operation, and a way of moving encryptions from one to another, then
one can evaluate any boolean circuit. Unfortunately, the construction proposed
in [5] works only for certain arithmetic circuits.

The idea of moving from an encryption scheme to another was remarkably
used by Gentry [15,16] in order to transform a somewhat homomorphic en-
cryption scheme into a (leveled) fully homomorphic scheme. To be precise, the
Recrypt algorithm takes as input a ciphertext and certain encryptions of the
secret key under a different key and evaluates homomorphically the decryption
algorithm in order to produce an encryption of the same plaintext under the new
key. Under the definition we propose, the Recrypt algorithm is a bridge from a
somewhat homomorphic encryption scheme to itself. The recipe can be extended
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to produce a bridge from any encryption scheme to any somewhat homomorphic
encryption scheme that can handle (correctly evaluate) the decryption circuit of
the former.

Perhaps connected to the same idea is the work in [12], where maps between
two encryption schemes are used to construct a 2-party computation protocol,
called an Encryption Switching Protocol (ESP). The examples proposed in [12]
and [9] consist of two encryptions schemes over the same plaintext, which has a
structure of a ring, and switching protocols between them. One of the schemes
is homomorphic with respect to addition and the other is homomorphic for the
multiplication. An ESP of this form can be used to construct a secure general
2-party computational protocol.

Switching between one encryption scheme to another, in order to securely
perform some homomorphic operations, is a recurrent theme in the literature.
In this respect, it is important to formally define and analyze the security impli-
cations of such protocols, which represents the main goal of the present work. We
shall call a map (or a morphism) between encryption schemes satisfying certain
properties a bridge. The terminology is borrowed from [6], where the expression
“bridge between encryption schemes” is briefly used in reference to a hybrid so-
lution for switching between FHE schemes in order to optimize performance of
certain homomorphic computations on encrypted data.

Our contribution In this paper, we first propose a general definition for a
bridge, formalizing the conditions under which an algorithm that publicly trans-
forms encrypted data from one scheme to another should perform. We provide
a general recipe, inspired by Gentry’s idea, for the construction of bridges and
then apply it to give various examples. This general recipe can be modified in
various ways and we demonstrate this by presenting a variant of it. We also
present an additional example of a bridge that does not fall in the category
of Gentry type bridges. We canonically associate to any bridge an encryption
scheme and then define the security of a bridge as being the security of its asso-
ciated encryption scheme. This association is widely used in mathematics when
someone needs to replace a morphism between two objects by an object. More
precisely, it consists in substituting a map by its graph, whenever this is pos-
sible. We prove a general theorem (Theorem 2) asserting that the security of
a bridge reduces to the security of the first encryption scheme together with a
technical additional assumption. We show that the latter technicality is in fact
a natural condition by proving that bridges obtained using Gentry’s Recrypt
idea satisfy this assumption (Proposition 2). The examples of bridges presented
herein were implemented and comments on their performance are to be found
in the appendix of this article.

Organization The article is organized as follows. Section 2 consists of some
mathematical background and preliminaries about encryption schemes used in
the rest of the article. It starts by recalling some terminology and theoretical
facts about finite distributions. In the same section, we also give the definition of
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a bridge. The contributions in section 3 regard the security of a bridge between
two encryption schemes. The main result of our paper (Theorem 2) is proved
in this section. In section 4, we show that Gentry’s Recrypt algorithm gives a
general recipe for the construction of bridges. Using the main result from the
previous section, we prove that bridges generated using this recipe are secure.
By representing the decryption circuit of a specific encryption scheme in four
different ways, in section 5 we give four different examples of bridges from the
same encryption scheme to various FHE schemes. The article ends with a section
in which a bridge between the schemes GM and SYY is exhibited. This bridge
is not obtained using the recipe presented in section 4. Its security follows from
results in section 3. The homomorphic evaluation of a comparison circuit is
presented as an application to the latter bridge. In the appendix of this article,
we report on the results of several experiments involving the implementation of
the bridges introduced in the last two sections.

Acknowledgment The authors are indebted to George Gugulea and Mihai
Togan for helpful discussions and comments during the preparation of this work.

2 Preliminaries

In all our definitions, we denote the security parameter by λ. We say that a
function µ : N → [0,+∞) is a negligible function if for any positive integer c

there exists a positive integer Nc, such that µ(n) <
1

nc
for all n ≥ Nc.

2.1 Finite Distributions

A finite probability distribution is a probability distribution with finite support.
If X is a finite distribution, we denote by |X| its support. If X and Y are finite
distributions, then a morphism ϕ : Y → X is a map of sets (still denoted by)
ϕ : |Y | → |X| such that

Pr{X = x} =
∑

y∈ϕ−1(x)

Pr{Y = y}.

for all x ∈ |X|. Notice that if ϕ−1(x) is empty then Pr{X = x} = 0, which
means that ϕ is surjective onto {x ∈ |X| | Pr{X = x} 6= 0}. The composi-
tion of two morphisms is a morphism and the identity map 1|X| : |X| → |X|
gives rise to a morphism of distributions 1X : X → X so that the class of fi-
nite distributions together with all morphisms between them forms a category
denoted F inDist. As usual, two finite distributions are isomorphic if there ex-
ist a morphism between them that has an inverse. If X is a finite distribution,
then the slice category (cf. [3]) F inDistX of X-distributions consists of pairs
(Y, ϕ) where Y is a finite distribution and ϕ : Y → X is a morphism of finite
distributions. A morphism of X-distributions f : (Y1, ϕ1)→ (Y2, ϕ2), consists of
a morphism of finite distributions f : Y1 → Y2 such that the following diagram
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Y1 Y2

X

f

ϕ1 ϕ2

is commutative.
If x ∈ |X| with Pr{X = x} 6= 0 and (Y, ϕ) is an X-distribution then the

fiber of Y over x is the finite distribution Y |X=x with support ϕ−1(x) and

Pr{Y |X=x = y} =
Pr{Y = y}
Pr{X = x}

, for all y ∈ ϕ−1(x).

If (Y1, ϕ1) and (Y2, ϕ2) are two X-distributions we construct the following
product Y1 ×X Y2. The support of this distribution is

|Y1 ×X Y2| := {(y1, y2)|y1 ∈ |Y1|, y2 ∈ |Y2| such that ϕ1(y1) = ϕ2(y2)}.

If x = ϕ1(y1) = ϕ2(y2) and Pr{X = x} 6= 0, then

Pr{Y1 ×X Y2 = (y1, y2)} :=
Pr{Y1 = y1} · Pr{Y2 = y2}

Pr{X = x}
.

Moreover, when Pr{X = x} = 0, then

Pr{Y1 ×X Y2 = (y1, y2)} := 0.

Finally, the structural morphism of ψ : |Y1×XY2| → X is ψ := ϕ1◦pr1 = ϕ2◦pr2,
where pri : |Y1 ×X Y2| → |Yi|, i ∈ {1, 2} are the usual projections.

We remark that |Y1×X Y2| is the usual fiber product in the category of sets,
but Y1 ×X Y2 is not a fiber product in the category F inDist. However, the
distribution Y1 ×X Y2 is a product in the following sense. If one constructs the
distribution of triples (x, y1, y2): x is chosen from |X| according to X, y1 and
y2 are chosen independently from ϕ−11 (x) and ϕ−12 (x) according to Y1 and Y2
respectively, then one obtains a distribution isomorphic to Y1 ×X Y2.

Any finite distribution whose support is a one-point set is a final object in
F inDist. We shall denote by Y1 × Y2 the product Y1 ×X Y2, where X is any of
the final objects of F inDist.

Notice that if Y is an X-distribution, then the distribution X ×X Y is iso-
morphic to Y as X-distributions (here we view X as an X-distribution via the
identity map). We will sometimes identify the distribution X ×X Y with Y
without mentioning it, if this is clear from the context. Morally, X ×X Y is the
distribution Y whose associated map ϕ is known.

If {Xλ}λ∈N, {Yλ}λ∈N are ensembles of finite distributions then we define a
morphism from the latter to the former as being a set of morphisms of finite
distributions ϕλ : Yλ → Xλ for all λ. One can verify immediately that ensem-
bles of finite distributions together with morphisms form a category. If we fix
an ensemble {Xλ}λ, then we obtain the slice category of {Xλ}λ-ensembles of
finite distributions. In this category we define, as before, the product of the two
ensembles {Yλ}λ, {Zλ}λ as {Yλ ×Xλ Zλ}λ.

The first part of the following statement is Definition 2 from [19].
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Definition 1. An ensemble {Xλ}λ of finite distributions is polynomial-time
constructible if there exists a PPT algorithm A such that A(1λ) = Xλ, for every
λ. An {Xλ}λ-ensemble of finite distributions {(Yλ, ϕλ)}λ is polynomial-time con-
structible on fibers if there exist a PPT algorithm A, such that for any xλ ∈ |Xλ|
we have A(1λ, xλ) = Yλ|Xλ=xλ .

We will also use the following notion of computational (or polynomial) in-
distinguishability from [20] and [19].

Definition 2. Two ensembles of finite distributions {Xλ}λ and {Yλ}λ are called
computationally indistinguishable if for any PPT distinguisher D, the quantity

|Pr {D(Xλ) = 1} − Pr {D(Yλ) = 1} |

is negligible as a function of λ.

When referring to ensembles of finite distributions, we will leave out the subscript
λ if this is clear from the context.

2.2 Encryption Schemes and Bridges

A public key (or asymmetric) encryption scheme

S = (KeyGenS ,EncS ,DecS )

is a triple of PPT algorithms as follows:

– Key Generation. The algorithm (sk, pk) ← KeyGenS (1λ) takes a unary
representation of the security parameter λ and outputs a secret decryption
key sk and a public encryption key pk;

– Encryption. The algorithm c← EncS (pk,m) takes the public key pk and
a message m ∈P and outputs a ciphertext c ∈ C ;

– Decryption. The algorithm m? ← DecS (sk, c) takes the secret key sk and
a ciphertext c ∈ C and outputs a message m? ∈P;

where the finite sets P and C represent the plaintext space, respectively the
ciphertext space. The algorithms above must satisfy the correctness property

Pr {DecS (sk,EncS (pk,m)) = m} = 1− negl(λ),

where the probability is taken over the experiment of running the key generation
and encryption algorithms and choosing uniformly m←P.

A private key (or symmetric) encryption scheme is a public key encryption
scheme for which the public and secret keys are equal.

We say that an instance pk of the public key, or an instance sk of the secret
key, is of level λ0 if it is outputted by the key generation algorithm whose input
is the unary representation of λ0.
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Remark 1. In the language of ensembles of finite distributions, the public keys of
an encryption scheme form an SK-ensemble of finite distributions, where SK is
the ensemble of secret keys. Moreover, an encryption scheme is just a collection
of PK-ensembles of finite distributions indexed by the plaintext space that are
polynomial-time constructible on fibers (here PK is the ensemble of public keys).

A homomorphic (public-key) encryption scheme

H = (KeyGenH ,EncH ,DecH ,EvalH )

is a quadruple of PPT algorithms such that (KeyGenH ,EncH ,DecH ) is a
public-key encryption scheme and the KeyGenH algorithm also outputs an ad-
ditional evaluation key evk besides sk and pk, where the Homomorphic Eval-
uation algorithm EvalH takes the evaluation key evk, a circuit f : P` → P
and a set of ` ciphertexts c1, ..., c` ∈ C , and outputs a ciphertext cf .

We say that a homomorphic encryption scheme H is C-homomorphic for a
class of functions C = {Cλ}λ∈N, if for any sequence of functions fλ ∈ Cλ and
respective inputs µ1, ..., µ` ∈P (where ` = `(λ)), it holds that

Pr[DecH (sk,EvalH (evk, fλ, c1, ..., c`)) 6= fλ(µ1, ..., µ`)] = negl(λ),

where (pk, sk, evk)← KeyGenH (1λ) and ci ← EncH (pk, µi) for all i.
In addition, a homomorphic encryption scheme H is compact if there exist

a polynomial s = s(λ) such that the output length of EvalH is at most s bits
long, regardless of f or the number of inputs.

An encryption scheme is called fully homomorphic (FHE) if it is homomor-
phic for the class of all boolean functions and it satisfies the compactness con-
dition.

We now give the definition of a bridge:

Definition 3. Let Sj = (Pj ,Cj ,KeyGenj ,Encj ,Decj), j ∈ {1, 2} be two en-
cryption schemes. A bridge Bι,f from S1 to S2 consists of:

1. An injective function ι : P1 →P2 such that:

(a) ι is computable by a deterministic polynomial time algorithm;
(b) there exists a deterministic polynomial time algorithm which computes

ι−1 : P2 → P1, i.e. outputs the symbol ⊥ if the input is not in the
image of ι and the preimage of the input otherwise,

2. A PPT bridge key generation algorithm, which has the following three stages.
First, the algorithm gets the security parameter λ and uses it to run the key
generation algorithm of S1 in order to obtain a pair of keys sk1, pk1. In the
second stage the algorithm uses sk1 to find a secret key sk2 of level λ for
S2, and then calls the key generation algorithm of S2 to produce pk2. In
the final stage, the algorithm takes as input the quadruple (sk1, pk1, sk2, pk2)
and outputs a bridge key bk.

3. A PPT algorithm f which takes as input the bridge key bk and a ciphertext
c1 ∈ C1 and outputs a ciphertext c2 ∈ C2,
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such that

Pr {Dec2(sk2, f(bk,Enc1(pk1,m))) = ι(m)} = 1− negl(λ),

where the probability is taken over the experiment of running the key generation
and encryption algorithms and choosing uniformly m←P1.

Notice that the definition above includes the case in which any of the two
schemes is symmetric. Also, the plaintext spaces are fixed, i.e. they do not de-
pend on the security parameter λ. One can define a bridge between encryption
schemes for which the plaintext spaces do depend on λ, as in the case of RSA
or Paillier cryptosystems. However, in this article we are considering only the
former situation.

Remark 2. The bridge key generation algorithm does not necessarily output all
possible pairs (sk1, sk2). Even though any secret key sk1 of the scheme S1 may
be outputted by the key generation algorithm of the bridge, only few sk2’s may
occur. The bridge key generation algorithm produces the following {SK1,λ}λ-
ensembles of finite distributions {SK2,λ}λ, {PKi,λ}λ, i ∈ {1, 2}, and {BKλ}λ.
The morphisms between these ensembles of finite distributions are illustrated in
Figure 1.

BK

PK1 ×SK1 PK2

PK1 PK2

SK1 SK2

Fig. 1. Probability distributions for bridges

We mentioned earlier the idea of thinking of a bridge as a (category theoretical)
morphism between encryption schemes. Although we do not claim to have de-
fined a category, from this point of view, it is natural to address the existence
of identity morphisms. We briefly explain below that the identity map between
one encryption scheme to itself is a bridge.

Example 1. If S is an encryption scheme, then the identity map C → C gives
rise to a bridge. The bridge key generation algorithm generates a unique secret
key sk and two (independently generated) public keys pk1, pk2 corresponding
to this secret key. The algorithm outputs (sk, pk1, sk, pk2,NIL). We emphasize
that the bridge key and the choices of pk1 and pk2 do not play any role in the
evaluation of the bridge map.
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3 The security of a bridge

The aim of this section is to define and investigate the IND-CPA security of a
bridge. We start by defining and extending the notion of IND-CPA security of a
scheme and then we move to the discussion concerning the security of a bridge.

Definition 4 (IND-CPA Security). Let S = (KeyGenS ,EncS ,DecS ) be a
public key encryption scheme. We define an experiment Exprb[A] parameterized
by a bit b ∈ {0, 1} and an efficient (PPT) adversary A:

Exprb[A](1λ) :1. (pk, sk)←− KeyGenS (1λ)

2. (m0,m1)←− A(1λ, pk)

3. ct←− EncS (pk, xb)

4. b′ ←− A(ct)

5. return(b′)

The advantage of adversary A against the IND-CPA security of the scheme is

AdvIND-CPA[A](λ) := |Pr
{

Expr0[A](1λ) = 1
}
− Pr

{
Expr1[A](1λ) = 1

}
|,

where the probability is over the randomness of A and of the experiment. We say
that the scheme is IND-CPA secure if for any efficient adversary A, the advan-
tage AdvIND-CPA[A] is negligible as a function of λ. In the case of a symmetric
encryption scheme, the adversary A is given access to an encryption oracle.

Remark 3. As in the previous definition, when considering the security of a pri-
vate encryption scheme, it is standard to replace the public key by an encryption
oracle. From this point of view, a symmetric encryption scheme is a public en-
cryption scheme whose public key consists of the access to an encryption oracle.
Although we will give security definitions and proofs for public key encryption
schemes, unless otherwise specified, these can be extended to the symmetric key
setting using the above paradigm.

Let S be an encryption scheme and let K be some data outputted by an
oracle whose input is the triple (1λ, skS , pkS ). We shall denote by S [K] the
encryption scheme whose public key is the pair (pkS ,K), and the encryption
and decryption algorithms are exactly as in S . The only difference between the
schemes S and S [K] is related to their security. More precisely, an adversary
attacking the scheme S [K] has more information than an adversary attacking
S . We say that an adversary A attacking S [K] is an adversary attacking S
with knowledge K. For example, K can be a set consisting of S -encryptions
of the bit representation of the secret key, as used in [17] for the bootstrapping
procedure. It is commonly assumed that such K’s do not affect the security of the
encryption scheme, assumption called circular security. The following definition
aims to generalize the circular security assumption for some general data K.
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Definition 5. We say that some knowledge K is negligible for an encryption
scheme S if for any adversary A attacking S [K] there exists an adversary A′
attacking S such that

|AdvIND-CPA[A](λ)−AdvIND-CPA[A′](λ)|

is negligible as a function of λ.

Notice that any adversary attacking S gives rise, in the obvious way, to an
adversary attacking S [K], so that if K is negligible for S then the IND-CPA
security of S is equivalent to the IND-CPA security of S [K].

In order to define the IND-CPA security of a bridge, we shall associate to
it, in a canonical way, an encryption scheme; the security of the bridge will be,
by definition, the security of the associated encryption scheme. Let Bι,f be a
bridge, then the associated encryption scheme

Gf = (PGf ,CGf ,KeyGenGf ,EncGf ,DecGf )

is defined as follows. The plaintext space is PGf = P1, and the ciphertext space
is CGf = C1×C2. The algorithm KeyGenGf uses the key generation algorithm of
the bridge to get sk1, pk1, sk2, pk2, bk. The secret key skGf is the pair (sk1, sk2),
and the public key pkGf is (pk1, pk2, bk).

For any m ∈PGf , its encryption is defined by:

EncGf (pkGf ,m) := (a, f(bk, b)) ,

where a, b← Enc1(pk1,m). Finally, the decryption of a ciphertext cGf = (c1, c2) ∈
C1 × C2 is obtained using the formula:

DecGf (skGf , cGf ) := Dec1(sk1, c1).

We notice that the decryption of Gf satisfies

DecGf

(
skGf , (a, f(bk, b))

)
= ι−1

(
Dec2(sk2, f(bk, b))

)
,

for any (a, f(bk, b)) ← EncGf (pkGf ,m) with overwhelming probability, due to
the third condition in the definition of a bridge. One can immediately verify
that the correctness of the encryption scheme Gf follows from the correctness of
S1.

Remark 4. The notation and construction are inspired by the construction of
the graph of a function.

Now we define the IND-CPA security of a bridge.

Definition 6. The IND-CPA security of the bridge Bι,f is the IND-CPA secu-
rity of its associated encryption scheme Gf .

We have the following immediate result.
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Proposition 1. If a bridge Bι,f is IND-CPA secure, then the encryption scheme
S1 is also IND-CPA secure.

Proof. Indeed, we can associate to any adversary A1 which is trying to break
the IND-CPA security of S1, an adversary Af for the encryption scheme Gf ,
as follows. For any pair (a, f(bk, b)) proposed by the challenger to Af , where
a, b ← Enc1(m), the attacker Af sends the triple (λ, pk1, a) to A1 and returns
the output of A1(λ, pk1, a).

It is clear that

AdvIND-CPA[Af ](λ) = AdvIND-CPA[A1](λ),

and the result follows.

In the next theorem, the encryption scheme S1[PKGf ] is the scheme S1 with
knowledge PKGf . Namely, after running the key generation algorithm of S1 and
receiving the pair (sk1, pk1), the challenger has access to an oracle that runs the
second part of the key generation algorithm of the bridge to get sk2, pk2, bk.
Thus, an IND-CPA attacker on this scheme will receive pk1, pk2, bk.

Theorem 1. The encryption scheme S1[PKGf ] is IND-CPA secure if and only
if Gf is IND-CPA secure.

Proof. We first show that if Gf is IND-CPA secure, then S1[PKGf ] is IND-CPA
secure. Suppose A is an IND-CPA attacker on S1[PKGf ] scheme. We construct
the following adversary B attacking the IND-CPA security of Gf as follows. At
start, B takes as input (1λ, pkGf ) and executes the program A(1λ, pkGf ). The

attacker B receives (m0,m1)← A(1λ, pkGf ) and sends this pair to its challenger.
The latter samples b← {0, 1} and returns to B the challenge c = (c1, f(bk, c′1)),
where c1, c

′
1 ← Enc1(pk1,mb). Finally, B terminates by outputting the bit b′ ←

A(c1). One obtains that

AdvIND−CPA
Gf

[B](λ) = AdvIND−CPA
S1[PKGf

][A](λ),

which proves this implication.

To prove the other implication, we first point out that using a standard hybrid
argument one can show that the IND-CPA security of an encryption scheme is
equivalent its 2-IND-CPA security (see [28] for a detailed discussion). As opposed
to the IND-CPA game, in the 2-IND-CPA game the attacker receives from the
challenger two encryptions of mb, instead of one.

Suppose that B is an IND-CPA attacker on Gf . We construct a 2-IND-CPA
attacker A for the scheme S1[PKGf ] as follows. The attacker A receives as

input (1λ, pkGf ) and sends this to B. On this input, the attacker B produces two
messages m0,m1 ∈ P1 which are sent to A and the latter passes them to its
challenger. After receiving m0,m1, the challenger of A chooses b ← {0, 1} and
returns c1, c

′
1 ← Enc1(mb) to the attacker A. The attacker A, knowing bk, is
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able to compute f(bk, c′1) ∈ C2 and finishes by outputting b′ ← B(c1, f(bk, c′1)).
Now, one can verify that

Adv2−IND−CPA
S1[PKGf

] [A](λ) = AdvIND−CPA
Gf

[B](λ).

By the discussion in the previous paragraph, the scheme S1[PKGf ] is 2-IND-
CPA secure, so that A has negligible advantage. The last equality shows that B
has also negligible advantage, which ends the argument.

Recall that the bridge key generation algorithm produces the following ensem-
bles of {SK1,λ}λ distributions: {PK1,λ}λ, {PK2,λ}λ and {BKλ}λ. Let F be the
ensemble of finite distributions of triples (pk1, pk2, bk). Note that π1 : F → PK1

is a morphism of finite distributions, so F is a PK1-distribution as discussed in
Section 2.1.

Theorem 2. Assume that S1 is IND-CPA secure and there exists a polynomial

time constructible on fibers ensemble of PK1−distributions F̃ which is compu-
tational indistinguishable from F . Then the bridge Bι,f is IND-CPA secure.

Proof. Without losing generality we assume that P1 = {0, 1}. By the above the-
orem, it is enough to prove that S1[PKGf ] is IND-CPA secure. We do the proof
by contradiction, so we suppose that A is an adversary attacking the scheme
S1[PKGf ] with non-negligible advantage. We think of A as being a distinguisher
between the ensembles of distributions F ×PK1 Enc1(PK1, 0) and F ×PK1

Enc1(PK1, 1). The first claim is that, if A can distinguish with non-negligible ad-
vantage between these two distributions then A distinguishes with non-negligible

advantage between F̃ ×PK1 Enc1(PK1, 0) and F̃ ×PK1 Enc1(PK1, 1). To prove
the claim we suppose that this is not the case and we construct a distinguisher

D for the distributions F and F̃ . As the ensemble of distributions F̃ is com-
putationally indistinguishable from F , for every λ, the distribution F̃λ consists
of triples of the form (pk1, α, β).

The distinguisher D runs as follows. It first receives a triple (pk1, x, y) from
the challenger, chooses at random a bit b ← {0, 1} and encrypts b using pk1 to
obtain a ciphertext c. The distinguisher D sends the quadruple (pk1, x, y, c) to
A and outputs

D(pk1, x, y) :=

{
1 if A(pk1, x, y, c) = b

0 otherwise
.

We note that the labels b = 1 and b = 0, as outputted by A, correspond to the

ensembles F and F̃ , respectively. Notice that

Pr {Expr1[D] = 1} =
1

2
Pr {Expr0[A|F ] = 0}+

1

2
Pr {Expr1[A|F ] = 1} ,

where Exprb[A|F ] means that in the experiment Exprb the challenger chooses
the triple (pk1, x, y) = (pk1, pk2, bk) according to F . Using analogous notation
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for F̃ , we have:

Pr {Expr0[D] = 1} =
1

2
Pr
{

Expr0[A|F̃ ] = 1
}

+
1

2
Pr
{

Expr1[A|F̃ ] = 0
}
.

Since the advantage of A|F is non-negligible, there exist a positive integer k
such that ∣∣∣∣Pr {Expr1[D] = 1} − 1

2

∣∣∣∣ > 1

λk
(1)

for infinitely many λ’s. Also, since Adv[A|F̃ ](λ) = negl(λ), we have∣∣∣∣Pr {Expr0[D] = 1} − 1

2

∣∣∣∣ = negl(λ). (2)

From (1) and (2) we infer that

Adv[D](λ) = |Pr {Expr1[D] = 1} − Pr {Expr0[D] = 1}|

is non-negligible, which contradicts the assumption about the computational

indistinguishability of the two distributions F and F̃ .
Now we use A|F̃ to construct an adversary B on S1. After receiving the pair

(pk1, c) (as before c← Enc1(pk1, b)) from the challenger, B is using the sampling

algorithm of F̃ to get a triple (pk1, α, β). The adversary B sends (pk1, α, β, c)
to A|F̃ and outputs the bit received from it. It is clear that

Adv[B](λ) = Adv[A|F̃ ](λ)

so that B breaks the IND-CPA security of S1 with non-negligible advantage,
and this contradicts our assumption.

4 A general recipe for constructing bridges

As we shall explain in what follows, the Recrypt algorithm, used in the boost-
rapping procedure that transforms a somewhat homomorphic encryption scheme
into a fully homomorphic encryption scheme (see [17]), can be adapted to our
situation in order to give a general recipe for the construction of a bridge. We
will call this method Gentry’s recipe and say that the bridges obtained using it
are of Gentry type.

Let us consider an encryption scheme

S = (PS ,CS ,KeyGenS ,EncS ,DecS )

and a homomorphic encryption scheme

H = (PH ,CH ,KeyGenH ,EncH ,DecH ,EvalH ),

such that PH has a ring structure and there exists an injective map ι : PS ↪→
PH satisfying the properties 1.(a)-(b) in Definition 3.
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In this construction, the key generation algorithm is as follows. First, it runs
KeyGenS (1λ) to sample from the distribution SKS and then, independently,
it runs KeyGenH (1λ) to sample from SKH . We point out that the distribution
SK2 in the definition of the bridge is in fact the product SKS × SKH and
the map SK2 → SK1 (see Figure 1) is the projection on the first component
SKS ×SKH → SKS . Samples for the public keys pkS and pkH are generated,
independently, using the key generation algorithms of the two schemes. Given
a quadruple (skS , pkS , skH , pkH ) constructed as above, the algorithm creates
bk as the vector of encryptions of all the bits of skS under pkH (see below).
This is how the distribution of bridge keys BK is obtained.

The PPT algorithm f mentioned in the third part of Definition 3 is in this
case the homomorphic evaluation (in H ) of the algorithm DecS . We need to
realise DecS as a map P`

H → PH , and for this we use the ring structure
on PH . Suppose that the ciphertext space CS is a subset of {0, 1}n and
that the set of secret keys is a subset of {0, 1}e, so that DecS : {0, 1}e ×
{0, 1}n → PS . We construct the map D̃ecS : Pe

H × Pn
H → PH as fol-

lows. Letting PH be a subset of {0, 1}m, we have that ι ◦ DecS : {0, 1}e ×
{0, 1}n → PH is a vector (g1, ..., gm) of boolean circuits expressed using XOR
and AND gates. Let g̃i : Pe

H ×Pn
H →PH be the circuit obtained by replac-

ing each XOR(x, y)- gate by x ⊕ y := 2(x + y) − (x + y)2 and each AND(x, y)
gate by x ⊗ y := x · y, where + and · are the addition and multiplication in
PH . Notice that the subset of PH consisting of its zero element 0H and
its unit 1H together with ⊕ and ⊗ is a realisation of the field with two el-
ements inside PH . In other words, if c = (c[1], ..., c[n]) ∈ CS and skS =
(sk[1], ..., sk[e]) is the secret key, then g̃i(sk[1]H , ..., sk[e]H , c[1]H , ..., c[n]H ) =
mH if gi(sk[1], ..., sk[e], c[1], ..., c[n]) = m for all i, where m ∈ {0, 1}. For an ele-
ment x ∈PH , we let [x = 1H ] be the equality test, which returns 1 if x = 1H

and 0 otherwise. Finally, D̃ecS : Pe
H ×Pn

H → {0, 1}m is defined by:

([g̃i(y1, ..., ye, x1, ..., xn) = 1H ])i=1,m .

One can verify that

D̃ecS (sk[1]H , ..., sk[e]H , c[1]H , ..., c[n]H ) = ι ◦DecS (sk, c).

Now we are ready to define the bridge map. Given a ciphertext c ∈ CS , the
algorithm f first encrypts the n bits of c (viewed as elements of PH ) under
pkH and retains these encryptions in a vector c̃. The bridge key bk is obtained
by encrypting the bits of skS under pkH . Then, the algorithm outputs:

f(bk, c) = EvalH (evkH , D̃ecS , bk, c̃)

Assuming that H can evaluate D̃ecS we have:

DecH (f(bk, c)) = DecH

(
EvalH (evkH , D̃ecS , bk, c̃)

)
= ι (DecS (DecH (bk),DecH (c̃)))

= ι (DecS (skS , c))
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which shows that third condition in the definition of a bridge is satisfied.

Remark 5. The above construction relies on the fact that the plaintext space of
H , being a ring, can be used to simulate an F2-structure inside it.

An example of the above construction can be found in [18], where the authors
managed to homomorphically evaluate the AES-128 circuit (encryption and de-
cryption) using an optimized implementation of the BGV scheme [7]. Once the
plaintext spaces and the embedding ι are fixed, the evaluation of this decryp-
tion circuit can be seen as a Gentry type bridge. The bridge key consists of the
BGV encryptions of the eleven AES round keys (see Section 4 of [18]). We note
that here the round keys are embedded in the plaintext, so it was not neces-
sary to encrypt the bits of the round keys, as discussed at the beginning of the
section. This results in a simpler homomorphic evaluation of AES decryption.
Nonetheless, this bridge is essentially obtained using Gentry’s recipe.

4.1 On the security of Gentry type bridges

The aim of this subsection is to show that if S and H are IND-CPA secure,
then any Gentry type bridge Bι,f from S to H is IND-CPA secure. The plan
is to apply Theorem 2 to the above construction.

Recall that F is the ensemble of finite distributions of triples (pkS , pkH , bk),
where bk is a vector of encryptions of the form (bk[1], ..., bk[e]) with bk[i] ←
EncH (pkH , sk[i]S ) for all i. Next, let F̃ be the ensemble of finite distribu-

tions of triples (pkS , pkH , b̃k), where pkS , pkH are independently outputted

by KeyGenS and KeyGenH , respectively and b̃k := (b̃k[1], ..., b̃k[e]) with b̃k[i]←
Enc(pkH , 0H ) for all i ∈ 1, e. Notice that F̃ is polynomial-time constructible
on fibers as a PKS -ensemble of finite distributions (see Definition 1). Let us

remark that one can choose F̃ in a different way, setting b̃k to be a vector of
encryptions of any fixed e-long bit vector. If the scheme H is IND-CPA secure,
then one can prove by a standard hybrid argument (see the next proposition)
that the two versions are in fact computational indistinguishable. Therefore, the
choice of the particular fixed bit vector that is encrypted to get b̃k does not
matter.

Proposition 2. If H is IND-CPA secure, then the ensembles F and F̃ are
computationally indistinguishable.

Proof. Let D be a distinguisher between the two ensembles F and F̃ . We denote
by Gi the distribution of triples (pkS , pkH , x) where the pair (pkS , pkH ) is

chosen exactly as in the case of F , or F̃ , and x := (x[1], ..., x[e]) where x[j]←
Enc(pkH , skS [j]) for all j ∈ 1, i and x[j] ← Enc(pkH , 0) for all j ∈ i+ 1, e.

Notice that {Ge(λ)}λ is the same as F , and {G0}λ is F̃ . For each i ∈ 1, e we
construct an attacker Bi on the scheme H as follows. The attacker receives
from the challenger the triple (1λ, pkH , c), where c is either an encryption of 0
or an encryption of 1. The attacker uses KeyGenS to generate a pair (skS , pkS )
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and then constructs an e-long vector y as follows: y[j] ← Enc(pkH , skS [j]) for
j < i, y[i] = c, and y[j] ← Enc(pkH , 0) for j > i. Then the attacker Bi runs
D(1λ, pkS , pkH , y) and outputs sk[i] if the answer received from D is F and
0 otherwise. Basically, D can be used as a distinguisher between the ensembles
{Gi−1}λ and {Gi}λ, which gives rise to Bi. Notice that

AdvIND−CPA[D](λ) ≤
e(λ)∑
i=1

AdvIND−CPA[Bi](λ),

where we used the fact that the advantage of Bi is equal to the advantage of D
as a distinguisher between Gi and Gi−1. Since H is IND-CPA secure and e(λ)
is polynomial in λ, we get that D has negligible advantage.

The result of Proposition 2 combined with Theorem 2 yields the following result:

Theorem 3. Assume that S and H are both IND-CPA secure, then any Gen-
try type bridge Bι,f from S to H is IND-CPA secure.

4.2 A variant of Gentry’s recipe

The aim of this subsection is to give a new variant of Gentry’s recipe for the
construction of bridges. For this, we need first to introduce the product of two
encryption schemes. Suppose that Si = (Pi,Ci,KeyGeni,Enci,Deci), i ∈ {1, 2}
are two encryption schemes, then the product S1×S2 is defined as follows. The
plaintext space is defined as P1 ×P2 and the ciphertext space as C1 × C2.
The Key Generation algorithm of the product scheme uses independently the
key generation algorithms of the two schemes to produce two pairs (sk1, pk1)
and (sk2, pk2) of keys and sets the secret key as (sk1, sk2), and sets the public
key as (pk1, pk2). An encryption of a message (m1,m2) ∈ P1 ×P2 is just a
pair (c1, c2), where c1 ← Enc1(pk1,m1) and c2 ← Enc2(pk2,m2). Finally, the
decryption of (c1, c2) is (Dec1(sk1, c1),Dec2(sk2, c2)). In the same way, one can
define the product of p ≥ 2 encryption schemes. If H is an encryption scheme,
we shall denote by H p the product of p copies of H .

Now, we describe this new construction. We use the same notations as in the
beginning of this section, and we assume that PH = {0, 1}. Let ι : PS ↪→
{0, 1}p be a representation of the plaintext space of S , which can be viewed
as the map ι : PS ↪→ Pp

H , by identifying {0, 1}p with the plaintext space
of H p. We construct a bridge from S to H p as follows. Notice that the de-
cryption algorithm of S is in fact a p-long vector of boolean algorithms gi :
{0, 1}e × {0, 1}n → {0, 1}, that is DecS (skS , c) = (g1(skS , c), ..., gp(skS , c)),
where {0, 1}n and {0, 1}e correspond to CS and the support of secret keys of
S , respectively. The bridge key bk is obtained by encrypting the bits of skS

under each component of the public key of H p.
The bridge map f is the vector obtained by homomorphically evaluating the

circuits gi in H . More precisely

f(bk, c) = (EvalH (evkH , gi, bk, c̃))i=1,p ,
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where c̃ is defined as above. Notice that, if c← Enc(pkS ,m) then

DecH p(f(bk, c)) = ι(m).

Security. As in the previous subsection, it can be shown that if S and H are
IND-CPA secure, then the bridge is also IND-CPA secure. The proof is very
similar to that of Proposition 2, hence omitted here.

5 Various Gentry type bridges

The aim of this section is to emphasize the fact that, for an encryption scheme S ,
different representations for the decryption algorithm DecS give rise to different
bridges from S to a FHE scheme H . For practical applications, one can select
the appropriate representation that best suits the implementation of the desired
application. Having this in mind, we chose to exhibit the encryption scheme
CSGN introduced in [4] and implemented in [10], whose decryption algorithm
admits at least four fundamentally different representations. We shall restrict
ourselves in discussing the security of these bridges, because the security of the
CSGN scheme is not entirely understood.

5.1 Description of the CSGN scheme

We give a brief description of the CSGN scheme. For more details regarding
the parameter selection, we refer to [4]. The plaintext space is the field F2 and
the ciphertext space of this scheme is Fn2 with the monoid structure defined by
component-wise multiplication. A simplified version of the scheme is defined as
follows.

– KeyGenCSGN(1λ): Choose dimension parameters n, d and s of size poly(λ),
a uniformly random subset S of {1, 2, . . . , n} of size s, and a finite distri-
bution X on {1, 2, ..., d} according to [4]. Set the secret key sk to be the
characteristic function of S, viewed as a bit vector.

– EncCSGN: To encrypt 0, choose first k ∈ {1, 2, ..., d} according to X and then
choose uniformly at random d numbers i1, . . . , id from the set {1, 2, . . . , n},
such that exactly k of them are in S. Finally, output the vector in Fn2 whose
components corresponding to the indices i1, . . . , id are equal to 0 and the
others are equal to 1. To encrypt 1, choose uniformly at random d numbers
i1, . . . , id from the set {1, 2, . . . , n}, such that none of them is in S, and
output the resulting vector in Fn2 as before.

– DecCSGN: To decrypt a ciphertext c using the secret key sk, output 0 if c
has at least one component equal to 0 corresponding to an index from S and
1, otherwise.

The output of the decryption algorithm can be written as

DecCSGN(sk, c) =
∏
i∈S

ci.
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Notice that, the decryption map is a homomorphism of monoids from (Fn2 , ·) to
the monoid (F2, ·) with the usual multiplication.

In what follows, we present four variants of bridges from the CSGN scheme,
denoted by S , to various FHE schemes. The latter are going to be denoted by
H . Also, the pairing 〈·, ·〉 : Rn × Rn → R will always be the standard inner
product over the ring R.

5.2 1st bridge

Let H be any FHE scheme with plaintext space the field with two elements;
hence, the map ι is the identity map. The secret key skS can be represented by
the n-dimensional standard vectors ei, where i ∈ S. The bridge key generation
algorithm encrypts each entry of the vectors ei, i ∈ S using pkH to obtain the
bridge key bk = {ẽ1, ..., ẽs}, a set of vectors consisting of the aforementioned
encryptions.

We remark that the decryption algorithm of S may be written as

DecS (skS , c) =
∏
i∈S
〈c, ei〉,

so that the bridge algorithm f is as follows:

f(bk, c) =

s∏
i=1

〈c, ẽi〉 =

s∏
i=1

 ∑
c[j]=1

ẽi[j]

 .

For simplicity, we chose the trivial encryptions as the encryptions of the bits of
c with H .

5.3 2nd bridge

We are in the same setting as before, where both plaintext spaces are F2. Recall
that the secret key skS is the characteristic function of the set S, represented
as an n-dimensional bit vector. Then, the decryption of S can be alternatively
written as

DecS (skS , c) =

n∏
i=1

(
1− (1− c[i])skS [i]

)
=
∏
c[i]=0

(1− skS [i]).

The bridge key bk is constructed as bk := {s̃kS [1], ..., s̃kS [n]}, where for

every i, s̃kS [i] is an encryption of 1− skS [i] under pkH . Finally, the bridge is
given by

f(bk, c) =
∏
c[i]=0

s̃kS [i].

Remark 6. The last formula shows that this bridge can be constructed even if the
scheme H is homomorphic only with respect to multiplication. For example, it
can be used when H = S obtaining something that resembles the key-switching
technique in some FHE schemes.
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5.4 3rd bridge

Here, the scheme H can be any FHE scheme with plaintext space the finite
field Fp, where p is a prime (for example the BGV and B/FV schemes, see [7],
[8] and [14]).

The bridge key generation algorithm instantiates KeyGenS (1λ) and then
KeyGenH (1λ), assuring that the characteristic of PH is larger than the Ham-
ming weight of skS , that is p > s. It then chooses positive integers x1, ..., xs
such that p = 1 + x1 + · · ·+ xs, and fixes a bijection ϕ : S → {1, ..., s}. Consider
the vector sk ∈ Fnp , where sk[i] = 0 if skS [i] = 0 and sk[i] = xϕ(i), otherwise.

For every i ∈ {1, . . . , n}, write s̃k[i] for an encryption of sk[i] under pkH . In this

case, the bridge key bk is the set of H encryptions bk = {s̃k[1], . . . , s̃k[n]}.
We remark that if ι : F2 ↪→ Fp denotes the usual embedding, then the

decryption of S satisfies

DecS (skS , c) = ι−1
(

1−
(
1 + 〈 c, sk〉Fp

)p−1)
.

The bridge map is defined as

f(bk, c) = EncH (pkH , 1)−

EncH (pkH , 1) +
∑
c[i]=1

s̃k[i]

p−1

,

where the additions, subtractions and exponentiation on the right hand side are
homomorphic operations on the ciphertexts of H .

Remark 7. As mentioned in the discussion following Definition 3, one can de-
velop a theory of bridges for which the plaintext spaces of the two encryption
schemes vary with λ along the same lines. The bridge constructed here falls in
this category because the plaintext space of H is chosen after the size of the
secret key is selected, as part of the Setup/KeyGen algorithm.

5.5 4th bridge

This bridge is based on an idea used in [2] for the bootstrapping procedure of
the GSW scheme. Notice that if c is a ciphertext in S , encrypted using pkS ,
then c decrypts to 1 if and only if the inner product 〈c, skS 〉Z = s, namely

DecS (skS , c) = [〈 c, skS 〉Z = s],

where [x = y] is, as before, the equality test.
We observe that in the computation of the inner product 〈 c, skS 〉Z one uses

only the additive structure of Z (also Zm with m > s would be sufficient for
our purposes). To find a representation of the cyclic group (Zm,+), one needs
first to embed it into the symmetric group Sm. The generator 1 ∈ Zm is sent
by this injective homomorphism to the cyclic permutation π1 ∈ Sm, defined as
π1(i) = i+ 1 for 1 ≤ i < m and π1(m) = 1. On the other hand, the group Sm is
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isomorphic to the multiplicative group of m-by-m permutation matrices, that is
matrices with 0 or 1 entries, having exactly one nonzero element in each row and
each column. The isomorphism maps the permutation π ∈ Sm to the matrix
Mπ = [eπ(1), ..., eπ(m)], where ei ∈ {0, 1}m is the ith standard basis vector.
The composition of these two homomorphisms gives us an embedding for the
cyclic group (Zm,+). For implementation purposes, it is good to notice that the
permutation matrices in the image of this embedding can be represented more
compactly by just their first column, because the remaining columns are just the
successive cyclic shifts of this column.

Let us explain how the bridge is constructed. Let m = s + 1 and take sk =
(sk[1], ..., sk[n]) to be the aforementioned representation of the secret key skS ,
that is sk[i] = Mπ1

if skS = 1 and sk[i] is the identity matrix otherwise. Set

s̃k[i] to be an encryption of sk[i] under pkH for all i ∈ 1, n, meaning that we
encrypt with H each entry of the matrix sk[i]. The bridge key bk consists of

{s̃k[1], . . . , s̃k[n]}.
The algorithm f takes as input bk and c and computes the matrix

P c :=
∏
c[i]=1

s̃k[i],

where the right hand side is a product of encrypted matrices, performed homo-
morphically in CH . We remark that the last entry of the first row of P c is an
encryption of the value returned by the equality test [〈 c, skS 〉Z = s]. Conse-
quently, we let the output of the bridge map be

f(bk, c) := P c1,s+1.

6 A bridge not of Gentry type

In this section we give an example of a bridge that does not follow Gentry’s
recipe. We start by recalling the Goldwasser-Micali and Sander-Young-Yung
encryption schemes. A bridge from the former to the latter is then presented.
The section ends with an interesting application of this bridge.

6.1 Goldwasser-Micali Cryptosystem

The Goldwasser-Micali encryption scheme is an asymmetric key encryption al-
gorithm developed by Shafi Goldwasser and Silvio Micali in [21]. If p, q are two
primes and N = p · q, then let J1(N) := {x ∈ (Z/NZ)×|

(
x
N

)
= 1} be the

multiplicative group of invertible integers modulo N with Jacobi symbol equal
to 1. The GM-encryption scheme (Z/2Z, J1(N),KeyGenGM ,EncGM ,DecGM ) is
given as follows:

– KeyGen(1λ): Choose two primes p = p(λ), q = q(λ) of size λ and let N =

pq. Choose η ∈ (Z/NZ)× such that
(
η
p

)
=
(
η
q

)
= −1, which yields that

η ∈ J1(N). The public key is the pair (N, γ := η · u2), where u is a random
element of (Z/NZ)×. The secret key is the pair (p, q).
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– Enc: To encryptm ∈ Z/2Z, choose a random ξ ∈ Z/NZ and let EncGM (m) =
γmξ2.

– Dec: To decrypt c ∈ J1(N), compute the Jacobi symbol
(
c
p

)
. Set DecGM (c) =

0 if the answer is 1 and DecGM (c) = 1 if the answer is −1.

The GM-encryption scheme is homomorphic with respect to addition in Z/2Z
and multiplication in J1(N), i.e.

DecGM (c1 · c2) = DecGM (c1) + DecGM (c2)

for all c1, c2 ∈ J1(N).

6.2 The Sander-Young-Yung Cryptosystem

In this section we present a homomorphic encryption scheme over the multi-
plicative monoid (Z/2Z, ·) introduced in [27]. To describe the scheme we shall
use the encryption scheme of Goldwasser-Micali, which was recalled in the pre-
vious section.

– Keygen(1λ): Choose two primes p = p(λ), q = q(λ) as in the Goldwasser-
Micali scheme. Choose ` = `(λ) of size Θ(λ). Compute N = pq. The public
key and secret keys are the same as in the Goldwasser-Micali scheme.

– Enc: If m = 1 set v = (0, ..., 0) ∈ {0, 1}`. If m = 0 set v = (v1, ..., vn) ∈
{0, 1}`, where the components vi are randomly chosen in {0, 1}, not all equal
to 0. Encrypt each component of v with the Goldwasser-Micali scheme to
get a vector in CSY Y := J1(N)`.

– Dec: To recover the plaintext from the cyphertext c ∈ C , first decrypt each
component of c using the decryption algorithm of the Goldwasser-Micali
scheme, and then if the obtained vector is the 0-vector the message decrypts
to 1, else to 0.

Let us describe an operation � on the ciphertext space CSY Y . If x and y are
two ciphertexts then z := x� y is defined as follows:

1. Choose uniformly at random two `×`matrices over Z/2Z until two nonsingular
matrices A = (aij) and B = (bij) are found.

2. If x = (x1, ..., x`), y = (y1, ..., y`), then compute

zi =
∏

j,aij=1

xj ·
∏

j,bij=1

yj

for all i.

3. Pick uniformly at random r1, ..., r` ∈ (Z/NZ)× and set z = (z1r
2
1, ..., z`r

2
` ).

Let us denote by vc the bit vector obtained by applying the decryption algorithm
of the Goldwasser-Micali scheme componentwise to the ciphertext c ∈ C . If
z := x� y then Step 2 above is equivalent to:
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vz = Avx +Bvy,

where the operations are the usual addition and multiplication in Z/2Z. Notice
that DecSY Y (z) 6= DecSY Y (x) · DecSY Y (y) if and only if Avx + Bvy = ~0 (here
~0 is the zero vector in (Z/2Z)`), and vx 6= ~0, vy 6= ~0. Since vx 6= ~0 and A is
nonsingular, the product Avx can be any nonzero vector in (Z/2Z)`, and in fact
any such vector occurs with the same probability. Of course, the same is true

for Bvy such that the situation described above occurs with probability ≤ 1

2`
.

In other words, except with exponentially small probability, we have that

DecSY Y (x� y) = DecSY Y (x) ·DecSY Y (y).

6.3 A bridge from GM to SYY

In this section we construct a bridge from the Goldwasser-Micali encryption
scheme to the Sander-Young-Yung encryption scheme. After generating a secret
key (p, q) of GM, the key generation algorithm of the bridge sets the same pair
(p, q) as the secret key for the SYY encryption scheme. Then, the public keys for
the two encryption schemes are generated independently using their respective
key generation algorithms. After that, the bridge key generation algorithm does
not output anything, i.e. the support of the distribution BK is the empty set.

Now, for c ∈ J1(N), choose uniformly at random a non-singular matrix
A ∈ GL`(Z/2Z) and compute

ti =
∏

j,aij=1

cγ′ = (cγ′)
|{j|aij=1}|

for all i ∈ 1, `, where γ′ is the second component of the public key of the SYY
scheme. Pick uniformly at random r1, . . . , r` ∈ (Z/NZ)× and set

f(c) = (t1r
2
1, ..., t`r

2
` ).

If DecGM (c) = 1, then DecGM (cγ′) = 0 so that DecGM (ti) = 0, ∀i. Therefore,
vf(c) = ~0 and hence DecSY Y (f(c)) = 1. On the other hand, if DecGM (c) = 0,

then DecGM (cγ′) = 1, and since A is nonsingular there exist i ∈ 1, ` such that
DecGM (ti) = 1. We get that vf(c) 6= ~0, equivalently DecSY Y (f(c)) = 0.

Remark 8. The security of this bridge reduces to the security of the GM scheme
(see [21]) using Theorem 2. Indeed, the bridge key distribution is empty, thus
trivially polynomial-time constructible on fibers. On the other hand, the security
of SYY encryption scheme can be easily reduced to the security of GM (see [27]).
Alternatively, one can use Theorem 1 instead of 2. To see this, note that in the
notation of Section 3, the public key of the scheme attached to this bridge PKGf

consists of just GM’s public key and the security of GM [PKGf ] is equivalent to
the security of GM.
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6.4 An application

As an application of the above bridge we show that the comparison circuit
can be evaluated homomorphically. For this, let ~x = (x1, x2, ..., xn) and ~y =
(y1, y2, ..., yn) be two bit vectors. The two vectors coincide if and only if

(x1 + y1 + 1) · ... · (xn + yn + 1) = 1,

so that the comparison circuit [~x = ~y] is defined by

[~x = ~y] := (x1 + y1 + 1) · ... · (xn + yn + 1).

Suppose now that ~c = (c1, ..., cn) and ~d = (d1, ..., dn) are encryptions of the vec-
tors ~x, ~y with the Goldwasser-Micali cryptosystem. To homomorphically evaluate
the comparison circuit, we compute:

Eval([~x = ~y],~c, ~d ) :=

(((
f(c1 · d1 · γ)� f(c2 · d2 · γ)

)
� ...

)
� f(cn · dn · γ)

)
.

Notice that DecSY Y

(
Eval([~x = ~y],~c, ~d )

)
= [~x = ~y], except with negligible prob-

ability in the security parameter.

We end this section with the following reflection. When two encryption
schemes admit the construction of a bridge which has an empty bridge key, this
may be interpreted as some sort of entanglement between the schemes. Along the
same line of thought, if one can prove that such a bridge cannot be constructed,
the encryption schemes may be regarded as being independent.

Appendix

We conducted experiments for the bridges described in sections 5 and 6. For
each of the four different bridges in section 5, we compare the results of the
homomorphic evaluation of a circuit consisting of only one monomial in the
following two ways. First, we encrypt each factor of the monomial and perform
the homomorphic multiplications of these factors using the CSGN scheme. Then,
bridges described in section 5 are applied, in turn, to obtain a ciphertext in a fully
(leveled) homomorphic encryption scheme based on (R)LWE. We compare this
to the alternative option of evaluating the monomial directly on encryptions in
the FHE scheme. If the degree of the monomial is larger than a certain threshold,
the first procedure outperforms the second in terms of speed. We identified this
threshold for each of the FHE schemes in which we performed experiments.

These computations were carried on a virtual machine having an Intel CPU
(I7-4770, 4 cores, 3.4 GHz, 12 GB RAM), using a single threaded implemen-
tation. Table 1 consists of an overview of the processing times for each bridge
using the implementations of BGV, BFV and TFHE schemes, namely the HElib
[22], SEAL [24] and TFHE [11] software libraries. In the first two columns of
the table, one can find the version of the bridge that was implemented, the FHE
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target scheme and the security parameters for the two schemes. The timings are
measured such that all encryptions maintain approximately the same security
level λ and listed in the last two columns. The small variation in λ is due to
parameter tuning in the different software libraries.

Table 1. Bridge evaluation

Bridge (CSGN-λ) LWE (λ) ENC (Bridge key) Bridge time

1st(125) BGV(121) 69 sec 2.6 sec

1st(125) TFHE(128) 186 ms 38.33 sec

1st(125) BFV(128) 38.97 sec 209.95 ms

2nd(125) BGV(114) 14.6 sec 68.28 sec

2nd(125) TFHE(128) 2.94 ms 1049 ms

2nd(125) BFV(128) 698 ms 2.24 sec

3rd(120) BGV(145) 7.65 sec 248 ms

3rd(120) BFV(128) 8.2 sec 156.46 ms

4th(115) TFHE(128) 162.6 ms 989.4 sec

The reason we are missing an implementation for our third bridge using the
TFHE library comes from the lack of flexibility in choosing as plaintext space a
ring of characteristic p > 2 in this library. Additionally, we felt that adapting the
TFHE library was beyond the scope of our work. Also, the timing for running
the fourth bridge in BGV and BFV could not be measured because of large
memory usage, which exceeded the virtual machine RAM. Moreover, regarding
the fourth bridge, the implementation is optimized to store only the first column
of each associated bit in the secret key, while the matrix multiplications involve
only homomorphic algebraic operations on encryptions from the first column of
the matrices.

There is no doubt that homomorphically evaluating a circuit whose poly-
nomial representation has a large number of monomials of low degree using
the bridge is inefficient and there is little hope for optimizations in terms of
speed. However, if some monomials have large degree, one might choose to do
so, because first performing multiplications in the CSGN scheme, followed by
additions in the (R)LWE setting might result in lower noise growth. Moreover,
by increasing the multiplicative depth of the circuit, we observe that its evalua-
tion is faster using the bridge than evaluating the circuit entirely in the (R)LWE
schemes. This can be observed in the figures below.

Since the multiplication in the CSGN scheme is inexpensive, the evaluation
time in the bridge using BGV, BFV and TFHE is almost constant as it essen-
tially consists only of the evaluation time of the bridge algorithm for one CSGN
ciphertext. Small variations in execution time for the bridge are due to the CPU
scheduling process. The drops in evaluation times occur when the instruction-
specific and data-specific cache at different levels in the CPU is filled with numer-
ous repetitive instructions. The timings for evaluating the circuit entirely in the
BGV or BFV scheme grow linearly with the degree of the monomial. We notice
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that in the TFHE case, the running time of the evaluation starts growing expo-
nentially in the number of multiplications, at some point. This is explained by
the fact that the TFHE software library goes automatically into bootstrapping,
whereas in the HElib and SEAL software libraries we can choose parameters in
which one can evaluate the circuit without the costly bootstrapping procedure.

Fig. 2. The first and second bridges

Fig. 3. The third bridge - BGV & BFV

We now report on the implementation of the bridge from the Goldwasser-
Micali encryption scheme to the Sander-Young-Yung encryption scheme con-
structed in the last section. In the table below, one can find the timings required
for running the bridge, as well as the ones needed for the homomorphic evalu-
ation of the comparison circuit. The measurements were performed on an Intel
I7-1068NG7 CPU laptop with 32GB of RAM. Since the parameter ` of the SYY
scheme does not have an impact on the security, but rather on the probability

to correctly decrypt the ciphertext

(
≥ 1− 1

2`

)
, we fix ` to be 50.
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Table 2. Homomorphic evaluation of comparison circuit using GM-SYY bridge

n log2(N) GM · SYY � GM → SYY [~x = ~y]

4 1024 0.002 ms 10.02 ms 4.54 ms 58.35 ms

4 2048 0.003 ms 29.96 ms 11.64 ms 164.44 ms

4 4096 0.008 ms 84.01 ms 32.82 ms 467.43 ms

8 1024 0.003 ms 10.70 ms 4.77 ms 123.98 ms

8 2048 0.004 ms 30.12 ms 11.89 ms 336.27 ms

8 4096 0.008 ms 84.65 ms 33.46 ms 945.26 ms

16 1024 0.002 ms 10.8 ms 4.87 ms 251.44 ms

16 2048 0.004 ms 29.69 ms 11.55 ms 660.17 ms

16 4096 0.008 ms 85.49 ms 33.71 ms 1907.78 ms

32 1024 0.003 ms 10.4 ms 4.69 ms 484.10 ms

32 2048 0.004 ms 30.29 ms 11.82 ms 1348.44 ms

32 4096 0.009 ms 82.51 ms 32.34 ms 3576.41 ms

The parameters n and N in Table 2 stand for the bit-lengths of ~x, ~y and,
respectively, the Goldwaser-Micalli modulus. The timings required for the one
homomorphic operation in each scheme can be found in the third and the fourth
columns. We notice that the timings presented above grow linearly with the
number of bits required to represent the input data. This can be observed in the
following figure.

Fig. 4. Evaluation times for the comparison circuit using GM-SYY bridge



26 M. Barcau et al.

References

1. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A Survey on Homomorphic Encryption
Schemes: Theory and Implementation, ACM Computing Surveys, 51(4), Article No.
79 (2018).

2. Alperin-Sheriff J., Peikert C.: Faster Bootstrapping with Polynomial Error. In:
Garay J.A., Gennaro R. (eds) Advances in Cryptology, CRYPTO 2014, LNCS, vol
8616, pp. 297–314. Springer, Berlin, Heidelberg (2014).

3. Awodey, S.: Category theory, 2nd edn, Oxford University Press, Oxford (2010).
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