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Abstract. Optimizing arithmetic operations into quantum circuits to
utilize quantum algorithms, such as the Shor algorithm and Grover search
algorithm for cryptanalysis, is an active research field in cryptography
implementation. In particular, reducing quantum resources is important
for efficient implementation. In this paper, binary field (GF (2n)) Mont-
gomery multiplication in quantum circuits is presented. We utilize the
bit-level Montgomery algorithm to efficiently compute the Montgomery
product C = A ·B · r−1 in the binary field GF (2n). Additionally, we also
present an efficient Montgomery multiplication quantum circuit in the
case where the modulus of GF (2n) is specified.

Keywords: Quantum Computers · Montgomery Multiplication · Binary
Field.

1 Introduction

International companies, such as Google and IBM, are advancing the develop-
ment of large-scale quantum computers. Quantum computers have more compu-
tational power than classical computers in certain areas, such as deep learning,
chemistry, and cryptography. If a large-scale quantum computer capable of op-
erating quantum algorithms is developed, the safety of currently widely used
cryptographic algorithms may be lowered or broken. It has been proven that
Shor’s algorithm can break the safety of RSA and Elliptic Curve Cryptography
(ECC). How long RSA and ECC can be used depends on the development of
quantum computers and optimization of Shor’s algorithm [1].

In [2], authors estimated that Shor’s algorithm can be applied using 2n + 2
qubits for RSA of n-bit key. Gidney estimated the number of improved 2n + 1
qubits [3]. Shor’s algorithm can also be applied to discrete logarithms in elliptic
curves (i.e. ECC). In [4], the authors presented that ECC is more vulnerable
to attack by quantum computers than RSA by estimating quantum resources
required to solve the elliptic curve discrete logarithms. In [5], it was shown that
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Shor’s algorithm can be applied to ECC with fewer resources than the result
of [4]. Both works are the results of studies targeting prime curves [4] and [5]. In
2020 [6], quantum resources were estimated on binary curves, and fewer quantum
resources were required than prime curves.

Arithmetic operations performed in quantum algorithms must be imple-
mented as quantum circuits, and it is important to optimize required quantum
resources. Due to this motivation, implementing arithmetic operations in the
prime field GF (p) or the binary field GF (2n) as a quantum circuit is an active
research field. Among them, many studies have been presented to optimize mod-
ular multiplication that requires many qubits and quantum gates [7–12]. In [7,
10, 11], the Karatsuba algorithm, which is widely used in practice, was used. The
Karatsuba algorithm divides an n-bit multiplication into three n

2 -bit multipli-
cations. Although, Karatsuba multiplication needs several extra additions, the
method significantly reduces the complexity of multiplication. By applying the
Karatsuba algorithm to quantum computing, the gate complexity in quantum
circuits is also optimized. In [12], the prime field multiplication applying the
Montgomery reduction algorithm is presented.

In this paper, we focus on binary field multiplication using the Montgomery
reduction algorithm. By utilizing the bit-level Montgomery algorithm [13], it is
optimized for quantum computing in which qubit unit operations are performed.
The proposed binary field Montgomery multiplication quantum circuit compute
the Montgomery product for any modulus, and we also propose a more efficient
quantum circuit when the modulus is specified. The proposed method was im-
plemented by utilizing ProjectQ [14], a quantum programming tool provided
by IBM. ProjectQ can implement quantum circuits using quantum gates and
qubits, and can analyze the quantum resources required for the circuit.

2 Related Work

2.1 Binary Field Multiplication

Multiplication in GF (2n) performs n-bit polynomial multiplication and reduc-
tion by modulus N . The multiplication of A(x) and B(x) in GF (2n) is as follows.

C = A ·B mod N (1)

For the product of A and B, a reduction using modulus N is performed over
n bits in length. As a result, C, the product of A and B, is an element of GF (2n).

2.2 Montgomery Multiplication

In 1987, Montgomery proposed a new type of modular multiplication [15]. In the
Montgomery algorithm, operands A and B are converted to the Montgomery
domain as follows. The choice of the simple exponentiation r = xn simplifies
Montgomery multiplication.
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A′ = A · r mod N
B′ = B · r mod N

(2)

General multiplication in GF (2n) computes A ·B mod N , but Montgomery
multiplication computes A ·B · r−1 mod N which is the form multiplied by the
inverse of r.

(A ·B)′ = (A · r) · (B · r) · r−1 mod N = A′ ·B′ · r−1 mod N (3)

The inverse operation in GF (2n) is complicated, but N ′ = −N−1 mod r can be
pre-computed. The process for Montgomery multiplication is shown in Algorithm
1.

Algorithm 1 Montgomery multiplication.

Input: Modulus N , operands A and B, exponentiation r = xn, pre-computed N ′ =
−N−1 mod r.

Output: C = A ·B · r−1 mod N .
1: T = A ·B
2: Q = T ·N ′ mod r
3: C = (T + Q ·N)/r
4: if C ≥ N then
5: C = C −N
6: end if
7: return C

2.3 Quantum Gates

Quantum gates used in quantum computers are reversible gates that can return
to their original state during computation. Quantum computing using reversible
quantum gates is different from classical computing, but there are quantum gates
that can replace logical operations performed in classical computers. There are
X, CNOT, Toffoli, and Swap gates, which are shown in Figure 1.

– X gate: This quantum gate can replace the NOT operation, inverting the
state of the input qubit. X (x) = ∼ x.

– CNOT gate: This quantum gate can replace the XOR operation, inverting
the state of y only if x is 1. CNOT (x, y) = (x, x⊕ y).

– Toffoli gate: This quantum gate can replace the AND operation, inverting
the state of z only if x and y is 1. Toffoli (x, y, z) = (x, y, z ⊕ x · y).

– Swap gate: This quantum gate swaps the states of x and y. Swap (x, y) =
(y, x).
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x X ∼ x

(a) X gate

x • x

y x⊕ y
(b) CNOT gate

x • x

y • y

z z ⊕ x · y
(c) Toffoli gate

x × y

y × x

(d) Swap gate

Fig. 1: Quantum gates.

3 Proposed Method

3.1 Qubit-level Montogomery Multiplication

We propose a qubit-level Montgomery multiplication quantum circuit by imple-
menting the bit-level Montgomery multiplication as a quantum circuit. Since the
operations between qubits are performed in quantum circuits, we utilized a bit-
level Montgomery multiplication [13] as a quantum circuit. Finally, the proposed
Montgomery multiplication in quantum circuits computes A ·B · r−1 mod N in
GF (2n) instead of generic multiplication (A · B mod N). The detailed process
for qubit-level Montgomery multiplication is shown in Algorithm 2.

Algorithm 2 Qubit-level Montgomery multiplication quantum circuit.

Input: (n− 1)-qubit of modulus N , n-qubit operands A and B, n-qubit result C.
Output: C = A ·B · r−1 mod N .
1: for i = 0 to n− 1 do
2: C = OperandMul (ai, B, C)
3: C = ModulusMul (c0, N,C)
4: RotateRight (C, 1)
5: end for
6: return C

In qubit-level Montgomery multiplication, the multiplication of operands A
and B is performed by scanning each qubit. Therefore, n iterative multiplications
are performed in GF (2n), which are the OperandMul in Algorithm 2. It is a
schoolbook method, but only one qubit of operand A is checked (i.e. ai), and
the product with B is stored in C using the Toffoli gate. The detailed process
for OperandMul is shown in Algorithm 3.
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Algorithm 3 OperandMul.

Input: Single qubit operand ai and n-qubit operand B, n-qubit result C.
Output: C = ai ·B.
1: for j = 0 to n− 1 do
2: cj = Toffoli (ai, bj , cj)
3: end for
4: return C

In Montgomery multiplication of Algorithm 1, N ′ = −N−1 mod r is com-
puted, which is a part that can be pre-computed. Although the pre-computation
is possible, the cost of computing the inverse in GF (2n) is high. However, we
do not compute N ′ in qubit-level Montgomery multiplication by selecting the
bit-level Montgomery multiplication that checks each bit [13]. By scanning each
single qubit ai of A, step 2 of Algorithm 1 can be omitted. Therefore, after
OperandMul, ModulusMul of Algorithm 4 is performed.

Algorithm 4 ModulusMul.

Input: (n− 1)-qubit of modulus N and n-qubit result C
Output: C = C + c0 ·N
1: for i = 0 to n− 2 do
2: ci+1 = Toffoli (c0, ni+1, ci+1) (need revision)
3: end for
4: return C

The modulus N of GF (2n) is nnx
n +nn−1x

n−1 + ...+n1x+n0. In Algorithm
4, only (n−1)-qubit modulus is input to compute the product of modulus and c0
(i.e. co ·N). This is an advantage considering that nn is always 1 in the modulus
and the division of r in step 3 of Algorithm 1. In n-bit modulus N , n0 is always
1, and due to r division, c0 updated by the addition of the product of n0 and c0
is discarded due to right-shift operation. For this reason, we ignore the constant
part and reconstruct the (n − 1)-qubit modulus nn−1x

n−1 + nn−2x
n−2 + ... +

n2x
2 + n1x. In Algorithm 4, ModulusMul, the product of c0 and ni+1 is stored

in ci+1 by Toffoli gates. Additionally, for the highest coefficient nnx
n, it can be

effectively replaced by step 4 (i.e. RotateRight) of Algorithm 2. The detailed
process for this (ModulusMul + RotateRight) is shown in Figure 2.

The upper lines of ModulusMul in Figure 2 represent the multiplication part
of N and c0. In Figure 2, we avoid the product of nn, n0 by considering the
division of r performed next. As a result, c′0, the product of n0 and c0, and c′n
the product of nn and c0, are not computed. We compute the products from n1 to
nn−1 and add them from c1 to cn−1. c0 remains at position c′0. After ModulusMul
is finished, perform RotateRight. Due to the simple exponentiation of r = xn

and the bit-level Montgomery multiplication, division x equals 1 right shift.
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Fig. 2: ModulusMul + RotateRight.

We perform 1 right rotation instead of 1 right shift on the n-qubit resulting
from ModulusMul. c′1 to c′n−1 are right shifted by one qubit, and c0 is positioned
at the highest qubit due to rotation operation. In the highest qubit, right-shifted
c′n must be located, but c0 is located. This is possible because nn is always 1,
so c′n = c0 · nn = c0 · 1 = c0. If steps 3 and 4 of Algorithm 2 are finished, it is
repeated until the last qubit an−1 is checked. As shown in Figure 2, with the
combination of ModulusMul and RotateRight, we allocate only n−1 qubits (i.e.
nn−1, ..., n1) for modulus N (nn, ..., n0). Finally, the quantum resources required
for each step are summarized as follows.

– OperandMul: n2 Toffoli gates for schoolbook multiplication.
– ModulusMul: n · (n− 1) Toffoli gates for modulus multiplication.
– RotateRight: (n− 1) Swap gates for right rotation.

Rotation right by 1 in Figure 2 can be performed with (n−1) Swap gates. As
shown in Figure 3, Swap (c0, c

′
1), Swap (c′1, c

′
2), ... Swap (c′n−2, c

′
n−1) ard done

in order. However, Swap gates are not measured as quantum resources because
they can be replaced by relabeling the qubits [16].

Finally, quantum resources required to implement Montgomery multiplica-
tion in GF (2n) as a quantum circuit are as follows.

– Total: (4n− 1) qubits and (2n2 −n) Toffoli gates for Montgomery multipli-
cation and the circuit depth is n2 + n.

3.2 Qubit-level Montgomery Multiplication with Specified Modulus

In the previous section, we presented Montgomery multiplication when the mod-
ulus is not specified, but if the modulus is specified, more efficient quantum
circuit design between classic and quantum is possible. This section presents
qubit-level Montgomery multiplication with specified modulus.
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c0 × c′1

c′1 × × c′2

c′2 × c′3

...

c′n−2 × c′n−1

c′n−1 × c0

Fig. 3: RotateRight.

If the modulus is specified, qubits can be saved, since there is no need to
allocate (n− 1)-qubits for the modulus N and ModularMul is replaced by Algo-
rithm 6, FixedModulusMul. In ModularMul, (n− 1)-qubit modulus N , n-qubit
C and Toffoli gates are used, but in FixedModulusMul, only n-qubit C and
CNOT gates are used. Toffoli gate is actually composed of several CNOT gates,
so the gate cost is reduced. The detailed process for qubit-level Montgomery
multiplication with specified modulus is shown in Algorithm 5.

Algorithm 5 Qubit-level Montgomery multiplication quantum circuit with
specified modulus.

Input: Specified modulus N , n-qubit operands A and B, n-qubit result C.
Output: C = A ·B · r−1 mod N .
1: for i = 0 to n− 1 do
2: C = OperandMul (ai, B, C)
3: C = FixedModulusMul (c0, N,C)
4: RotateRight (C, 1)
5: end for
6: return C

Algorithm 5 is not significantly different from Algorithm 2. The difference is
step 2 FixedModulusMul which adds the product of modulus N and coefficient
c0 to C. In FixedModulusMul, the use of CNOT gates is determined according
to the value of ni, which is the coefficient of modulus N . Since we already know
the modulus N , we can add the product of c0 and N with only the CNOT
gates. Also, there is no need to allocate qubits for modulus N . The process for
FixedModulusMul is shown in Algorithm 6.
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Algorithm 6 FixedModulusMul.

Input: Modulus N and n-qubit result C.
Output: C = C + c0 ·N .
1: for i = 0 to n− 2 do
2: if ni+1 = 1 then
3: ci+1 = CNOT (c0, ci+1)
4: end if
5: end for
6: return C

The advantages obtained in combination with step 4 (i.e. RotateRight) are
the same as in the previous section. Details are shown in Figure 4.

…

RotateRight

𝑐′!"# 𝑐′#𝑐$

FixedModulusMul

…

001 1001 1

… 𝑐$𝑐!"# 𝑐′% 𝑐′& 𝑐′#

Fixed modulus

Fig. 4: FixedModulusMul + RotateRight.

The quantum resources required to implement Montgomery multiplication
with specified modulus in GF (2n) as a quantum circuit are as follows. w is the
sum of all coefficients of modulus N . For most modulus used in binary fields, w
is not high. Therefore, for evaluation, we evaluated the depth by specifying the
case of w = 5.

– OperandMul: n2 Toffoli gates for schoolbook multiplication.
– FixedModulusMul: n(w − 2) CNOT gates for modulus multiplication.
– RotateRight: (n− 1) Swap gates for right rotation.
– Total: 3n qubits, n2 Toffoli gates and n(w−2) CNOT gates for Montgomery

multiplication and the circuit depth is 6n− 5.

4 Evaluation

Many binary modular multiplication methods have been proposed for quantum
computing. In [9], the multiplication part and the reduction part are efficiently
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connected using LU decomposition for the modulus. In [7, 10], the number of Tof-
foli gates was reduced by applying the Karatsuba algorithm, instead of increasing
the number of qubits. In [11], the Karatsuba algorithm was applied similarly, but
it reduced the number of Toffoli gates without increasing the qubits through LU
decomposition for the modulus. However, these are all multiplications for a spec-
ified modulus. [7] computes Karatsuba products according to the modulus. [10]
is also the same. For [9] and [11], LU decomposition for a specific modulus must
be performed in advance.

When it comes to hardware implementation of arithmetic by targeting a spe-
cific field, it is fast and compact. However, if a field is changed, it must be com-
pletely redesigned, which is time consuming and expensive. The proposed binary
Montgomery multiplication computes the product without knowing the modu-
lus. That is, compute the Montgomery product on any modulus in GF (2n). We
also implemented a quantum circuit where the operands of binary Montgomery
multiplication are all quantum parameters. In [12], quantum resources were eval-
uated with one of operands A and B set as a classical parameter. In quantum
computing, there are many operations that can be pre-computed without allo-
cating qubits for classical parameters. Therefore, quantum-quantum computing
has higher complexity than quantum-classical. We utilized ProjectQ [14], a quan-
tum programming tool provided by IBM, to implement the proposed method.
Based on this, implementation accuracy and quantum resources were evaluated.
Required quantum resources are shown in Table 1, and the study results on the
prime field [12] are also shown. In [12], the authors counted only Toffoli gates.

Table 1: Quantum resources for Montgomery multiplication.
Method Approach Qubit Toffoli CNOT Depth

Prime field
[12]

Quantum
-

Classical

5n 20n2 × 8n log2 n

3n 4n2 × 4n2

Binary field
(ours)

Quantum
-

Quantum

4n− 1 2n2 − n · n2 + n

3n n2 3n 6n− 5

w = 5 (sum of coefficients of Modulus N)

5 Conclusion

In this paper, we focus on binary field multiplication using the Montgomery
reduction algorithm. By utilizing the bit-level Montgomery algorithm, it is opti-
mized for quantum computing in which qubit unit operations are performed. The
proposed binary field Montgomery multiplication in quantum circuits computes
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the Montgomery product for any modulus. We also propose a more efficient
quantum circuit when the modulus is specified. To the best of knowledge, this
is the first work investigating the required quantum resources for binary field
Montgomery multiplication.

The future work is going to find cryptography algorithm based on binary
field multiplication and optimize quantum circuits. We will also explore to com-
bine other asymptotically faster multiplication with the proposed binary field
multiplication. We will find the optimal computation routine for this structure.
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2. T. Häner, M. Roetteler, and K. Svore, “Factoring using 2n + 2 qubits with toffoli
based modular multiplication,” Quantum Information and Computation, vol. 17,
11 2016.

3. C. Gidney, “Factoring with n + 2 clean qubits and n − 1 dirty qubits,” arXiv:
Quantum Physics, 2017.

4. M. Roetteler, M. Naehrig, K. Svore, and K. Lauter, “Quantum resource estimates
for computing elliptic curve discrete logarithms,” pp. 241–270, 11 2017.
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