
Faster Public-key Compression of SIDH with
Less Memory

Kaizhan Lin1, Jianming Lin1, Weize Wang1, and Chang-an Zhao1,2,3

1 School of Mathematics, Sun Yat-sen University,
Guangzhou 510275, P.R.China

2 Guangdong Key Laboratory of Information Security,
Guangzhou 510006, P.R. China

3 State Key Laboratory of Information Security (Institute of Information
Engineering), Chinese Academy of Sciences,

Beijing 100093, P.R. China.

Abstract. In recent years, the isogeny-based protocol, namely supersin-
gular isogeny Diffie-Hellman (SIDH) has become highly attractive for its
small public key size. In addition, public-key compression makes super-
singular isogeny key encapsulation scheme (SIKE) more competitive in
the NIST post-quantum cryptography standardization effort. However,
compared to other post-quantum protocols, the computational cost of
SIDH is relatively high, and so is public-key compression. On the other
hand, the storage for pairing computation and discrete logarithms to
speed up the current implementation of the key compression is some-
what large.
In this paper, we mainly improve the performance of public-key compres-
sion of SIDH, especially the efficiency and the storage of pairing compu-
tation involved. Our experimental results show that the memory require-
ment for pairing computation is reduced by a factor of about 1.31, and
meanwhile, the instantiation of key generation of SIDH is 3.99% ∼ 5.95%
faster than the current state-of-the-art. Besides, in the case of Bob, we
present another method to further reduce the storage cost, while the
acceleration is not as obvious as the former.

Keywords: SIDH · SIKE · Post-quantum Cryptography · Public-key
Compression · Bilinear Pairing

1 Introduction

As we all know, Shor’s algorithm [22] is a polynomial time algorithm to solve
factoring large integers or discrete logarithms on a quantum computer. It causes
that most of widely-used cryptographic protocols are judged to be insecure, and
simultaneously promotes the rise of post quantum cryptography. Since super-
singular isogeny Diffie-Hellman (SIDH) [14]was introduced by Jao and De Feo
in 2011, isogeny-based protocols have received worldwide attention and finally
its variant, supersingular isogeny key encapsulation (SIKE) [1], remains one of
the nine key encapsulation mechanisms in Round 3 of the NIST post-quantum



2 Lin, K.Z., Lin, J.M., Wang, W.Z., Zhao, C.A.

cryptography standardization effort. Compared with other post quantum proto-
cols, such as code-based and lattice-based schemes, isogeny-based protocols are
attractive with their relatively small public keys.

Furthermore, one can compress the public key to make the SIDH proto-
col more competitive. SIDH public-key compression was firstly explored by R.
Azarderakhsh et al. [2] in 2016, and further improved by Costello et al. [3] in 2017,
reducing the key size from 6log2 p to 3.5log2 p in the end. But the extra compu-
tational cost is unbearable, compared to SIDH without compression. Zanon et
al. [24] later proposed new speed-up techniques to decrease the runtime of SIDH
compression and decompression, while M. Naehrig and J.Renes [18] applied dual
isogenies to significantly reduce the cost of compression. However, it needs pre-
computation. To make matters worse, storing tables for pairing computation
and discrete logarithm solution need large storage. Recently A. Hutchinson et
al. [13] reduced discrete logarithm table sizes by a factor of 4, thanks to the SIKE
parameters and torus-based representation of cyclotomic subgroup elements. In
addition, Pereira and Barreto [19] attempted to utilize ECDLP instead of DLP
on finite fields and bilinear pairings for compression, leading to the saving of the
memory requirements as well, but it is hard to be as efficient as the original.

Our main achievement is the optimization of bilinear pairings used in public-
key compression of SIDH and SIKE, including its storage and efficiency. In the
case of Alice, We present techniques to make a memory saving of about 33.8%
and improve the implementation of key generation about 3.99% ∼ 5.73% over-
head, which is the main efficiency bottleneck for the current public-key com-
pression of SIKE. When handling the case of Bob, we present two methods to
improve the performance. We report that by utilizing Method 1, about 17.0%
of memory for pairings can be saved, and we improve the implementation of
key generation about 4.44% ∼ 5.95% overhead. Method 2 brings a memory sav-
ing of about 33.4%, but the implementation is not so efficient compared to the
implementation of Method 1.

The paper is organized as follows. In Section 2 we briefly recall the SIDH
protocol, the basic knowledge of the reduced Tate pairing and public-key com-
pression used in SIKE. Section 3 presents our ideas to speed up pairing compu-
tation, especially Miller evaluations. Our implementation and cost estimates for
Miller evaluations are presented in Section 4. Finally, we make a conclusion in
Section 5.

2 Preliminaries

2.1 SIDH protocol

We simply review the SIDH protocol in this subsection. SIDH operates on super-
singular elliptic curves of the Montgomery form EA : y2 = x3 +Ax2 +x. All the
curves are defined over Fp2 = Fp(i), where i =

√
−1 in Fp2 , while p = 2e23e3 − 1

is prime and 2e2 ≈ 3e3 . Besides p, the public parameters of SIDH contain the su-
persingular curve E6 : y2 = x3+6x2+x and four torsion points PA, QA, PB , QB ,



Faster Public-key Compression of SIDH with Less Memory 3

satisfying that E6[2e2 ] = 〈PA, QA〉, E6[3e3 ] = 〈PB , QB〉. There are mainly two
phases in SIDH: key generation and key agreement.

During key generation, Alice chooses a random integer sA such that sA ∈
[0, 2e2 − 1], and applies the three point ladder algorithm [10] to compute SA =
PA + [sA]QA. Obviously it is a point of order 2e2 over E6. Next, Alice com-
putes the 2e2-isogeny φA with kernel 〈SA〉 by decomposing it as a chain of
2-isogenies, which can be obtained easily by Vélu’s formula [23]. Finally, she
computes φA(PB), φA(QB) and the image curve parameter A, thereafter sends
the triple (φA(PB), φA(QB), A) to Bob. Similar to Alice, Bob chooses a random
element sB ∈ [0, 3e3 − 1] as his secret key and computes the 3e3-isogeny φB with
kernel SB = PB + [sB ]QB , and then calculates φB(PA), φB(QA) and the image
curve parameter B and transmits this information to Alice.

After receiving the message from Bob, Alice begins her key agreement phase.
In the first instance she uses her secret key sA and φB(PA), φB(QA) to construct
φB(PA) + [sA]φB(QA) (Note that it is a point over EB) and the corresponding
2e2-isogeny φ′A. Different from the key generation phase, only the parameter of
the image curve EBA of φ′A is needed. Analogously Bob acts the 3e3-isogeny with
kernel φA(PB) + [sB ]φA(QB) on EA and finds out its image curve EAB . Since
EBA ∼= EAB , they can share the j-invariant of EAB and EBA as their secret.

For more details of the SIDH protocol and its quantum security analysis, we
refer to [1, 7, 12,14,15].

Remark 1. Indeed, Alice can only utilize the x-coordinates of PA, QA, RA =
PA − QA, PB , QB , RB = PB − QB and her secret key to complete all the work
during the whole process of key generation. In this case Alice should transmit the
triple (xφA(PB), xφA(QB), xφA(RB)) to Bob. The same situation makes available
for Bob. Furthermore, the key agreement phase for both of them can be also
optimized in the same way. See [5, 14] for more details.

2.2 Reduced Tate pairing

Before describing public-key compression of SIDH, we introduce the reduced Tate
pairing [9] first. It is a variant of Tate pairing [11], guaranteeing the uniqueness
of pairing value.

Let k = Fq be a field and E an elliptic curve over k. The reduced Tate pairing
of order n is denoted by

en : E[n]× E(k)/nE(k)→ µ, (P,Q) 7→ fn,P (Q)
q−1
n ,

where µ is the set of n-th roots of unity, and fn,P a rational function satisfying

div(fn,P ) = n(P )− n(O).

This kind of pairing also has the same properties as the Tate pairing, i.e.,

– Bilinearity: ∀P1, P2 ∈ E[n], ∀Q1, Q2 ∈ E(k)/nE[k],

en(P1 + P2, Q) = en(P1, Q)en(P2, Q),

en(P,Q1 +Q2) = en(P,Q1)en(P,Q2);



4 Lin, K.Z., Lin, J.M., Wang, W.Z., Zhao, C.A.

– Non-degeneracy: ∀ P ∈ E[n], ∃Q ∈ E(k)/nE(k) such that

en(P,Q) 6= 1.

And similarly, for all Q ∈ E(k)/nE(k) there exists a point P ∈ E[n] satisfy-
ing the above inequality;

– Compatibility with isogenies: ∀P ∈ E[n],∀Q ∈ E(k)/nE[k],

en(P, φm(Q)) = en(φ̂m(P ), Q),

where φm is a non-zero m-isogeny defined over Fq, and φ̂m is its dual, in
particular,

en(φm(P ), φm(Q)) = en(P,Q)m
2

.

2.3 Public-key compression of SIDH

In Remark 1 we can see that the size of the public key is 6log2 p bits. However, one
can reduce the size to 3.5log2 p bits at a greater cost of computational resources.
Now we briefly recall public-key compression used in SIKE and focus on pairing
computation. For the sake of simplicity we only consider the case of Alice, while
that of Bob is similar.

2.3.1 Linear representation Azarderakhsh et al. [2] firstly proposed a way
to reduce the key size. The main idea is to implement a deterministic pseudo-
random number generator to find out another 3e3-torsion basis w.r.t. the curve
parameter A to linearly represent φA(PB) and φA(QB):[

φA (PB)
φA (QB)

]
=

[
a0 b0
a1 b1

] [
UA
VA

]
. (1)

A question raised here is how to compute a0, b0, a1, b1. Taking advantage of
the bilinearity and non-degeneracy of the reduced Tate pairing, we consider

g0 = e3e3 (UA, VA) ,

g1 = e3e3 (UA, φA (PB)) = e3e3 (UA, a0UA + b0VA) = gb00 ,

g2 = e3e3 (UA, φA (QB)) = e3e3 (UA, a1UA + b1VA) = gb10 ,
g3 = e3e3 (VA, φA (PB)) = e3e3 (VA, a0UA + b0VA) = g−a00 ,
g4 = e3e3 (VA, φA (QB)) = e3e3 (VA, a1UA + b1VA) = g−a10 .

(2)

It remains how to solve four discrete logarithms, which is easy by using the
Pohlig-Hellman algorithm [21].

Instead of (xφA(PB), xφA(QB), xφA(RB)), Alice regards (a0, b0, a1, b1, A) as her
public key and dispatches it to Bob. Note that a0, b0, a1, b1 ∈ Z/3e3Z and A ∈
Fp2 , the size is reduced to about 4log2 p.

Remark 2. After receiving the message from Alice, Bob can implement the same
pseudo-random number generator w.r.t. A to generate UA, VA, and hence he is
able to recover φA(PB) and φA(QB). The efficient way to generate the torsion
basis can be seen in [20,24].



Faster Public-key Compression of SIDH with Less Memory 5

Costello et al. [3] observed that either a0 or b0 is invertible, and therefore
(a−10 b0, a

−1
0 a1, a

−1
0 b1, 0, A) (or (b−10 a0, b

−1
0 a1, b

−1
0 b1, 1, A)), whose size is approx-

imate 3.5log2 p, could substitute for (a0, b0, a1, b1, A). In this case, Bob could
only construct the kernel of the isogeny φ′B , instead of restoring φA(PB) and
φA(QB), but it does not affect the progress of key agreement.

2.3.2 Reverse basis decomposition Further optimization was explored by
Zanon et. al [24]. Due to the fact that 〈φA(PB), φA(QB)〉 = EA[3e3 ], the matrix
in Equation (1) is invertible and therefore,[

UA
VA

]
=

[
c0 d0
c1 d1

] [
φA (PB)
φA (QB)

]
.

It is easy to check that (a−10 b0, a
−1
0 a1, a

−1
0 b1) = (−d−11 d0,−d−11 c1, d

−1
1 c0) if d1 is

invertible (If not then (b−10 a0, b
−1
0 a1, b

−1
0 b1) = (−d−10 d1, d

−1
0 c1,−d−10 c0) holds).

In this way Equations (2) need to be modified correspondingly,

h0 = e3e3 (φA (PB) , φA (QB))

= e3e3 (PB , QB)
2e2

,

h1 = e3e3 (φA (PB) , UA)

= e3e3 (φA (PB) , c0φA (PB) + d0φA (QB)) = hd00 ,

h2 = e3e3 (φA (PB) , VA)

= e3e3 (φA (PB) , c1φA (PB) + d1φA (QB)) = hd10 ,

h3 = e3e3 (φA (QB) , UA)

= e3e3 (φA (QB) , c0φA (PB) + d0φA (QB)) = h−c00 ,

h4 = e3e3 (φA (QB) , VA)

= e3e3 (φA (QB) , c1φA (PB) + d1φA (QB)) = h−c10 .

The superiority of reverse basis decomposition is that the value h0 could be
precomputed, i.e., powers of h0 could be calculated in advance, bringing more
efficiency for solution of four discrete logarithms.

Remark 3. Utilizing torus-based representation of cyclotomic subgroup elements
and signed digit representation, Hutchinson et al. [13] reduced the memory re-
quirements for computing discrete logarithms by a factor of 4.

2.3.3 Dual isogeny Naehrig and Renes [18] did a deeper study for public-key
compression and made it possible to speed up the pairing computation. They
made use of the fact that

h1 = e3e3
(
PB , φ̂A (UA)

)
, h2 = e3e3

(
PB , φ̂A (VA)

)
,

h3 = e3e3
(
QB , φ̂A (UA)

)
, h4 = e3e3

(
QB , φ̂A (VA)

)
,



6 Lin, K.Z., Lin, J.M., Wang, W.Z., Zhao, C.A.

where φ̂A is the dual isogeny of φA.
The existence of P3 ∈ E0(Fp)[3e3 ] and the distortion map ψ : (x, y) 7→

(−x, iy) help construct a 3e3−torsion group 〈P3, ψ(P3)〉. Let

PB = φ0(P3), QB = φ0(ψ(P3)).

Then 〈PB , QB〉 is the 3e3−torsion group of E6. Same as above, pulling back
pairing computation from E6 to E0 is feasible because there exists a natural
2-isogeny φ0 from E0 to E6. In this case, computing h1, h2, h3 and h4 is efficient
because of the special form of P3 and ψ(P3).

Moreover, once P3, Q3 are fixed, one could precompute all the coefficients
of Miller line functions to further speedup the pairing computation. Neverthe-
less, it requires huge memory requirements and pairing computation is still the
bottleneck of public-key compression.

Remark 4. The situation changes when Bob computes the four order-2e2 pairings
because it is impossible to seek out a point of order 2e2 over E0(Fp) [5], but the
handling is analogous. Instead of pulling back to E0, consider the isomorphism

ϕ : E6 → E−11,14,

(x, y) 7→ (x+ 2, y),

where E−11,14 : y2 = x3 − 11x + 14. It helps pull computations from EB to
E−11,14. Since there does not exist a point of order 2e2 over E6(Fp), the best
choice is to pick P2 and Q2 such that [2]P2 ∈ E−11,14(Fp) and [2]Q2 = (x, iy) ∈
E−11,14(Fp2), where x, y ∈ Fp [6]. The rest is similar to the case of Alice.

3 Pairing Optimization

As mentioned in Section 2.3.3, pairing computation over E0 (or E−11,14) domi-
nants the time complexity of public-key compression. In this section we propose
how to optimize it, according to the specific setting of SIKE, to make SIDH/SIKE
more competitive.

Throught this section, let L[α]P,[β]P be the line passing through [α]P and
[β]P , where P is a rational point over an elliptic curve and α, β ∈ Z. Besides, use
g[α]P,[β]P and v[α]P to denote the line functions that defines the lines L[α]P,[β]P

and L[α]P,−[α]P , respectively. We abbreviate g[α]P,[β]P and v[α]P to gα,β and vα
respectively when it does not cause ambiguous interpretation.

Remark 5. L[α]P,[α]P represents the line passing through the point [α]P twice.
This means that L[α]P,[α]P is the tangent line of the curve at P , and, of course,
it intersects the curve at [−2α]P .

3.1 Handling the case of Alice

For Alice, she should compute four reduced Tate pairings of the form e3e3 (R,S),
where R is either P3 or ψ(P3) while S is an indeterminate point. Each pairing



Faster Public-key Compression of SIDH with Less Memory 7

computation consists of two stages: the Miller function construction and the final
exponentiation. The latter is scarcely possible to improve for the low embedding
degree, thus we focus on the former.

Since 3e3 is a smooth number, it is best to compute the order-3e3 pairing in
a double-and-add like fashion by using Miller’s algorithm [17], and each Miller
iteration (except the final loop) is a tripling step of the form

div
(
f3j+1,R

)
= div

(
f33j ,R ·

g3j ,3j · g3j ,2·3j
v2·3j · v3j+1

)
,

where j = 0, 1, · · · , e3 − 2. Use the notations [3j ]R = (x
(j)
1 , y

(j)
1 ), [2 · 3j ]R =

(x
(j)
2 , y

(j)
2 ), [3j+1]R = (x

(j)
3 , y

(j)
3 ), and let λ

(j)
1 and λ

(j)
2 be the slopes of L[3j ]P,[3j ]P

and L[3j ]P,[2·3j ]P respectively, that is,

λ
(j)
1 =

3(x
(j)
1 )2 + 1

2y
(j)
1

, λ
(j)
2 =

y
(j)
2 − y

(j)
1

x
(j)
2 − x

(j)
1

.

Then we have

g3j ,3j = λ
(j)
1 (x− x(j)1 )− (y − y(j)1 ),

g3j ,2·3j = λ
(j)
2 (x− x(j)2 )− (y − y(j)2 ),

v2·3j = x− x(j)2 ,

v3j+1 = x− x(j)3 .

Eisenträger et al. [8] utilized the double-and-add trick with parabolas to speed up
the evaluations of the Weil and Tate pairings. We are inspired by their work and
take full advantage of this relation between g3j ,3j , g3j ,2·3j and v3j+1 to optimize
the implementation of the reduced Tate pairing.

As we mentioned in Remark 5, L[3j ]P,[3j ]P is a line passing through not only
[3j ]P , but [−2 · 3j ]P , which is the inverse of [2 · 3j ]P , namely, [−2 · 3j ]P =

(x
(j)
2 ,−y(j)2 ). This implies that

g3j ,3j = λ
(j)
1 (x− x(j)2 )− (y + y

(j)
2 ).

Hence,

g3j ,3j · g3j ,2·3j
v2·3j

=
[λ

(j)
1 (x− x(j)2 )− (y + y

(j)
2 )] · [λ(j)2 (x− x(j)2 )− (y − y(j)2 )]

x− x(j)2

= λ
(j)
1 λ

(j)
2 (x− x(j)2 )− λ(j)1 (y − y(j)2 )− λ(j)2 (y + y

(j)
2 ) +

y2 − (y
(j)
2 )2

x− x(j)2

.

(3)



8 Lin, K.Z., Lin, J.M., Wang, W.Z., Zhao, C.A.

Note E0 is of the form: y2 = x3 + x. Similar with the denominator elimination
method proposed in [4, 16,25], we have

y2 − (y
(j)
2 )2 = (x3 + x)− ((x

(j)
2 )3 + x

(j)
2 )

= (x3 − (x
(j)
2 )3) + (x− x(j)2 )

= (x− x(j)2 )(x2 + x
(j)
2 x+ (x

(j)
2 )2) + (x− x(j)2 )

= (x− x(j)2 )(x2 + x
(j)
2 x+ (x

(j)
2 )2 + 1).

(4)

Thus we can further simplify the computation of Equation (3):

g3j ,3j · g3j ,2·3j
v2·3j

= λ
(j)
1 λ

(j)
2 (x− x(j)2 )− λ(j)1 (y − y(j)2 )− λ(j)2 (y + y

(j)
2 ) +

y2 − (y
(j)
2 )2

x− x(j)2

= λ
(j)
1 λ

(j)
2 (x− x(j)2 )−λ(j)1 (y − y(j)2 )− λ(j)2 (y + y

(j)
2 ) + (x2 + x

(j)
2 x+ (x

(j)
2 )2 + 1)

= x2 + (x
(j)
2 + λ

(j)
1 λ

(j)
2 )x− (λ

(j)
1 + λ

(j)
2 )y + C(j),

where C(j) = (x
(j)
2 − λ

(j)
1 λ

(j)
2 )x

(j)
2 + (λ

(j)
1 − λ

(j)
2 )y

(j)
2 + 1. Furthermore,

div
(
f3j+1,R

)
= div

(
f33j ,R ·

x2 + (x
(j)
2 + λ

(j)
1 λ

(j)
2 )x− (λ

(j)
1 + λ

(j)
2 )y + C(j)

x− x(j)3

)
.

Obviously, each Miller loop would be more efficient if we precompute all the
following values:

t
(j)
0 = x

(j)
3 ,

t
(j)
1 = x

(j)
2 + λ

(j)
1 λ

(j)
2 ,

t
(j)
2 = λ

(j)
1 + λ

(j)
2 ,

t
(j)
3 = (x

(j)
2 − λ

(j)
1 λ

(j)
2 )x

(j)
2 + (λ

(j)
1 − λ

(j)
2 )y

(j)
2 + 1.

(5)

For the final loop we only need to precompute x
(e3−1)
1 and c = λ

(e3−1)
1 x

(e3−1)
1 −

y
(e3−1)
1 since at the moment,

div (f3e3 ,R) = div
(
f33e3−1,R · g3e3−1,3e3−1

)
= div

(
f33e3−1,R · [λ

(e3−1)
1 x− y − c]

)
.

(6)
In general, there are 4(e3− 1) + 2 elements in Fp required to precompute for the
evaluation of fP3

(S).
Realizing that in the case of R = ψ(P3), we are able to make full use of the

precomputed value for P3:

div
(
f3j+1,ψ(P3)

)
= div

(
f33j ,ψ(P3)

· x
2 − t(j)1 x+ it

(j)
2 y + t

(j)
3

x+ t
(j)
0

)
,



Faster Public-key Compression of SIDH with Less Memory 9

and the final loop is also no exception. As a result, it is only necessary to store
4e3 − 2 elements in Fp.

In Algorithm 1 we present pseudocode for f3e3 ,R(Uk), where R is either P3

or ψ(P3) and Uk (k = 0, 1) are points of order 3e3 over E0. Denote by m and
a the cost of one multiplication and one addition in Fp, respectively. Then each
Miller loop (except the final loop) needs a computational cost of 2(26m+49a) =
52m+ 98a. Compared with previous work [18], we save 16m+ 36a per step.

Remark 6. It seems that for each Miller iteration one inversion operation in
Fp2 = Fp(i) is required. However, for all element a+ bi ∈ Fp(i),(

1

a+ bi

) p2−1
2e2

=

((
1

a+ bi

)(p−1)
)3e3

=

(
(a− bi)(p−1)

(a2 + b2)(p−1)

)3e3

= (a− bi)
p2−1
2e2 ,

where a, b ∈ Fp. Therefore, the inversion of an element could be replaced by its
conjugate thanks to the final exponentiation. In the case of Bob, one can also
utilize this trick to make algorithms more efficient.

Remark 7. In Algorithm 1, the notation of the form xP represents the x-coordinate

of P . We use t
(j)
0 , t

(j)
1 , t

(j)
2 and t

(j)
3 to denote precomputed values for P3 men-

tioned in Equation (5). Also, λ
(e3−1)
1 and c are precomputed values mentioned

in Equation (6).

3.2 Handling the case of Bob

Bob needs to compute four pairing evaluations of the form e2e2 (R,S), where R
is either P2 or Q2 while S is undetermined. Analogously, it is hard to speed up
the final exponentiation, thus we are still concerned with the Miller iteration.

In this section we present two methods to accelerate the Miller iteration in
the case of Bob, one aims to higher acceleration, and the other is for less memory
as possible, while applying the latter one is not as efficient as the former.

3.2.1 Method 1

It seems that the trick used in Section 3.1 is difficult to operate because each
Miller iteration is too simple. However, if we take a bigger step — that is,
combining two Miller iterations into one step, we find that the above trick is still
able to work.

To begin with, we claim the below lemma, which gives the relation between
f4j+1,R and f4j ,R.

Lemma 1. For j ∈ N, we have

div
(
f4j+1,R

)
= div

(
f44j ,R ·

g24j ,4j · g2·4j ,2·4j
v22·4j · v4j+1

)
. (7)



10 Lin, K.Z., Lin, J.M., Wang, W.Z., Zhao, C.A.

Algorithm 1 Computation of four Miller evaluations in the case of Alice

Input: U0, U1 ∈ E0(Fp2)
Output: fP3(U0), fP3(U1), fψ(P3)(U0) and fψ(P3)(U1)

1: for each k ∈ [0, 1] do
2: fk ← 1, fk+2 ← 1, sk ← x2Uk

3: end for
4: for each j ∈ [0, e3 − 1] do
5: for each k ∈ [0, 1] do

6: temp1 ← xUk · t
(j)
1 , temp2 ← yUk · t

(j)
2 ,

7: g ← sUk + temp1, g ← g − temp2, g ← g + t
(j)
3 ,

8: h← xUk − t
(j)
0 , h← h∗,

9: temp3 ← g · h,
10: temp4 ← fk, fk ← f2

k , fk ← fk · temp4, fk ← fk · temp3,
11: g ← sUk − temp1, g ← g + i · temp2, g ← g + t

(j)
3 ,

12: h← xUk + t
(j)
0 , h← h∗,

13: temp3 ← g · h,
14: temp4 ← fk+2, fk+2 ← f2

k+2, fk+2 ← fk+2 · temp4, fk+2 ← fk+2 · temp3.
15: end for
16: end for
17: for each k ∈ [0, 1] do

18: temp1 ← λ
(e3−1)
1 · xUk ,

19: g ← temp1 − y(e3−1)
Uk

, g ← g + c,

20: temp2 ← fk, fk ← f2
k , fk ← fk · temp2, fk ← fk · g,

21: g ← −i · temp1 − y(e3−1)
Uk

, g ← g − i · c,
22: temp2 ← fk+2, fk+2 ← f2

k+2, fk+2 ← fk+2 · temp2, fk+2 ← fk+2 · g.
23: end for
24: return f0, f1, f2, f3.

Proof. Note that

div
(
f2·4j ,R

)
= div

(
f24j ,R ·

g4j ,4j

v2·4j

)
. (8)

Therefore,

div
(
f4j+1,R

)
= div

(
f22·4j ,R ·

g2·4j ,2·4j

v4j+1

)
. (9)

Combining Equations (8) and (9), we have

div
(
f4j+1,R

)
= div

((
f24j ,R ·

g4j ,4j

v2·4j

)2
· g2·4j ,2·4jv4j+1

)
= div

(
f44j ,R ·

g2
4j ,4j

·g2·4j ,2·4j
v2
2·4j
·v4j+1

)
.

This completes the proof of the lemma. �

Use (x
(j)
1 , y

(j)
1 ), (x

(j)
2 , y

(j)
2 ), (x

(j)
4 , y

(j)
4 ) to respectively denote the affine coor-

dinates of [4j ]R, [2 ·4j ]R, and [4j+1]R. Let λ1 and λ2 be the slopes of L[4j ]R,[4j ]R,



Faster Public-key Compression of SIDH with Less Memory 11

L[2·4j ]R,[2·4j ]R:

λ
(j)
1 =

(3x
(j)
1 )2 − 11

2y
(j)
1

, λ
(j)
2 =

(3x
(j)
2 )2 − 11

2y
(j)
2

.

Then all the straight line functions mentioned in Equation (7) can be represented
as

g4j ,4j = λ
(j)
1 (x− x(j)1 )− (y − y(j)1 ),

g2·4j ,2·4j = λ
(j)
2 (x− x(j)2 )− (y − y(j)2 ),

v2·4j = x− x(j)2 ,

v4j+1 = x− x(j)4 ,

and note that g4j ,4j can be also written as

g4j ,4j = λ
(j)
1 (x− x(j)2 )− (y + y

(j)
2 ).

Now we try to simplify Equation (7). Similar with the trick used in Equation
(4),

y2 − (y
(j)
2 )2 = (x3 − 11x+ 14)− ((x

(j)
2 )3 − 11x

(j)
2 + 14)

= (x3 − (x
(j)
2 )3)− 11(x− x(j)2 )

= (x− x(j)2 )(x2 + x
(j)
2 x+ (x

(j)
2 )2)− 11(x− x(j)2 )

= (x− x(j)2 )(x2 + x
(j)
2 x+ (x

(j)
2 )2 − 11).

(10)

This implies that

`
(j)
1 =

g4j ,4j · g2·4j ,2·4j
v2,4j

=
[λ

(j)
1 (x− x(j)2 )− (y + y

(j)
2 )] · [λ(j)2 (x− x(j)2 )− (y − y(j)2 )]

x− x(j)2

= λ
(j)
1 λ

(j)
2 (x− x(j)2 )− λ(j)1 (y − y(j)2 )− λ(j)2 (y + y

(j)
2 ) +

y2 − (y
(j)
2 )2

x− x(j)2

= λ
(j)
1 λ

(j)
2 (x−x(j)2 )−λ(j)1 (y−y(j)2 )−λ(j)2 (y+y

(j)
2 )+(x2+x

(j)
2 x+(x

(j)
2 )2−11)

= x2 + (x
(j)
2 + λ

(j)
1 λ

(j)
2 )x− (λ

(j)
1 + λ

(j)
2 )y + C

(j)
1 ,

(11)

where C
(j)
1 = (x

(j)
2 − λ

(j)
1 λ

(j)
2 )x

(j)
2 + (λ

(j)
1 − λ

(j)
2 )y

(j)
2 − 11. Realizing that

div(g4j ,4j ) = 2([4j ]R) + ([−2 · 4j ]R)− 3(O),

div(g2·4j ,2·4j ) = 2([2 · 4j ]R) + ([−4j+1]R)− 3(O),

div(v2·4j ) = ([2 · 4j ]R) + ([−2 · 4j ]R)− 2(O),

we can deduce

div
(
`
(j)
1

)
= 2([4j ]R) + ([2 · 4j ]R) + ([−4(j+1)]R)− 4(O). (12)



12 Lin, K.Z., Lin, J.M., Wang, W.Z., Zhao, C.A.

This implies `
(j)
1 has a zero at [2 ·4j ]R, but not [−2 ·4j ]R. Therefore, the function

`
(j)
1 takes the form

`
(j)
1 = (x+ 2x

(j)
2 + λ

(j)
1 λ

(j)
2 )(x− x(j)2 )− (λ

(j)
1 + λ

(j)
2 )(y − y(j)2 ). (13)

Next, consider `
(j)
2 =

g4j ,4j · `
(j)
1

v2·4j
. Utilizing the same trick above, we deduce

that `
(j)
2 is of the form

`
(j)
2 = (t

(j)
1 x− y + t

(j)
3 ) · (x+ t

(j)
2 ) + t

(j)
4 , (14)

and therefore,

div
(
f4j+1,R

)
= div

(
(f4j ,R)4 · (t

(j)
1 x− y + t

(j)
3 ) · (x+ t

(j)
2 ) + t

(j)
4

x− t(j)0

)
,

where
t
(j)
0 = x

(j)
4 ,

t
(j)
1 = 2λ

(j)
1 + λ

(j)
2 ,

t
(j)
2 = 2x

(j)
2 + (λ

(j)
1 )2 + 2λ

(j)
1 λ

(j)
2 ,

t
(j)
3 = (λ

(j)
1 )2(λ

(j)
2 )− y(j)2 + t

(j)
1 (x

(j)
2 − t

(j)
2 ),

t
(j)
4 = −(t

(j)
1 x

(j)
4 + y

(j)
4 + t

(j)
3 )(x

(j)
4 + t

(j)
2 ).

(15)

Since the detailed deduction of (14) is tedious, we present it in Appendix A.
In the implementation we still execute a doubling step for P2, Q2 ∈ Fp2 ,

while the rest are essentially operated in Fp, and we take quadrupling steps as
possible. The final loop is relatively easy:

div(f2e2 ,R) =


div
(
f22e2−1,R ·

(
x− x[2e2−1]R

))
, if e2 is even,

div

(
f42e2−2,R ·

[λ[2e2−2]R

(
x− x[2e2−1]R

)
− y]2

x− x[2e2−1]R

)
, otherwise,

(16)

where λ[2e2−2]R is the slope of the line L[2e2−2]R,[2e2−2]R, and x[2e2−1]R is the

x-coordinate of [2e2−1]R.
Different from P3 and Q3, there is no notable relation between P2 and Q2, so

we have to precompute 10 values over Fp for each loop of four Miller evaluations,
and the last step requires extra 4 values when e2 is odd. To sum up, there are
5e2 − 2 or 5e2 + 2 elements to be precomputed and stored with respect to the
parity of e2.

In Algorithms 2 and 3 we present pseudocode for evaluating f2e2 ,R(Uk), where
R is either P2 or Q2, and Uk (k = 1, 2) are two points of order 2e2 over E−11,14.
The computational cost for each Miller iteration (except the first loop and the
final loop) is 4(15m + 29a) = 60m + 116a. In comparison, M. Naehrig and
J.Renes [18] state the cost 40m + 76a for a doubling step, in other words, we
save 20m+36a per quadrupling step, i.e, 10m+18a per doubling step on average.



Faster Public-key Compression of SIDH with Less Memory 13

Remark 8. In Algorithms 2 and 3, the notations of the form xP , yP represent
the x-coordinate and y-coordinate of P , while the notation λP is the slope of the

tangent line passing through P . We use t
(j)
0 , t

(j)
1 , · · · , t(j)4 to denote precomputed

values for P2 (or Q2) mentioned in (15).

Algorithm 2 Computation of the Miller evaluations when R = P2 in the case
of Bob (Method 1)

Input: U0, U1 ∈ E0(Fp2)
Output: fP2(U0), fP2(U1)

1: for each k ∈ [0, 1] do
2: fk ← 1.
3: end for
4: for each k ∈ [0, 1] do
5: h← xUk − x[2]P2

,
6: g ← h, g ← λP2 · g, g ← g − yUk , g ← g − y[2]P2

,
7: h← h∗, g ← g · h,
8: fk ← f2

k , fk ← fk · g.
9: end for

10: for each j ∈ [0, be2−1c
2

] do
11: for each k ∈ [0, 1] do

12: h← xUk − t
(j)
0 , h← h∗,

13: temp1 ← t
(j)
1 · xUk , temp1 ← temp1 − yUk ,temp1 ← temp1 + t

(j)
3 ,

14: g ← xUk + t
(j)
2 , g ← g · temp1, g ← g + t

(j)
4 ,

15: g ← g · h,
16: fk ← f2

k , fk ← f2
k , fk ← fk · g.

17: end for
18: end for
19: if e2 is even then
20: for each k ∈ [0, 1] do

21: g ← x− t(
e2
2
−1)

0 ,
22: fk ← f2

k , fk ← fk · g.
23: end for
24: else
25: for each k ∈ [0, 1] do
26: h← xUk − x[2e2−1]P2

,

27: g ← λ[2e2−2]P2
· h, g ← g − yUk , g ← g2,

28: h← h∗, g ← g · h,
29: fk ← f2

k , fk ← f2
k , fk ← fk · g.

30: end for
31: end if
32: return f0, f1.



14 Lin, K.Z., Lin, J.M., Wang, W.Z., Zhao, C.A.

Algorithm 3 Computation of the Miller evaluations when R = Q2 in the case
of Bob (Method 1)

Input: U0, U1 ∈ E0(Fp2)
Output: fP2(U0), fP2(U1)

1: for each k ∈ [0, 1] do
2: fk ← 1.
3: end for
4: for each k ∈ [0, 1] do
5: h← xUk − x[2]Q2

,
6: g ← h, g ← λQ2 · g, g ← g − yUk , g ← g − i · y[2]Q2

,
7: h← h∗, g ← g · h,
8: fk ← f2

k , fk ← fk · g.
9: end for

10: for each j ∈ [0, be2−1c
2

] do
11: for each k ∈ [0, 1] do

12: h← xUk − t
(j)
0 , h← h∗,

13: temp1 ← i · t(j)1 · xUk , temp1 ← temp1 − yUk ,temp1 ← temp1 + i · t(j)3 ,

14: g ← xUk + t
(j)
2 , g ← g · temp1, g ← g + i · t(j)4 ,

15: g ← g · h,
16: fk ← f2

k , fk ← f2
k , fk ← fk · g.

17: end for
18: end for
19: if e2 is even then
20: for each k ∈ [0, 1] do

21: g ← x− t(
e2
2
−1)

0 ,
22: fk ← f2

k , fk ← fk · g.
23: end for
24: else
25: for each k ∈ [0, 1] do
26: h← xUk − x[2e2−1]Q2

,

27: g ← i · λ[2e2−2]R · h, g ← g − yUk , g ← g2,
28: h← h∗, g ← g · h,
29: fk ← f2

k , fk ← f2
k , fk ← fk · g.

30: end for
31: end if
32: return f0, f1.

3.2.2 Method 2
In this section, we investigate the diviosrs of f4j+1,R and f4j ,R, and try to deduce
another representation of the relation between f4j+1,R and f4j ,R.

Since

div(f4j+1,R) = 4j+1(R)− ([4j+1]R)− (4j+1 − 1)(O),

and

div(f4j ,R) = 4j(R)− ([4j ]R)− (4j − 1)(O).



Faster Public-key Compression of SIDH with Less Memory 15

Therefore, we have

div(f4j+1,R) = 4div(f4j ,R) + 4([4j ]R)− ([4j+1]R)− 3(O).

It remains to find a rational function `
(j)
3 , whose divisor is

div(`
(j)
3 ) = 4([4j ]R)− ([4j+1]R)− 3(O).

Note that

div(`
(j)
3 ) = 4([4j ]R)− ([4j+1]R)− 3(O)

= 4([4j ]R) + 2([−2 · 4j ]R)− 2([−2 · 4j ]R)− ([4j+1]R)− 3(O)

= 4([4j ]R) + 2([−2 · 4j ]R)− 6(O)− 2([−2 · 4j ]R)− ([4j+1]R) + 3(O)

= 2
(
2([4j ]R) + ([−2 · 4j ]R)−3(O)

)
−
(
2([−2 · 4j ]R) + ([4j+1]R)−3(O)

)
.

That is,

div(`
(j)
3 ) = 2div(g4j ,4j )− div(g−2·4j ,−2·4j ).

As a summary, we claim the following lemma.

Lemma 2. For j ∈ N, we have

div(f4j+1,R) = div(f44j ,R ·
g24j ,4j

g−2·4j ,−2·4j
). (17)

Now we analyze the precomputed values that should be stored for each Miller
iteration. Since

g4j ,4j = λ
(j)
1 (x− x(j)1 )− (y − y(j)1 ) = λ

(j)
1 x− y + (−λ(j)1 x

(j)
1 + y

(j)
1 ),

g−2·4j ,−2·4j = λ
(j)
2 (x− x(j)2 )− (y + y

(j)
2 ) = λ

(j)
2 x− y + (−λ(j)2 x

(j)
2 − y

(j)
2 ),

we can only precompute the following four values to speed up the Miller loop:

t
(j)
0 = λ

(j)
1 ,

t
(j)
1 = −λ(j)1 x

(j)
1 + y

(j)
1 ,

t
(j)
2 = λ

(j)
2 ,

t
(j)
3 = −λ(j)2 x

(j)
2 − y

(j)
2 .

(18)

The last step is similar to the handling in the last subsection, as we can see
in Equation (16).

For each loop of four Miller evaluations, we need to precompute 8 values over
Fp, and the last step requires extra 4 values when e2 is odd and 2 values when
e2 is even. In general, there are 4e2 + 2 or 4e2 + 4 elements to be precomputed
and store with respect to e2.

We present pseudocode in Algorithms 4 and 5. The computational cost for
each Miller iteration (except the first loop and the final loop) is 2(16m+ 28a) +
2(16m+26a) = 64m+108a. Compared with the work of M. Naehrig and J.Renes
[18], we save 16m + 44a per quadrupling step, i.e, 8m + 22a per doubling step
on average.



16 Lin, K.Z., Lin, J.M., Wang, W.Z., Zhao, C.A.

Remark 9. In Algorithms 4 and 5, the notations of the form xP , yP represent
the x-coordinate and y-coordinate of P , while the notation λP is the slope of

the tangent line passing through P . We use t
(j)
0 , t

(j)
1 , t

(j)
2 and t

(j)
3 to denote

precomputed values for P2 (or Q2) mentioned in (18).

Algorithm 4 Computation of the Miller evaluations when R = P2 in the case
of Bob (Method 2)

Input: U0, U1 ∈ E0(Fp2)
Output: fP2(U0), fP2(U1)

1: for each k ∈ [0, 1] do
2: fk ← 1.
3: end for
4: for each k ∈ [0, 1] do
5: h← xUk − x[2]P2

,
6: g ← h, g ← λP2 · g, g ← g − yUk , g ← g − y[2]P2

,
7: h← h∗, g ← g · h,
8: fk ← f2

k , fk ← fk · g.
9: end for

10: for each j ∈ [0, be2−1c
2

] do
11: for each k ∈ [0, 1] do

12: g ← t
(j)
0 · xUk , g ← g − yUk , g ← g + t

(j)
1 , g ← g2,

13: h← t
(j)
2 · xUk , h← h− yUk , h← h+ t

(j)
3 , h← h∗,

14: g ← g · h,
15: fk ← f2

k , fk ← f2
k , fk ← fk · g.

16: end for
17: end for
18: if e2 is even then
19: for each k ∈ [0, 1] do
20: g ← x− x[2e2−1]P2

,

21: fk ← f2
k , fk ← fk · g.

22: end for
23: else
24: for each k ∈ [0, 1] do
25: h← xUk − x[2e2−1]P2

,

26: g ← λ[2e2−2]P2
· h, g ← g − yUk , g ← g2,

27: h← h∗, g ← g · h,
28: fk ← f2

k , fk ← f2
k , fk ← fk · g.

29: end for
30: end if
31: return f0, f1.



Faster Public-key Compression of SIDH with Less Memory 17

Algorithm 5 Computation of the Miller evaluations when R = Q2 in the case
of Bob (Method 2)

Input: U0, U1 ∈ E0(Fp2)
Output: fP2(U0), fP2(U1)

1: for each k ∈ [0, 1] do
2: fk ← 1.
3: end for
4: for each k ∈ [0, 1] do
5: h← xUk − x[2]Q2

,
6: g ← h, g ← λQ2 · g, g ← g − yUk , g ← g − i · y[2]Q2

,
7: h← h∗, g ← g · h,
8: fk ← f2

k , fk ← fk · g.
9: end for

10: for each j ∈ [0, be2−1c
2

] do
11: for each k ∈ [0, 1] do

12: g ← i · t(j)0 · xUk , g ← g − yUk , g ← g + i · t(j)1 , g ← g2,

13: h← i · t(j)2 · xUk , h← h− yUk , h← h+ i · t(j)3 ,
14: g ← g · h,
15: fk ← f2

k , fk ← f2
k , fk ← fk · g.

16: end for
17: end for
18: if e2 is even then
19: for each k ∈ [0, 1] do
20: g ← x− x[2e2−1]Q2

,

21: fk ← f2
k , fk ← fk · g.

22: end for
23: else
24: for each k ∈ [0, 1] do
25: h← xUk − x[2e2−1]Q2

,

26: g ← i · λ[2e2−2]R · h, g ← g − yUk , g ← g2,
27: h← h∗, g ← g · h,
28: fk ← f2

k , fk ← f2
k , fk ← fk · g.

29: end for
30: end if
31: return f0, f1.

4 Cost Estimates and Implementation

In this section we present our concrete cost estimates for four Miller evaluations
and show the implementation of key generation by utilizing our techniques.



18 Lin, K.Z., Lin, J.M., Wang, W.Z., Zhao, C.A.

4.1 Cost estimates

In Section 3.1 and 3.2 we have analyzed the computational cost of each tripling
and quadrupling step. Indeed, it is the main cost gap between previous work [18]
and ours since the calculation of the Miller iteration is the main process of
pairings. Table 1 and 2 show our cost estimates for the computation of four
Miller evaluations for all SIKE primes.

Table 1. Cost estimates (over the base field) of previous work and ours (Algorithm 1)
to compute four Miller evaluations of order-3e3 pairings.

Parameters
Previous work [18] Our work

Multiplication Addition Multiplication Addition

p434 9314 18344 7112 13400
p503 10810 21292 8256 15556
p610 13054 25714 9972 18790
p751 16114 31744 12312 23200

Table 2. Cost estimates (over the base field) of previous work and ours (Algorithms
2 and 3) to compute four Miller evaluations of order-2e2 pairings. We use M1 and M2
to denote the situation when using Method 1 and Method 2, respectively.

Parameters
Previous work [18] Our work

Multiplication Addition
Multiplication Addition
M1 M2 M1 M2

p434 8624 16404 6484 6912 12540 11684
p503 9984 18988 7504 8000 14512 13520
p610 12184 23168 9160 9764 17700 16494
p751 14864 28260 11164 11904 21588 40196

The estimates given in Tables 1 and 2 show that in the same condition,
no matter what the characteristic of the finite field is given, our algorithms
to compute Miller evaluations can provide an acceleration. Besides, compared
to using Method 2, utilizing Method 1 requires fewer multiplications but more
additions. However, we can predict that the implementation by using Method 1
would be more efficient. This is because performing one multiplication requires
much more computational cost than performing one addition.



Faster Public-key Compression of SIDH with Less Memory 19

4.2 Implementation

Our code1 is based on the SIDH C library2. We benchmarked our code on the
Intel(R) Core(TM) i5-10210U CPU processor at 2.11 GHz running on 64-bit
Linux. Since the implementation of solving discrete logarithms is not in con-
stant time because of the randomness of the algorithms, we execute public-key
compression 105 times and take the average cycle counts to make the data more
reliable. The performance results are presented in Table 3. As expected, com-
pared to the previous work, we reduce the computational cost for public-key
compression, and we can observe that the implementation of Method 1 perform
better than the implementation of Method 2 in the case of Bob.

Table 3. Average computational cost (in millions of clock cycles) of key generation.
We use M1 and M2 to denote the situation when using Method 1 and Method 2,
respectively.

Parameters
Key generation of Alice Key generation of Bob

Previous [18] Ours Speedup Previous [18]
Ours Speedup

M1 M2 M1 M2

p434 5.35 5.06 5.73% 5.34 5.04 5.09 5.95% 4.91%
p503 7.44 7.15 4.06% 7.29 6.98 7.09 4.44% 2.82%
p610 14.19 13.56 4.65% 13.36 12.69 12.89 5.28% 3.65%
p751 22.13 21.28 3.99% 22.08 20.94 21.29 5.44% 3.71%

Table 4 shows the storage comparison between the previous work and ours. It
can be seen that for pairings of order 3e3 we save about one-third memory while
nearly one-sixth and one-third for order-2e2 pairings when applying Method 1
and Method 2, respectively. And the total saving of storage is around 23.6% and
33.5%, respectively.

Table 4. Storage requirements (in KiB) for pairing computation. We use M1 and M2
to denote the situation when using Method 1 and Method 2, respectively.

Parameters
Previous work [18] This work

Pairings of order
Total

Pairings of order Total
3e3 2e2 3e3 2e2 , M1 2e2 , M2 M1 M2

p434 113.2 178.4 291.6 75.2 148.5 119.5 223.6 194.7
p503 151.7 238.2 389.9 100.6 198.1 159.3 298.7 259.9
p610 223.8 355.4 579.2 148.1 294.5 236.0 442.6 384.1
p751 341.0 530.3 871.4 225.6 439.2 352.5 664.7 578.1

1 https://github.com/LinKaizhan/SIDH_Faster_Comp
2 https://github.com/Microsoft/PQCrypto-SIDH

https://github.com/LinKaizhan/SIDH_Faster_Comp
https://github.com/Microsoft/PQCrypto-SIDH


20 Lin, K.Z., Lin, J.M., Wang, W.Z., Zhao, C.A.

5 Conclusion

In this paper we mainly focused on the Miller evaluations calculated in public-
key compression in the SIDH C library and presented several algorithms to
improve the efficiency of pairing computation, which is the main bottleneck of
compression. It is worth noting that we not only reduce the computational cost,
but save nearly a quarter of memory to store the precomputation. We believe
that our work could make SIDH and SIKE more competitive among the post-
quantum cryptography.

Acknowledgment

The work of Chang-An Zhao is partially supported by NSFC under Grant No.
61972428, by the Major Program of Guangdong Basic and Applied Research un-
der Grant No. 2019B030302008 and by the Open Fund of State Key Laboratory
of Information Security (Institute of Information Engineering, Chinese Academy
of Sciences, Beijing 100093) under grant No. 2020-ZD-02.

References

1. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Hutchinson,
A., Jalali, A., Jao, D., Karabina, K., Koziel, B., LaMacchia, B., Longa, P., Naehrig,
M., Pereira, G., Renes, J., Soukharev, V., Urbanik, D.: Supersingular Isogeny Key
Encapsulation (2020), http://sike.org

2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key Compression
for Isogeny-Based Cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography. pp. 1–10 (2016)

3. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient
Compression of SIDH Public Keys. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in
Cryptology – EUROCRYPT 2017. pp. 679–706. Springer International Publishing,
Cham (2017)

4. Costello, C., Lange, T., Naehrig, M.: Faster Pairing Computations on Curves with
High-Degree Twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) Public Key Cryptog-
raphy – PKC 2010. pp. 224–242. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

5. Costello, C., Longa, P., Naehrig, M.: Efficient Algorithms for Supersingular Isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016. pp. 572–601. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

6. Costello, C., Longa, P., Naehrig, M., Renes, J., Virdia, F.: Improved Classical
Cryptanalysis of SIKE in Practice. In: Kiayias, A., Kohlweiss, M., Wallden, P.,
Zikas, V. (eds.) Public-Key Cryptography – PKC 2020. pp. 505–534. Springer
International Publishing, Cham (2020)

7. Dobson, S., Galbraith, S.D., LeGrow, J., Ti, Y.B., Zobernig, L.: An Adaptive
Attack on 2-SIDH. International Journal of Computer Mathematics: Computer
Systems Theory 5(4), 282–299 (2020)

8. Eisenträger, K., Lauter, K., Montgomery, P.L.: Fast Elliptic Curve Arithmetic and
Improved Weil Pairing Evaluation. In: Joye, M. (ed.) Topics in Cryptology —
CT-RSA 2003. pp. 343–354. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

http://sike.org


Faster Public-key Compression of SIDH with Less Memory 21

9. Enge, A.: Bilinear pairings on elliptic curves. L’Enseignement Mathématique 61(1),
211–243 (2016)

10. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodŕıguez-Henŕıquez, F.: A
Faster Software Implementation of the Supersingular Isogeny Diffie-Hellman Key
Exchange Protocol. IEEE Transactions on Computers 67(11), 1622–1636 (2018)

11. Frey, G., Rück, H.G.: A Remark Concerning m-Divisibility and the Discrete Log-
arithm in the Divisor Class Group of Curves. Math. Comput. 62(206), 865–874
(1994)

12. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the Security of Supersingular
Isogeny Cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology
– ASIACRYPT 2016. pp. 63–91. Springer Berlin Heidelberg, Berlin, Heidelberg
(2016)

13. Hutchinson, A., Karabina, K., Pereira, G.: Memory Optimization Techniques for
Computing Discrete Logarithms in Compressed SIKE. In: Cheon, J.H., Tillich, J.P.
(eds.) Post-Quantum Cryptography. pp. 296–315. Springer International Publish-
ing, Cham (2021)

14. Jao, D., De Feo, L.: Towards Quantum-Resistant Cryptosystems from Supersin-
gular Elliptic Curve Isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography.
pp. 19–34. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

15. Jaques, S., Schanck, J.M.: Quantum Cryptanalysis in the RAM Model: Claw-
Finding Attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) Advances in
Cryptology – CRYPTO 2019. pp. 32–61. Springer International Publishing, Cham
(2019)

16. Lin, X., Zhao, C.A., Zhang, F., Wang, Y.: Computing the Ate Pairing on Elliptic
Curves with Embedding Degree k = 9. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. E91-A(9), 2387–2393 (2008)

17. Miller, V.S.: The Weil Pairing, and Its Efficient Calculation. Journal of Cryptology
17(4), 235–261 (2004)

18. Naehrig, M., Renes, J.: Dual Isogenies and Their Application to Public-Key Com-
pression for Isogeny-Based Cryptography. In: Galbraith, S.D., Moriai, S. (eds.)
Advances in Cryptology – ASIACRYPT 2019. pp. 243–272. Springer International
Publishing, Cham (2019)

19. Pereira, G.C.C.F., Barreto, P.S.L.M.: Isogeny-Based Key Compression Without
Pairings. In: Garay, J.A. (ed.) Public-Key Cryptography – PKC 2021. pp. 131–
154. Springer International Publishing, Cham (2021)

20. Pereira, G.C.C.F., Doliskani, J., Jao, D.: x-only point addition formula and faster
compressed SIKE. Journal of Cryptographic Engineering 11, 57–69 (2021)

21. Pohlig, S., Hellman, M.: An Improved Algorithm for Computing Logarithms over
GF(p) and Its Cryptographic Significance (Corresp.). IEEE Trans. Inf. Theor.
24(1), 106–110 (2006)

22. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring.
In: Proceedings 35th Annual Symposium on Foundations of Computer Science. pp.
124–134 (1994)

23. Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci., Paris, Sér. A 273,
238–241 (1971)

24. Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto,
P.S.L.M.: Faster Key Compression for Isogeny-Based Cryptosystems. IEEE Trans-
actions on Computers 68(5), 688–701 (2019)

25. Zhang, X., Lin, D.: Analysis of Optimum Pairing Products at High Security Levels.
In: Galbraith, S., Nandi, M. (eds.) Progress in Cryptology - INDOCRYPT 2012.
pp. 412–430. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)



22 Lin, K.Z., Lin, J.M., Wang, W.Z., Zhao, C.A.

A Deduction of `
(j)
2 (14) mentioned in Section 3.2

Similar with the deduction of (11),

`
(j)
2 =

g4j ,4j · `1
v2·4j

=
[λ

(j)
1 (x−x(j)2 )−(y+y

(j)
2 )]·[(x+2x

(j)
2 +λ

(j)
1 λ

(j)
2 )(x−x(j)2 )−(λ

(j)
1 +λ

(j)
2 )(y−y(j)2 )]

x−x(j)2

= λ
(j)
1 (x+ 2x

(j)
2 + λ

(j)
1 λ

(j)
2 )(x− x(j)2 )− λ(j)1 (λ

(j)
1 + λ

(j)
2 )(y − y(j)2 )− (x+

2x
(j)
2 + λ

(j)
1 λ

(j)
2 )(y + y

(j)
2 ) + (λ

(j)
1 + λ

(j)
2 )

y2 − (y
(j)
2 )2

x− x(j)2

= λ
(j)
1 (x+ 2x

(j)
2 + λ

(j)
1 λ

(j)
2 )(x− x(j)2 )− λ(j)1 (λ

(j)
1 + λ

(j)
2 )(y − y(j)2 )− (x+

2x
(j)
2 + λ

(j)
1 λ

(j)
2 )(y + y

(j)
2 ) + (λ

(j)
1 + λ

(j)
2 )

[x3 − (x
(j)
2 )3]− 11[x− x(j)2 )]

x− x(j)2

= λ
(j)
1 (x+ 2x

(j)
2 + λ

(j)
1 λ

(j)
2 )(x− x(j)2 )− λ(j)1 (λ

(j)
1 + λ

(j)
2 )(y − y(j)2 )− (x+

2x
(j)
2 + λ

(j)
1 λ

(j)
2 )(y + y

(j)
2 ) + (λ

(j)
1 + λ

(j)
2 )(x2 + x

(j)
2 x+ (x

(j)
2 )2 − 11)

= (2λ
(j)
1 + λ

(j)
2 )x2 − xy − (2x

(j)
2 + (λ

(j)
1 )2 + 2λ

(j)
1 λ

(j)
2 )y + ((λ

(j)
1 )2λ

(j)
2 −

y
(j)
2 + 2λ

(j)
1 x

(j)
2 + λ

(j)
2 x

(j)
2 )x+ C

(j)
2 ,

where C
(j)
2 = −λ(j)1 x

(j)
2 (2x

(j)
2 + λ

(j)
1 λ

(j)
2 ) + λ

(j)
1 y

(j)
2 (λ

(j)
1 + λ

(j)
2 ) − y

(j)
2 (2x

(j)
2 +

λ
(j)
1 λ

(j)
2 ) + (λ

(j)
1 + λ

(j)
2 )((x

(j)
2 )2 − 11).

Defining t
(j)
1 = 2λ

(j)
1 + λ

(j)
2 , t

(j)
2 = 2x

(j)
2 + (λ

(j)
1 )2 + 2λ

(j)
1 λ

(j)
2 , we have

`
(j)
2 = (t

(j)
1 x− y + [(λ

(j)
1 )2λ

(j)
2 − y

(j)
2 + t

(j)
1 x

(j)
2 − t

(j)
1 t

(j)
2 ])(x+ t

(j)
2 ) + C

(j)
3 ,

where C
(j)
3 = C

(j)
2 − t(j)2 [(λ

(j)
1 )2λ

(j)
2 − y

(j)
2 + t

(j)
1 x

(j)
2 − t

(j)
1 t

(j)
2 ].

Let t
(j)
3 = (λ

(j)
1 )2(λ

(j)
2 ) − y(j)2 + t

(j)
1 (x

(j)
2 − t

(j)
2 ), t

(j)
4 = C

(j)
3 = −(t

(j)
1 x

(j)
4 +

y
(j)
4 + t

(j)
3 )(x

(j)
4 + t

(j)
2 ), then we obtain Equation (14).


	Faster Public-key Compression of SIDH with Less Memory
	Introduction
	Preliminaries
	SIDH protocol
	Reduced Tate pairing
	Public-key compression of SIDH
	Linear representation
	Reverse basis decomposition
	Dual isogeny


	Pairing Optimization
	Handling the case of Alice
	Handling the case of Bob
	Method 1
	Method 2


	Cost Estimates and Implementation
	Cost estimates
	Implementation

	Conclusion
	Deduction of 2(j)(14) mentioned in Section 3.2


