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Abstract. The U.S. National Institute of Standards and Technology (NIST) has
designated ARM microcontrollers as an important benchmarking platform for its
Post-Quantum Cryptography standardization process (NISTPQC). In view of this,
we explore the design space of the NISTPQC finalist Saber on the Cortex-M4 and its
close relation, the Cortex-M3. In the process, we investigate various optimization
strategies and memory-time tradeoffs for number-theoretic transforms (NTTs).
Recent work by Chung et al. has shown that NTT multiplication is superior compared
to Toom–Cook multiplication for unprotected Saber implementations on the Cortex-
M4 in terms of speed. However, it remains unclear if NTT multiplication can
outperform Toom–Cook in masked implementations of Saber. Additionally, it is an
open question if Saber with NTTs can outperform Toom–Cook in terms of stack usage.
We answer both questions in the affirmative. Additionally, we present a Cortex-
M3 implementation of Saber using NTTs outperforming an existing Toom–Cook
implementation. Our stack-optimized unprotected M4 implementation uses around
the same amount of stack as the most stack-optimized implementation using Toom–
Cook while being 33%-41% faster. Our speed-optimized masked M4 implementation
is 16% faster than the fastest masked implementation using Toom–Cook. For the
Cortex-M3, we outperform existing implementations by 29%-35% in speed.
We conclude that for both stack- and speed-optimization purposes, one should base
polynomial multiplications in Saber on the NTT rather than Toom–Cook for the
Cortex-M4 and Cortex-M3. In particular, in many cases, composite moduli NTTs
perform best.
Keywords: NTT · Saber · Cortex-M4 · Cortex-M3 · NISTPQC

1 Introduction
Shor’s algorithm [Sho97] threatens all widely deployed public-key cryptography as it solves
the integer factorization and the discrete logarithms on a quantum computer. Therefore,
NIST has called for proposals to replace their existing standards for digital signatures
and key encapsulation mechanisms (KEMs) [NIS]. We are currently in the third round
of the process, where 7 finalist schemes and 8 alternate schemes remain [AASA+20]. Of
the 7 finalists, 4 are KEMs: Classic McEliece [ABC+20], a code-based scheme, plus
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Kyber [ABD+20b], NTRU [CDH+20], and Saber [DKRV20], which are all lattice-based
with similar performance characteristics.

Saber is based on the module learning with rounding (M-LWR) problem. Its arithmetic
operates in the polynomial ring Rq = Zq[x]/

〈
x256 + 1

〉
with q = 213 and n = 256. One

of Saber’s distinguishing features, compared to its close relative Kyber [ABD+20b], is
the power-of-two modulus q = 213, while Kyber uses the prime modulus 3329. Using a
power-of-two modulus has benefits, but also a major disadvantage in being less suitable
for the number-theoretic transform (NTT). Recent work by Chung et al. [CHK+21] has
shown that Saber can still profit from NTT multiplications by switching to a larger prime
modulus allowing NTTs. Indeed, Saber with NTTs can also be significantly faster than
Toom–Cook on the major NIST software targets: ARM Cortex-M4 and Haswell with
AVX2.

We address three questions in this paper:

1. The Chung et al. [CHK+21] implementation, not optimized for stack usage, has a
large memory footprint. How well can NTT-based Saber perform stack-wise on the
Cortex-M4, and in particular, can we achieve a smaller memory footprint for Saber
with NTTs compared to the stack-optimized Toom implementation from [MKV20]?

2. The [CHK+21] implementation relies on one of the multiplicands being small and
only computes the correct 25-bit result. This is normally true for the secrets in Saber,
but it does not apply to masked implementations in which the secret is arithmetically
shared modulo q (e.g., [VBDK+20]). How does Saber with NTTs perform for masked
implementations, in particular can they outperform masked Toom-based Saber from
[VBDK+20] in speed and stack usage?

3. While the Cortex-M4 is the primary microcontroller optimization target of NIST,
its cheaper predecessor, the Cortex-M3 remains widely deployed, e.g., in hardware
security modules (HSMs) like the STA13851. However, the Cortex-M3 is slightly less
powerful than the Cortex-M4 especially in terms of features critical to polynomial
multiplication. In particular, long multiplications smull and smlal are not executed
in constant time and, consequently, cannot be safely used when handling secret data.
The Cortex-M4 implementation heavily relies on these instructions. So the open
question is: Should Saber implementations targeting the Cortex-M3 use NTTs?

For Question 1, we first optimized Saber with NTTs for stack usage without sacrificing
speed on Cortex-M4 and achieved a significantly better memory footprint than speed-
optimized Toom–Cook implementations from [MKV20].

Then, as this still uses more memory than the stack-optimized Toom–Cook from [MKV20],
we propose an alternate approach of NTTs with a composite modulus q′ = q1q2, where
coprime q1 and q2 are chosen such that NTTs are defined modulo q1 and q2. In this
way we can define an NTT modulo q′, which allows a very stack efficient implementation
competitive in memory usage and at least 30% faster compared to the most stack-optimized
Toom–Cook implementations.

We answer Question 2 in the affirmative by doing our polynomial multiplication via an
NTT with a composite 36-bit modulus, which is sufficiently large for the masked product.
We do this by combining 32-bit NTTs with 16-bit NTTs.

Finally, we answer Question 3 also in the affirmative. Here we have two natural
alternatives in NTT-based polynomial multiplication using only 16-bit multiplications.
One can use 32-bit NTTs but emulate the long multiplications (used already to implement
Dilithium which requires 32-bit NTTs [GKS21]). Or one can adopt the approach of the
AVX2 implementation of [CHK+21] and use two 16-bit NTTs which can be efficiently

1https://www.st.com/en/automotive-infotainment-and-telematics/sta1385.html
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implemented while avoiding long multiplications. The result is then recombined using
the Chinese remainder theorem (CRT). We show that both approaches are faster than
Toom–Cook and the latter approach is the fastest. Furthermore, we also show that stack
optimization on Cortex-M4 can be applied to the 16-bit NTT approach on Cortex-M3.

Contribution. We show that, for the Cortex-M3 and Cortex-M4, Toom–Cook is not
useful for implementing Saber, and one should always use NTT multiplications. Firstly,
the fastest NTT-based Saber implementations use less memory than the fastest Toom–
Cook implementations. Secondly, the most stack-efficient implementations are using
NTTs. Thirdly, we exhibit two NTT-based Saber implementation on the Cortex-M3,
both outperforming Toom–Cook. Lastly, masked Saber implementations are also best
implemented using NTTs regardless of whether we value speed, memory or both.

In the process, we point out an overlooked stack optimization with multi-moduli NTTs.
The optimization justifies an unconventional use of composite-modulus for unmasked Saber
and unequal-size NTTs for masked Saber that are not implemented before. Furthermore,
we correct a misunderstanding regarding negacyclic convolutions by providing the actual
if-and-only-if condition.

Lastly, we justify the use of CT butterflies for the inverse of negacyclic NTTs

Code. All our implementation are open source and available at https://github.com/
multi-moduli-ntt-saber/multi-moduli-ntt-saber.

Related work. There is a line of works optimizing Saber for the Cortex-M4 [KRS19,
MKV20, CHK+21] using Karatsuba, Toom–Cook, and lately also NTTs. A masked Saber
is presented by Van Beirendonck et al in [VBDK+20]. Other NISTPQC third-round
candidates have been implemented for the Cortex-M3 and M4. The ones most relevant to
us are the constant-time NTTs from Greconici et al. [GKS21] and the stack optimizations
by Botros et al. [BKS19]. Composite modulus NTTs were earlier studied in the context of
side-channel protections for lattice-based schemes by Heinz and Pöppelmann [HP21].

Structure of the paper. This paper is structured as follows: Section 2 introduces Saber,
ARM Cortex-M4 and Cortex-M3, and Montgomery multiplication. In Section 3, we
present mathematics for NTTs implemented in this paper. In Section 4, we go through
implementation details of MatrixVectorMul with different emphases. In Section 5, we
present the performance of our implementations, and give some t-test results.

2 Preliminaries

2.1 Saber

Saber [DKRV20] is a NISTPQC finalist candidate lattice-based key encapsulation mecha-
nism. It is based on the Module Learning With Rounding (M-LWR) problem on the ring
Rq = Zq[x]/

〈
x256 + 1

〉
. For all parameter sets q = 213 and n = 256.

https://github.com/multi-moduli-ntt-saber/multi-moduli-ntt-saber
https://github.com/multi-moduli-ntt-saber/multi-moduli-ntt-saber
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Table 1: Saber Parameter Sets
name l T = 2εT µ

Lightsaber 2 23 10
Saber 3 24 8

Firesaber 4 26 6

Algorithm 1 Saber Key Generation
Output: pk = (seedA, b), sk = (s)
1: seedA ← SampleU ()
2: A ∈ Rl×lq ← Expand(seedA)
3: s ∈ Rlq ← SampleB()
4: b← Round(AT · s)

Algorithm 3 Saber CPA Decryption
Input: ct = (c, b′), sk = (s)
Output: m
1: v ← b′T (s mod p)
2: m← Round(v − 2εp−εT c mod p)

Algorithm 2 Saber CPA Encryption
Input: m, r, pk = (seedA, b)
Output: ct = (c, b′)
1: A ∈ Rl×lq ← Expand(seedA)
2: s′ ∈ Rlq ← SampleB(r)
3: b′ ← Round(As′)
4: v′ ← bT (s′ mod p)
5: c← Round(v′ − 2ε−1m)

Algorithms 1–3 are the CPA-secure scheme’s keygen, encryption, and decryption
and follow the submission material [DKRV20]. Here SampleU samples from the uniform
distribution, SampleB samples from a binomial distribution, and Expand expands a seed
to a uniform matrix of polynomials.

Saber’s most time-consuming operation in key generation and encryption is the matrix-
vector multiplication of polynomials AT · s and As′. In decryption the most expensive
operation is the inner product of b′T · s. We do not further discuss Saber’s CCA-secure
KEM construction, which uses a variant of the Fujisaki-Okamoto (FO) transform due to
Hofheinz-Hövelmanns-Kiltz [HHK17]. We do note that Saber does require re-encryption
in the decapsulation algorithm, and, therefore, improving the encryption also improves
decapsulation.

Parameters. The module dimension l, the rounding parameter T , and the secret dis-
tribution parameter µ varies according to the parameter sets Lightsaber, Saber, and
Firesaber (respectively targeting the NIST security levels 1, 3, and 5). See Table 1 for a
summary. Hence, MatrixVectorMul is computing the product of an l × l matrix and an
l × 1 vector, whereas InnerProd is computing the inner product of two l × 1 vectors.

2.2 ARM Cortex-M4 and Cortex-M3
The ARM Cortex-M4 is selected by NIST as a standard embedded platform to evaluate
candidates (including Saber) in the NISTPQC process. For both scientific curiosity and
practical reasons, we also implement Saber on the cheaper and also common Cortex-M3 to
explore the variation in performance when some instructions are not supported or can only
be used for secret-unrelated computations. The Cortex-M4 implements the ARMv7E-M
architecture, some of the most prominent features are as follows:

• 14 General purpose registers. There are 16 registers, named r0–r15. Except
for the stack pointer (r13) and the program counter (r15), all other registers are
general purpose registers.
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• Floating-point registers. There are 32 single-precision floating-point registers
that can also be used as a low-latency cache (cf. [ACC+21, CHK+21].)

• Cycles for load and store instructions. Store instructions are always one cycle.
A sequence of h loads with no dependency is always h+ 1 cycles.

• Single cycle long multiplications. Long multiplications {u,s}mull and their
accumulating counterparts {u, s}mlal are always one cycle.

• Barrel shifter. Shifts and rotates (asr, lsl, lsr, and ror), come at no extra cost
when used as the “flexible second operand” of a standard data-processing instruction.

• SIMD instructions. Arithmetic instructions operating on registers as chunks of 8-
bit or 16-bit elements. {u,s}{add,sub}{8,16} add up elements as packed 8-bit or 16-
bit elements. smul{b,t}{b,t}multiply specified halves of registers. smla{b,t}{b,t}
accumulates products of specified halves of registers into a register. smlad{x}
accumulates two 16× 16 = 32-bit multiplications into a register. pkh{bt,tb} pack
two half words into a word.

The ARM Cortex-M3 implements the ARMv7-M architecture. The most important
differences between Cortex-M3 and Cortex-M4 regarding constant-time implementation of
Saber with NTTs are as follows [ARM10]:

• No floating-point registers. There is no FPU, hence, we will experience more
overhead when spilling registers.

• Early-terminating long multiplications. Long multiplications (and the variants
with accumulation) {u,s}mull, {u,s}mlal are early-terminating instructions that
cannot be used for computing on secret data.

• No SIMD instructions. There are no operations either treating registers as packed
8-bit or 16-bit elements or operating on specific halves of operands.

2.3 Montgomery multiplication
We employ Montgomery multiplication for computing mMul(a, bR mod ±Q) = ab mod
±Q [Mon85] where b is a known constant, R is architecture-friendly and coprime to Q,
and mod± is signed modular reduction giving values in

[
− Q

2 ,
Q
2
)
. The computation of

ab mod ±Q is
ab mod ±Q = hi (a · (bR mod ±Q) + Q · lo (Qprime · lo (a · (bR mod ±Q))))

where Qprime = −Q−1 mod ±R, and lo and hi are extraction of the lower log2 R bits and
upper log2 R bits, respectively. In our implementations, we use either R = 216 or R = 232.

3 Number-Theoretic Transform
Number-theoretic transforms (NTTs) are critically important for efficient long multiplica-
tions. The most important works on integer multiplication [SS71, Für09, HVDH21] use
NTTs as basic building blocks. NTTs are so critical to the performance of polynomial
multiplications that the NISTPQC 3rd round candidates Dilithium, Falcon, and Kyber
wrote NTTs into their specs [ABD+20b, ABD+20a, FHK+17]. In addition, the candidates
NTRU, NTRU Prime, and Saber [DKRV20, CDH+20, BBC+20] can be sped up using
NTTs [ACC+21, CHK+21].

In this section, we go over the mathematics for NTTs in their abstract form while
maintaining the consistency of notations in our implementation details in Section 4. We
provide the definitions as they are only required to be and do not attach unnecessary
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restrictions on them. All the formulations are known in the literature with various
abstractions. But we give a clear explanation why NTT with a composite modulus is defined
in such a way by relating the principal n-th roots of unity to CRT in Section 3.2.1. The
justification trivially follows from the definitions without expanding the double summation.
Furthermore, we point out an overlooked implementation aspect with multi-moduli NTTs
in Sections 3.2.4 and 3.2.5.

An invertible NTT over Zm[x]/〈xn − ζn〉 is defined if and only if the following conditions
are satisfied:

1. Divisibility: Suppose m admits the prime factorization m = pd0
0 p

d1
1 · · · p

dk−1
k−1 , then n

must divide 0(m) := gcd(p0 − 1, p1 − 1, . . . , pk−1 − 1) [AB74, Theorem 1.].

2. Invertibility: ζ must be invertible [CF94].

Condition 1. enables NTTs over Zm[x]/〈xn − 1〉 and Condition 2. allows the extension
of the definition to Zm[x]/〈xn − ζn〉. With only size-1 NTTs possible, Saber’s coefficient
ring is unfriendly for NTTs.

A closer look at the Chinese Remainder Theorem (CRT). Let R be a commutative
ring, Ii be ideals of R so that Ii + Ij = R for i 6= j, and δ be Kronecker delta. Section 3 is
all about the CRT in the abstract sense that the formulae are various instantiations of the
isomorphism:

φ : R/
(
n−1⋂
i=0

Ii

)
→

n−1∏
i=0

R/Ii, φ : a+
(
n−1⋂
i=0

Ii

)
7→ (a+ I0, a+ I1, . . . , a+ In−1) (1)

[Für09, Theorem 2.4]. The inverse can be written as

φ−1 :
n−1∏
i=0

R/Ii → R/

(
n−1⋂
i=0

Ii

)
, φ−1 : (â0, â1, . . . , ân−1) 7→

n−1∑
i=0

riâi (2)

where the unique (r0, r1, . . . , rn−1) satisfies ri mod Ij = δij and
∑n−1
i=0 ri = 1 [Bou89,

Proposition 10 - (b), Section 8.11, Chapter I]. We will then review how the divisibility and
invertibility conditions translate into φ and φ−1.

3.1 Explicit Chinese remainder theorem computations

Explicitly computing a number from its remainders modulo a small number of coprime
moduli qi is an “Explicit Chinese Remainder Theorem” computation. There are basically
two known algorithms: [MS90, Theorem 23] which resembles Lagrangian interpolation,
and [CHK+21, Theorem 1] which resembles more divided-difference interpolation.

We follow the latter here. Let q, q0, q1 be pairwise co-prime and m1 := q−1
0 mod± q1.

For the system u ≡ u0 (mod q0), u ≡ u1 (mod q1), where |u0| < q0/2, |u1| < q1/2,
|u| < q0q1/2, solutions of u and umod± q, are explicitly given by:

u = u0 +
(
(u1 − u0)m1 mod± q1

)
q0

umod± q =
(
u0 +

((
(u1 − u0)m1 mod± q1

)
mod± q

)
· q0
)
mod± q.
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3.2 NTT over an integer ring
3.2.1 Explicit formulations for NTTs

In [AB74], the divisibility condition n|0(m) was established for NTTs over arbitrary Zm.
Let [n]q =

∑n−1
i=0 q

i be the q-analog2 of n so [n]x =
∑n−1
i=0 x

i ∈ Zm[x]. To arrive at a
definition more constructively, if n|0(m) then n is invertible in Zm and we can always
choose a principal n-th root of unity ω giving NTTn:1:ω as follows

NTTn:1:ω :
{

Zm[x]/〈xn − 1〉 →
∏n−1
i=0

(
Zm[x]/

〈
x− ωi

〉)
a(x) 7→

(
a(1),a(ω), . . . ,a(ωn−1)

) (3)

[Für09] along with its inverse NTT−1
n:1:ω defined as below (where ri = 1

n [n]ω−ix).

NTT−1
n:1:ω :

{ ∏n−1
i=0

(
Zm[x]/

〈
x− ωi

〉)
→ Zm[x]/〈xn − 1〉

(â0, â1, . . . , ˆan−1) 7→
∑n−1
i=0 riâi

(4)

A principal n-th root of unity ω is an n-th root of unity satisfying the orthogonality
1
n [n]ωi =

{
1 if i = 0
0 for 1 ≤ i < n

[AB74, Equation (13)].

Since a(x) mod (x−ωi) = a(ωi), ri mod (x−ωj) = δij , and
∑n−1
i=0 ri = 1, we see that

NTTn:1:ω and NTT−1
n:1:ω are just the polynomial formulation of φ and φ−1.

We also note that NTTn:1:ω and NTT−1
n:1:ω directly carry over to finite commutative rings

with identity 1 given the invertibility of n = [n]1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

as a ring element. We

suggest interested readers to refer to [DV78, Theorem 4.] on how the condition n|0(m)
can be generalized to arbitrary finite rings.

3.2.2 Differentiating between principal and primitive n-th roots of unity

A primitive n-th root of unity is a ρ such that for every 0 ≤ i < n, ρi 6= 1 and ρn = 1. In
Zm for a prime m, primitive and principal n-th roots of unity coincide. On the other hand,
there are easy counterexamples for composite m. First consider m = pr a prime power, say
for Z9. 4 is a primitive but not principal third root of unity. Moreover, 45 is a primitive
but not principal 2048-th root of unity in Z8192. Then take m = p0p1 for distinct primes
p0 and p1, say Z15. Here 7 is a primitive but not principal fourth root of unity. One can
construct more via the definition of Carmichael’s lambda function [Car14, Chapter 5.8].

3.2.3 NTTs in composite coefficient rings via CRT

Suppose m = q0q1 with coprime q0 and q1. Clearly n−1 exists in Zq0q1 iff n−1 exists in
both Zq0 and Zq1 . Also from the definition of 0, n|0(m) implies n|0(q0) and n|0(q1). This
means that ω being a principal n-th root of unity in Zq0q1 is equivalent to (ω mod q0) and
(ω mod q1) being principal roots in Zq0 and Zq1 , respectively. The converse is also true
that if ω0 ∈ Zq0 and an ω1 ∈ Zq1 are principal roots, we can find a principal root ω ∈ Zq0q1

via an explicit CRT computation from ω ≡ ω0 (mod q0), ω ≡ ω1 (mod q1).

3.2.4 Multi-moduli to save memory

There is an often overlooked implementation aspect of multi-moduli NTTs on the ARM
Cortex-M4: Let q0 and q1 be coprime moduli for 16-bit NTTs, then we can compute an

2q-analog is frequently used in Combinatorics. In some sense, it is a symbolic generalization of n – we
start by seeing n = 1 + 1 + · · · + 1︸ ︷︷ ︸

n

and replacing each 1 with qi in a symbolic fashion. q-factorials and

q-binomial coefficients naturally have some combinatorial interpretations.
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NTT over Zq0q1 . Due to M4’s powerful 1-cycle long multiplications, a 32-bit NTT over
q0q1 easily outpaces 2 × 16-bit NTTs. Indeed 16-bit NTT < 32-bit NTT � 2 × 16-bit
NTTs in cycle counts. We can, thus, reduce stack usage without sacrificing performance.

Suppose we want to multiply two size-n polynomials where each coefficient of the result
is smaller than the product of k 16-bit primes, then the following approach only needs
16(k + 1)× n/8 = 2n(k + 1) bytes of storage. We first note that this memory usage can
be achieved with k distinct 16-bit NTTs by interleaving the computation. However, the
fact that one 32-bit NTT being significantly faster than two 16-bit NTTs means we should
replace every two 16-bit NTTs with a 32-bit NTT. If k is odd, then we can process the
multiplicands by computing k−1

2 32-bit NTTs and one 16-bit NTT for each. If k is even,
for the first multiplicand, we compute k

2 32-bit NTTs and transform the last one into the
result of two 16-bit NTTs, while for the second multiplicand, we compute k

2 − 1 32-bit
NTTs and two 16-bit NTTs.

3.2.5 Prior uses of multi-moduli

RNS (residue number system) is used in the context of homomorphic encryption for
computing NTTs over many primes p0, p1, . . . , pk−1 and the result in Zp0p1···pk−1 for speed.
To use the Explicit CRT a la [MS90, Theorem 23], the representation is usually redundant.
Here we use only two 16-bit prime moduli (non-redundantly) for reducing stack usage and
jumping between the rings as shown in Section 4. In [HP21], the authors essentially used
RNS to protect linear computation from side-channel attacks. They lift Zp0 to Zp0p1 , and
compute NTT over Zp0p1 for fault protection. Our approach is to switch to Zp0p1 for speed
and to Zp0 and Zp1 for saving memory. We will detail when to switch which way later.

3.3 Polynomial multiplication
Let ψ ∈ Zm. Polynomial multiplication modulo xn − ψ means computing a(x)b(x) with
the agreement that xn = ψ so a(x)b(x) mod (xn − ψ) is

∑n−1
i=0 cix

i where
ci =

(∑i
j=0 ajbi−j + ψ

∑n−1
j=i+1 ajbi−j+n

)
.

If ψ = 1 then it is called cyclic convolution, and if ψ = −1 then it is called negacyclic
convolution. In Saber, we are computing negacyclic convolutions with n = 256.

3.4 Discrete weighted transform
We review how to apply the discrete weighted transform (DWT) to negacyclic convolutions,
and in general, polynomial multiplication modulo xn − ζn for an invertible ζ. In [CF94],
DWT is given as “introducing a weight signal to compute weighted convolution”. In our
context, the weight signal are powers

(
1, ζ, . . . , ζn−1) of a scalar ζ [CF94, Equation (2.13)].

So we will use the notation of NTT subscripted both with ζ and ω for this DWT.
An implementation of a(x)b(x) in Zm[x]/〈xn − ζn〉 when n|0(m) and ζ−1 exists, is

NTT−1
n:ζ:ω (NTTn:ζ:ω(a)(·)nNTTn:ζ:ω(b)) [CF94, Equation (2.15)] where (·)n is n-long point-

wise multiplication and:

NTTn:ζ:ω :
{

Zm[x]/〈xn − ζn〉 →
∏n−1
i=0

(
Zm[x]/

〈
x− ζωi

〉)
a(x) 7→

(
a(ζ),a(ζω) . . . ,a(ζωn−1)

) (5)

NTT−1
n:ζ:ω :

{ ∏n−1
i=0

(
Zm[x]/

〈
x− ζωi

〉)
→ Zm[x]/〈xn − ζn〉

(â0, â1, . . . , ˆan−1) 7→
∑n−1
i=0 riâi

(6)

[CF94, Equations (2.5) – (2.6)], where ri = 1
n [n]ζ−1ω−ix. Furthermore, NTTn:ζ:ω and

NTT−1
n:ζ:ω are also valid if we replace Zm by a finite commutative ring.
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If n = 2k and ζ2k = −1, then ζ2 is a principal 2k-th root of unity. By setting ω = ζ2, the
negacyclic NTTs of Kyber and Dilithium, which are exactly the upper halves of standard
NTTs, are special cases of NTTn:ζ:ω and NTT−1

n:ζ:ω. But notice that our definitions are generic
as in [CF94] because we simply aim to compute negacyclic convolutions, and there is no
fundamental reason for ζ to be tied with ω. E.g., size-8 NTTs over Z17[x]/

〈
x8 + 1

〉
defined

by any combinations of (ζ, ω) from {3, 5, 6, 7, 10, 11, 12, 14}×{2, 8, 9, 15} fulfill the need for
negacyclic convolution. Additionally, by setting ζ = 1, one can obtain the cyclic versions
NTTn:1:ω and NTT−1

n:1:ω.
Let ◦ denote the composition so (f ◦g)(x) = f(g(x)), then NTTn:ζ:ω = NTTn:1:ω◦(x 7→ ζy)

where x 7→ ζy, termed “twisting” [Ber], transforms (mod xn − ζn) to (mod yn − 1) and
has the obvious inverse y 7→ ζ−1x.

3.5 Cooley–Tukey and Gentleman–Sande FFTs
Two main algorithms to compute radix-2 NTTs are Cooley–Tukey and Gentleman–Sande
FFTs. Cooley–Tukey FFT refers to computing with Cooley–Tukey butterfly (CT butterfly):
for a pair (a0, a1) and a constant c, map ((a0, a1), c) to (a0 + ca1, a0 − ca1) [CT65].
Gentleman–Sande FFT refers to computing using the Gentleman–Sande butterfly (GS
butterfly): map ((a0, a1), c) to (a0 + a1, (a0 − a1)c) [GS66].

Obviously, GS
(
CT(a0, a1, c), c−1) = 2(a0, a1) = CT

(
GS(a0, a1, c), c−1). This observa-

tion suggests that any computation composed of CT and GS butterflies can be inverted
by inverting the CT and GS butterflies and then canceling the scaling by a power of 2.
There are at least two ways of implementing both NTTn:ζ:ω = NTTn:1:ω ◦ (x 7→ ζy) and
NTT−1

n:ζ:ω = (y 7→ ζ−1x) ◦ NTT−1
n:1:ω described in the previous section.

In this section, we fix n = 2k, 2k|0(m), and ω a principal 2k-th root of unity. We
describe the case where ζ only needs to be invertible.

3.5.1 CT for NTT and GS for iNTT

Computing NTT2k:ζ:ω with CT butterflies is mapping
Zm[x]/

〈
x2i − ζ2i

〉
to Zm[x]/

〈
x2i−1 − ζ2i−1

〉
× Zm[x]/

〈
x2i−1 − ζ2i−1

ω2k−1
〉
,

which, when applied recursively, results in the bit-reversal of
Zm[x]/〈x− ζ〉 × Zm[x]/〈x− ζω〉 × · · · × Zm[x]/

〈
x− ζω2k−1

〉
(cf. Appendix E).
By setting ζ = 1, we have the most commonly seen CT algorithm for NTT2k:1:ω with

k2k−1 − 2k + 1 multiplications. And by setting ζ2k = −1 and ω = ζ2, we obtain the
CT algorithm for NTTs used in Kyber [ABD+20b] and Dilithium [ABD+20a] with k2k−1

multiplications.
If we invert all the computations with GS butterflies, then we have the GS algorithm

for NTT−1
n:ζ:ω. If ζ−2k−1 6= ±1, we can absorb 2k−1 multiplications by 2−k at the end of

NTT−1
n:ζ:ωas shown in Figure 1. This approach is widely used in optimized implementations

on Cortex-M4. In particular, NewHope and NewHope-Compact by [ABCG20], Kyber
by [ABCG20, GKS21], Dilithium by [GKS21], and Saber by [CHK+21]. But we can
absorb more multiplications using the CT FFT algorithm for NTT−1

n:ζ:ω as shown in the
next section.

3.5.2 GS for NTT and CT for iNTT

Computing NTT2k:ζ:ω with GS butterflies is mapping Zm[x]/
〈
x2i − ζ2i

〉
to Zm[x]/

〈
x2i − 1

〉
whenever i > 0. After mapping Zm[x]/

〈
x2k − ζ2k

〉
to Zm[x]/

〈
x2k − 1

〉
and then to

Zm[x]/
〈
x2k−1 − 1

〉
× Zm[x]/

〈
x2k−1 − ω2k−1

〉
,
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(d) GS for iNTT over x8 − 1 and over x4 + 1.

Figure 1: CT and GS butterflies over x8 − 1 and x4 + 1.

Zm[x]/
〈
x2k−1 − ω2k−1

〉
is mapped to Zm[x]/

〈
x2k−2 − 1

〉
immediately. It is clear to see

that the result is also the bit-reversal of
Zm[x]/〈x− ζ〉 × Zm[x]/〈x− ζω〉 × · · · × Zm[x]/

〈
x− ζω2k−1

〉
.

Now we can invert with CT butterflies to derive the CT algorithm for NTT−1
n:ζ:ω. If

ζ−1 6= ±1, then we can absorb 2k − 1 multiplications by 2−kas shown in Figure 1. We
implement the CT algorithm for NTT−1

n:ζ:ω on Cortex-M4.

3.6 NTT for NTT-unfriendly rings

For multiplying polynomials over finite integer rings not amiable for NTTs, since the
coefficients of the result are bounded, we can choose an NTT-friendly modulus large
enough to compute the result as in Z, and then reduce to the target coefficient ring [FSS20,
CHK+21].

For Saber, since we are multiplying a matrix by a vector with the polynomial modulus
x256 + 1, the resulting (signed) coefficients are within ±µ2 ·

8192
2 · 256 · l = ±12582912.

Therefore, if we choose a modulus q′ > 25165824 = 2 · 12582912 satisfying 2n|0(q′), we
can compute the multiplication with length-n negacyclic NTTs in Zq′ .

3.7 Incomplete NTT

Let n = r0r1, r0|0(m), and ω be a principal r0-th root of unity. Incomplete NTT, written as
NTTr0:1:ω, refers to re-writing xr1 as y followed by NTTr0:1:ω treating y as the indeterminate.
Rewrite the degree-(n − 1) a(x) as degree-(r0 − 1) a′(y) where a′i =

∑r1−1
j=0 air1+jx

j .
Explicitly, NTTr0:1:ω maps a(x) to (a′(1),a′(ω), . . . ,a′(ωr0−1)).

We can apply the incomplete NTT for multiplying polynomials. For a(x)b(x) mod
(xr0r1 − 1), we implement it as

NTT−1
r0:1:ω

(
base_mulr0:r1:ω (NTTr0:1:ω(a(x)), NTTr0:1:ω(b(x)))

)
where base_mulr0:r1:ω means r0 multiplications of degree-(r1 − 1) polynomials, each is

over a suitable xr1 − ωi.
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Table 2: Summary of NTT approaches.
M3 M4

Unmasked Unmasked Masked
32-bit 16-bit 32-bit 16-bit 32-bit + 16-bit

Opt speed speed/stack speed/stack stack speed/stack
Modulus 25171457 3329, 7681 3329× 7681 3329, 7681 44683393, 769
NTT 8-layer-CT 6-layer-CT 6-layer-CT
base_mul 1× 1 4× 4 4× 4
NTT−1 8-layer-GS 6-layer-CT 6-layer-CT

4 NTTs for MatrixVectorMul

In Table 2, we give a summary of the implemented NTTs. On Cortex-M4, we implement
incomplete NTT/iNTT with 6 layers of CT butterflies for all implementations. On Cortex-
M3, we implement both a 32-bit approach and a 16-bit approach to find the optimal one.
For the 32-bit approach, we implement complete NTT with 8 layers of CT butterflies and
complete iNTT with 8 layers of GS butterflies. For the 16-bit approach, we implement
incomplete NTT/iNTT with 6 layers of CT butterflies.

This section is organized as follows: First, we analyze strategies for reducing stack
usage of MatrixVectorMul in Section 4.1. Next, we go through our implementation on
Cortex-M4 in Section 4.2: our stack-optimized implementation for unmasked Saber in
Section 4.2.1, and speed-optimized and stack-optimized implementations for masked Saber
in Section 4.2.2. Finally, we present our implementation on Cortex-M3 in Section 4.3,
covering 32-bit NTT in Section 4.3.1, and 16-bit NTT in Section 4.3.2.

4.1 Reducing stack usage for MatrixVectorMul

The state-of-the-art Saber implementations [CHK+21] using NTTs have thus far not been
thoroughly optimized for minimal stack consumption. The authors exclusively optimize for
speed and do not report any stack usage. Later, Van Beirendonck and Hwang refactored
the implementation to reduce stack usage without degrading speed.3 In this section, we
give a more thorough analysis of speed-memory trade-offs.

The most memory-consuming operation in Saber is the MatrixVectorMul AT s in key
generation and As′ in encryption. In all implementations, we employ on-the-fly generation
of A, and consequently, only need one polynomial of A in memory. For computing AT s
in key generation, we can compute the NTT for s on-the-fly but accumulate the entire
result in the NTT domain with l accumulators. This is because the first component of the
result only depends on the first column of A and the first component of s. For computing
As′ during encryption, we compute the entire NTT of s with l polynomial buffers but
hold only one buffer for accumulation. This is because a component of the result is an
inner product of a row of A and s′, and is computed in order. In summary, for computing
AT s, the most memory-consuming part is the accumulation in the NTT domain. And for
computing As′, the most memory-consuming part is transforming s′ into the NTT domain.
In the most speed-optimized and the most stack-optimized implementations, there is no
downside to this. But they result in different speed-memory trade-offs as shown below.

We now show that there are four ways for computing the product, which we will name
strategies A, B, C, and D. They are distinguished by caching the NTTs of s or not and
accumulating in the NTT domain or not.

A. We cache NTT(s) and accumulate values in the NTT domain;
B. we cache NTT(s) and accumulate values in normal domain;
3https://github.com/mupq/pqm4/pull/181

https://github.com/mupq/pqm4/pull/181
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Zq′ [x]/
〈
x256 + 1

〉 63
Π
i=0

Zq′ [x]/
〈
x4 − ω2i+1

q′:128

〉

Π
k=0,1

(
Zpk

[x]/
〈
x256 + 1

〉)
Π

k=0,1

(
63
Π
i=0

Zpk
[x]/
〈
x4 − ω2i+1

pk:128
〉)

NTT64:ωq′:128:ω2
q′:128

NTT64:ωpk:128:ω2
pk:128

CRT CRT

Figure 2: Split of polynomial rings with CRT for incomplete NTT implementation for Saber.
Blue arrows are isomorphisms via NTT. If q′ = p0p1, the red arrows are isomorphisms via
CRT with ωq′:128 = CRT(ωp0:128, ωp1:128).

C. we re-compute NTT(s) and accumulate values in the NTT domain;
D. we re-compute NTT(s) and accumulate values in normal domain.

All four strategies apply to AT s and As′. A is the fastest, and D consumes the least
amount of memory. B and C run in comparable cycles but result in different degrees of
trade-off for memory. For reducing the memory usage of AT s, B is much better than C
since B effectively reduces the size of accumulators. On the other hand, for reducing the
memory usage of As′, C is much better than B, since C avoids caching the entire NTT(s′).

On Cortex-M4, A corresponds to the implementation in [CHK+21]; we additionally
implement D for unmasked Saber, and A, C, and D for masked Saber. On Cortex-M3, we
implement A for 32-bit NTT and strategies A, C, and D for 16-bit NTT.

4.2 Implementation on M4
For simplicity of discussion, throughout this section, we assume ω is a principal 128-th root
of unity so x256 + 1 = x256 − ω64. We illustrate our strategies only for MatrixVectorMul
As′ in encryption. However, the ideas apply analogously for AT s in key generation. For the
concrete evaluation of the stack usage, we use l to refer to the matrix dimension (l = 2 for
LightSaber, l = 3 for Saber, and l = 4 for FireSaber). For our masked implementation,
we refer to SABER_SHARES as the number of shares. Our polynomial multiplication code
works for any masking order. However, the other parts of masked Saber from [VBDK+20]
only support first-order masking, and, hence, SABER_SHARES is always 2 in our experiments.

We exclusively use the Cooley–Tukey FFT algorithm to implement both the NTT and
iNTT on the Cortex-M4. We recall the corresponding butterfly operations for 16-bit NTTs
and 32-bit NTTs known from the literature [ABCG20, GKS21, ACC+21] in the following.

32-bit CT butterflies. A straightforward implementation of 32-bit CT butterflies is
using smull and smlal both giving 64-bit immediate results for a · (bR mod ±Q) and
multiplication by Q with accumulation. A 32-bit CT butterfly is to proceed with add-sub
of (a0, ba1) [ACC+21, GKS21]as shown in Algorithm 6.

16-bit CT butterflies. We implement CT butterflies with smul{b,t}{b,t} and
smla{b,t}{b,t} giving multiplications and multiplications with accumulations of specified
halves. Furthermore, we can use sadd16 and ssub16 to do add-sub pairs in parallelas
shown in Algorithm 7 [ABCG20].

4.2.1 New record on stack usage for unmasked Saber

For Saber, all polynomial multiplications are of the form of big × small, i.e., we compute
a(x)b(x) in Zq[x]/

〈
x256 + 1

〉
where a(x) ∈ Zq[x]/

〈
x256 + 1

〉
and b(x) ∈ Zµ[x]/

〈
x256 + 1

〉
.
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Previous work [CHK+21] has shown that this can be efficiently computed using NTTs by
switching to an NTT-friendly prime q′ ≥ 2 · q2 ·

µ
2 · l which suffices for acquiring the result

in Z. The authors chose the prime 25165824. However, we instead use q′ = 7681 · 3329 =
25570049 > 25165824 which also allows the use of NTTs, but is advantageous in terms of
stack usage.

NTT with composite modulus. Let p0 and p1 be distinct primes with 128 dividing both
0(p0) and 0(p1), ωp0:128 and ωp1:128 be principal 128-th roots of unity in Zp0 and Zp1 ,
respectively. By CRT and incomplete NTTs, we have the following isomorphisms:

• Zp0p1
∼= Zp0 × Zp1

• NTT64:ωp0:128:ω2
p0:128

giving Zp0 [x]/
〈
x256 + 1

〉 ∼= 63
Π
i=0

Zp0 [x]/
〈
x4 − ω2i+1

p0:128
〉

• NTT64:ωp1:128:ω2
p1:128

giving Zp1 [x]/
〈
x256 + 1

〉 ∼= 63
Π
i=0

Zp1 [x]/
〈
x4 − ω2i+1

p1:128
〉

Together, we have NTT64:ωp0p1:128:ω2
p0p1:128

giving

Zp0p1 [x]/
〈
x256 + 1

〉 ∼= 63
Π
i=0

Zp0p1 [x]/
〈
x4 − ω2i+1

p0p1:128
〉
,

Figure 2 is an illustration of the isomorphisms.
Instead of implementing a(x)b(x) in Zp0p1 [x]/

〈
x256 + 1

〉
as applying NTT−1

64:ωp0p1:128:ω2
p0p1:128

on the base_mul64:4:ωp0p1:128 of(
NTT64:ωp0p1:128:ω2

p0p1:128
(a(x)), NTT64:ωp0p1:128:ω2

p0p1:128
(b(x))

)
,

for saving memory, we apply NTT−1
64:ωp0p1:128:ω2

p0p1:128
on the CRT of

base_mul64:4:ωp0:128

(
NTT64:ωp0p1:128:ω2

p0p1:128
(a(x)) mod p0, NTT64:ωp0:128:ω2

p0:128
(b(x))

)
base_mul64:4:ωp1:128

(
NTT64:ωp0p1:128:ω2

p0p1:128
(a(x)) mod p1, NTT64:ωp1:128:ω2

p1:128
(b(x))

).
The workflow goes as outlined in Algorithm ?? in Appendix C. We declare three 16-bit
arrays in the order of buff1_16, buff2_16, buff3_16 and 32-bit pointers ∗buff1_32 =
(uint32_t∗)buff1_16, ∗buff2_32 = (uint32_t∗)buff2_16 so we can access the memory
as 32-bit arrays at some point. First, we compute NTT64:ωp0p1:128:ω2

p0p1:128
(a(x)) and store the

result to the 32-bit array buff1_32. We then compute and put buff1_32 mod p1 in the 16-
bit array buff3_16. For computing buff1_32 mod p0, we see that the result in buff1_32
won’t be needed after reducing modp0, so we compute and put buff1_32 mod p0 in the
16-bit array buff1_16. This is doable if we compute modp0 from the beginning. We
proceed with computing NTT64:ωp1:128:ω2

p1:128
(b(x)) in the 16-bit array buff2_16 followed

by base_mul64:4:ωp1:128 outputting to buff3_16, and computing NTT64:ωp0:128:ω2
p0:128

(b(x))
in the 16-bit array buff2_16 followed by base_mul64:4:ωp0:128 outputting to buff2_16.
Next we compute the explicit CRT, giving 32-bit coefficients as in the NTT domain with
coefficient ring Zp0p1 , and put the result in the 32-bit array buff1_32. Finally, we compute
NTT−1

64:ωp0p1:128:ω2
p0p1:128

and reduce the coefficient ring to Zq.

Memory layout. For implementing stack optimized MatrixVectorMul in encapsulation
of unmasked Saber, we employ a variant of Strategy D: we declare arrays

uint16_t buff1_16[256], buff2_16[256], buff3_16[256], acc_16[256]
multiply an element of A by an element of s′ with the above strategy, accumulate the

result to acc_16, and finally derive an element of b′. In total, only 1536 bytes are needed
if the accumulator is excluded.
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Comparison with previous stack optimized implementation. We compare the memory
usage of polynomial multiplication to the currently most stack optimized implementation
– 4 levels of memory efficient Karatsuba [MKV20]. Ignoring the extra O(logn) memory
overhead for Karatsuba, we focus on the polynomial buffers for the multiplicands and
the result. For the Karatsuba approach, one needs 512 bytes for the accumulator, 512
bytes for holding a component of A, and 1022 bytes for the degree-510 result – almost
the same as the NTT approach with composite modulus. Essentially, any algorithm not
exploiting the negacyclic property requires such amount of memory. We only find the work
by [PC20] giving a non-NTT-based approach exploiting the negacyclic property, but the
authors reported that they were not able to achieve a smaller footprint than the Karatsuba
by [MKV20].

4.2.2 MatrixVectorMul for masked Saber

A masked implementation of Saber decapsulation using Toom–Cook multiplication is given
in [VBDK+20]. We improve this implementation by replacing MatrixVectorMul and
InnerProd with NTT-based multiplications. As secret polynomials s and s′ are masked
arithmetically modulo q, the multiplications are no longer big × small, but rather big
× big, i.e., all input polynomials are in Zq[x]/

〈
x256 + 1

〉
. Therefore, the coefficients of

the product can be larger than 32-bit. This implies switching to an NTT-friendly 25-bit
modulus and performing 32-bit NTTs no longer produces correct results.

Instead, we propose combining a 32-bit NTT with a 16-bit NTT to compute the 48-bit
value and then reduce each coefficient to Zq. We compute 32-bit NTT and 16-bit NTT by
choosing p0 = 44683393 = 349089 · 128 + 1 and p1 = 769 = 6 · 128 + 1 as moduli. Their
product q′ = p0p1 = 44683393 · 769 = 34361529217 > 34359738368 = 2 ·

(
q
2
)2 · 256 · 4

shows that after applying CRT, we derive the result as in Z.
For computing a(x)b(x) in Zq[x]/

〈
x256 + 1

〉
, we compute a(x)b(x) in Zp0 [x]/

〈
x256 + 1

〉
with 32-bit NTT and in Zp1 [x]/

〈
x256 + 1

〉
with 16-bit NTT. Then, we apply CRT to obtain

the result in Zq′ [x]/
〈
x256 + 1

〉
which coincides with the result in Z[x]/

〈
x256 + 1

〉
. Finally,

we reduce the coefficient ring to Zq.
First, we show how to multiply two 16-bit polynomials, a(x) and b(x) within 3072

bytes. The idea is simple: we compute the 32-bit NTT64:ωp0:128:ω2
p0:128

of a(x), store the
result in a 32-bit array, compute the 16-bit NTT64:ωp1:128:ω2

p1:128
of a(x), and store the result

in a 16-bit array. For b(x), we declare a 32-bit array and a 16-bit array, and compute 32-bit
NTT64:ωp0:128:ω2

p0:128
and 16-bit NTT64:ωp1:128:ω2

p1:128
as for a(x). Then, we perform in-place

32-bit base_mul64:4:ωp0:128 followed by in-place 32-bit NTT−1
64:ωp0:128:ω2

p0:128
, and in-place 16-

bit base_mul64:4:ωp1:128 followed by in-place 16-bit NTT−1
64:ωp1:128:ω2

p1:128
. Finally, we apply

CRT followed by reduction to Zq.Algorithm 4 is an illustration of the idea.

Memory layout for speed-optimized implementations. For implementing speed-optimized
MatrixVectorMul in encapsulation of masked Saber, we employ a shared variant of Strategy
A, and declare arrays

uint32_t s_NTT_32[SABER_SHARES][l][256]
uint16_t s_NTT_16[SABER_SHARES][l][256]
uint32_t buff_32[256], acc_32[SABER_SHARES][256]
uint16_t buff_16[256], acc_16[SABER_SHARES][256]

.

For each share of s′, we compute the 32-bit NTTs and 16-bit NTTs of it and store them
in s_NTT_{32, 16}. For computing an element of shared b′, we repeat the following l
times: compute the 32-bit NTT and 16-bit NTT of an element of A; multiply them by the
corresponding element of each share of s′ using base_mul64:4:ωp0:128 and base_mul64:4:ωp1:128 ;
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accumulate the results to accumulators acc_{32, 16}; compute the 32-bit iNTT and
16-bit iNTT for each share; and finally, solve CRT and reduce to Zq for each share.

Memory layout for stack-optimized implementations. For implementing stack optimized
MatrixVectorMul in decapsulation of masked Saber, we employ a shared variant of Strategy
D, and declare arrays{

uint32_t s_NTT_32[256], buff_32[256]
uint16_t s_NTT_16[256], buff_16[256], acc_16[SABER_SHARES][256] .

We repeat l times computing the shares of an element of b′. For computing the shares
of a polynomial product, we repeat l times for the following. We first expand an element of
A and store it in buff_16. Then we compute the 32-bit NTT and in-place 16-bit NTT for
the element and the result is stored in buff_{32, 16}. Next, we repeat SABER_SHARES
times clearing the arrays s_NTT_{32, 16}, computing 32-bit NTT and 16-bit NTT of a
share of s′ and storing them in s_NTT_{32, 16}, computing in-place base_mul64:4:ωp0:128

and base_mul64:4:ωp1:128 , in-place 32-bit iNTT and 16-bit iNTT, solving with CRT, and
finally, accumulating the result to the corresponding share of acc_16. In total, 3072 bytes
are needed if accumulators are excluded.

Comparison with masked Saber with Toom–Cook. We first compare the stack usage.
From [VBDK+20], the polynomial multiplication is implemented as a Toom-4 followed by
2 levels of Karatsuba. Therefore, the memory usage for entire evaluation of one polynomial
is 2 · 256 · 7

4 ·
( 3

2
)2 = 1568 bytes. With carefully optimized accumulation, 3076 bytes are

used. In total, 3588 bytes are needed because of the additional buffer of an element of A.
For our stack optimized implementation, we only need 3072 bytes. Next we compare the
number of NTTs computed in the speed optimized implementation. We compute 9 32-bit
NTTs and 9 16-bit NTTs for A, 6 32-bit NTTs and 6 16-bit NTTs for the shared secret, 6
32-bit iNTTs and 6 16-bit iNTTs for the shared results. In summary, we need 15 32-bit
NTTs, 15 16-bit NTTs, 6 32-bit iNTTs, and 6 16-bit iNTTs. Given that one 16-bit NTT
takes 0.79× of one 32-bit NTT and one 16-bit iNTT takes 0.82× of one 32-bit iNTT, then
essentially we need the equivalent of 26.85 32-bit NTTs and 10.92 32-bit iNTTs. Compared
to [CHK+21], we only need about 2.24× 32-bit NTTs and 3.64× 32-bit iNTTs, which is
obviously faster than the shared variant of Toom–Cook.

4.3 Implementation on M3
Due to the more limited instruction set and the early terminating long multiplications on
the Cortex-M3, the 32-bit butterflies from the previous section can only be used with some
restrictions. In general, there are two approaches to still benefit from NTTs on the Cortex-
M3: One can either implement 32-bit NTTs, but avoid the early terminating multiplication
instructions for secret inputs, or one exclusively uses 16-bit NTTs and computes the CRT
of the results. The former approach resembles the Cortex-M4 approach from [CHK+21]
and the previous section, while the latter is similar to the AVX2 implementation from
[CHK+21]. We implement both approaches and compare their performance.

We start by describing the butterfly implementations. For the 32-bit approach, we use
CT for the NTT and GS for the iNTT, while for the 16-bit approach we use CT for both.

32-bit CT butterflies. The 32-bit CT butterflies with smull and smlal are functionally
correct on Cortex-M3. However, these instructions are early-terminating and can only
be used when computing on public data. We denote the 5-instruction 32-bit butterflies
as NTT_leak on Cortex-M3. For computing the NTT of the secret values s and s′ on
Cortex-M3, we implement smull_const and smlal_const with radix-216 schoolbook multi-
plication as suggested in [GKS21]. The CT butterfly using smull_const and smlal_const
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is illustrated in Algorithm 8. The result of the multiplication by Qprime needs to be split
into upper and lower 16 bits before we can use them in the subsequent multiplication by Q.

32-bit GS butterflies. As implemented for CT butterflies, we also use smull_const
and smlal_const for implementing 32-bit GS butterfliesas shown in Algorithm 12. Both
coefficients are initially loaded as 32-bit values because the add-sub is computed before the
multiplication. We then split the result of a0−a1 into halves for Montgomery multiplication.

16-bit CT butterflies. A straightforward implementation of 16-bit CT butterflies is using
mul and mla with sxth for extracting the lower 16 bits [GKS21]as shown in Algorithm 9.

4.3.1 32-bit NTT for MatrixVectorMul

We implement strategy A for MatrixVectorMul using 32-bit NTTs on Cortex-M3. An
important observation is that A is public, so we can employ NTT_leak on A. This greatly
improves the performance since among the l2 +2l NTTs/iNTTs, l2 of them are computation
for A. On the other hand, the NTTs of secret and base_mul can only be computed with
smull_const and smlal_const. We use the constant-time 32-bit CT and GS butterflies
for the NTT and iNTT on secret data, respectively. Using smull_const and smlal_const
leads to a much higher register pressure during the entire multiplication. Due to that,
we do not benefit from using incomplete NTTs as the 2× 2 base multiplication already
exhausts the available registers. Therefore, we compute complete NTTs.

4.3.2 16-bit NTTs for MatrixVectorMul

We implement strategies A, C, and D with the 16-bit NTT approach for MatrixVectorMul
on Cortex-M3. Our results show that the 16-bit approach is faster than the 32-bit approach.
For strategy A, this corresponds to the AVX2 implementation from [CHK+21]. We also
carry out the stack optimization on Cortex-M4 and implement strategies C and D.

4.3.3 A Note on combining 32-bit and 16-bit

There is an interesting observation when comparing the cycles of MatrixVectorMul
implemented using 32-bit and 16-bit NTTs, which suggests that the 16-bit approach is
better. However, one 8-layer NTT_leak is only about 1.15× of two 6-layer 16-bit NTTs,
giving a hint that 6-layer NTT_leak might be a faster approach. We experimented with
combining NTT_leak and constant-time 16-bit NTTs for strategy A. One may first process
A with 6-layer NTT_leak followed by transforming the result into two 16-bit NTTs by
the map i 7→ (i mod p0, i mod p1). However, our experiments show that the performance
gain with NTT_leak for A is canceled out by computing the map i 7→ (i mod p0, i mod p1).
Therefore, we did not use this trick in our implementation.

5 Result
This section presents our results on the Cortex-M3 and Cortex-M4. We first describe
our target platforms and setup and then present the results in Section 5.1. Section 5.2
evaluates the side-channel resistance of our masked implementation.

Cortex-M4 setup. We target the STM32F407-DISOVERY board featuring a STM32F407VG
Cortex-M4 microcontroller with 196 kB of SRAM and 1 MB of flash. Our benchmarking
setup is based on pqm4 [KRSS]; we clock the core at 24 MHz with no flash wait states.
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Table 3: Cycle counts for NTT, base_mul, NTT−1 on the Cortex-M3 and the Cortex-M4.
For each of the first three columns, the cycles for a polynomial multiplication will be
2 · NTT(or NTT + NTT_leak) + NTT−1 + base_mul + CRT(if not –). The NTT of the column
32-bit + 16-bit contains a layer of sbfx to reduce elements to Zq. For the last two columns,
they together implement a polynomial multiplication, and the cycles is the sum of the two
columns. One of the 16-bit base_mul is preceded with modular reduction to save load
and store instructions. For the stack usage, the first three columns are for a polynomial
multiplication. The stack usage of the last two columns are the bytes occupied by the
functions. But the actual stack usage is 1 536 bytes, since the arrays are overlapped.

M3 M4
2 × 16-bit 32-bit 32-bit + 16-bit 32-bit 16-bit + 16-bit

NTT 16 774 31 056 6 116 + 4 852 5 853 4 374+ 4 822
NTT_leak – 19 363 – – –
NTT−1 19 079 37 394 5 872 + 4 817 7 137 –
base_mul 11 933 8 532 4 186 + 2 966 – 3731 + 2 965
modpi – – – – 0 + 1 171
CRT 4 642 – 4 503 – 2 435
poly_mul 69 202 96 345 44 280 32 488
Bytes(speed opt) 2 048 2 048 3 072 – –
Bytes(stack opt) 1 536 – 2 048 1 536 1 024

Cortex-M3 setup. Our Cortex-M3 target platform is the Nucleo-F207ZG board contain-
ing a STM32F207ZG core with 128 kB of SRAM and 1 MB of flash. Our benchmarking
setup is based on pqm3.4 We clock the core at 30 MHz to avoid having flash wait states.

Keccak and Randomness. For both implementations, we use the ARMv7-M assembly
implementation of Keccak from the XKCP5 which is operational on the Cortex-M3 and
the Cortex-M4. This implementation is also contained in both pqm3 and pqm4. For
randomness required in key generation and encapsulation, we use the hardware RNG.

All code is compiled with arm-none-eabi-gcc Version 10.2.0 with -O3.

5.1 Performance
We report results for a single polynomial multiplication in Table 3. Each of the first three
columns is realizing a polynomial multiplication as computing NTT on both polynomials,
base_mul for the NTTs, and finally NTT−1(and followed by CRT if needed). For the last two
columns, they together realize a polynomial multiplication as computing one 32-bit NTT
and two 16-bit NTTs, two 16-bit base_muls, CRT giving a 32-bit polynomial, and finally a
32-bit NTT−1.

We report results of our implementations of unmasked Saber as shown in Table 5.
Detailed numbers for MatrixVectorMul and InnerProd are given in Appendix A.

For the ARM Cortex-M3, our speed-optimized NTT implementation of (unmasked)
Saber requires only 65.0%-70.7% of the time and 45.0%-51.2% of stack space compares to
the Toom–Cook implementation available in pqm3. Our stack-optimized implementation
is still 5.6%-13.0% faster while requiring 70.3%-79.9% less stack space.

For the Cortex-M4, we outperform the NTT implementation by Chung et al. [CHK+21]
by 2.2%-6.9% while needing considerably less stack. Compared to previous speed-optimized
Toom implementations [MKV20] we require significantly less stack space (65.8%-67.7% less)

4https://github.com/mupq/pqm3
5https://github.com/XKCP/XKCP

https://github.com/mupq/pqm3
https://github.com/XKCP/XKCP
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while only requiring 68.9%-75.5% of the time. For heavily stack-optimized implementations,
we require about the same or slightly less amount of stack while achieving a vast speed-up.

Masked Saber results are shown in Table 6. Our speed-optimized approach is outper-
forming Toom–Cook by 15.4%. Our stack-optimized approach is using 72.3% of the stack
of Toom–Cook, and is only a little slower than Toom–Cook. In trading speed for memory,
we implement strategy C, outperforming Toom–Cook in both speed and memory.

Notes on joint implementation with Kyber NTT optimized with stack and program size.
Due to the flexibility of choosing moduli, one can share the 16-bit NTT implementations
between Kyber and Saber. But we do not recommend this. For joint implementation in
software, neither Kyber nor Saber will be optimal for the following reasons: (1) The Kyber
NTT is 7 layers, while the optimal NTT for Saber is 6 layers; (2) Saber requires two 16-bit
primes where their product must be larger than 25165824. The smallest suitable prime are
3329 and 7681. The first reason implies MatrixVectorMul for Saber is suboptimal, and the
second reason implies more reductions are required for NTT of Kyber since 7681 > 3329.

5.2 Leakage Evaluation of Masked Saber
We adopt the test vector leakage assessment (TVLA) methodology to perform leakage
detection. We made use of CW1173 ChipWhisperer-Lite [Newb] to collect the power
consumption traces at a sampling rate of 59.04 MS/s. The target board is CW308 UFO
[Newc] with ChipWhisperer platform - CW308_STM32F4 (ST Micro STM32F405) [Newa]
on which we run our implementations at the frequency of 7.38 MHz. We focus on the key
decapsulation and capture three sets of power traces corresponding to the test vectors
in Table 4 [ISO16]. Then, compute Welch’s t-test to identify the differentiating features
between Set 1 and Set 2, and between Set 1 and Set 3.

Table 4: Test Vectors of Saber for captured power traces
Set Number Test vector properties

Set 1 Fixed secret key, Fixed ciphertext
Set 2 Fixed secret key, Randomly-chosen ciphertexts
Set 3 Randomly-chosen secret keys, Fixed ciphertext

The maximum number of samples on the CW1173 ChipWhisperer-Lite is 24573 [Newb].
Thus, we cannot capture the whole power trace of a full Saber decapsulation. In our
experiment we only capture traces of the power consumption toward the beginning of
the key decapsulation, which is an inner product of polynomial multiplications between
ciphertext and the secret key, which is implemented using the NTT. There are four steps:
NTT of the ciphertext, NTT of the secret key, base multiplication, and the iNTT.

In the first experiment, we do the TVLA on the power traces of Set 1 and Set 2, which
is corresponding to the randomly-chosen ciphertexts and fixed-chosen ciphertexts with a
fixed secret key. In the second step, doing the NTT of the secret key, there is no leakage,
which is expected since the secret key is fixed in our first experiment. The first and the
third steps, doing the NTT of ciphertext and base multiplications between the NTT results
of ciphertext and the secret key, show leakage, which is expected since the ciphertext
is public information. After the base multiplication, finally, the inverse NTT shows no
leakage in the protected version. By contrast, there is leakage in the unprotected version.
Figure 3a and Figure 3 show the t-tests of unprotected Saber and masked Saber on power
traces of Set 1 and Set 2. Each figure can be separated into two parts by the black lines:
1. doing base multiplication between the NTT of ciphertext and the NTT of the secret
key; 2. doing the inverse NTT. We can see that the t-statistic value of the masked Saber
is inside the ±4.5 [WO19] interval (red line) for all the points in time during the NTT−1,
which implies that the protected implementation is secure against first-order attacks.
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In the second experiment, we do the TVLA on the power traces of Set 1 and Set 3,
which is corresponding to the randomly-chosen secret keys and fixed-chosen secret keys
with a fixed ciphertext. In the second step, doing the NTT of the secret key shows no
leakage in the protected version. By contrast, there is leakage in the unprotected version.
Figure 4a and Figure 4b show the t-tests of unprotected Saber and masked Saber on
power traces of Set 1 and Set 3. Each figure can be separated into two parts by the black
lines: 1. doing the NTT of ciphertext; 2. doing the NTT of the secret key. We can see that
the t-statistic value of the masked Saber is inside the ±4.5 [WO19] interval, the red lines
in the figures, for all the points in time during the NTT, which implies that the protected
implementation is secure against first-order attacks.

Our masked Saber implementation as described in Section 4.2.2 only differs from
[VBDK+20] in MatrixVectorMul and InnerProd. Hence, the masked Keccak implemen-
tation remains unchanged. To verify that this implementation is indeed secure, we perform
another set of exeperiments targeting the beginning of the SHA3-512 function, which is
the absorb step in the Keccak sponge construction. Then, we do the TVLA on the power
traces of Set 1 and Set 2, which is corresponding to the randomly-chosen ciphertexts and
fixed-chosen ciphertexts with a fixed secret key. In masked Saber, turning the masks
on or off can activate or deactivate the countermeasure. Figure 5a and Figure 5b show
the t-tests of Keccak implementation in masked Saber on power traces of Set 1 and Set
2 with masks off and with masks on, respectively. We can see that the t-statistic value
of the masked Saber with masks on is inside the ±4.5 [WO19] interval (the red lines in
the figures) for all the points. It means that the masked Saber implementation is secure
against first-order attacks when the masks are on.
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Table 5: Speed and stack results for unprotected Saber on Cortex-M3 and Cortex-M4. Key
generation, encapsulation, and decapsulation are denoted as K, E, and D, respectively.

LightSaber Saber FireSaber
cc stack cc stack cc stack

M3

pqm3 K 710k 9 652 1 328k 13 252 2 171k 20 116
Toom E 967k 11 372 1 738k 15 516 2 688k 22 964
(speed) D 1 081k 12 116 1 902k 16 612 2 933k 24 444

This work K 540k 5 756 939k 6 788 1 439k 7 812
16-bit E 715k 6 436 1 194k 7 468 1 751k 8 492

(speed, A) D 749k 6 436 1 237k 7 468 1 811k 8 492
This work K 632k 3 420 1 253k 3 932 1 955k 4 444

16-bit E 887k 3 204 1 614k 3 332 2 427k 3 460
(stack, D) D 923k 3 204 1 657k 3 332 2 487k 3 460
This work K 594k 5 732 1 057k 6 756 1 553k 7 788

32-bit E 800k 6 412 1 330k 7 444 1 883k 8 468
(speed, A) D 877k 6 420 1 429k 7 452 2 016k 8 476

M4

[MKV20]
K 612k 3 564 1 230k 4 348 2 046k 5 116
E 880k 3 148 1 616k 3 412 2 538k 3 668

(stack) D 976k 3 164 1 759k 3 420 2 740k 3 684

[CHK+21]
K 360k 14 604 658k 23 284 1 008k 37 116
E 513k 16 252 864k 32 620 1 255k 40 484

(speed) D 498k 16 996 835k 33 824 1 227k 41 964
This work K 353k 5 764 644k 6 788 990k 7 812

32-bit E 487k 6 444 826k 7 468 1 208k 8 484
(speed, A) D 456k 6 440 777k 7 484 1 152k 8 500
This work K 423k 3 428 819k 3 940 1 315k 4 452

hybrid E 597k 3 204 1 063k 3 332 1 617k 3 468
(stack, D) D 583k 3 220 1 039k 3 348 1 594k 3 484

Table 6: Results for Masked Saber on the Cortex-M4.
Saber Decapsulation

cc stack
[VBDK+20] 2 833k 11 656

32-bit + 16-bit (speed, A) 2 385k 16 140
32-bit + 16-bit (C) 2 615k 10 476

32-bit + 16-bit (stack, D) 2 846k 8 432

Table 7: Masking overhead of cycle counts and stack usage.
unmasked A unmasked D
cc stack cc stack

masked A 3.07 2.16 2.30 4.82
masked C 3.37 1.40 2.52 3.13
masked D 3.66 1.13 2.74 2.52
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A Cycle count of MatrixVectorMul and InnerProd

We give numbers for MatrixVectorMul as shown in Table 8. MatrixVectorMul is trans-
forming all the components into NTT domain, computing base_mul, and then applying
NTT−1(following a CRT or followed by a CRT if needed).

We give numbers for InnerProd as shown in Table 9. The InnerProd in decryption
is transforming all the components into NTT domain, computing base_mul, and then
NTT−1(following a CRT or followed by a CRT if needed). For the InnerProd in encryption, we
can re-use NTT(s) from the MatrixVectorMul and can, consequently, save some operations
in case there is sufficient stack space available for caching.

B Isomorphism
We show here how CRT preserves the split of NTTs. Let q0 and q1 be coprime integers
with n|0(q0q1), ωq0:n and ωq1:n be principal n-th roots of unity in Zq0 and Zq1 , and
ωq0q1:n = CRT(ωq0:n, ωq1:n). Then we have the following:

Zq0q1 [x]/〈xn − 1〉
∼= (Zq0 × Zq1)[x]/〈xn − 1〉
∼= Zq0 [x]/〈xn − 1〉 × Zq1 [x]/〈xn − 1〉

∼=
(
n−1
Π
i=0

(
Zq0 [x]/

〈
x− ωiq0:n

〉))
×
(
n−1
Π
i=0

(
Zq1 [x]/

〈
x− ωiq1:n

〉))
∼=

n−1
Π
i=0

(
Zq0 [x]/

〈
x− ωiq0:n

〉
× Zq1 [x]/

〈
x− ωiq1:n

〉)
∼=

n−1
Π
i=0

(
(Zq0 × Zq1)[x]/

〈
x− (ωq0:n, ωq1:n)i

〉)
∼=

n−1
Π
i=0

(
Zq0q1 [x]/

〈
x− ωiq0q1:n

〉)
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Table 8: Cycle counts for speed- and stack-optimized implementations of MatrixVectorMul
on the Cortex-M3 and Cortex-M4. (A) and (D) denote the strategies used. The memory
to hold the secret is counted in this table.

Level Implementation Cycles Bytes

M3

LightSaber
16-bit speed(A) 199k 4 096
16-bit stack(D) 279k 2 688(K) or 2 304(E)
32-bit speed(A) 249k 4 096

Saber
16-bit speed(A) 391k 5 120
16-bit stack(D) 631k 3 200(K) or 2 432(E)
32-bit speed(A) 458k 5 120

FireSaber
16-bit speed(A) 644k 6 144
16-bit stack(D) 1 123k 3 712(K) or 2 560(E)
32-bit speed(A) 724k 6 144

M4

LightSaber
32-bit speed(A) 68k 4 096
hybrid stack(D) 130k 2 688(K) or 2 304(E)

Saber
32-bit speed(A) 136k 5 120
hybrid stack(D) 293k 3 200(K) or 2 432(E)

FireSaber
32-bit speed(A) 225k 6 144
hybrid stack(D) 522k 3 712(K) or 2 560(E)

Table 9: Cycle counts for speed- and stack-optimized implementations of InnerProd on
the Cortex-M3 and Cortex-M4.

Level Implementation Cycles Bytes
Dec Enc

M3

LightSaber
16-bit speed(A) 116k 83k 3 072
16-bit stack(D) 140k – 2 048
32-bit speed(A) 155k 93k 3 072

Saber
16-bit speed(A) 164k 114k 3 072
16-bit stack(D) 210k – 2 048
32-bit speed(A) 215k 122k 3 072

FireSaber
16-bit speed(A) 211k 144k 3 072
16-bit stack(D) 281k – 2 048
32-bit speed(A) 274k 150k 3 072

M4

LightSaber
32-bit speed(A) 40k 28k 3 072
hybrid stack(D) 65k – 2 048

Saber
32-bit speed(A) 57k 39k 3 072
hybrid stack(D) 98k – 2 048

FireSaber
32-bit speed(A) 74k 51k 3 072
hybrid stack(D) 130k – 2 048
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C Memory layout for Multi-moduli NTTs

Algorithm 4 16-bit (big, big) polynomial multiplication(s) requiring 3 074 bytes of
memory.

Declare arrays
{

uint32_t buff1_32[256], buff2_32[256]
uint16_t buff1_16[256], buff2_16[256]

1:

{
buff1_32[0-255] = NTT64:ωp0:128:ω2

p0:128
(src1[0-255])

buff1_16[0-255] = NTT64:ωp1:128:ω2
p1:128

(src1[0-255])

2:

{
buff2_32[0-255] = NTT64:ωp0:128:ω2

p0:128
(src2[0-255])

buff2_16[0-255] = NTT64:ωp1:128:ω2
p1:128

(src2[0-255])

3:

{
buff1_32[0-255] = base_mul64:4:ωp0:128(buff1_32[0-255], buff2_32[0-255])
buff1_16[0-255] = base_mul64:4:ωp1:128(buff1_16[0-255], buff2_16[0-255])

4:

{
buff1_32[0-255] = NTT−1

64:ωp0:128:ω2
p0:128

(buff1_32[0-255])
buff1_16[0-255] = NTT−1

64:ωp1:128:ω2
p1:128

(buff1_16[0-255])
5: des[0-255] = CRT(buff1_32[0-255], buff1_16[0-255]) mod q

Algorithm 5 16-bit (big, small) polynomial multiplication(s) requiring 1 536 bytes of
memory.
Declare arrays uint16_t buff1_16[256], buff2_16[256], buff3_16[256]

Declare pointers
{

uint32_t ∗buff1_32 = (uint32_t∗)buff1_16
uint32_t ∗buff2_32 = (uint32_t∗)buff1_16

1: buff1_32[0-255] = NTT64:ωp0p1:128:ω2
p0p1:128

(src1[0-255])
2: buff3_16[0-255] = buff1_32[0-255] mod p1
3: buff1_16[0-255] = buff1_32[0-255] mod p0
4: buff2_16[0-255] = NTT64:ωp1:128:ω2

p1:128
(src2[0-255])

5: buff3_16[0-255] = base_mul64:4:ωp1:128(buff3_16[0-255], buff2_16[0-255])
6: buff2_16[0-255] = NTT64:ωp0:128:ω2

p0:128
(src2[0-255])

7: buff2_16[0-255] = base_mul64:4:ωp0:128(buff1_16[0-255], buff2_16[0-255])
8: buff1_32[0-255] = CRT(buff2_16[0-255], buff3_16[0-255])
9: des[0-255] = NTT−1

64:ωp0p1:128:ω2
p0p1:128

(buff1_32[0-255]) mod q
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D Implementation of butterflies

Algorithm 6 CT_32 [ACC+21, GKS21].
Symbol: R = 232

Constants: Q, ω′ = ωR mod ±Q, Qprime = −Q−1 mod ±R
Input: c0 = a0, c1 = a1
Output: c0 = a0 + ωa1, c1 = a0 − ωa1

1: smull tmp, c1, c1, ω′

2: mul tmp2, tmp, Qprime
3: smlal tmp, c1, tmp2, Q
4: . c1 = mMul(a1, ω′)
5: add c0, c0, c1
6: sub c1, c0, c1, lsl #1

Algorithm 7 CT_2x16_SIMD [ABCG20].
Symbol: R = 216

Constants: QQprime = Q|| − Q−1 mod ±R, ω′ = ωR mod ±Q
Input: c0 = a1||a0, c1 = a3||a2
Output: c0 = (a1 + ωa3)||(a0 + ωa2), c1 = (a1 − ωa3)||(a0 − ωa2)

1: smulbb tmp, c1, ω′

2: smultb c1, c1, ω′

3: smulbb tmp2, tmp, QQprime
4: smlabt tmp, tmp2, QQprime, tmp
5: smulbb tmp2, c1, QQprime
6: smlabt c1, tmp2, QQprime, c1
7: pkhtb tmp, c1, tmp, asr #16
8: . tmp = mMul(a3, ω′) || mMul(a2, ω′)
9: ssub16 c1, c0, tmp
10: sadd16 c0, c0, tmp

Algorithm 8 CT_32_schoolbook [GKS21]
Symbol: R = 232

Constants:
{

216Q_h + Q_l = Q
216w′h + w′l = ω′ = ωR mod ±Q

, Qprime = −Q−1 mod ±R

Input: c0 = a0, 216c1_h + c1_l = a1
Output: c0 = a0 + ωa1, c1_l = a0 − ωa1

1: smull_const tmp, tmp2, c1_l, c1_h, ω′l, ω′h
2: mul c1_h, tmp, Qprime
3: ubfx c1_l, c1_h, #0, #16
4: sbfx c1_h, c1_h, #16, #16
5: smlal_const tmp, tmp2, c1_l, c1_h, Q_l, Q_h, tmp3
6: . tmp2 = mMul(a1, ω′)
7: sub c1_l, c0, tmp2
8: add c0, c0, tmp2
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Algorithm 9 CT_16 [GKS21].
Symbol: R = 216

Constants: Q, ω′ = ωR mod ±Q, Qprime = −Q−1 mod ±R
Input: c0 = a0, c1 = a1
Output: c0 = a0 + ωa1, c1 = a0 − ωa1

1: mul c1, c1, ω′

2: mul tmp, c1, Qprime
3: sxth tmp, tmp
4: mla c1, tmp, Q, c1
5: . c1 = mMul(a1, ω′)
6: add c0, c0, c1, asr #16
7: sub c1, c0, c1, asr #15

Algorithm 10 Schoolbook long multipli-
cation smull_const [GKS21]

Input:
{

216a_h + a_l = a
216b_h + b_l = b

Output: 232c_h + c_l = a · b

1: mul c_l, a_l, b_l
2: mul c_h, a_h, b_h
3: mul a_h, a_h, b_l
4: mla a_h, a_l, b_h, a_h
5: adds c_l, c_l, a_h, lsl #16
6: adc c_h, c_h, a_h, asr #16

Algorithm 11 Schoolbook long multipli-
cation smlal_const [GKS21]

Input:

 216a_h + a_l = a
216b_h + b_l = b
232c_h + c_l = c

Output: 232c_h + c_l = c+ a · b

1: mul tmp, a_l, b_l
2: adds c_l, c_l, tmp
3: mul tmp, a_h, b_h
4: adc c_h, c_h, tmp
5: mul tmp, a_h, b_l
6: mla tmp, a_l, b_h, tmp
7: adds c_l, c_l, tmp, lsl #16
8: adc c_h, c_h, tmp, asr #16

Algorithm 12 GS_32_schoolbook [GKS21]
Symbol: R = 232

Constants:
{

216Q_h + Q_l = Q
216w′h + w′l = ω′ = ωR mod ±Q

, Qprime = −Q−1 mod ±R

Input: c0 = a0, c1 = a1
Output: c0 = a0 + a1, c1 = ω(a0 − a1)

1: sub tmp, c0, c1
2: add c0, c0, c1
3: ubfx tmp2, tmp, #0, #16
4: asr tmp, tmp, #16
5: smull_const tmp1, c1, tmp2, tmp, ω′l, ω′h
6: mul tmp, tmp1, Qprime
7: ubfx tmp2, tmp, #0, #16
8: sbfx tmp, tmp, #16, #16
9: smlal_const tmp1, c1, tmp2, tmp, Q_l, Q_h, tmp3
10: . c1 = mMul((a0 − a1), ω′)



Abdulrahman, Chen, Chen, Hwang, Kannwischer, Yang 31

E CT butterflies for NTT and iNTT
NTT with CT butterflies for radix-2 cyclic convolution. Let 2k|0(m), and ω be a
principal 2k-th root of unity.

The FFT trick with CT butterflies for NTT2k:1:ω over x2k−1 is applying the isomorphism

Zm[x]/
〈
x2k

− 1
〉
∼= Zm[x]/

〈
x2k−1

− 1
〉
× Zm[x]/

〈
x2k−1

− ω2k−1
〉

∼= Zm[x]/
〈
x2k−2

− 1
〉
× Zm[x]/

〈
x2k−2

− ω2k−1
〉

× Zm[x]/
〈
x2k−2

− ω2k−2
〉
× Zm[x]/

〈
x2k−2

− ω2k−1+2k−2
〉

to the polynomial a(x) =
2k−1

Σ
i=0

aix
i recursively.

Explicitly, a(x) is mapped to


2k−1

Σ
i=0

(ai + ai+2k−1)xi = a(x) mod (x2k−1 − 1)
2k−1

Σ
i=0

(ai − ai+2k−1)xi = a(x) mod (x2k−1 − ω2k−1)

and then to


a(x) mod (x2k−2 − 1)
a(x) mod (x2k−2 − ω2k−1)
a(x) mod (x2k−2 − ω2k−2)
a(x) mod (x2k−2 − ω2k−1+2k−2)

. If we apply the isomorphism all the way

down to linear polynomials, we see that the result is the bit-reversal of a(1),a(ω), . . . ,a(ω2k−1).

iNTT with CT butterflies for radix-2 cyclic convolution. To implement NTT−1
2k:1:ω with

CT butterflies, we only need to operate on the bit-reversed polynomial with inverted ω.
This approach is called ’decimation in time’ in the literature. Essentially, the isomorphism
is the same as NTT2k:1:ω−1 . We suggest interested readers to refer to [Ber] for writing down
the isomorphism. In this section, we only write down the indices explicitly as follows.

Consider re-writing
(
b

(0)
bitrevk(i)

)
0≤i<2k:(1)

=
(
bbitrevk(i)

)
0≤i<2k:(1) as(

b
(0)
bitrevk−1(i), b

(0)
bitrevk−1(i)+1

)
0≤i<2k−1:(1)

,

then NTT−1
2k:1:ω with CT butterflies is applying the computation(

b
(0)
bitrevk−1(i), b

(0)
bitrevk−1(i)+1

)
0≤i<2k−1:(1)

7→
((
b

(0)
bitrevk−1(i) + b

(0)
bitrevk−1(i)+1

)
+
(
b

(0)
bitrevk−1(i) − b

(0)
bitrevk−1(i)+1

)
x
)

0≤i<2k−1:(1,ω−2k−1)

:= (
b

(1)
bitrevk−1(i)

)
0≤i<2k−1:(1,ω−2k−1)

recursively.
In general, at layer k − l, the map below is computed,(

b
(k−l)
bitrevl(i)

)
0≤i<2l:

(
1,ωbitrevk−l(1),...,ωbitrevk−l(2k−l−1)

)
7→

(
b

(k−l+1)
bitrevl−1(i)

)
0≤i<2l−1:

(
1,ωbitrevk−l+1(1),...,ωbitrevk−l+1(2k−l+1−1)

).
It is easily seen that if the input is the bit-reversal of a(1), a(ω), . . . , a(ωn−1), the

result is 2ka(x) . Finally, we multiply each coefficient of the result by 1
2k to derive a(x).
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As a side note, we also give an improved implementation for radix-2 cyclic NTT in
Appendix F. This is only a slight improvement, but it shows that even for the most
commonly known NTT, there are still optimizations left.

NTT and iNTT with CT butterflies for convolution in general. Suppose ζ is invertible,
and define NTT2k:ζ:ω as in Equation 5, with the inverse NTT−1

2k:ζ:ω.
We show here how to implement the map with CT butterflies.
The easiest way to implement NTT2k:ζ:ω with CT butterflies is to twist Zm[x]/

〈
x2k − ζ2k

〉
to Zm[x]/

〈
x2k − 1

〉
and proceed with CT butterflies for NTT2k:1:ω over x2k − 1. Readers

can verify that the output is the bit-reversal of a(ζ), a(ζω), . . . , a(ζω2k−1). Immedi-
ately, we also see that NTT−1

2k:ζ:ω can be implemented by first computing NTT−1
2k:1:ω as in

Zm[x]/
〈
x2k − 1

〉
and then twisting Zm[x]/

〈
x2k − 1

〉
to Zm[x]/

〈
x2k − ζ2k

〉
. If ζ 6= 1, at

the end of NTT−1
2k:1:ω, we can merge multiplication by 1

2k with twisting Zm[x]/
〈
x2k − 1

〉
to

Zm[x]/
〈
x2k − ζ2k

〉
.

For implementing NTT2k:ζ:ω, we can merge the twist with CT butterflies. Applying the
isomorphisms

Zm[x]/
〈
x2k

− ζ2k
〉
∼= Zm[x]/

〈
x2k−1

− ζ2k−1
〉
× Zm[x]/

〈
x2k−1

− ζ2k−1
ω2k−1

〉
∼= Zm[x]/

〈
x2k−2

− ζ2k−2
〉
× Zm[x]/

〈
x2k−2

− ζ2k−2
ω2k−1

〉
× Zm[x]/

〈
x2k−2

− ζ2k−2
ω2k−2

〉
× Zm[x]/

〈
x2k−2

− ζ2k−2
ω2k−1+2k−2

〉


a(x) mod (x2k−2 − ζ2k−2)
a(x) mod (x2k−2 − ζ2k−2

ω2k−1)
a(x) mod (x2k−2 − ζ2k−2

ω2k−2)
a(x) mod (x2k−2 − ζ2k−2

ω2k−1+2k−2)

. It is now clear that recursively applying the

isomorphisms outputs the bit-reversal of a(ζ), a(ζω), . . . , a(ζω2k−1).
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F Faster CT-GS butterflies for cyclic NTT/iNTT
In this section we show a faster butterfly implementation for NTT/iNTT over x8 − 1. We
coin the term CT-GS butterfly for the implementation since it can be derived from either
CT or GS butterfly. We first illustrate the idea with CT butterflies. Let’s say implementing
NTT of (a0, . . . , a7) over x8 − 1 with CT butterflies is to derive (a′′′0 , . . . , a

′′′
7 ) as follows:

1. (a0, . . . , a7) 7→ (a′0, . . . , a′7) where

(a′0, . . . , a′3) = (a0, . . . , a3) + (a4, . . . , a7)
(a′4, . . . , a′7) = (a0, . . . , a3)− (a4, . . . , a7)

2. (a′0, . . . , a′7) 7→ (a′′0 , . . . , a′′7) where

(a′′0 , a′′1) = (a′0, a′1) + (a′2, a′3)
(a′′2 , a′′3) = (a′0, a′1)− (a′2, a′3)
(a′′4 , a′′5) = (a′4, a′5) + ω4(a′6, a′7)
(a′′6 , a′′7) = (a′4, a′5)− ω4(a′6, a′7)

3. (a′′0 , . . . , a′′7) 7→ (a′′′0 , . . . , a
′′′
7 ) where

a′′′0 = a′′0 + a′′1
a′′′1 = a′′0 − a′′1
a′′′2 = a′′2 + ω4a

′′
3

a′′′3 = a′′2 − ω4a
′′
3

a′′′4 = a′′4 + ω8a
′′
5

a′′′5 = a′′4 − ω8a
′′
5

a′′′6 = a′′6 + ω3
8a
′′
7

a′′′7 = a′′6 − ω3
8a
′′
7

The computation can be re-written as (a0, a2, a4, a6) 7→ (a′′0 , ω4a
′′
2 , ω8a

′′
4 , ω

3
8a
′′
6) and

(a1, a3, a5, a7) 7→ (a′′1 , ω4a
′′
3 , ω8a

′′
5 , ω

3
8a
′′
7), followed by

addSub4
(
(a′′0 , ω4a

′′
2 , ω8a

′′
4 , ω

3
8a
′′
6), (a′′1 , ω4a

′′
3 , ω8a

′′
5 , ω

3
8a
′′
7)
)

where addSub4 is component-wise add-sub giving a pair as result.
We present here a faster computation for (a1, a3, a5, a7) 7→ (a′′1 , ω4a

′′
3 , ω8a

′′
5 , ω

3
8a
′′
7) as

follows:

1. (a1, a3, a5, a7) 7→ (a′1, a′3, a′5, a′7)

2. (a′1, a′3) 7→ (a′′1 , a′′3)

3. a′′3 7→ ω4a
′′
3

4. (a′5, a′7) 7→ (ω8a
′
5 + ω3

8a
′
7, ω

3
8a
′
5 + ω8a

′
7) where

(ω8a
′
5 + ω3

8a
′
7, ω

3
8a
′
5 + ω8a

′
7)

=
(
ω8(a′5 + ω2

8a
′
7), ω3

8(a′5 + ω6
8a
′
7)
)

=
(
ω8(a′5 + ω4a

′
7), ω3

8(a′5 + ω3
4a
′
7)
)

=
(
ω8(a′5 + ω4a

′
7), ω3

8(a′5 − ω4a
′
7)
)

=
(
ω8a

′′
5 , ω

3
8a
′′
7
)

Therefore, we can compute with 2 smulls and 2 smlals for the 64-bit value of (ω8a
′
5 +

ω3
8a
′
7, ω

3
8a
′
5 + ω8a

′
7) and then reduce them to 32-bit. To sum up, we are replacing 3 smulls

+ 3 Montgomery reductions + 1 add-sub with 2 smulls + 2 smlals + 2 Montgomery
reductions and save 3 cycles.

To see how to derive the same shape of computation from GS butterflies, let’s say
implementing NTT of (a0, . . . , a7) over x8− 1 with GS butterflies is to derive (a′′′0 , . . . , a

′′′
7 )

as follows:
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1. (a0, . . . , a7) 7→ (a′0, . . . , a′7) where

a′0 = a0 + a4
a′1 = a1 + a5
a′2 = a2 + a6
a′3 = a3 + a7
a′4 = a0 − a4
a′5 = (a1 − a5)ω8
a′6 = (a2 − a6)ω4
a′7 = (a3 − a7)ω3

8

2. (a′0, . . . , a′7) 7→ (a′′0 , . . . , a′′7) where

(a′′0 , a′′4) = (a′0, a′4) + (a′2, a′6)
(a′′1 , a′′5) = ((a′1, a′5) + (a′3, a′7))ω4
(a′′2 , a′′6) = (a′0, a′4)− (a′2, a′6)
(a′′3 , a′′7) = ((a′1, a′5)− (a′3, a′7))ω4

3. (a′′0 , . . . , a′′7) 7→ (a′′′0 , . . . , a
′′′
7 ) where

(a′′′0 , a
′′′
2 , a

′′′
4 , a

′′′
6 ) = (a′′0 , a′′2 , a′′4 , a′′6) + (a′′1 , a′′3 , a′′5 , a′′7)

(a′′′1 , a
′′′
3 , a

′′′
5 , a

′′′
7 ) = (a′′0 , a′′2 , a′′4 , a′′6)− (a′′1 , a′′3 , a′′5 , a′′7)

We can re-write the computation (a0, . . . , a7) 7→ (a′′0 , . . . , a′′7) as{
(a0, a2, a4, a6) 7→ (a′0, a′2, a′4, a′6)
(a1, a3, a5, a7) 7→ (a′1, a′3, a1 − a5, a3 − a7)

followed by 
(a′0, a′2, a′4, a′6) 7→ (a′′0 , a′′2 , a′′4 , a′′6)
(a′1, a′3) 7→ (a′′1 , a′′3)
(a1 − a5, a3 − a7) 7→ (a′′5 , a′′7)

Now if we compute (a1 − a5, a3 − a7) 7→ (a′′5 , a′′7) as

(a1 − a5, a3 − a7) 7→
(
(a1 − a5)ω8 + (a3 − a7)ω3

8 , (a1 − a5)ω3
8 + (a3 − a7)ω8

)
=

(
(a1 − a5)ω8 + (a3 − a7)ω3

8 , (a1 − a5)ω3
8 − (a3 − a7)ω5

8
)

=
(
(a1 − a5)ω8 + (a3 − a7)ω3

8 ,
(
(a1 − a5)ω8 − (a3 − a7)ω3

8
)
ω2

8
)

=
(
(a1 − a5)ω8 + (a3 − a7)ω3

8 ,
(
(a1 − a5)ω8 − (a3 − a7)ω3

8
)
ω4
)

= (a′′5 , a′′7)

then we derive the same shape of computation.
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(a) Modified butterflies for NTT over x8 − 1.
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Figure 6: Modified butterflies.
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G C code for development
We write some C code to facilitate the development of assembly code. The C code is not
for speed and security. Neither of the requirements are matched. The C code is to relieve
programmers from starting from scratch with C when moving to a different architecture.

The most important feature supported by the C code is:
customizable merging of NTTs supporting (incomplete)radix-2 splits.
The C code consists of two parts:

1. Customizable strategy for generating twiddle factors.

2. Customizable and separable NTT call(s) in C to access memory exactly as what is
planned to be later implemented in assembly.

Some differences from assembly implementation are that:

• The C code is using % for modular reduction, so there is no scaling as there are for
Montgomery multiplication.

• The range of each computation in C is completely in [− Q
2 ,

Q
2 ). So don’t use the code

for range analysis.

This section is organized as follows: Section G.1 provides a snapshot of the C code with
the C structure struct compress_profile. Section G.2 introduces how twiddle factors
are generated. Section G.3 illustrates the NTT in C accessing memory exactly as what is
planned to be later implemented in assembly.

G.1 struct compress_profile and NTT_params.h

The central idea of the C code relies on the structure providing a snapshot on how layers
are merged, in particular, how many layers are merged at a certain point.

Consider the declaration of the C structure:

struct compress_profile{
int compressed_layers;
int merged_layers [16];

};

compressed_layers tells us how many layers there are after the merge. merged_layers
tells us at each merged layers merged_layers[0-(compressed_layers - 1)], how many
layers there are originally. To provide a more concrete pattern of NTT/iNTT, we also
reserve the following symbols:

• ARRAY_N

• NTT_N dividing ARRAY_N

• LOGNTT_N

Once a struct compress_profile is declare the reserved symbols are defined, we now
have the blueprint of our NTT implementation: We compute length-NTT_N on a length-
ARRAY_N array. The LOGNTT_N layers of splitting is compressed into compressed_layers
layers. After the compression, for each i = 0, 1, . . . , compressed_layers− 1, the i-th layer
consists of merged_layers[i] layers of the splits.

To define the actual arithmetic for NTTs, one need to provide a header file NTT_params.h.
The required fields for the header file vary from targeted implementations. In the most
simplest form, one can produce NTT implementation in C by providing:
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• Modulus Q coprime to NTT_N

• invNQ = NTT_N−1 mod ±Q

• For cyclic NTT:

– Principal NTT_N-th root of unity omegaQ

– invomegaQ = omegaQ−1 mod ±Q

• For negacyclic NTT:

– Principal 2NTT_N-th root of unity omegaQ

– invomegaQ = omegaQ−1 mod ±Q

The produced C code for NTT can serve as the foundation for further assembly optimiza-
tions where individual merged layers can be replaced one at a time in any order.

To provide a full support of NTTs in assembly, one need to specify the size R for
Montgomery reduction. The minimal requirement for NTT_params.h is therefore as follows:

• Modulus Q coprime to NTT_N and coprime to R

• invNQ = NTT_N−1 mod ±Q

• Auxiliary factor RmodQ = R mod ±Q for multiplication by 1 with Montgomery multi-
plication

• Montgomery factor −Q−1 mod ±R(or Q−1 mod ±R if subtraction is used in Mont-
gomery multiplication)

• For cyclic NTT:

– Principal NTT_N-th root of unity omegaQ

– invomegaQ = omegaQ−1 mod ±Q

• For negacyclic NTT:

– Principal 2NTT_N-th root of unity omegaQ

– invomegaQ = omegaQ−1 mod ±Q

G.2 gen_table.h

Now we go into the details on generating tables of twiddle factors. If one’s purpose is to
implement NTT in assembly with a single shot, then this section suffices. However, we
strongly suggest readers to at least perform some calls of NTTs in C to see if the tables are
generated as desired. We will elaborate the C implementation of NTT in the next section.

First, we generate twiddle factors for cyclic NTTs.
gen_CT_table generates a table of twiddle factors scaled by scale without compression

and is an auxiliary function for gen_streamlined_CT_table.
gen_streamlined_CT_table generates a table of twiddle factors scaled by scale with

compression implied by _profile where pad should always be 0 for C implementation
and is occasionally 1 for assembly implementation with SIMD instructions.
void gen_CT_table \

(int *des , int scale , int _omega , int _Q);
void gen_streamlined_CT_table \

(int *des , int scale , int _omega , int _Q, \
struct compress_profile *_profile , \
int pad);
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Now we generate twiddle factors for cyclic iNTTs.
gen_inv_CT_table generates a table of twiddle factors scaled by scale without com-

pression and is an auxiliary function for gen_streamlined_inv_CT_table.
gen_streamlined_inv_CT_table generates a table of twiddle factors scaled by scale

with compression implied by _profile where pad should always be 0 for C implementation
and is occasionally 1 for assembly implementation with SIMD instructions.

void gen_inv_CT_table \
(int *des , int scale , int _omega , int _Q);

void gen_streamlined_inv_CT_table \
(int *des , int scale , int _omega , int _Q, \
struct compress_profile *_profile , \
int pad);

For polynomial multiplication in Saber, we need negacyclic NTT/iNTT. For negacyclic
NTT and iNTT each of them can be implemented in at least two ways: NTT can be
implemented directly or as a cyclic NTT following a twist, and iNTT can be implemented
directly or as a cyclic iNTT preceding a twist. We first describe how to generate twiddle
factors for twisting.

gen_twist_table generates a table of twiddle factors for twisting xNTT_N− _omegaNTT_N

to yNTT_N − 1 and by replacing _omega with _omega−1 it generates a table of twiddle
factors for twisting yNTT_N − 1 to xNTT_N − _omegaNTT_N. In general, gen_twist_table
generates a table of twiddle factors for twisting xNTT_N − ζNTT_N to yNTT_N − ξNTT_N by setting
_omega = ζξ−1.

Now we describe how to generate tables of twiddle factors for negacyclic NTTs and
iNTTs.

gen_CT_negacyclic_table generates a table of twiddle factors scaled by scale without
compression and is an auxiliary function for gen_streamlined_CT_negacyclic_table.

gen_streamlined_CT_negacyclic_table generates a table of twiddle factors scaled
by scale with compression implied by _profile for negacyclic NTT.

gen_streamlined_inv_CT_negacyclic_table generates a table of twiddle factors
with compression implied by _profile for negacyclic iNTT where pad is occasionally 1
for assembly implementation with SIMD instructions; the twiddle factors for butterflies
are scaled by scale1 and the ones for twisting are scaled by scale2.

void gen_twist_table \
(int *des , int scale , int _omega , int _Q);

void gen_CT_negacyclic_table \
(int *des , int scale , int _omega , int _Q);

void gen_streamlined_CT_negacyclic_table \
(int *des , int scale , int _omega , int _Q, \
struct compress_profile *_profile , \
int pad);

void gen_streamlined_inv_CT_negacyclic_table \
(int *des , \
int scale1 , int _omega , \
int scale2 , int twist_omega , int _Q , \
struct compress_profile *_profile , \
int pad);

The last thing to deal with is the generation of twiddle factors for base_mul.
gen_mul_table generates the bit-reversal of _omega0, _omega1, . . . , _omega

NTT_N
2 −1 and

scale them by scale.
gen_all_mul_table generates the bit-reversal of _omega0, _omega1, . . . , _omegaNTT_N−1

and scale them by scale.
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void gen_mul_table \
(int *des , int scale , int _omega , int _Q);

void gen_all_mul_table \
(int *des , int scale , int _omega , int _Q);

G.3 ntt_c.h

We provide C implementation for NTTs that are planned to be later implemented in
assembly.

CT_butterfly computes the CT butterfly of the pair (src[indx_a], src[indx_b])
and the constant twiddle. It is also a building block for _m_layer_CT_butterfly and
_m_layer_inv_CT_butterfly.

void CT_butterfly \
(int *src , \
int indx_a , int indx_b , \
int twiddle , int _Q);

_m_layer_CT_butterfly computes an layers-layer-CT-butterfly defined on the 2layers

entries src[0 * step], src[1 * step], . . . , src[(1 « layers) * step] and it is used
in compressed_CT_NTT for computing merged CT butterflies.

_m_layer_inv_CT_butterfly computes an inverse of layers-layer-CT-butterfly de-
fined on the 2layers entries src[0 * step], src[1 * step], . . . , src[(1 « layers) * step]
and it is used in compressed_CT_inv_NTT for computing merged CT butterflies.

void _m_layer_CT_butterfly \
(int *src , \
int layers , int step , \
int *_root_table , int _Q);

void _m_layer_inv_CT_butterfly \
(int *src , \
int layers , int step , \
int *_root_table , int _Q);

compressed_CT_NTT computes the customized NTT implied by _profile. The function
will compute CT butterflies with _m_layer_CT_butterfly from layer start_level to layer
end_level where 0 ≤ start_level ≤ end_level < _profile->compressed_layers.

compressed_inv_CT_NTT computes the customized NTT implied by _profile. The
function will compute CT butterflies with _m_layer_inv_CT_butterfly from layer start_level
to layer end_level where 0 ≤ start_level ≤ end_level < _profile->compressed_layers.

void compressed_CT_NTT \
(int *src , \
int start_level , int end_level , \
int *_root_table , int _Q , \
struct compress_profile *_profile );

void compressed_inv_CT_NTT \
(int *src , \
int start_level , int end_level , \
int *_root_table , int _Q , \
struct compress_profile *_profile );
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