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Abstract We consider the Learning Parity with Noise (LPN) problem with sparse secret, where the
secret vector s of dimension n has Hamming weight at most k. We are interested in algorithms with
asymptotic improvement in the exponent beyond the state of the art. Prior work in this setting presented
algorithms with runtime nc·k for constant c < 1, obtaining a constant factor improvement over brute
force search, which runs in time

(
n
k

)
. We obtain the following results:

– We first consider the constant error rate setting, and in this case present a new algorithm that
leverages a subroutine from the acclaimed BKW algorithm [Blum, Kalai, Wasserman, J. ACM ’03] as
well as techniques from Fourier analysis for p-biased distributions. Our algorithm achieves asymptotic
improvement in the exponent compared to prior work, when the sparsity k = k(n) = n

log1+1/c(n)
,

where c ∈ o(log log(n)) and c ∈ ω(1). The runtime and sample complexity of this algorithm are
approximately the same.

– We next consider the low noise setting, where the error is subconstant. We present a new algorithm in
this setting that requires only a polynomial number of samples and achieves asymptotic improvement
in the exponent compared to prior work, when the sparsity k = 1

η
· log(n)
log(f(n))

and noise rate of η 6= 1/2

and η2 =
(

log(n)
n
· f(n)

)
, for f(n) ∈ ω(1) ∩ no(1). To obtain the improvement in sample complexity,

we create subsets of samples using the design of Nisan and Wigderson [J. Comput. Syst. Sci. ’94],
so that any two subsets have a small intersection, while the number of subsets is large. Each of
these subsets is used to generate a single p-biased sample for the Fourier analysis step. We then
show that this allows us to bound the covariance of pairs of samples, which is sufficient for the
Fourier analysis.

– Finally, we show that our first algorithm extends to the setting where the noise rate is very high
1/2 − o(1), and in this case can be used as a subroutine to obtain new algorithms for learning
DNFs and Juntas. Our algorithms achieve asymptotic improvement in the exponent for certain
regimes. For DNFs of size s with approximation factor ε this regime is when log s

ε
∈ ω

(
c

logn log log c

)
,

and log s
ε
∈ n1−o(1), for c ∈ n1−o(1). For Juntas of k the regime is when k ∈ ω

(
c

logn log log c

)
, and

k ∈ n1−o(1), for c ∈ n1−o(1).

1 Introduction

The (search) Learning Parity with Noise (LPN) problem with dimension n and noise rate η, asks to
recover the secret parity s, given samples (x, 〈x, s〉 ⊕ e), where x ∈ {0, 1}n is chosen uniformly at
random, s ∈ {0, 1}n, error e ∈ {0, 1} is set to 1 with probability η and 0 with probability 1− η, and
the dot product is taken modulo 2.

While solving a linear system of n equations over F2 to recover a secret of dimension n can be
done in polynomial time via Gaussian elimination, even adding a small amount of noise e renders
the above a seemingly hard learning problem, even given a large number of samples. Specifically, the
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search LPN problem, which typically assumes the noise rate is a small constant, is believed to be
hard, with the asymptotically best algorithm (known as BKW) requiring runtime 2Θ(n/ log(n)) and
2Θ(n/ log(n)) number of samples to recover s of dimension n. Some evidence of its hardness comes
from the fact that it provably cannot be learned efficiently in the so called statistical query (SQ)
model under the uniform distribution [3,5].

Though originally arising in the fields of computational learning theory and coding theory, the
LPN problem has found numerous applications in cryptography (see e.g. [4,17,18,13] for a partial
list of applications) due to the fact that (1) there is a search-to-decision reduction, meaning that
the decision version—which is more amenable to cryptographic applications and asks to distinguish
(x, 〈x, s〉⊕e) from (x, b), where b is random—is as hard as the search version (which asks to recover s)
and (2) the LPN problem is believed to be quantum-hard, as opposed to other standard cryptographic
assumptions such as discrete log and factoring which are known to have polynomial time quantum
algorithms [26].

Variants of the LPN problem have also been considered in the literature: Sparse LPN [6], where
the x vectors in the LPN problem statement are sparse, LPN with structured noise, where the noise
across multiple samples is guaranteed to satisfy some constraint [2], and Ring LPN [16]. While
typically the error rate is assumed to be constant, LPN with low noise rate has also been considered
with applications to cryptography [8]. Indeed, LPN with noise rate even as low as Ω(log2(n)/n) is
considered a hard problem [8]. We further note that WLOG can assume that the secret is drawn
from the same distribution as the noise, as there is a reduction from LPN with secret s to LPN with
secret e, where e is the error vector obtained after n samples are drawn [1].

In this work we consider LPN with sparse parities (i.e. the “sparsity” or Hamming weight k of the
secret vector is significantly less than η · n, where η is the error rate). We consider both the constant
noise and the low noise setting (where the error rate is subconstant). Motivations for considering
this variant of LPN include the fact that sparse secrets may be used in practical cryptosystems
for efficiency purposes (as is the case for some fully homomorphic encryption implementations [9]),
or some bits of the secret may be leaked via a side-channel attack. More generally, analyzing the
security of LPN with sparse parities tests the robustness of the standard LPN assumption, since a
lack of polynomial-time algorithms in the sparse parities setting (when k is super-constant) would
then raise our confidence in the security of the standard setting. We also consider applications of
our results to other learning problems, such as learning DNFs and Juntas. Prior work on LPN
with sparse parities, has mainly considered obtaining algorithms with runtime nc·k for constant
c < 1 [14,27]. This beats the trivial brute force search with runtime

(
n
k

)
in the regime where k � n.

In this work, our focus is to achieve an algorithm which, for certain regimes of k, beats the prior
best algorithms asymptotically in the exponent. Since our goal is to achieve asymptotic improvement
in the exponent, we will compare our algorithm’s runtime against brute force search and not the
prior work of [14,27], since the latter algorithms are equivalent to brute force search in terms of
asymptotics in the exponent.

1.1 Our Results

We obtain new LPN algorithms for sparse parities that improve upon the state-of-the-art in certain
regimes, which will be discussed below.

Our first result pertains to the constant noise setting, where the noise rate η ∈ Θ(1). In the
theorem below, p ∈ (0, 1) is a free parameter that we set later to optimize our runtime.
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Theorem 1.1. For δ ∈ [0, 1], p ∈ (0, 1), LPN for parities of sparsity k out of n variables and
constant noise rate can be learned with total number of samples and total computation time of

poly

(
1

(1− 2η)
√
np · p2(k−1)(1− p)2

· ln
(n
δ

)
·
(
2

np
log(np) · log(np)

))
,

and success probability of 1− δ −
(

16
(1−2η)

√
8np·p2(k−1)(1−p)2 · ln

(
2n
δ

)
· exp

(−pn
8

))
.

By setting the parameter p appropriately, we obtain the following:

Corollary 1.2. For sparisty k = k(n) = n
log1+1/c(n)

, where c ∈ o(log log(n)) and c ∈ ω(1), the

runtime of our new learning algorithm is contained in both log(n)o(k) and 2o(n/ log(n)), and it succeeds
with constant probability. For this range of k, Brute Force search requires runtime log(n)Ω(k) and
BKW requires runtime of 2Ω(n/ log(n)).

Our second result pertains to the low noise setting, where the noise rate η ∈ o(1). Again, p ∈ (0, 1)
is a free parameter that we set later to optimize our runtime.

Theorem 1.3. Assuming parameters are set such that

log

(
1

(1− 2η)2np+2p2(k−1)(1− p2)

)
∈ o(1/η · log(np)),

and that δ ∈ [0, 1], p ∈ (0, 1), LPN for parities of sparsity k out of n variables and noise rate
η ∈ o(1) can be learned using (2np + 1)2 · log(n) number of samples, total computation time of
N := poly

(
1

(1−2η)2np+2p2(k−1)(1−p2)

)
and achieves success probability of

1− δ −
(
N ·

(
2 · exp(−p · n/8) + exp(−n/48) + 1/2np/4

))
By setting the parameter p appropriately, we obtain the following:

Corollary 1.4. For sparsity k(n) such that k = 1
η ·

log(n)
log(f(n)) , noise rate η 6= 1/2 such that

η2 =
(
log(n)
n · f(n)

)
, for f(n) ∈ ω(1) ∩ no(1), the Learning Algorithm of Figure 4 runs in time

O
(

1
(1−2η)2np+2p2k

· log(n) · (np)3
)
∈
(
n
k

)o(k) with constant probability. In this setting, the running

time Brute Force is
(
n
k

)
≥ (nk )

k and the running time of Lucky Bruteforce is eηn ∈
(
n
k

)ω(k).
Finally, applying known reductions to LPN [12] and solving LPN using our algorithm, we also

obtain applications to learning other classes of functions such as DNF and juntas:

– Our algorithm can be applied to learn DNFs of size s and approximation factor ε, with asymptotic
improvements over Verbeurgt’s bound [28] of O

(
nlog

s
ε

)
, and with negligible failure probability

when log s
ε ∈ ω

(
c

logn log log c

)
, and log s

ε ∈ n
1−o(1), where c ∈ n1−o(1).

– Our algorithm can be applied to learn Juntas of size k with a runtime of no(k) and a negligible
failure probability when k ∈ ω

(
c

logn log log c

)
, and k ∈ n1−o(1), where c ∈ n1−o(1).
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1.2 Technical Overview

Fourier Analysis of Boolean Functions. Every Boolean function, f : {0, 1}n → {0, 1}—equivalently
f : {−1, 1}n → {−1, 1}—can be represented as a linear combination f(x) =

∑
S⊆[n] f̂(S) · χS(x),

known as the Fourier representation of f . Typically, we consider the uniform distribution over examples
x, in which case χS(x) is defined as

∏
j∈S x[j] and f̂(S) = Ex∼{−1,1}n [f(x) · χS(x)]. However, for

any product distribution [p1, . . . , pn], where E[x[j]] = pj , we can also define χS(x) :=
∏
j∈S

x[j]−pj√
1−p2j

and f̂(S) := Ex∼Dp [f(x) · χS(x)], where Dp is a product distribution defined over {−1, 1}n and is
parameterized by its mean vector [p1, . . . , pn] . Fourier analysis is a strong tool in computational
learning theory for learning under the uniform distribution (and can be extended to product
distributions as well). Specifically, the Low Degree Algorithm of [20] guarantees that if most of the
Fourier weight of a Boolean function is concentrated on low degree parities (i.e. χS with small |S|),
then an approximate version of the function can be reconstructed, even in the presence of noise.
However, for learning large parities under the uniform distribution Fourier analysis is not useful
since for a parity corresponding to secret s of Hamming weight k, all of the Fourier weight is on
a single Fourier coefficient of degree k and searching for this Fourier coefficient would require a
brute force search that enumerates over all possible parities of size at most k. If the distribution is
p-biased instead of uniform, however, then the above is no longer the case. Specifically, if we consider
a product distributions where the example x is no longer uniformly random, but each coordinate
of x is set to 0 with probability 1/2 + p/2 and 1 with probability 1/2 − p/2 (so the expectation
E[x[j]] = p for each coordinate of x), then the Fourier weight is now spread over all parities S
such that ∀j ∈ S, s[j] = 1. In particular, this means that by approximately computing the Fourier
coefficient of all subsets consisting of a single element S = {s[1]}, . . . , S = {s[n]}, we can distinguish
the subsets of size 1 with non-zero versus zero Fourier weight and thus determine all i such that
s[j] = 1. We note that when the distribution is p-biased, the magnitude of the Fourier coefficients
that we must approximate is of the order pk, and we will therefore require poly((1/p)k) samples to
approximate the quantity (even without considering noise). We will see in the following that in order
for our approach to improve upon known algorithms, we must consider sparse parities with k ∈ o(n).

Attack Overview. Given the above discussion, the main idea of our attack is to convert samples
drawn from the uniform distribution to samples drawn from a p-biased distribution and then use
Fourier analysis techniques to learn the elements of the parity one by one.

In order for this approach to succeed, our algorithm first needs to generate a sufficient number of
p-biased LPN samples, given uniformly random LPN samples. Specifically, the attacker has access to
unbiased LPN oracle which outputs samples xi and corresponding label bi such that bi = 〈xi, s〉+ ei,
noise ei has rate η meaning that error ei is 1 with probability η and 0 with probability 1− η. The
attacker will generate new samples x′i, which are p-biased, and a corresponding label b′i, with a
higher error rate η′. We then approximate the Fourier coefficient of coordinate j, constructed as
above, by b̂p({j}) := Ex′∼Dp [b

′ ·χ{j}(x′)]. The main observation is that for the secret key coordinate
j such that s[j] = 0 we have b̂p({j}) = 0 and for the coordinates j such that s[j] = 1 we have
b̂({j}) = (1− 2η′) · pk−1

√
1− p2 . The value of b̂p({j}) is estimated by using a sample mean with a

sufficient number of generated p-biased samples to approximate the expectation.
We present two algorithms for generating the p-biased samples, each algorithm is appropriate

for a different scenario. Specifically, our first algorithm is appropriate for the standard case where
the noise rate is constant, while our second algorithm is appropriate for the low noise case where
the noise rate is sub-constant. After generating the p-biased samples, the Fourier estimation step is
similar in both settings. We next elaborate on our algorithm for each of the two settings.
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Constant Noise. In the case where the noise rate is constant, to generate the p-biased samples, we
apply a variant of the BKW algorithm. The BKW algorithm gives an 2O(n/ log(n))-time algorithm
for the LPN problem that also requires 2O(n/ log(n)) number of samples. An intermediate step of
the BKW algorithm uses access to its LPN oracle to generates samples (x, 〈x, s〉 ⊕ e′), where x is a
vector that has all 0’s except in a single position, and e′ is an error term with higher noise rate than
the original error. The key idea of our algorithm is that in order to create p-biased samples, we can
choose a random set of coordinates, R ⊆ [n], by including each i ∈ [n] in the set R independently
with probability p, and then run the subroutine of the BKW algorithm on the smaller set R, of
expected size pn, in order to create a sample x that is set to 0 for all i ∈ R. Such a sample x is now
distributed identically to a p-biased sample. The error rate increases, but since Fourier analysis is
robust against noise, these p-biased samples can still be used to estimate the Fourier Coefficients
corresponding to S = {s[1]}, . . . , S = {s[n]} to determine the secret s. Crucially, our algorithm gains
over simply running BKW on the entire instance because the set of coordinates we run BKW on
is of size O(pn) instead of size n. Thus, generating the biased samples runs in time 2O(pn/ log(pn))

instead of time 2O(n/ log(n)). When p is subconstant, we achieve an asymptotic gain in the exponent.
In contrast, the Fourier estimation step runs in time poly((1/p)k), so we must also set p large enough
so that this step achieves asymptotic gain in the exponent beyond the brute force search time of

(
n
k

)
.

We discuss at the end of the section the regime in which it is possible to set the parameter p so that
our algorithm improves asymptotically in the exponent beyond the best known algorithms.

Low Noise. When the noise rate is sufficiently low, we can generate p-biased samples using a simpler
approach. As before, we randomly select a set R ⊆ [n], by including each i ∈ [n] in the set R
independently with probability p. Now, instead of running BKW on the coordinates in the set R,
we simply choose O(np) number samples (since R has expected size np) from the non-biased oracle
and find a linear combination (guaranteed to exist) that sets all the coordinates in R to 0. Again,
the noise increases in the generated sample. Nevertheless, we gain over the trivial approach (which
instead of p-biasing the oracle simply creates linear combinations that have x set to all 0 except for
in a single coordinate) because the linear combination we generate is over at most O(np) versus O(n)
vectors, which in turn guarantees that the noise rate will be lower.1 We gain from this technique by
choosing p small enough to lower the noise rate but large enough to ensure that the (1/p)k necessary
to estimate the Fourier coefficient still beats brute force search asymptotically in the exponent.

In the low noise case we further show that we can generate the large number of samples needed
for the Fourier analysis using only a polynomial size set of examples from the original LPN oracle.
In this case, the generated samples will not be i.i.d., but we will use a construction inspired by
the designs of Nisan and Wigderson to generate an exponentially large set of samples, where each
pair of samples from the generated set has low covariance. See Section 4.1 for more details. This
will be enough to then run the Fourier analysis, which requires that one can use random sampling
to estimate the mean of a random variable. We can bound the deviation from the mean using
Chebyshev’s inequality since we guarantee that the covariance between any two distinct samples is
small.

Parameters. We now discuss the regime of k and η in which we improve on prior algorithms, and
how to set the parameter p to achieve the optimal run time. For the constant noise setting, with
secret s with sparsity in the form k = k(n) = n

log1+1/c(n)
, where c ∈ o(log log(n)) and c ∈ ω(1),

we set p = 1/ log1/(c)(n) to obtain an algorithm that improves upon both Bruteforce and BKW

1 We note that the above description is a bit inaccurate, since we must include an additional step to ensure that the
added noise is independent of the set of samples. See discussion in Section 4.1, Figure 3 and Lemma 4.1 for more
details.
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asymptotically in the exponent. Recall that prior work on LPN with parities of sparsity k reduced
the constant in the exponent beyond brute force, but did not achieve asymptotic improvement in the
exponent. In our work we care about asymptotic improvement in the exponent and therefore do not
compare against those algorithms. For the low noise setting we show that for sparsity k = 1

η ·
log(n)

log(f(n))

and the noise rate of η 6= 1/2 and η2 =
(
log(n)
n · f(n)

)
, for f(n) ∈ ω(1)∩no(1), by setting p = 1

f(n) and
1
p ∈

(
n
k

)o(1), our algorithm improves upon both Bruteforce and “lucky Bruteforce”–i.e. an algorithm
which gathers m samples until it has n noiseless samples with high confidence (where m depends on
the noiserate) and then attempts Gaussian elimination with every possible subset of size n, giving
runtime poly(

(
m
n

)
)–asymptotically in the exponent. To our knowledge, these are the best algorithms

when considering asymptotics in the exponent.

Application to DNF and Juntas. In addition to parities, the reductions by Feldman et al. [12] provide
a way to translate improvements in solving LPN to learning Juntas and DNFs. As such, we present
a formulation of our constant noise algorithm that is parameterized according to these reductions,
and provide parameter settings such that our algorithm, when applied to learning DNFs or Juntas,
yields asymptotic improvements in the exponent. For DNFs, we present an asymptotic result similar
to that of [14] in that we improve on Verbeurgt’s bound of O(nlog

s
ε ) for learning DNFs of size s with

approximation factor ε for a different regime of sε , where log
s
ε ∈ ω

(
c

logn log log c

)
, and log s

ε ∈ n
1−o(1),

for c ∈ n1−o(1). Note that for Juntas, we present an algorithm that learns Juntas of k variables in
no(k) time for k ∈ ω

(
c

logn log log c

)
, and k ∈ n1−o(1), where c ∈ n1−o(1).

1.3 Related Work

LPN. Blum, Kalai and Wasserman [5] presented the first algorithm that improved upon the trivial
2Ω(n) time algorithm for LPN. They showed that LPN with constant error rate can be learned in
slightly subexponential time 2O(n/ logn) with the same amount of samples. To date, their algorithm
remains the state-of-the-art in terms of asymptotics in the exponent in the constant error rate regime.

Lyubashevsky [22] extended the previous algorithm by Blum et al. [5] and reduced the overall
sample complexity. Lyubashevsky developed an algorithm for creating a super-polynomial number of
psuedorandom samples from a polynomial number of original samples. Thus, Lyubashevsky traded
sample complexity for time complexity. More specifically, the algorithm solved LPN with constant
error rate and parities of size n in time 2O(n/ log logn) using only n1+ε samples.

In later work Bogos et al. [7] presented a unified framework for various improvements and
optimizations of BKW. Specifically, they focused on tightening the analysis of several previous
works [19,15] to give more accurate bounds for the time and sample complexity needed to solve
the LPN problem. They improved the bounds of the variant of the BKW algorithm proposed by
Leviel and Fouque [19] which is based on Walsh-Hadamard transform. Moreover, they analyzed the
algorithm by Guo et al. [15] which used a “covering codes” technique to reduce the dimension of the
problem. We note that the many of the improvements listed are heuristic in nature, while others
provably improve the runtime. We also note that our usage of BKW in our algorithms is compatible
with only some of these improvements. We only use the so-called “reduction” phase of the algorithm
to generate our p-biased samples. Thus, improvements to this phase, such as covering codes, are
applicable whereas others, such as the Walsh-Hadamard transform, are not.

LPN with sparse parities. Grigorescu et al. [14] showed an improvement of learning sparse
parities with noise over brute force search, which has run time

(
n
k

)
. The algorithm ran in time
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poly
(
log
(
1
δ

)
, 1
1−2η

)
· n(1+(2η)2+o(1))k/2 and had sample complexity of k log(n/δ)ω(1)

(1−2η)2 in the random
noise setting under the uniform distribution. , where η is the noise rate and δ is the confidence
parameter.

Valiant [27] showed that the learning parity with noise problem can be solved in time ≈
n0.8kpoly( 1

1−2η ). He also showed that noisy k-juntas can be learned in time n0.8kpoly
(

1
1−2η

)
and

r-term DNF can be (ε, δ)-PAC learned in time poly
(
1
δ ,

r
ε

)
n0.8 log(

r
ε), respectively. We note that the

improvements of Grigorescu et al. [14] and Valiant [27] do not improve upon the runtime of brute
force search of nk in terms of asymptotics in the exponent.

Learning DNF and Juntas. Mossel et al. [24] showed the first learning algorithm which achieves
a polynomial factor improvement over trivial brute force algorithm which runs time O(nk). It
shows that k-juntas can be learned in absence of noise with confidence 1− δ from uniform random
examples with run time of

(
nk
) ω
ω+1 ·poly

(
2k, n, log(1/δ)

)
where ω < 2.376 is the matrix multiplication

exponent.
Feldman et al. [11] presented a foundational work for learning both DNFs and Juntas. They

developed an oracle transformation procedure that enabled reductions from learning DNFs and
Juntas to that of LPN. In addition, Feldman et al. presented a learning algorithm for agnostically
learning parities by showing a reduction from learning parities with adverserial noise to learning
parities with random noise. With this reduction, they showed that the algorithm by Blum et al. [5]
can learn parities with an adverserial noise rate of η in time O(2

n
logn ). In a follow up work [12],

Feldman et al. refined their reductions and included the influence of sample complexity on the the
runtime. These reductions have streamlined the process of improving algorithms for learning DNFs
and Juntas, as improved algorithms for learning parities can be directly applied to both problems.
Both the work of Grigorescu et al. [14], and Valiant [27] were examples of this.

One can also consider natural restrictions to the Junta problem. For monotone Juntas, Dachman-
Soled et al. [10] found lower bounds for solving monotone Juntas in the statistical query model.
Lipton et al. considered the problem of learning symmetric Juntas [21] and showed they can be
learned in no(k) time. Note here that the symmetry requirement is orthogonal to restrictions on the
size of k.

2 Preliminaries

2.1 Notations

In this section we remind the reader some of the preliminaries result used throughout the paper.
We use := as deterministic assignment and ← as uniformly randomized assignment. We also use
bold lowercase, e.g. x, to denote vectors and bold uppercase, e.g. A, to denote matrix. The set
{1, 2, . . . , n} is often denoted by [n]. The i-th coordinate of vector x is denoted by x[i]. For the
vector x of dimension n and a set R that is a subset of [n], we denote x|R to be the restriction of x
to the coordinates in R, namely x|R = x[i1]‖x[i2]‖ . . .x[i|R|],∀i ∈ R} . The indices in x are from 1
to n. For simplicity, we reset the indices in x|R and have the indices from 1 to |R|.

2.2 Probability Bounds

The following inequality is used to bound the magnitude of an observed random variable with
respect to the true expected value of that random variable. The Chernoff-Hoeffding bound extends
the Chernoff bound to random variables with a bounded range. Another important fact is that
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Chernoff-Hoeffding bound assumes the random variables are independent whereas Chebyshev’s
bound applies to arbitrary random variables. The reader in encouraged to refer to [23] for more in
depth reading.

Theorem 2.1 Multiplicative Chernoff Bounds. Let X1, X2, . . . , Xn be n mutually independent
random variables. Let X =

∑n
i=1Xi and µ = E[X],

Pr[X ≤ (1− β)µ] ≤ exp

(
−β2µ
2

)
for all 0 < β ≤ 1

Pr[X ≥ (1 + β)µ] ≤ exp

(
−β2µ
3

)
for all 0 < β ≤ 1

Theorem 2.2 Chernoff-Hoeffding. Consider a set of n independent random variables X1, X2, . . . , Xn.
If we know ai ≤ Xi ≤ bi, then let ∆i = bi − ai. Let X =

∑n
i=1Xi. Then for any α ∈ (0, 1/2)

Pr
(∣∣X − E[X]

∣∣ > α
)
≤ 2exp

(
−2α2∑n
i=1∆

2
i

)
.

Theorem 2.3 Chebyshev’s. Consider a set of n arbitrary random variable X1, X2, . . . , Xn. Let
X =

∑n
i=1Xi. Then for any α > 0,

Pr
(∣∣X − E[X]

∣∣ ≥ α) ≤ Var [X]

α2
.

The following lemma is being used to further simplify the Var[X] in Theorem 2.3.

Lemma 2.4. Let X1, X2, . . . , Xn be n arbitrary random variables. Then

Var

[
n∑
i=1

Xi

]
=

n∑
i=1

Var [Xi] + 2

n∑
i=1

∑
j>i

Cov [Xi, Xj ] .

2.3 Learning Parities

In this subsection, we define three Oracles . The first is the standard LPN Oracle, that samples
x uniformly. The second is the noise Oracle, which sets x to the zero vector. The purpose of this
Oracle is to return additional noise sampled identically to the noise found in a normal LPN sample.
The third Oracle is the p-biased LPN Oracle, which samples x according to a p-biased Bernoulli
distribution.

Definition 2.5 Bernoulli Distribution. Let p ∈ [0, 1]. The discrete probability distribution of a
random variable which takes the value 1 with probability η and the value 0 with probability 1− η is
called Bernoulli Distribution and it is denoted by Berη.

Definition 2.6 LPN Oracle. Let secret value s ← Zn2 and let η < 1/2 be a constant noise
parameter. Let Berη be a Bernoulli distribution with parameter η. Define the following distribution
L(1)s,η as follows {

(x, b) | x← Zn2 , fs(x) := 〈x, s〉, b = fs(x) + e, e← Berη} ∈ Zn+1
2

with the additions being done module 2. Upon calling the LPN Oracle OLPN
0 ,η (s), a new sample

s = (x, b) from the distribution L(1)s,η is returned.
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Definition 2.7 Noise Oracle. Let secret value s ← Zn2 and let η < 1/2 be a constant noise
parameter. Let Berη be a Bernoulli distribution with parameter η. Define the following distribution
L(2)s,η as follows {

(x, b) | x := 0n, fs(x) := 〈x, s〉, b = fs(x) + e, e← Berη} ∈ Zn+1
2

with the additions being done module 2. Upon calling the Noise Oracle Õη a new sample s = (x, b)

from the distribution L(2)s,η is returned.

Definition 2.8 p-biased LPN Oracle. Let secret value s ← Zn2 and let η < 1/2 be a constant
noise parameter. Let Berη be a Bernoulli distribution with parameter η and Bern(1−p)/2 be Bernoulli

distribution with parameter (1− p)/2 over n coordinates. Define the following distribution L(3)s,η,p as
follows {

(x, b) | x← Bern(1−p)/2, fs(x) := 〈x, s〉, b = fs(x) + e, e← Berη} ∈ Zn+1
2

with the additions being done modulo 2. Upon calling the p-biased LPN Oracle OLPN
p,η (s) a new sample

sp = (x, b) from the distribution L(3)s,η,p is returned.

As our algorithms require linear combinations of LPN samples, we present the following lemma
that describes the noise growth associated with the linear combination.

Lemma 2.9 New Sample Error [5]. Given a set of ` samples (x1, b1), . . . , (x`, b`) from an LPN
Oracle OLPN

0 ,η (s) with secret s, where the choice of samples may depend on the values of xi but not on
the values of bi, then the new sample s`+1 can be formed as follows s`+1 =

∑`
i=1 si which has the

property that b`+1 is independent of x`+1 and the probability that the label of the constructed sample
is correct is as follows: η′ = Pr[b′ = 〈x`+1, s〉] = 1

2 −
1
2(1− 2η)`.

For reference we additionally provide the runtime of the original BKW algorithm:

Theorem 2.10 BKW [5]. The length-n parity problem, for noise rate η for any constant less than
1/2, can be solved with number of samples and total computation time of 2O(n/ logn).

Sometimes we denote the “corrupted” label b in sample s = (x, b) by f(x). The function f is called
the parity function. So we use the phrase that “the label is f(x)” to mean that the label is 〈x, s〉 with
probability 1− η and 〈x, s〉 +1 with probability η . For sample i, the j-th coordinate of x is denoted
by si.x[j] and the j-th coordinate of s is denoted by si.s[j]. For simplicity, given two sample pairs
s1 = (x1, b1) and s2 = (x2, b2) a new sample s3 = s1 + s2 can be formed by s3 = (x1 + x2, b1 + b2)
with the additions being done mod 2. The following Lemma shows the error rate of a sample formed
by additions of some number of LPN samples.

2.4 Fourier Analysis

The boolean Fourier transform is defined for boolean functions defined over the domain {−1, 1}.
Throughout the rest of the paper, when we discuss boolean functions, we will use this representation.
To map a boolean function from {0, 1} ∈ F2 to {−1, 1}, we set −1 := 1F2 and 1 := 0F2 . We now
present some additional notation regarding the representation of the LPN problem in the {−1, 1}
domain.
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Notation. Assuming the LPN secret s is represented in Fn2 , the following represent the boolean
inner product of input x with s in different notation.

fs(x) := 〈x, s〉 ∈ F2 for x, s ∈ Fn2 fs(x) =
n∏
i=1

x[i]s[i] ∈ {−1, 1} for x ∈ {−1, 1}n and s ∈ Fn2

hence to represent a sample (x, b) from LPN oracle OLPN
0 ,η (s) we have the following two notations

b = fs(x) + e for x, s ∈ Fn2 and e ∈ F2 b = fs(x) · e for x ∈ {−1, 1}n, s ∈ Fn2 and e ∈ {−1, 1}

Consider a vector x ∈ {−1, 1}n. We denote by Dp the product distribution over {−1, 1}n, where
each bit of the vector is independent and has mean p.

Definition 2.11 Fourier Expansion. For a product distribution Dp as above, every function
f : {−1, 1}n → R can be uniquely expressed as the multilinear polynomial

f(x) =
∑
S

f̂p(S)χS(x), where χS(x) =
∏
i∈S

x[i]− p√
1− p2

.

This expression is called the Fourier expansion of f with respect to Dp, and the real numbers f̂(S)
are called the Fourier coefficients of f on S.

The Fourier transform defines an inner product between two boolean functions f and g: 〈f, g〉p =
Ex∼Dp [f(x) · g(x)]. There are 2n different χS and they form an orthonormal basis, i.e. 〈χS ,χT 〉 = 1
when S = T and 0, otherwise. We define the Fourier coefficient for any S ⊂ N as follows:

f̂p(S) = Ex∼Dp [f(x) · χS(x)].

Claim 2.12. Let sp = (x, b) be a p-biased sample and let b = fs(x) · e, where e ∈ {−1, 1} is
independent of x and E[e] = 1 − 2η′. Define b̂p({j}) := Ex∼Dp [b · χ{j},p(x))]. If sp.s[j] = 0, then
b̂p({j}) = 0. Whereas if sp.s[j] = 1, then b̂p({j}) = (1− 2η′) · pk−1

√
1− p2.

Proof. In the first part of the proof we assume the p-biased sample is absent of noise, i.e. b = fs(x)
and we compute the Fourier coefficient of the singleton set {j} in two cases where (Case 1) sp.s[j] = 0
and (Case 2) sp.s[j] = 1. In the following we simplify sp.x[j] by x[j] and sp.s[j] by s[j].

We compute the Fourier coefficients of fs(x) denoted by f̂p as follows.

f̂p(S) = 〈f(x),χS〉p = Ex∼Dp [fs(x) ·χS(x)]

= Ex∼Dp

[
fs(x) ·

∏
i∈S

x[i]− p√
1− p2

]

– Case 1 : Let’s focus on the set S = {j} such that s[j] = 0.
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f̂p({j}) = Ex∼Dp

[
fs(x) ·

x[j]− p√
1− p2

]

= Ex∼Dp

 ∏
i:s[i]=1

x[i]

 · x[j]− p√
1− p2


= Ex∼Dp

 ∏
i:s[i]=1

x[i]

 · Ex∼Dp

[
x[j]− p√
1− p2

]
(2.1)

= Ex∼Dp

 ∏
i:s[i]=1

x[i]

 · 0 (2.2)

= 0

Where equation (2.1) follows from independence and equation (2.2) follows since Ex∼Dpx[i] = p.
– Case 2 : Now let’s focus on the set S = {j} such that s[j] = 1.

f̂p({j}) = Ex∼Dp

[
fs(x) ·

x[j]− p√
1− p2

]

= Ex∼Dp

 ∏
i:s[i]=1

x[i]

 · x[j]− p√
1− p2


=

1√
1− p2

Ex∼Dp

 ∏
i:s[i]=1∧i 6=j

x[i]

− p · Ex∼Dp

 ∏
i:s[i]=1

x[i]

 (2.3)

=
1√

1− p2

 ∏
i:s[i]=1∧i 6=j

Ex∼Dp [x[i]] − p ·
∏

i:s[i]=1

Ex∼Dp [x[i]]

 (2.4)

=
1√

1− p2
(
pk−1 − p · pk

)
= pk−1

√
1− p2

Where equation (2.3) follows since x[j]2 = 1 in the first term and eqaution (2.4) follows from
independence.

Now we compute the Fourier Coefficient for the case where the example label is noisy, i.e.
b = fs(x) · e. The distribution of the noise e is represented as follows.

e =

{
1 with probability 1− η′
−1 with probability η′

The Fourier coefficient of the labels can be computed as follows.
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∣∣b̂p(S)∣∣ = ∣∣〈fs(x) · e,χS〉p
∣∣

=
∣∣Ex∼Dp [fs(x) · e ·χS(x)]

∣∣
=
∣∣Ex∼Dp(e) · Ex∼Dp [fs(x)χS(x)]

∣∣
= (1− 2η′) ·

∣∣f̂p(S)∣∣
– Case 1 : For j such that s[j] = 0

b̂p({j}) = 0

– Case 2 : For j such that s[j] = 1

b̂p({j}) = (1− 2η′) · pk−1
√

1− p2

2.5 Miscellaneous

Definition 2.13 Restricted Left Kernel. Given a matrix A ∈ Zm×n2 for m ≤ n and set R ⊂ [n]
such that |R| < m, RLK first finds a vector u ∈ Zm2 such that v = u ·A and v|R = 0|R|. The RLK
algorithm returns (v,u) := RLK(A, R).

Note that the RLK algorithm mentioned above can be implemented by simply modifying matrix
A and only takes the columns pointed by set R, i.e. restriction of A to only columns pointed by
R. Let’s denote the new matrix by A′, find a vector in left kernel of A′ and call it u. Then v can
simply be computed as v = u ·A.

Definition 2.14 Hamming Weight. Given a vector u ∈ Zm2 , weight(u) returns the number of 1’s
in vector u, i.e. the Hamming weight of u.

3 Constant Noise Setting

In the constant noise setting, our algorithm consists of two steps. First, using a modification of the
acclaimed BKW algorithm [5], we implement a p-biased LPN Oracle with noise rate η′ and secret
value s which is denoted by OLPN

p,η′ (s) and is defined in Section 2.3. We present this modification,
entitled BKWR (BKW restricted to set R), in subsection 3.1. In subsection 3.2 we present the
integration of our p-biased oracle into the learning algorithm based on Fourier analysis. Finally, in
subsections 3.3 and 3.4, we combine our analysis to present the regime in which we can set the
free parameter p in order to improve on both BKW and brute force search asymptotically in the
exponent.

3.1 BKWR

As a first step, we present our BKWR algorithm in Figure 1. The BKWR algorithm is given access to
an unbiased LPN Oracle OLPN

0 ,η (s) and its goal is to produce a sample that is p-biased. The presented
algorithm works similarly to BKW by successively taking linear combinations of samples to produce
a sample with all zero entries one ‘block’ at a time. The algorithm accomplishes this by maintaining
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successive tables such that samples in each table are combined to fill the next table. . The number
of tables is a parameter of the algorithm denoted a. The tables T (1), . . . , T (a) are each of size 2b,
where b is the size of each block, except the last table T (a) which might have a smaller number of
entries, specifically 2|R| mod b. Each table T (j) is indexed by the value of the coordinates in the j-th
block of x|R, namely x|R [(j − 1) · b, j · b− 1]. The element in row i of table j is denoted by

[
T
(j)
i

]
.

Importantly, while the size of R may vary, a remains constant each time the algorithm is called. This
ensures that a constant number of samples are combined to produce the output. This decouples the
noise present in the output from the size of R, ensuring that all generated samples are independent.

Construction of p-biased Oracle given BKWR The construction of the p-biased Oracle is quite
simple. We sample an index set R where each index is selected independently with probability p.
R is then passed as input to BKWR. By bounding the size of the set R, we can ensure that with
overwhelming probability BKWR outputs a p-biased sample in 2O(np/ log(np)) time. If the size of the
set R exceeds this bound (captured by the event Event1 occurring), the runtime may be longer.
Thus, when we invoke OLPN

p,η′ (s) multiple times to generate a large number of p-biased samples for
the Fourier analysis, we need to ensure that w.h.p. Event1 never occurs. We bound the probability
of Event1 in Theorem 3.2.

Algorithm 1: BKWR

Result: Sample (x′, b′) such that the coordinates of x′, which are defined by set R are set to 0.
if |R| ≥ 2np ∨ |R| ≤ pn/2 then

Event1 occurs.
end
Set a := dlog(2np)/2e and b := d|R|/ae;
Set T (1), . . . , T (a) to empty tables;
while True do

Query a new sample from unbiased LPN Oracle OLPN
0 ,η (s) ;

j := 1;
while j ≤ a do

if
[
T

(j)

x|R[(j−1)·b,j·b−1]

]
= ∅ then[

T
(j)

x|R[(j−1)·b,j·b−1]

]
:= (x, b);

break;
end
if x|R [(j − 1) · b, j · b− 1] 6= 0 then

(x′, b′) :=
[
T

(j)

x|R[(j−1)·b,j·b−1]

]
;

x′′ := x+ x′, b′′ := b+ b′;
(x, b) := (x′′, b′′);

end
j := j + 1;

end
if j = a+ 1 then

break;
end

end
(x′, b′) := (x, b);
return (x′, b′);

Figure 1. BKWR “Zeroing” Algorithm
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p-biased LPN Oracle OLPN
p,η′(s)

1. Sample set R such that each coordinate i ∈ [n] is selected independently with probability p
2. Run BKWR on input R, and return the output of BKWR.

Lemma 3.1. The samples (x′, b′) outputted by BKWR Algorithm with access to OLPN
0 ,η (s) are in-

dependent and distributed identically to samples drawn from a p-biased LPN Oracle OLPN
p,η′ (s) for

η′ = 1
2 −

1
2(1− 2η)

√
2np.

Proof. We first show that each coordinate of x′ is set to 0 with independent probability (1+p)/2. The
probability that a coordinate j of x′ in sample sp is set to 0 after running BKWR can be computed
as follows:

Pr
[
x′[j] = 0

]
= Pr

[
x′[j] = 0 | j ∈ R

]
· Pr [j ∈ R] + Pr

[
x′[j] = 0 | j /∈ R

]
· Pr [j /∈ R]

= 1 · p+ 1/2 · (1− p) = (1 + p)/2

To show that the label b′ is correct with probability η′ and that the correctness of the label is
independent of the instance x′, s, note that x′ is always constructed by XOR’ing a set of exactly 2a

number of samples and that the choice of the set of XOR’ed samples depends only on the random
coins of the algorithm and on the x values, which are independent of the e value. Therefore, we can
apply Lemma 2.9 to conclude that the noise is independent and that b′ is correct with probability
η′ = 1

2 −
1
2(1− 2η)

√
2np.

Theorem 3.2. Given access to LPN Oracle OLPN
0 ,η (s) which gives samples s = (x, b), the oracle

OLPN
p,η′ (s) constructed from BKWR requires O(2

4np
log(2np) · log(2np)) samples, and O(2

4np
log(2np) · log(2np))

runtime with probability at least 1− 2 exp(−p · n/8).

Proof. From the description of BKWR, it is clear to see that it takes O(a2b) LPN samples and running
time to generate a p-biased sample, where a = log(2np)/2, b = d|R|/ae. Remember that the BKWR

algorithm will abort if |R| ≥ 2pn or |R| ≤ pn/2, i.e. Event1 occurs. By showing that Event1 occurs
with probability at most 2 exp(−p · n/8) , we obtain that BKWR runs in time O(2

4np
log(2np) · log(2np))

with probability at least 1− 2 exp(−p · n/8).
To bound the probability of Event1 occurring, we notice that by multiplicative Chernoff bounds

in Theorem 2.1, we can bound the size of set R as follows:

Pr [|R| ≥ 2pn] ≤ exp(−p · n/3)
Pr [|R| ≤ pn/2] ≤ exp(−p · n/8)

Pr [|R| ≥ 2pn ∨ |R| ≤ pn/2] ≤ exp(−p · n/3) + exp(−p · n/8) ≤ 2 exp(−p · n/8)
Pr [pn/2 < |R| < 2pn] > 1− 2 exp(−p · n/8)

3.2 Learning Secret Coordinates

In this subsection we first present the Learning Algorithm in Figure 2. The Algorithm starts
by sampling num number of samples from a p-biased LPN Oracle OLPN

p,η′ (s). As the samples are
non-uniform, we can apply Fourier analysis technique described in Section 2.4..
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The Learning Algorithm
The learning algorithm gets access to p-biased LPN Oracle OLPN

p,η′(s) which returns sample sp = (x, b).

1. Initialize S,S ′ := ∅
2. For i ∈ num:

(a) Set spi ← O
LPN
p,η′(s) to be the output sample from p-biased LPN Oracle.

(b) Add spi to the set S.
3. Use the set S of num number of samples to estimate the Fourier coefficient of each coordinate of secret.

– For each j ∈ [n], approximate b̂p({j}) := 1
num

∑num
i=1 bi · χ{j},p(xi), where each coordinate of xi, bi is

switched to {−1, 1} from F2.
– If b̂p({j}) > (1− 2η′)pk−1

√
1− p2/2, add j to S ′.

4. Output s′ such that s′[j] = 1 for j ∈ [n] if j ∈ S ′.

Figure 2. LPN Algorithm for Constant Noise

Lemma 3.3. For δ ∈ [0, 1], p ∈ (0, 1), the learning algorithm presented in Figure 2 uses samples
from Oracle OLPN

p,η′ (s) to estimate the secret value s′. The algorithm runs in time 8
(1−2η′)2·p2(k−1)·(1−p)2 ·

ln(2n/δ), requires num = 8
(1−2η′)2·p2(k−1)·(1−p)2 · ln(2n/δ) number of samples and outputs the correct

secret key, i.e. s = s′ with probability 1− δ.

Before proving Lemma 3.3, we present the following simple claims about the number of samples
needed to estimate the Fourier Coefficient of a single index. Based on Claim 2.12, the magnitude of
Fourier coefficient of the indexes with secret value of 0 is equal to 0, while for the secret coordinates 1
that is equal to ε = (1− 2η′) · pk−1

√
1− p2. In the Following Claim we compute how many samples

are needed to estimate the magnitude of Fourier coefficient within distance of ε/2 of correct value.
We will bound the failure probability with δ/n.

Claim 3.4. For every j ∈ [n], b̂p({j}) = E[b ·χ{j},p(x))], where (x, b) ∼ OLPN
p,η′ (s), can be estimated

within additive accuracy ε
2 and confidence 1− δ

n using 8
ε2
· 1+p1−p · ln(2n/δ) number of samples.

Proof. The estimate of b̂p({j}) based on the m samples spi = (xi, bi) is.

b̂estimate({j}) =
1

m

m∑
i=1

bi ·χ{j},p(xi)

and notice that E
[
b̂estimate({j})

]
= b̂p({j}). Lets denote Xi =

1
m · bi · χ{j},p(xi), then note that

|Xi| ≤ (1/m)
√

1+p
1−p . Finally by Chernoff-Hoeffding bound of Theorem 2.2 we have the following.

Pr
[∣∣∣b̂estimate({j})− b̂p ({j})

∣∣∣ ≥ ε/2] ≤ 2 exp
(
−mε2

8
· 1− p
1 + p

)
Bounding the right hand side by δ/n and solving for m gives the desired value for number of

samples.

Proof Proof of Lemma 3.3. Invoking Claim 2.12, we have that for j such that s[j] = 1 b̂p({j}) =
(1 − 2η′) · pk−1

√
1− p2 while for j such that s[j] = 0 , b̂p({j}) = 0. It is clear by inspection

that Algorithm 2 succeeds when it correctly estimates the values of b̂p({j}) to within additive
ε/2 := (1− 2η′) · pk−1

√
1− p2/2 for all j ∈ [n]. By Claim 3.4, 8

ε2
· 1+p1−p · ln(2n/δ) number of samples

are sufficient to estimate a single coordinate within additive ε/2 of its correct value with confidence
1− δ

n . By a union bound, the success probability of estimating all coordinates to within additive ε/2
is 1− δ.
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3.3 Combining the Results

Combining the results of Sections 3.1 and 3.2 we obtain the following theorem:

Theorem 3.5. For δ ∈ [0, 1], p ∈ (0, 1), the Learning Parity with Noise algorithm presented in
Figure 2, learns parity with k out of n variables with the total number of samples and total computation
time of

poly

(
1

(1− 2η)
√
np · p2(k−1)(1− p)2

· ln
(n
δ

)
· 2

np
log(np) · log(np)

)
,

and achieves success probability of 1− δ −
(

16
(1−2η)

√
8np·p2(k−1)(1−p)2 · ln

(
2n
δ

)
· exp

(−pn
8

))
.

Proof. Using Lemma 3.3, we have that the number of p-biased samples required is num = 8
(1−2η′)2·p2(k−1)·(1−p)2 ·

ln(2n/δ) and using Lemma 3.1 we have that η′ = 1
2 −

1
2(1− 2η)

√
2np. From Theorem 3.2 we have

that with probability 1 − 2 exp(−p · n/8) each p-biased sample can be obtained by an invocation
of the BKWR algorithm, which requires O(2

4np
log(2np) · log(2np)) samples and O(2

4np
log(2np) · log(2np))

runtime with probability 1− 2 exp(−p · n/8). Combining and taking a union bound, we have that
the algorithm in Figure 2 requires at most num ·O

(
2

4np
log(2np) · log(2np)

)
samples and run time and

succeeds with probability 1− δ − (2 · num · exp(−p · n/8)).

3.4 Parameter Settings

We consider the parameter setting for which our algorithm asymptotically outperforms the previous
algorithms in the exponent. We consider two cases.

– The algorithm has to run faster than a brute force algorithm which tries all the
(
n
k

)
combination

to find the sparse secret. Note that the best algorithms for k-sparse LPN achieve only a constant
factor improvement in the exponent beyond brute force search. Since we are concerned with
asymptotic improvement in the exponent, these algorithms are equivalent to brute force search.

– The algorithm should run faster than the BKW algorithm for the length-n LPN problem, as
BKW is the asymptotically best algorithm for length-n LPN.

Corollary 3.6. For the sparsity k = k(n) = n
log1+1/c(n)

, where c ∈ o(log log(n)) and c ∈ ω(1), the

runtime of our learning algorithm in Figure 2 is contained in both log(n)o(k) and 2o(n/ log(n)), with
constant failure probability. For this range of k, Brute Force search requires runtime log(n)Ω(k) and
BKW requires runtime of 2Ω(n/ log(n)).

Proof. Setting 1/p = log1/(c)(n) and k = n
log(c+1)/c(n)

in Theorem 3.5, we find that our LPN Algorithm
for constant noise rate presented in Figure 2 succeeds with constant probability and has runtime(

1

p

)2k

· 2
4np

log(2np) = log(n)
(1/c)· n

log(c+1)/c(n) · 2
4n/ log1/(c)(n)

log(2n/ log1/(c)(n)) ∈ log(n)O((1/c)·k).

Note that if c ∈ ω(1), then our runtime is in log(n)o(k). On the other hand, if c ∈ o(log log(n)) then
our runtime

log(n)O((1/c)·k) = 2O((log log(n)/c)·k) ∈ 2o(k) ∈ 2o(n/ log(n)).

and so asymptotically beats the above two algorithms in the exponent for any c = c(n) that satisfies
c ∈ ω(1) and c ∈ o(log log(n)). Plugging the above parameter into Theorem 3.5 yields probability
of success of 1− δ − negl(n) = 1− δ.
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4 Low Noise Setting

In this section we present an improved learning algorithm for the low noise setting. The algorithm
will draw only a polynomial number of samples from the given LPN oracle, use them to construct a
much larger set of p-biased samples that are not independent, but have certain desirable properties,
and then present a learning algorithm that succeeds w.r.t. a set of p-biased samples satisfying these
properties.

4.1 Sample Partition

In this section we present the SamP algorithm which draws a polynomial-sized set of samples from
the original LPN oracle OLPN

0 ,η (s), and uses them to construct a far larger set of p-biased samples
that are “close” to being pairwise independent. To achieve this, SamP constructs a large number
of subsets of size 2np+ 1 from the polynomial-sized set of samples, such that each pair of distinct
subsets has at most t � 2np + 1 number of samples in common Then, from each subset of size
2np+1, we construct a single p-biased sample sp = (x′, b′) as follows: First, a random subset R ⊆ [n]
of coordinates is chosen, by placing each index i ∈ [n] in R with independent probability p. Note
that with overwhelming probability, |R| ≤ 2np. Thus, given our set of 2np+ 1 ≥ |R|+ 1 samples,
we construct a matrix M that contains the samples as rows and we compute the left kernel of the
matrix to find a vector u to zero out the coordinates of R – i.e. (u ·M) |R = 0|R| and the returned
sample is (x′, b′) := u ·M. This procedure is denoted by RLK (see Definition 2.13 for more details).
Note that the procedure always succeeds when the size of R is at most 2np+ 1.2 We show that the
samples resulting from distinct subsets are “close” to independent, due to the small intersection of
any pair of subsets. We next provide some additional details on the construction and guarantees on
independence, before formally describing the algorithm and its properties.

Constructing the subsets with small pairwise intersection. Our algorithm given in Figure 3 constructs
the subsets using the designs of Nisan and Wigderson [25]: It first draws (2np+ 1)2 samples from
the original LPN distribution and associates each sample with an ordered pair (x, y) for x, y ∈ F,
for the field F of size 2np + 1. There are (2np + 1)t polynomials of degree t − 1 in F, and each
subset is associated with a particular polynomial, i.e. the samples contained in a particular subset
correspond to the 2np+ 1 points that lie on the associated polynomial. Note that the maximum
number of subsets that can be constructed is (2np+ 1)t and that, furthermore, since any pair of
distinct polynomials of degree t− 1 in F intersect in at most t points, any two subsets have at most
t samples in common. Note that this construction allows at most maxnum := (2np+ 1)t number of
p-biased samples to be generated. Looking ahead, in Section 4.2 we will present a learning algorithm
that requires O (log(n)) such independent sets of samples, each of size at most maxnum to learn the
parity function.

Near pairwise independence. We note that by construction, the Sample Partition Algorithm SamP
presented in Figure 3 constructs sets of size (2np + 1) such the intersection of any two sets is at
most t for t ≤ (np+ 1). This will allow us to bound the covariance of the errors e′i and e

′
j obtained

by taking linear combinations of elements in the sets Oi, Oj . Overall, the set of samples generated
by SamP algorithm have certain properties enumerated in the following Lemma.

2 If the size of R is larger than this, a bad event Event1 occurs, and we must draw new independent samples from
the oracle. We will later show that Event1 occurs with negligible probability.
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Generating the p-biased samples

Obtain (2np+ 1)2 independent samples S = {s1, . . . , s(2np+1)2} from the unbiased LPN oracle OLPN
0 ,η (s) . Run

the following setup phase to create sets O1,O2, . . . ,Omaxnum each of size 2np + 1 such that for distinct i, j,
|Oi
⋂
Oj | ≤ t.

Setup Phase :

1. Consider a Finite Field F of size 2np+ 1. Define a bijection π from [(2np+ 1)2] to pairs (x, y) ∈ F× F.
2. Consider all polynomials of degree t − 1 in the ring F[x]. There are maxnum := (2np + 1)t such distinct

polynomials poly1, . . . , polymaxnum.
3. For j ∈ [maxnum], Oj contains si if and only if π(i) = (x, y) and polyj(x) = y.

Algorithm 2: SamP(j)

Result: p-biased sample (x′, b′).
To respond to the j-th query, if j > maxnum then

return ⊥ and terminate.
end
Otherwise, sample a set Rj such that each i ∈ [n] is selected independently into Rj with probability p;
if |Rj | ≥ 2np ∨ |Rj | ≤ pn/2 then

Event1 occurs.;
Sample a fresh set of |Rj |+ 1 samples from the LPN oracle and arrange them in rows of matrix A
of size (|Rj |+ 1× n).;

Compute (x′,u) := RLK(A, Rj) such that x′|Rj = 0|Rj |; . RLK is defined in Section 2.5
Go To L1;

end
Select set Oj and arrange them in rows of matrix A of size (2np+ 1× n);
Compute (x′,u) := RLK(A, Rj) such that x′|Rj = 0|Rj |; . RLK is defined in Section 2.5
if x′|Ri = 0|Ri| for some i ∈ [j − 1] then

Event2 occurs;
Sample a fresh set of 2np+ 1 samples from the LPN oracle and arrange them in rows of matrix A of
size (2np+ 1× n);

Compute (x′,u) := RLK(A, Rj) such that x′|Rj = 0|Rj |;
end
L1 : k := 1;
(x′, b′) := u ·A;
while k < 2np+ 1− weight(u) do

b′ := b′ + Õη
end
return (x′, b′);

Figure 3. SamP “Zeroing” Algorithm
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Lemma 4.1. Consider an experiment in which the setup phase is run and two samples spi = (x′i, b
′
i)

and spj =
(
x′j , b

′
j

)
are generated by running SamP(i) and SamP(j) for distinct i, j ≤ maxnum then

the following hold:

1. Each individual sample (x′i, b
′
i) (resp.

(
x′j , b

′
j

)
) outputted is distributed identically to a sample

drawn from a p-biased LPN Oracle OLPN
p,η′ (s) for η

′ = 1
2 −

1
2(1− 2η)2np+1.

2. x′i and x′j are pairwise independent
3. Recall that b′i = fs(x

′
i) + e′i and b

′
j = fs(x

′
j) + e′j. Then

Cov
[
e′i, e

′
j

]
≤ (1− 2η)2(2np−t)+2 − (1− 2η)4np+2 .

Proof. The proof is similar to the proof of Lemma 3.1 and noticing that the SamP algorithm uses
2np+1 samples to generate a single p-biased sample. Two p-biased samples x′i,x

′
j , j > i are pairwise

independent, unless the same linear combination of samples in S was used to generate both of them.
But in that case, during execution, the condition x′j |Ri = 0|Ri| would evaluate to true, which means
that Event2 occurred and so fresh samples (not from S) would be used to generate x′j .

In the rest of the proof we switch to the ±1 representation instead of the Boolean representation.
The sample spi = (x′i, b

′
i) is obtained from the samples in set Oi alongside some extra error samples

from Noise Oracle Õη. In the following proof these are denoted by e1, e2, . . . , e2np+1. Moreover,
notice that the sample spj =

(
x′j , b

′
j

)
, obtained from set Oj , has at most t elements in common with

the sample obtained from the set Oi. Hence we can represent the error in sample spj =
(
x′j , b

′
j

)
as

e1, e2, . . . , et, e
′′
t+1 . . . e

′′
2np+1. For the ease of notation we assumed that the t samples which are in

common are at index 1 to t.

Cov[e′i, e
′
j ] = Cov[e1 · e2 . . . et · et+1 . . . e2np+1 , e1 · e2 . . . et · e′′t+1 . . . e

′′
2np+1]

= E[e21 · e22 . . . e2t · et+1 . . . e2np+1 · e′′t+1 . . . e
′′
2np+1]

− E[e1 · e2 . . . e2np+1] E[e1 · e2 . . . et . . . e′′t+1 . . . e
′′
2np+1]

= (1− 2η)2(2np−t)+2 − (1− 2η)4np+2

Where the last line follows from the independence of errors, E[ei] = 1− 2η and E[e2i ] = 1.

Finally, we analyze the runtime and sample complexity for each invocation of SamP:

Theorem 4.2. Given access to LPN Oracle OLPN
0 ,η (s) which gives samples s = (x, b), the SamP

algorithm requires O
(
(np)2

)
samples in total, and poly(np) runtime per invocation with probability

at least 1− 2 exp(−p · n/8)− (np)t · exp(−n/48)− (np)t · 1/2np/4.

Proof. Assuming Event1 and Event2 do not occur, the sample complexity and runtime can be verified
by inspection and assuming RLK takes poly(np) time.

It remains to bound the probability of Event1 and Event2. We can upper bound the probability
of Event1 by 2 exp(−p · n/8), as in the proof of Theorem 3.2.

To upperbound the probability of Event2, we note that assuming Event1 does not occur, Event2
occurs only if one of the following two events occur:

– Event′1: For some distinct i, j ∈ maxnum, |Ri ∩Rj | ≥ np/4.
– Event′2: For some distinct i, j ∈ maxnum, |Ri \Rj | ≥ np/4 and x′j |Ri\Rj = 0|Ri\Rj |.
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Since for distinct i, j, each coordinate ` ∈ [n] is placed in both Ri and Rj with probability p2, by
a union bound over all pairs i, j and a standard Chernoff bound, Event′1 can be upperbounded by:

maxnum2 · exp(−n/48) = (np)t · exp(−n/48).

Since for any x′j , the coordinates outside of Rj are uniformly random, Event′2 can be upperbounded
by:

maxnum2 · 1/2np/4 = (np)t · 1/2np/4.

4.2 Learning Secret Coordinates

In this subsection we present our Learning Algorithm in Figure 4. The input to the algorithm is
8 log(n) independently generated sets of p-biased samples with the properties given in Lemma 4.1.
The algorithm uses the p-biased samples to estimate the values of the Fourier Coefficients of the
target function.

The Learning Algorithm
The learning algorithm starts by having access to 8 log(n) sets S1,S2, . . . ,S8 log(n) of randomly generated

samples. Each set of samples is independent and satisfies the properties given in Lemma 4.1.

1. Initilizate set S ′ := ∅.
2. For j ∈ [n]

– count := 0
– T := 8 log(n)
– For i′ ∈ T :

(a) Use the set Si′ of num number of samples to approximate b̂p({j}) := 1
num

∑num
i=1 bi ·χ{j},p(xi), where

each coordinate of xi, bi is switched to {−1, 1} from F2.
(b) If b̂p({j}) > (1− 2η′)pk−1

√
1− p2/2, count := count+ 1

– if count ≥ T/2
• add j to S ′

3. Output s′ such that s′[j] = 1 for j ∈ [n], if j ∈ S ′.

Figure 4. Low-Noise LPN Algorithm

Lemma 4.3. For δ ∈ [0, 1], p ∈ (0, 1), given as input 8 log(n) independent sets of samples
S1,S2, . . . ,S8 log(n) each of size num := O

(
1

(1−2η)2np+2p2(k−1)(1−p2)

)
and each satisfying the prop-

erties given in Lemma 4.1 for some t ∈ Θ(1/η), the Learning Algorithm presented in Figure 4 runs
in time poly

(
1

(1−2η)2np+2p2(k−1)(1−p2)

)
and outputs the correct secret key, i.e. s = s′ with probability

1− δ.

Similar to subsection 3.2, before proving Lemma 4.3, we first present the following claim about
the number of samples needed to estimate the Fourier Coefficient of a single index. The algorithm
gets access to 8 log(n) sets of p-biased samples. In the following claim we first prove how many
samples are needed to be able to approximate the Fourier coefficient within additive distance of ε/2
and later discuss how by repeating the approximation step, i.e. step 2b in Figure 4, will reduce the
error in approximation even further.
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Claim 4.4. For δ ∈ [0, 1], p ∈ (0, 1), given 8 log(n) independent sets of samples S1,S2, . . . ,S8 log(n)
that each of size num := O

(
1

(1−2η)4np+2p2(k−1)(1−p2)

)
and each satisfying the properties given in

Lemma 4.1 for some t ∈ Θ(1/η), then for every j ∈ [n], b̂p({j}) = E[b · χ{j},p(x))] can be estimated
within additive accuracy ε

2 = (1− 2η′)pk−1
√
1− p2/2 for η′ = 1

2 −
1
2(1− 2η)2np+1 with confidence

1− δ
n .

Proof. Let X = 1
m

∑m
i=1 bi · χS,p(xi). Let f be a parity function. Assuming S = {k}, let Xi =

1
m · bi · χ{k},p(xi). First we compute Cov[Xi, Xj ] for k such that s[k] = 1

Cov[Xi, Xj ] = Cov

[
1

m
· b′i ·χ{k},p(x′i) ,

1

m
· b′j ·χ{k},p(x′j)

]
Cov[Xi, Xj ] =

1

m2
· Cov

[
b′i ·χ{k},p(x′i) , b′j ·χ{k},p(x′j)

]
=

1

m2
· Cov

 ∏
u:s[u]=1

x′i[u]

 · e′i · x′i[k]− p√
1− p2

,

 ∏
v:s[v]=1

x′j [v]

 · e′j · x′j [k]− p√
1− p2

 (4.1)

=
1

m2
· 1

1− p2

(
Cov

 ∏
u:s[u]=1∧u6=k

x′i[u]

 · e′i ,
 ∏
v:s[v]=1∧v 6=k

x′j [v]

 · e′j
−

Cov

 ∏
u:s[u]=1∧u6=k

x′i[u]

 · e′i , p ·
 ∏
v:s[v]=1

x′j [v]

 · e′j
−

Cov

p ·
 ∏
u:s[u]=1

x′i[u]

 · e′i ,
 ∏
v:s[v]=1∧v 6=k

x′j [v]

 · e′j
+

Cov

p ·
 ∏
u:s[u]=1

x′i[u]

 · e′i , p ·
 ∏
v:s[v]=1

x′j [v]

 · e′j
) (4.2)

=
1

m2
· 1

(1− p2)

(
p2(k−1)Cov

[
e′i, e

′
j

]
− 2p2kCov

[
e′i, e

′
j

]
+ p2(k+1)Cov

[
e′i, e

′
j

])
(4.3)

= m−2p2(k−1)(1− p2)Cov
[
e′i, e

′
j

]
= m−2p2(k−1)(1− p2)

[
(1− 2η)2(2np−t)+2 − (1− 2η)4np+2

]
(4.4)

Where equation (4.1) follows from definition of Fourier Coefficients and noting that b′i is multipli-
cations of xis and error term ei, equation (4.2) follows from properties of Covariance, equation (4.3)
follows from independence of x′is and equation (4.4) follows from Lemma 4.1. We can also bound
Var[Xi] as follows
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Var[Xi] = Var

[
1

m
· b′i ·χ{k},p(x′i)

]

=
1

m2
·Var

 ∏
u:s[u]=1

x′i[u]

 · e′i · x′i[k]− p√
1− p2


=

1

m2
· 1

1− p2

Var

 ∏
u:s[u]=1∧u6=k

x′i[u]

 · e′i
− p2 ·Var

 ∏
v:s[v]=1

x′i[u]

 · e′i


=
1

m2
· 1

1− p2

(
E

 ∏
u:s[u]=1∧u6=k

x
′2
i [u]

 · e′2i
− E

 ∏
u:s[u]=1∧u6=k

x′i[u]

 · e′i
2

−

p2 · E

 ∏
u:s[u]=1

x
′2
i [u]

 · e′2i
+ p2 · E

 ∏
u:s[u]=1

x′i[u]

 · e′i
2)

(4.5)

=
1

m2
· 1

1− p2
(
1− p2(k−1)(1− 2η)2np − p2 + p2(k+1)(1− 2η)2np

)
(4.6)

= m−2
(
1− p2(k−1)(1 + p2)(1− 2η)2np

)
≤ m−2

Where equation (4.5) follows from properties of variance and equation (4.6) follows from inde-
pendence of x′is. Then we have the following bound from Chebyshev’s bound of Theorem 2.3

Pr [|X − E[X]| ≥ ε/2] ≤
∑m

i=1Var [Xi] + 2
∑m

i=1

∑
j>iCov [Xi, Xj ]

ε2/4

≤ 4 ·
m−1 + p2(k−1)(1− p2)

[
(1− 2η)2(2np−t)+2 − (1− 2η)4np+2

]
ε2

By substituting ε = (1−2η′)·pk−1
√
1− p2 for η′ = 1

2−
1
2(1−2η)

2np+1, we can bound the right hand
side by a constant less than 1/2 by setting t < − ln(9/8−1/c)

2 ln(1−2η) and setting m = c · 1
(1−2η)4np+2p2(k−1)(1−p2) ,

where c > 8. We use random variable Yi′ to represents whether the value of count in step i′ is
increased or not, specifically Yi′ = 1 represents the event that count is increased in step i′. Assume
we repeat the protocol for T rounds in total. Let Y = (1/T ) ·

∑T
i′=1 Yi′ . First, take the case that j

such that s[j] = 0 , we know that in each step of loop over i′, Pr[Yi′ = 1] = 1/2− ε. Note that the
algorithm is run T times using independent sets Si′ each time and index j is only added if in the
majority of the runs its estimated Fourier coefficient is more than ε/2. Using Chernoff bound, we
can bound Pr[Y ≥ T/2] ≤ 1/n.

Pr
[
index j is added to set S ′

]
= Pr[count ≥ T/2]

= Pr

[∑T
i′=1 Yi′

T
≥ 1

2

]
≤ Pr [|Y − E[Y ]| > ε] ≤ 2 exp

(
−2Tε2

)
We can bound the right hand side by δ

n for constant δ by setting T = 8 log(n) and ε = 1/4. Similar
argument applies to the case for j such that s[j] = 1.
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Proof Proof of Lemma 4.3. Invoking Claim 2.12, we have that for j such that s[j] = 1 b̂p({j}) =
(1 − 2η′) · pk−1

√
1− p2 while for j such that s[j] = 0 , b̂p({j}) = 0. It is clear by inspection that

Algorithm in Figure 4 succeeds when it correctly estimates the values of b̂p({j}) to within additive
ε/2 := (1 − 2η′) · pk−1

√
1− p2/2 for all j ∈ [n]. By Claim 4.4, we need 8 log(n) sets such that

each set has O
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
number of p-biased samples. So in total num · 8 log(n) =

O
(

1
(1−2η)2np+2p2(k−1)(1−p2) · log(n)

)
number of p-biased samples are sufficient to estimate a single

coordinate within additive ε/2 of its correct value with confidence 1− δ
n . By a union bound, the

success probability of estimating all coordinates to within additive ε/2 is 1− δ.

4.3 Combining the Results

Combining the results of Sections 4.1 and 4.2 we obtain the following theorem:

Theorem 4.5. Assuming parameters are set such that

log

(
1

(1− 2η)2np+2p2(k−1)(1− p2)

)
∈ o(1/η · log(np)), (4.7)

and with δ ∈ [0, 1], p ∈ (0, 1), the Learning Parity from Noise Algorithm presented in Figure 4, learns
parity with k out of n variables and noise rate η using (2np+ 1)2 · log(n) number of samples, total
computation time of N := poly

(
1

(1−2η)2np+2p2(k−1)(1−p2)

)
and achieves success probability of

1− δ −
(
N ·

(
2 · exp(−p · n/8) + exp(−n/48) + 1/2np/4

))
Proof. Using Lemma 4.3, we have that, for some t ∈ Θ(1/η), the number of p-biased samples with the
following properties needed to succeed with probability 1− δ is poly

(
1

(1−2η)2np+2p2(k−1)(1−p2)

)
. From

Theorem 4.2, we have that as long as num = poly
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
≤ maxnum = (2np+1)twe

can generate the required samples using (2np+ 1)2 samples from the unbiased LPN oracle OLPN
0 ,η (s),

and with poly(np) runtime per sample, with probability at least 1− 2(np)t · exp(−p · n/8)− (np)t ·
exp(−n/48) − (np)t · 1/2np/4. The fact that num and maxnum satisfy the above constraint is
guaranteed by the assumption in the theorem on the setting of parameters and the fact that
t ∈ Θ(1/η). Combining and taking a union bound, we have that the algorithm in Figure 2 requires
(2np+ 1)2 · 8 log(n) samples, has run time poly(

(
1

(1−2η)2np+2p2(k−1)(1−p2) · log(n)
)
, and succeeds with

probability 1− δ −
(
N ·

(
2 · exp(−p · n/8) + exp(−n/48) + 1/2np/4

))
.

4.4 Parameter Settings

We consider the parameter setting for which our algorithm’s runtime asymptotically outperforms
the previous algorithms’ runtime in the exponent. We consider two cases.

– The algorithm has to run faster than a brute force algorithm which tries all the
(
n
k

)
combinations

to find the sparse secret. Note that there are known algorithms that improve upon brute force
search, but the improvement is a constant factor in the exponent. Since we are concerned with
asymptotic improvement in the exponent, these algorithms are equivalent to brute force search.
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– The algorithm should run faster than the algorithm which just gets lucky and gets n noiseless
samples, we call this algorithm “Lucky Bruteforce”. For this algorithm to succeed, it needs n

1−η
samples from LPN Oracle to ensures that there are approximately n noiseless samples. The next
step is to just randomly select n out of these n

1−η samples and try Gaussian elimination on them.
The run time of such an algorithm for small η can be approximate by eηn.

Corollary 4.6. For sparsity k(n) such that k = 1
η ·

log(n)
log(f(n)) , noise rate η 6= 1/2 such that

η2 =
(
log(n)
n · f(n)

)
for f(n) ∈ ω(1) ∩ no(1), the Learning Algorithm of Figure 4 runs in time

O
(

1
(1−2η)2np+2p2k

· log(n) · (np)3
)
∈
(
n
k

)o(k) with constant probability. In this setting, the running

time Brute Force is
(
n
k

)
≥ (nk )

k and the running time of Lucky Bruteforce is eηn ∈
(
n
k

)ω(k).
Proof. For k, η defined as above, we choose the biased p = 1

f(n) and 1
p ∈

(
n
k

)o(1) , we have con-
straint (4.7) from Theorem 4.5 satisfied as follows:

log

(
1

(1− 2η)2np+2p2(k−1)(1− p2)

)
≈ 4npη + 2k log

(
1

p

)
∈ o(1/η · log(n)) ∈ o(1/η · log(np)),

the runtime of the Learning Algorithm of Figure 4 is bounded by

1

(1− 2η)2npp2k
· log(n) ·O

(
(np)3

)
≈ e4npη ·

(
1

p

)2k

· log(n) ·O
(
(np)3

)
∈ eo(k)·log(n/k) ·

(n
k

)o(k)
· log(n) · o(n3)

∈
(n
k

)o(k)
,

which outperforms Brute Force and Lucky Bruteforce under the same parameter settings. Plugging
the above parameters into Theorem 4.5 yields probability of success of 1− δ − negl(n).

5 Learning Other Classes of Functions

In the following we apply our LPN algorithms from Section 3 to learn other classes of functions.
First, let us look at the reduction from learning DNFs to learning noisy parities.

Theorem 5.1 Theorem 2 in [12]. Let A be an algorithm that learns noisy parities of k variables on
{0, 1}n for every noise rate η < 1/2 in time T (n, k, 1

1−2η ) and using at most S(n, k, 1
1−2η ). Then there

exists an algorithm that learns DNF expressions of size s in time Õ( s
4

ε2
·T (n, logB,B)·S(n, logB,B)2),

where B = Õ(s/ε).

We are interested in determining the parameter range for which our algorithm yields an asymptotic
improvement over the state of the art in the exponent. The work of Grigorescu [14] is the current state-
of-the-art. They present an improvement of the bound from [28] of 2O(log(n) log s

ε
) for s

ε ∈ o
(

log1/3 n
log logn

)
.

As we are similarly applying the reductions from Feldman, our algorithm yields a similar improvement
on the bounds in [28] for a different range of sε .

Note the reduction in Feldman [12] relates the ratio of the size of the DNF and its approximation
factor to both the noise rate and sparsity of the parity function. Thus, the parameter range for which
our algorithm is optimal will be expressed in terms of this ratio.

We begin by extending the runtime analysis of our algorithm from Section 3, which dealt with
the constant noise setting, to the arbitrary noise η < 1/2.
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Theorem 5.2. The learning algorithm described in Figure 2 has a runtime of

T

(
n, k,

1

1− 2η

)
=

(
1

1− 2η

)2a+1

8 ln(2n/δ)

p2(k−1)(1− p)2
O
(
a2b
)

and requires

S

(
n, k,

1

1− 2η

)
=

(
1

1− 2η

)2a+1

8 ln(2n/δ)

p2(k−1)(1− p)2
O
(
a2b
)

LPN samples in the high noise setting, and achieves a success probability of

1− δ −
(

1

1− 2η

)2a+1

16 ln(2n/δ)

p2(k−1)(1− p)2
e
−np
8

where ab = np.

Proof. The proof follows directly from Theorem 3.5. Instead of fixing a value for a and b, we let
them remain free parameters. As well, we no longer make assumptions on the noise rate η. Thus, we
start with the runtime in terms of η′.

T (n, k, η′) =
8 ln(2n/δ)

(1− 2η′)2p2(k−1)(1− p)2
O
(
a2b
)

T (n, k, η) =
8 ln(2n/δ)

(1− 2η)2a+1p2(k−1)(1− p)2
O
(
a2b
)

T

(
n, k,

1

1− 2η

)
=

(
1

1− 2η

)2a+1

8 ln(2n/δ)

p2(k−1)(1− p)2
O
(
a2b
)

The sample complexity of the algorithm is equal to its runtime complexity, and thus we need to
just need to consider the success probability. In the high noise setting, the p-biased LPN oracle is

called num =
(

1
1−2η

)2a+1
8 ln(2n/δ)

p2(k−1)(1−p)2 times, and the success probability calculation follows the same
formula from Theorem 3.5.

As we are concerned with asymptotic improvement in the exponent of the runtime we will take
the logarithm of the runtime and compare it to the state of the art for learning DNFs and Juntas.

Corollary 5.3. The learning algorithm described in Figure 2 learns DNFs of size s and approxi-
mation factor ε, with asymptotic improvements over Verbeurgt’s bound [28] of O

(
nlog

s
ε

)
, and with

negligible failure probability when log s
ε ∈ ω

(
c

logn log log c

)
, and log s

ε ∈ n
1−o(1), where c ∈ n1−o(1).

Note here that the parameter regime in 5.3 requires setting the free parameters of the learning
algorithm differently than in the constant noise setting. In order to minimize the runtime of the
BKWR step of the algorithm in the high noise setting, the value for a must be changed from the
description in Section 3. Thus we set a = (1/2) log log(np). This change necessitates considerations
for δ, the fourier analysis confidence. This ensures that the failure probability of the total algorithm
remains small, even after increasing the number of samples required. We set δ = 2−n. The free
parameter p is set to n−o(1) to satisfy asymptotic requirements. These parameters are set similarly
for Corollary 5.5.

Aside from DNFs we can also use our LPN algorithm to learn Juntas. By applying Feldman’s
reduction we are able to yield an algorithm that, for certain ranges for k, is able to improve on
the O(n0.7k) runtime cited in [27] asymptotically, not just by reducing the constant factor in the
exponent.
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Theorem 5.4 Theorem 3 in [12]. Let A be an algorithm that learns parities of k variables on
{0, 1}n for every noise rate η < 1/2 in time T (n, k, 1

1−2η ). Then there exists an algorithm that learns
k-juntas in time O

(
22kk · T (n, k, 2k−1)

)
.

Corollary 5.5. The learning algorithm described in Figure 2 learns Juntas of size k with a runtime of
no(k) and a negligible failure probability when k ∈ ω

(
c

logn log log c

)
, and k ∈ n1−o(1), where c ∈ n1−o(1).
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