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Abstract. Known constructions of (efficient) blind signatures either rely
on non-standard hardness assumptions or require parameters that grow
linearly with the number of concurrently issued signatures. This holds
true even in the random oracle model.
Katz, Loss and Rosenberg (ASIACRYPT 2021) presented a generic con-
struction that boosts a scheme supporting logarithmically many con-
current signing sessions to a scheme that supports polynomially many.
Unfortunately, this construction has two drawbacks: 1) the communica-
tion between the signer and the user still grows linearly with the number
of issued signatures 2) their schemes inherit a very loose security bound
from the underlying scheme and, as a result, require impractical parameter
sizes.
In this paper, we eliminate these two drawbacks by proposing two highly
practical blind signature schemes from the CDH and RSA assumptions.
Our resulting schemes have communication which grows only logarithmi-
cally in the number of issued signatures. In addition, we introduce new
techniques to mitigate the large security loss in the construction of Katz
et al. Overall, we obtain the following parameter sizes (providing 128 bits
of security):
– Our main scheme Pika is based on the BLS blind signature scheme
(Boldyreva, PKC 2003) and is secure under the CDH assumption
over a standard-sized group. Signatures are of size roughly 3 KB and
communication per signature is roughly 150 KB.

– Our RSA-based scheme is based on the Okamoto-Guillou-Quisquater
blind signature scheme (Okamoto, CRYPTO 1992). It has signatures
and communication of roughly 9 KB and 8 KB, respectively.

Keywords. Blind Signatures, Standard Assumptions, Random Oracle
Model, Cut-and-Choose.

1 Introduction

In 1982, David Chaum introduced blind signature schemes in the context of
electronic cash [9]. A blind signature scheme is a cryptographic primitive in
which a signer can interactively sign a message held by a user. Informally, a blind
signature scheme must satisfy two security requirements [24,34]. Blindness: the
signer should not be able to see what message is being signed. Unforgeability: The
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user should only be able to obtain valid signatures by interacting with the signer.
Classical applications of blind signature schemes include e-cash [9,30], anonymous
credentials [6,7] and e-voting [19]. Recently, blind signatures have also been used
to add privacy features to blockchain-based systems [23]. Despite this variety
of promising applications, the current state-of-the art is unsatisfactory. This is
because even in the random oracle model, schemes with reasonable efficiency
are either based on non-standard assumptions [4,2,12] or have parameters that
grow linearly in the number of concurrent signing sessions [34,21,3,25]. The main
goal of this work is to construct blind signature schemes from well-established
assumptions with concurrent security and practically efficient parameter sizes.

State-of-the-Art. Blind signature schemes can be built generically from any
secure signature scheme using secure two-party computation [24] or commitment
schemes and zero-knowledge proofs [11]. The drawback of the construction in
[24] is that the scheme is that signatures must be issued sequentially. However,
typically one aims for the stronger notion of concurrent security. While [11]
indeed achieves the latter, neither of these generic constructions are known to be
efficiently instantiable. While it is tempting to instantiate these schemes with
efficient signature schemes in the random oracle model, the security implications
of such an instantiation are unclear. This is because such an instantiation would
imply the use of the random oracle as a circuit, which constitutes a non-standard
use of the random oracle model. We refer to the recent work of [1] which discusses
these issues in more detail.

In the standard model, a variety of blind signature schemes have been pro-
posed. As already discussed, these schemes are either inefficient as they rely on
complexity leveraging [15] or rely on strong q-type or non-interactive assumptions
[29,16,12,17].

Unfortunately, even in the random oracle model, the situation does not
improve much. While there are simple constructions [4,2,34,21,22], they either
require similar assumptions as their standard model counterparts [4,2] or support
only a very small number of signatures per public key [34,21,22,3].

As a first step to overcome these limitations, Katz et al. [25] showed how to
use a cut-and-choose technique to boost the security of these blind signature
schemes in the random oracle model. Their approach is based on an early work by
Pointcheval [32]. The resulting schemes support polynomially many concurrent
signature interactions and are based on standard assumptions. However, the
communication between the signer and the user still grows linearly with the
number of signature interactions, which renders the scheme impractical.

Our Goal. In this work, we advance the state of the art by giving the first blind
signature schemes in the random oracle model that do not suffer from any of the
above drawbacks. Our main research question can be summarized as follows:

Are there practical and concurrently secure blind signatures from well-established
hardness assumptions which support polynomially many signatures?
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1.1 Our Contribution

We answer this question in the affirmative by providing two new blind signatures
schemes from the RSA and CDH assumptions. Both of our schemes follow a
common high-level template which we will outline in the next section. In a nutshell,
we start with the boosting transform [25] and eliminate its main drawback, namely
the linearly growing communication complexity. Instead, the communication size
of our schemes only grows logarithmically with the number of interactions. It
should be emphasized that this dependency is very weak, as the coefficient of
the logarithmic term only depends on statistical security parameters and not on
the computational hardness assumptions. For each of these schemes, we give a
concrete security analysis and show how to efficiently achieve a security level of
128 bit. We summarize our results below.

– Our scheme Pika from CDH is based on the BLS blind signature scheme
[5,4]. Pika supports 240 signing interactions with signatures of size 3 KB and
communication complexity roughly 150 KB. It can be run over a standard
elliptic curve group, e.g. P-384 [27].

– Our scheme from RSA is based on the linear blind signature scheme from
the OGQ function [28,33,21]. We present parameters that allow for 232

signing interactions while having signatures of size 9 KB and communication
complexity roughly 8 KB.

Example parameters of our schemes can be found in Table 1. For an explanation,
see Sections 3.3 and 4.3 and Supplementary Material Section J.

Finally, we note that our high level template can easily be generalized to
schemes that can be obtained from linear function families [21].

Scheme Signatures |pk| |σ| a b Max
BSRSA 220 18.37 7.91 0.02 7.11 7.79
BSRSA 232 18.87 8.91 0.01 7.61 8.30

BSCDH 220 3.68 3.16 3.04 26.50 148.45
BSCDH 240 4.13 3.16 3.06 27.01 149.42

Table 1. Concrete efficiency of our schemes supporting a given number of signatures
and 128 bit security. Here, communication complexity is given as a · log(N) + b, where
N is the number of issued signatures so far. Column Max shows the communication
complexity for the maximum N . All sizes are in KiloBytes.

1.2 Technical Overview

We now give a summary of our techniques. To this end, let us recall the main
ideas of the boosting transform CCBS [25] as well as its drawbacks. We start
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with a linear blind signature scheme BS. For the purpose of this overview, it is
not important what exactly a linear blind signature scheme is, we only state its
properties of relevance, which are as follows:

1. The scheme satisfies one-more unforgeability (OMUF), as long as only a
logarithmic number of signatures are issued.

2. If a reduction knew the randomness ur and the message m that is input into
the user algorithm U and controls the random oracle, it could simulate the
signer algorithm without knowing the secret key (using HVZK and random
oracle programming).

3. The signature issuing protocol consists of three messages R, c, s, called the
commitment, challenge and response, respectively.

The Boosting Transform. Using these features, the high-level idea of the boosting
transform is to make the user commit to its random coins using a random oracle.
Later, the user has to open these commitments in cut-and-choose fashion.

In more detail, at the onset of the N -th interaction, the signer sends the
current value of the counter N to the user. Then, user and signer proceed proceed
as follows.

1. The user chooses N random strings urj , j ∈ [N ] and N random strings
ϕj , j ∈ [N ]. It prepares N commitments µj = H(m, ϕj), where H is a random
oracle and m is the message to be signed. It also prepares commitments
comj = H(urj , µj). Then it sends the commitments comj to the signer.

2. The user and the signer run N independent sessions of the underlying blind
signature scheme BS, where the user inputs µj , urj in the j-th session.

3. Before the signer sends the last message sj of the underlying scheme, it
chooses a cut-and-choose index J ∈ [N ] at random and asks the user to open
all commitments comj with j 6= J .

4. Once the signer knows the values µj and randomness urj , it runs the user
algorithm U to check if the user behaved honestly so far, at least for the
sessions j 6= J . If there is some session for which this check fails, the signer
aborts.

5. The signer sends only sJ to the user. That is, signer and user only complete
the J-th session. The final signature consists of a signature on µJ from the
underlying scheme BS as well as the randomness ϕJ which binds m to µJ .

We recall the high-level idea used in the OMUF proof of the boosting transform.
The idea is to prove a reduction from the security of CCBS to the security of
BS. The main challenge here is that the OMUF game for the underlying scheme
BS only allows for a logarithmic number of signing interactions. On the other
hand, the reduction has to simulate an arbitrary polynomial number of signing
interactions for the adversary. This is solved as follows. First, note that whenever
the adversary honestly commits to urj , µj for an j ∈ [N ], the reduction can
extract these values from the commitments comj by observing the random oracle
queries. Then, using the property 2 of the underlying scheme, it can later provide
the correct response sj . On the other hand, if the adversary in CCBS cheats
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(i.e., it malforms the commitment for the Jth session in the first step and is not
caught) then the reduction may not be able to extract such values for the cut and
choose index J . In this case, the reduction is not able to rely on programming
in order to provide the correct answer sJ . Instead, it has to rely on the signing
oracle of the underlying OMUF game for BS.

Fortunately the probability of such a (successful) cheat is at most 1/N in
the N -th signing session. Thus, the expected number of successful cheats in p
interactions is at most

p+1∑
N=1

1
N

< ln(p+ 1), (1)

which is logarithmic. Using the Chernoff bound, one can show that with over-
whelming probability, the number of successful cheats is reasonably close to this
expectation. Hence, the signing oracle in the underlying OMUF game of BS needs
to be invoked only a logarithmic number of times. This is the main insight of the
boosting transform.

Although the boosting transform exponentially increases the security of the
underlying blind signature scheme BS, this comes at a steep price in terms of
efficiency: the communication now grows linearly with the number of issued
signatures.
a) In the second message, the user sends N commitments comj .
b) In the third message, the signer sends N commitments Rj .
c) In the fourth message, the user sends N challenges cj .
d) In the sixth message, the user opens each of the N commitments comj .
This dependency on N in the communication complexity arguably renders CCBS
impractical. In addition, in the above reduction from the OMUF security of BS,
the number of signing queries to the underlying signing oracle behaves as ln(1/ε).
Here, ε is the advantage of the adversary in the OMUF game of CCBS. If ε is
small (say, 2−128), one has to pick very impractical parameter sizes for BS.

Puncturable Pseudorandom Functions to the Rescue. Our first objective is to
eliminate this linear dependency on N and improve it by an at most logarithmic
dependency.

In our first step we focus on d). Here, our idea is to a leverage a puncturable
pseudorandom function (PPRF)1 to generate the randomness urj , ϕj . Namely,
the user chooses a key k for a PPRF and generates (urj , ϕj) := Eval(k, j). In this
way, the user can open the commitments comj just by sending µj , j ∈ [N ] and
kJ , where kJ is a key punctured at position J . Of course, the linear dependency
still remains due to the values µj that have to be sent. Our solution here is to
replace the unstructured commitment µj = H(m, ϕj) with a more structured
commitment scheme Com, which can be (publicly) rerandomized. To be more
precise, we make use of a commitment scheme2 in which the randomness space
1 This PPRF can be instantiated in a statistically secure way by applying the GGM
construction [18] to a random oracle.

2 We show that such commitments can easily be constructed tightly based on standard
assumptions.
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forms a group and, given only µ and ϕ′, one can publicly transform µ :=
Com(m, ϕ) into Com(m, ϕ+ϕ′), . Now, the user first sends an initial commitment
µ0 := Com(m, ϕ0). Using the properties of the commitment scheme, the signer
can then efficiently compute N − 1 commitments from µ0 and the punctured key
kJ via µj = Com(m, ϕ0 + ϕj). Note that due to the property of the commitment
scheme, the signer can compute the commitments µj for j 6= J just from µ0.
Intuitively, this preserves blindness, as the punctured key kJ does not reveal
anything about the randomness urJ , ϕJ .

Next, we eliminate the linear dependency a). Here, we replace the commit-
ments comj = H(urj , µj) by a single Merkle tree commitment comr, committing
to all urj , µj at once. To be precise, we let the j-th leaf of the Merkle tree be a
salted hash of urj , µj . In this way, the user can later open the commitment by
providing the punctured key kJ and the salted hash of urJ , µJ . We can use the
same trick to address the dependency in c).

Finally, we tackle b). Our first idea is to make the signer send a random
seed seedR to the user. Then both can compute the commitments Rj via Rj =
H(seedR, j). In the boosting transform, the values Rj were computed as Rj =
F(rj), where F is a linear one-way hash function. The value rJ is needed to
compute the final response sJ . Unfortunately, the signer can not know rJ if we
define RJ to be the output of a random oracle. In the case of our RSA-based
scheme we can easily overcome this problem by giving the signer an appropriate
trapdoor for the function F as part of its secret key.

A Scheme from CDH. The rest of this overview focuses on our CDH-based scheme
Pika. Here, we start from the BLS blind signature scheme [4]. Although this
scheme does not fall into the class of linear blind signature schemes, we observe
that it has property 2. Interestingly, the scheme only has two rounds and so
linear dependency b) disappears.

We emphasize that the original BLS blind signature scheme is secure under a
one-more variant of the CDH assumption. Hence, we can not directly apply our
technique to this construction if we are aiming for a scheme based on the (plain)
CDH assumption.

To overcome this issue, we now introduce our second key idea. Recall that
in the security proof of the original boosting transform, one has to access the
signer oracle of the underlying scheme a logarithmical amount of times, due to
Equation (1). We observe that by letting the cut-and-choose parameter grow
slightly faster than before, the expected number of successful cheats can be
bounded by a constant. We can even force the expectation to be less than 1 by
scaling appropriately. However, his does not by itself resolve the issue that the
actual number of cheats can still deviate as much as ln(1/ε) from its expectation
(where again ε denotes the advantage of the adversary in the OMUF game). We
can, however, use the Chernoff bound to show that exceeding a single cheat
happens with some constant probability less than 1. (We remark that this could
also be shown using Markov’s inequality, but would lead to a far looser bound.)

Then, we play our next card, which is parallel repetition. Namely, we let the
signer and the user run K completely independent instances of our scheme so far,
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where each instance is relative to a separate secret key. We show that with high
probability, in one randomly chosen instance i∗ ∈ [K], there is no cheat at all.
Using this observation, we can now give a reduction from the key-only security
of the underlying blind signature scheme to finish our proof. We observe that for
the BLS blind signature scheme, key-only security can be shown directly from
CDH. In this fashion, we successfully avoided the use of a one-more assumption.
The key benefit of this construction is that the BLS scheme allows for efficient
aggregation of signatures (with distinct keys) on the same message. Hence, it
is easy to merge the resulting signatures from the K instances for a significant
efficiency improvement! An additional property of Pika is that it can be used
over a standard-sized group (e.g., P-384 [27]). This makes the scheme a much
more practical choice than its Schnorr-based counterparts.

Further Optimizations. In our RSA-based scheme, we reduce directly from the
security of the CCBS construction instantiated with the OGQ linear function
[28]. Thus, without further modification, our scheme inherits the impractical
parameter sizes incurred by the dependency on the term ln(1/ε). Recall that the
OGQ linear function maps from the domain Zλ × Z∗N to the range Z∗N . Here,
N is an RSA modulus and λ is a large prime number. Our observation is that
we can increase the size of λ independently of N so as to increase the number
of signatures supported by the base scheme BS. Compared to a naive increase
of parameter sizes, this leads to a very practical scheme. We introduce further
minor optimizations that help to keep the size of the puncturable PRFs output
(and hence communication) low.

Second, we note that the blindness proof in [25] has a quadratic security loss
in the number of signing sessions. This is because the reduction has to guess the
cut-and-choose index before reducing from the underlying scheme BS. For our
RSA-based scheme, this is not much of a problem due to statistical blindness
of the underlying scheme. However, when we apply the same proof strategy to
our scheme Pika with parallel repetition, this loss becomes exponential in K,
the number of parallel repetitions. Making up for this large loss would require
very large statistical security parameters and thus bad efficiency. Fortunately, we
can improve this significantly by making the signer commit to its cut-and-choose
indices in the first message of the interaction. In this way, the reduction can
extract these indices by observing the random oracle rather than guessing them.

1.3 Concurrent Work

In independent and concurrent work, Chairattana-Apirom and Lysyanskaya [8]
also provide an improved boosting construction. Using very similar ideas as ours,
they also improve the communication complexity from linear to logarithmic.
While their transform can be generically applied to any linear function family
in the sense of [21], it inherits the loose security bounds and poor parameter
sizes from [25]. To highlight the disparity, we computed the parameter sizes for
their version of the Okamoto-Schnorr [28] scheme whose security is based on the
discrete logarithm assumption. Our calculations show that in order to support
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240 signatures, their scheme requires a 7072 bit group and yields signatures of
size roughly 5.3 KB. It is apparent that these sizes do not favorably compare
with the sizes of our CDH-based scheme Pika. First, their signatures are roughly
78% larger than ours. Second, their scheme requires impractical group sizes for
which no standardized elliptic curve groups exist. By comparison, Pika can be
implemented over an optimized 384-bit group which leads to a computationally
far more efficient scheme.

We also computed parameter sizes for a Schnorr-based version of their blind
signature scheme. We remark that Katz et al. [25] also provide a parameter
estimate at the 128 bit security level, but this holds only for the specific choice
of 217 signing queries, 280 random oracle queries and advantages above 2−23. For
more general parameters and 240 signatures, this instantiation still yields signature
sizes of 3.5 KB and requires a 7072 bit group. In addition, the analysis requires
the AGM [13,14] and requires the (interactive) One-More Discrete Logarithm
assumption.

For a detailed explanation of our calculations, see Supplementary Material
Section I.

2 Preliminaries

Notation. The security parameter is denoted by n ∈ N and all algorithms get 1n
implicitly as input. For a finite set S, we write x←$S if x is sampled uniformly at
random from S. For a probability distribution D, we write x← D if x is sampled
according to D. Similarly, for a (probabilistic) algorithm A, we write y ← A(x),
if y is output from A on input x with uniformly sampled random coins. We write
y ∈ A(x) to indicate that y is a possible output of A(x). An algorithm is said to
be PPT if its running time can be bounded by a polynomial in its input size. We
say that a function f : N→ R+ is negligible in its input n, if f ∈ n−ω(1). For a
security experiment G, we write G⇒ b to indicate that G outputs b. We denote
the first K natural numbers by [K] := {1, . . . ,K}, Euler’s totient function by ϕ
and the group of units in ZN by Z∗N .
Cryptographic Background. In this section we introduce puncturable pseu-
dorandom functions, a class of commitment schemes and the main object of
interest, namely blind signature schemes. We recall the necessary computational
assumptions in Supplementary Material Section A.

For the definition of puncturable pseudorandom functions, we follow [36].

Definition 1 (Puncturable Pseudorandom Function). A puncturable pseu-
dorandom function (PPRF) is defined to be a triple of PPT algorithms PRF =
(Gen,Puncture,Eval) with the following syntax:

– Gen(1n, 1d(n)) takes as input the security parameter 1n, an input length 1d(n)

and outputs a key k.
– Puncture(k,X) takes as input a key k and a polynomial size set ∅ 6= X ⊆
D = {0, 1}d(n) and outputs a punctured key kX .
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– Eval(k, x) is deterministic, takes a key k and an element x ∈ D as input and
outputs an element r ∈ R = {0, 1}n.

Further, the following security and completeness properties should hold:

– Completeness of Puncturing. For any d(n) = poly(n), X ⊆ {0, 1}d(n),
any k ∈ Gen(1n, 1d(n)), any kX ∈ Puncture(k,X) and any x′ /∈ X we have

Eval(k, x′) = Eval(kX , x′).

– Pseudorandomness. For any d(n) = poly(n) and any PPT algorithm A
the following is negligible:

|Pr

A(St, kX , (rx)x∈X) = 1

∣∣∣∣∣∣
(X,St)← A(1n), k ← Gen(1n, 1d(n)),
kX ← Puncture(k,X),
rx := Eval(k, x) for x ∈ X


−Pr

A(St, kX , (rx)x∈X) = 1

∣∣∣∣∣∣
(X,St)← A(1n), k ← Gen(1n, 1d(n)),
kX ← Puncture(k,X),
rx←$ {0, 1}r(n) for x ∈ X

 |.
We define a special type of perfectly hiding commitment scheme in which the

randomness can be rerandomized publicly.

Definition 2 (Randomness Homomorphic Commitment Scheme). A
randomness homomorphic commitment scheme is a tuple of PPT algorithms
CMT = (Gen,Com,Translate) with the following syntax:

– Gen(1n) takes as input the security parameter 1n and outputs a commitment
key ck. We assume that ck implicitly defines a message space Mck and a
randomness space Rck. Further, we assume that Rck is a group with respect
to an efficiently computable group operation +.

– Com(ck, x; r) takes as input a key ck, an element x ∈ Mck, a randomness
r ∈ Rck and outputs a commitment µ ∈ {0, 1}∗.

– Translate(ck, µ, r) is deterministic, takes a key ck, a commitment µ ∈ {0, 1}∗,
and a randomness r ∈ Rck as input and outputs a commitment µ′.

Further, the following security and completeness properties should hold:

– Completeness of Translation. For any ck ∈ Gen(1n), and x ∈Mck and
any r, r′ ∈ Rck, we have

Translate(ck,Com(ck, x; r), r′) = Com(ck, x; r + r′).

– Perfectly Hiding. For any ck ∈ Gen(1n), the following distributions are
identical:

{(ck, x0, x1, µ) | r←$Rck, µ := Com(ck, x0; r)}

and

{(ck, x0, x1, µ) | r←$Rck, µ := Com(ck, x1; r)} .
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– Computationally Binding. For any PPT algorithm A, the following is
negligible:

Pr
[

Com(ck, x0; r0) = Com(ck, x1; r1) ∧ x0 6= x1

∣∣∣∣ ck← Gen(1n),
(x0, r0, x1, r1)← A(ck)

]
.

Randomness homomorphism is not a strong requirement for commitment schemes.
Indeed, such commitment schemes can easily be derived from linear identification
schemes using a folklore transformation.

Next, we define the primitive of interest, namely blind signature scheme.

Definition 3 (Blind Signature Scheme). A blind signature scheme BS =
(Gen,S,U,Ver) is a quadruple of PPT algorithms, where

– Gen(1n) is a PPT algorithm that outputs a pair of keys (pk, sk). We assume
that the public key pk defines a message spaceM =Mpk implicitly.

– S and U are interactive algorithms, where S takes as input a key pair (pk, sk)
and U takes as input a key pk and a message m ∈M. After the execution, U
returns a signature σ.

– Ver(pk,m, σ) is deterministic and takes as input public key, message m ∈M
and a signature σ and returns b ∈ {0, 1}.

We say that BS is complete if for all (pk, sk) ∈ Gen(1n) and all m ∈Mpk it holds
that

Pr [Ver(pk,m, σ) = 1 | (⊥, σ)← 〈S(sk),U(pk,m)〉] = 1.

Definition 4 ((Honest Signer) Blindness). Let BS = (Gen,S,U,Ver) be a
blind signature scheme. For an adversary A and bit b ∈ {0, 1}, consider the
following game BLINDAb,BS(n):

1. Sample (pk, sk)← Gen(1n) and run (m0,m1, St)← A(pk, sk).
2. Let O0 be an interactive oracle simulating U(pk,mb) and O1 be an interactive

oracle simulating U(pk,m1−b). Run A on input St with arbitrary interleaved
one-time access to each of these oracles, i.e.

St′ ← AO0,O1(St).

3. Let σb, σ1−b be the local outputs of O0,O1, respectively. If σ0 = ⊥ or
σ1 = ⊥, then run b′ ← A(St′,⊥,⊥). Else, run b′ ← A(St′, σ0, σ1).

4. Output b′.

We say that BS satisfies blindness, if for every PPT algorithm A the following
advantage is negligible:∣∣∣Pr

[
BLINDA0,BS(n)⇒ 1

]
− Pr

[
BLINDA1,BS(n)⇒ 1

]∣∣∣ .
Definition 5 (One-More Unforgeability). Let BS = (Gen,S,U,Ver) be a
blind signature scheme. For an adversary A, we consider the following game
OMUFABS(n):
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1. Sample keys (pk, sk)← Gen(1n).
2. Let O be an interactive oracle simulating S(sk). Run

((m1, σ1), . . . , (mk, σk))← AO(pk),

where A can query O arbitrary often and interleaved. Let ` denote the number
of interactions that A completed with O.

3. Output 1 if and only if all mi, i ∈ [k] are distinct, k > ` and for each i ∈ [k]
it holds that Ver(pk,mi, σi) = 1.

We say that BS is one-more unforgeable (OMUF), if for every PPT algorithm A
the following advantage is negligible:

Pr
[
OMUFABS(n)⇒ 1

]
.

We formally introduce Merkle Trees in Supplementary Material Section B.
Informally, for a random oracle H, we denote the computation of the root of the
Merkle Tree over values x1, . . . , x` using H by

com := treeH(x1, . . . , x`).

If for some value xI only the hash h = H(xJ ) is given, we denote the computation
of the root by

com := ptreeH
I (x1, . . . , xI−1,H(xI), xI+1, . . . , x`).

3 Scheme based on BLS

Here, we construct a blind signature scheme based on the CDH assumption. The
starting point is the BLS signature scheme [5] and its blind variant [4].

3.1 Construction

Let PGGen(1n) be a bilinear group generation algorithm. We assume that
PGGen(1n) outputs a cyclic group G of prime order p with generator g. Also,
PGGen(1n) outputs a pairing e : G×G→ GT into some target group GT . Our
scheme makes use of a randomness homomorphic commitment scheme CMT with
randomness space Rck and a puncturable pseudorandom function PRF. We can
instantiate PRF using random oracles (cf. Supplementary Material Section E)
and CMT tightly based on the DLOG assumption (cf. Supplementary Material
Section D). We also need random oracles H : {0, 1}∗ → Zp,H′ : {0, 1}∗ → {0, 1}n
and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → Zp ×Rck × {0, 1}nPRF .

Our CDH-based scheme makes use of a parameter K ∈ N, which defines how
many instances of the underlying boosting transform are executed in parallel,
and a function f : N→ N. Roughly, the function f determines how fast the cut-
and-choose parameter N grows. We carefully set these parameters in Section 3.3.
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Key Generation. To generate keys algorithm BSCDH.Gen(1n) does the following:

1. Generate parameters (G, g, p, e)← PGGen(1n) as above.
2. For each instance i ∈ [K], sample ski←$ Zp and set pki := gski .
3. Sample a commitment key ck← CMT.Gen(1n).
4. Return the public key pk := (G, g, p, e, pk1, . . . , pkK , ck) and the secret key

sk := (sk1, . . . , skK).

Signature Issuing. The algorithms S,U and their interaction are formally given
in Figures 1 and 2. As in our RSA-based scheme, S keeps a state ctr, which is
inititalized as ctr := 1.

Verification. The resulting signature σ = (σ̄, ϕ1, . . . , ϕK) for a message m is
verified by algorithm BSCDH.Ver(pk,m, σ) as follows:

1. For each instance i ∈ [K], compute the commitment µi := Com(ck,m;ϕi).
2. Return 1 if and only if

e (σ̄, g) =
K∏
i=1

e (H(pki, µi), pki) .

Check(pk, N, µ0, comr, comc, seedJ, kJ, {ci,Ji}i, {ηi}i)

1 : J = (H′(seedJ, 1), . . . ,H′(seedJ,K)) ∈ [N ]K

2 : for i ∈ [K] :
3 : for j ∈ [N ] \ {Ji} :
4 : preri,j := PRF.Eval(kJ, (i, j)), ri,j := Hx(preri,j)
5 : parse ri,j = (αi,j , ϕi,j , γi,j) ∈ Zp ×Rck × {0, 1}n

6 : µi,j := Translate(ck, µ0, ϕi,j)
7 : ci,j := H(pki, µi,j) · g

αi,j

8 : comr,i := ptreeHr
Ji(ri,1, . . . , ri,Ji−1, ηi, ri,Ji+1, . . . , ri,N )

9 : if comr 6= treeHr (comr,1, . . . , comr,K) : return 0

10 : if comc 6= treeHc(c1,1, . . . , cK,N ) : return 0
11 : return 1

Fig. 1. The algorithm Check used in the issuing protocol of blind signature scheme
BSCDH, where H : {0, 1}∗ → G,H′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx :
{0, 1}∗ → Zp ×Rck × {0, 1}nPRF are random oracles.
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S(sk); state ctr U(pk,m)

ctr := ctr + 1, N := f(ctr) k ← PRF.Gen(1nPRF , 1log(KN))
seedJ, salt←$ {0, 1}n ϕ0←$Rck

comJ := H′(seedJ, salt) N, comJ µ0 := Com(ck,m;ϕ0)

for (i, j) ∈ [K]× [N ] :
preri,j := PRF.Eval(k, (i, j))
ri,j := Hx(preri,j)
parse ri,j = (αi,j , ϕi,j , γi,j)
µi,j := Translate(ck, µ0, ϕi,j)
ci,j := H(pki, µi,j) · g

αi,j

for i ∈ [K] :

comr,i := treeHr (ri,1, . . . , ri,N )

comr := treeHr (comr,1, . . . , comr,K)
µ0, comr, comc comc := treeHc(c1,1, . . . , cK,N )

seedJ, salt if comJ 6= H′(seedJ, salt) : abort

for i ∈ [K] : Ji := H′(seedJ, i) for i ∈ [K] : Ji := H′(seedJ, i)
J = (J1, . . . ,JK) J = (J1, . . . ,JK)

J := {(i,Ji) | i ∈ [K]}
kJ ← PRF.Puncture(k,J )

if Check = 0 : abort kJ, {ci,Ji , ηi}i∈[K] for i ∈ [K] : ηi := Hr(ri,Ji)

for i ∈ [K] : si,Ji := cski
i,Ji

s̄ :=
K∏
i=1

si,Ji
s̄ σ̄ := s̄ ·

K∏
i=1

pk−ri,Jii

if e (H(pki, µi,Ji), pki) 6= e (σ̄, g) :
abort

for i ∈ [K] : ϕi := ϕ0 + ϕi,Ji

return σ := (σ̄, ϕ1, . . . , ϕK)

Fig. 2. The signature issuing protocol of the blind signature scheme BSCDH, where
H : {0, 1}∗ → Zp,H′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ →
Zp ×Rck × {0, 1}nPRF are random oracles. The algorithm Check is defined in Figure 1.
The state ctr of S is incremented atomically.
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3.2 Security Analysis

Completeness of the scheme follows by inspection.

Theorem 1. Let PRF be a puncturable pseudorandom function and CMT be
a randomness homomorphic commitment scheme. Let H : {0, 1}∗ → Zp,H′ :
{0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → Zp × Rck ×
{0, 1}nPRF be random oracles. Then BSCDH satisfies blindness.

In particular, for any adversary who uses NL and NR as the counters in
its executions with the user and queries H′,Hr,Hx at most QH′ , QHr , QHx times,
respectively, the blindness advantage can be bounded by

4εPRF + Q2
H′

2n−1 + QH′

2n−2 + KQHx
2nPRF−2 + KQHr

2nPRF−2 ,

where εPRF is the advantage of an adversary against the security of PRF with
input length max{log(NL), log(NR)} when puncturing at K points.

Due to space limitation, we postpone the proof to Supplementary Material
Section H.

Theorem 2. Let CMT be a randomness homomorphic commitment scheme and
PRF be a puncturable pseudorandom function. Let PGGen(1n) be a bilinear group
generation algorithm. Further, let H : {0, 1}∗ → Zp,H′ : {0, 1}∗ → {0, 1}n and
Hr,Hc : {0, 1}∗ → {0, 1}n be random oracles. Also, assume that there is a ϑ > 0
and f is such that

f(ctr) = d3ϑ ln(qmax + 1) · ctre .

Then BSCDH satisfies one-more unforgeability, under the CDH assumption relative
to PGGen.

Specifically, assume the existence of an adversary against the OMUF security
of BSCDH that has advantage ε, runs in time t, makes at most QHr , QHc , QH′ , QH
queries to oracles Hr,Hc,H′,H, respectively, and starts at most q ≤ qmax interac-
tions with his signer oracle. Let δ > 0 such that (1− δ)ϑ > 1. Then there exists
an adversary against the CDH problem relative to PGGen with advantage εCDH
and running time t and an adversary against the binding property of CMT with
advantage εCMT and running time t such that

ε− e−δK ≤ εCMT + K

p
+ 4qKεCDH + stat

where

stat =
Q2

Hr

2n−1 +
Q2

Hc
2n−1 + qQHr

2n + qKQHr

2n + qQHc
2n + qQH′

2n−1 .

Proof. Set BS := BSCDH. Let A be an adversary against the OMUF security of
BS. We prove the statement via a sequence of games.
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Game G0: We start with game G0 := OMUFABS, which is the one-more un-
forgeability game. We briefly recall this game. A key pair (pk, sk)← Gen(1n) is
sampled, A is run with concurrent access to an interactive oracle O simulating
the signer S(sk). Assume that A completes ` interactions with O. As we consider
the random oracle model, A also gets access to random oracles H,H′,H′′,Hr
and Hc, which are provided by the game in the standard lazy manner. When A
finishes its execution, it outputs tuples (m1, σ1), . . . , (mk, σk) and wins, if all mi

are distinct, k > ` and all signatures σi verify with respect to pk and mi.

Game G1: In game G1, we add an additional abort. The game aborts if in the
end A’s output contains two pairs (m(0), σ(0)), (m(1), σ(1)) such that m(0) 6= m(1)

but there exists i(0), i(1) ∈ [K] such that

Com(ck,m(0);ϕ(0)
i(0)) = Com(ck,m(1);ϕ(1)

i(1)).

As CMT is computationally binding, a straight-forward reduction with advantage
εCMT and running time t shows that

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ εCMT.

Game G2: This game is as G1, but we rule out collisions for oracles Ht, t ∈ {r, c}.
To be more precise, we change the simulation of oracles Ht, t ∈ {r, c} in the
following way. If A queries Ht(x) and this value is not yet defined, the game
samples an image y←$ {0, 1}n. However, if there exists an x′ 6= x with Ht(x′) = y,
the game returns ⊥. Otherwise it behaves as before. Note that A can only
distinguish between G0 and G1 if such a collision happens, i.e. Ht returns ⊥. We
can apply a union bound over all Q2

Ht pairs of random oracle queries and obtain

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤
Q2

Hr

2n +
Q2

Hc
2n .

Game G3: In game G3 we add another change to the random oracles Ht, t ∈
{r, c}. We again sample y←$ {0, 1}n if Ht(x) is not yet defined. This time, we
also check if Ht(y) is already defined and return ⊥ if this is the case. The detailed
behavior of oracle Ht can be found in Figure 5. Note that the adversary A can
only distinguish between G1 and G2 if such a chain happens, i.e. Ht returns ⊥
because Ht(y) was already defined. Again, we can apply a union bound over all
Q2

Ht pairs of random oracle queries and obtain

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤
Q2

Hr

2n +
Q2

Hc
2n .

To summarize the changes we did so far, we ruled out two patterns for random
oracle queries:
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1. Collisions: ∃x 6= x′ : Ht(x) = Ht(x′).
2. Chains: ∃x : query Ht(Ht(x)) was made before query Ht(x).

In particular, this implies that at each point of the execution of the game and for
each image y ∈ {0, 1}n, there is at most one preimage H−1

t (y) under Ht. Further,
note that for any x0 ∈ {0, 1}n the sequence (xi)i with xi := H−1

t (xi−1) for i ∈ N
does not contain any repeating value. Indeed, such a cycle could only be produced
if the adversary managed to form a chain, which was ruled out. Note that this
implies that algorithm ExtLeafst given in Figure 5 always terminates. Roughly,
this algorithm extracts leafs from a given Merkle commitment.

Game G4: We change the way the signer oracle is executed. In particular, when
A sends µ0, comr, comc as its first message, the game tries to extract as follows:

( ¯comr,1, . . . , ¯comr,K)← ExtLeafsr(comr,K).

Then, the game aborts if there is an instance i ∈ [K] such that ¯comr,i = ⊥ but
later algorithm Check outputs 1. Recall that algorithm Check verifies that

comr = treeHr (comr,1, . . . , comr,K).

Thus, for every fixed interaction, we can bound the probability of such an abort
using a straight-forward reduction from the game in Lemma 3. Using a union
bound we obtain

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ qQHr

2n .

Game G5: We introduce another abort in the signer oracle. In this game, after
the extraction ( ¯comr,1, . . . , ¯comr,K)← ExtLeafsr(comr,K) we introduced before,
the game extracts

(̄ri,1, . . . , r̄i,N )← ExtLeafsr(comr,i, N)

for every i ∈ [K] for which ¯comr,i 6= ⊥. If there is an instance i ∈ [K] and a
session j ∈ [N ] such that ¯comr,i 6= ⊥ but r̄i,j = ⊥ and later in that execution
Ji 6= j but algorithm Check outputs 1, the game aborts. For each fixed interaction
and each instance i ∈ [K], we can bound the probability of such an abort by a
reduction from the game in Lemma 4. By a union bound we get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ qKQHr

2n .

Game G6: We introduce another abort: Whenever A sends µ0, comr, comc as
its first message, the game behaves as before, but additionally the game extracts

(c̄1,1, . . . , c̄K,N )← ExtLeafsc(comc,KN).



Pika ! 17

If there is an index (i, j) ∈ [K] × [N ] such that c̄i,j = ⊥ but later algorithm
Check outputs 1, the game aborts. Note that algorithm Check internally checks if

comc 6= treeHc(c1,1, . . . , cK,N ).

Thus, for each fixed interaction it is possible to construct a straight-forward
reduction from the game in Lemma 3 to bound the probability of such an abort
and hence we obtain

|Pr [G5 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ qQHc
2n .

Game G7: In G7, the signer oracle sends a random comJ in the beginning of
each interaction. Later, before it has to send seedJ, salt, it samples salt←$ {0, 1}n
and aborts if H′(seedJ, salt) is already defined. If it is not yet defined, it defines
it as H′(seedJ, salt) := comJ. The adversary A can only distinguish between G6
and G7 if H′(seedJ, salt) is already defined. By a union bound over all QH′ hash
queries and q interactions we obtain

|Pr [G6 ⇒ 1]− Pr [G7 ⇒ 1]| ≤ qQH′

2n .

Game G8: In G8, the game aborts if in some interaction there exists an i ∈ [K]
such that H′(seedJ, i) has already been queried before the signing oracle sends
seedJ to A. Clearly, A obtains no information about seedJ before the potential
abort, see G7. Further, seedJ is sampled uniformly at random. A union bound
over all QH′ queries and q interactions shows that

|Pr [G7 ⇒ 1]− Pr [G8 ⇒ 1]| ≤ qQH′

2n .

Now, fix an interaction in G8 and assume that Check returns 1 and the
game does not abort due to any of the reasons we introduced so far. Note that
this means that for all instances i ∈ [K] the value ¯comr,i could be extracted.
Furthermore, this means that if there exists i ∈ [K], j0 ∈ [N ] such that r̄i,j0 = ⊥
then later Ji = j0. Also, note that if Check does not abort, then we have

¯comr,i = comr,i, r̄i,j = ri,j and c̄i,j = ci,j for all (i, j) ∈ [K]× [N ] for which these
values are defined. This is because we ruled out collisions for oracles Hr,Hc. Now,
we define an indicator random variable cheati,ctr for the event that in the ctr-th
interaction, the signer oracle does not abort and there exists i ∈ [K], j ∈ [N ]
such that r̄i,j = ⊥ or r̄i,j = (α,ϕ, γ) such that

ci,j 6= H(pki,Translate(ck, µ0, ϕ)) · gα.

We say that A successfully cheats in instance i ∈ [K] and interaction ctr if
cheati,ctr = 1. We also define the number of interactions in which A successfully
cheats in instance i as cheat∗i :=

∑q+1
ctr=2 cheati,ctr.



18 B. Wagner, L. Hanzlik, J. Loss

By the above discussion, we have that cheati,ctr = 1 implies that Ji = j0 and
thus

Pr [cheati,ctr = 1] ≤ 1
N
.

Therefore, we can bound the expectation of cheat∗i using

E [cheat∗i ] ≤
1

3ϑ ln(qmax + 1)

q+1∑
ctr=2

1
ctr ≤

ln(q + 1)
3ϑ ln(qmax + 1) ≤

1
3ϑ.

Now, if we plug X := cheat∗i and s := 3E [cheat∗i ] + δ = 1/ϑ+ δ into the Chernoff
bound (Lemma 6), we get that for all i ∈ [K]

Pr
[
cheat∗i ≥

1
ϑ

+ δ

]
≤ e−δ.

We note that the entire calculation of this probability also holds if we fix the
random coins of the adversary.

Game G9: Game G9 is defined as G8, but additionally aborts if for all i ∈ [K]
we have cheat∗i ≥ 1

ϑ + δ. In particular, if G9 does not abort, then there is some
instance i for which A does not successfully cheat at all, which follows from the
assumption (1− δ)ϑ > 1.

We can now bound the distinguishing advantage of A between G8 and G9 as
follows. We denote the random coins of A by ρA and the random coins of the
experiment (excluding ρA) by ρ. Let bad be the event that for all i ∈ [K] we
have cheat∗i ≥ 1

ϑ + δ. We note that the coins ρ that the experiment uses for the
K instances are independent. Thus we have

Pr
ρ,ρA

[bad] =
∑
ρ̄A

Pr
ρA

[ρA = ρ̄A] · Pr
ρ,ρA

[bad | ρA = ρ̄A]

=
∑
ρ̄A

Pr
ρA

[ρA = ρ̄A] ·
∏
i∈[K]

Pr
ρ,ρA

[
cheat∗i ≥

1
ϑ

+ δ

∣∣∣∣ ρA = ρ̄A

]
≤
∑
ρ̄A

Pr
ρA

[ρA = ρ̄A] · e−δK = e−δK ,

which implies

|Pr [G8 ⇒ 1]− Pr [G9 ⇒ 1]| ≤ Pr
ρ,ρA

[bad] ≤ e−δK .

Game G10: In game G10, we sample a random instance i∗←$ [K] at the begin-
ning of the game. In the end, the game aborts if cheat∗i∗ ≥ 1

ϑ + δ. In particular, if
this game does not abort, then A does not successfully cheat in instance i∗ at all.
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As A’s view is independent from i∗, we have

Pr [G10 ⇒ 1] = Pr
[
G9 ⇒ 1 ∧ cheat∗i∗ <

1
ϑ

+ δ

]
= Pr [G9 ⇒ 1] · Pr

[
cheat∗i∗ <

1
ϑ

+ δ | G9 ⇒ 1
]

≥ Pr [G9 ⇒ 1] · Pr
[
cheat∗i∗ <

1
ϑ

+ δ | ∃i ∈ [K] : cheat∗i <
1
ϑ

+ δ

]
≥ Pr [G9 ⇒ 1] · 1

K
,

where the first inequality follows from the fact that the event G9 ⇒ 1 implies
the event ∃i ∈ [K] : cheat∗i < 1

ϑ + δ.

Game G11: In game G11, we introduce an initially empty set L and a new abort.
We highlight that we treat L as a set and therefore every bitstring is in L only
once. Recall that when A sends µ0, comr, comc to the signer oracle, the game
tries to extract values r̄i,j for (i, j) ∈ [K]× [N ]. Then the game samples seedJ
and computes J accordingly. In particular, due to the changes in the previous
games we know that the game extracts r̄i∗,Ji∗ = (α,ϕ, γ) unless the experiment
will abort anyways. Then, in game G11, the game will insert Translate(ck, µ0, ϕ)
into L.

Fix the first pair (m, σ) in A’s final output such that for σ = (σ̄, ϕ1, . . . , ϕK)
and µ∗ := Com(ck,m;ϕi∗) we have µ∗ /∈ L. Such a pair must exists if A is
successful, see game G1. Then game G11 aborts if H(pki∗ , µ∗) is not defined yet.
Note that A’s success probability in such a case can be at most 1/p and hence

|Pr [G10 ⇒ 1]− Pr [G11 ⇒ 1]| ≤ 1
p
.

Game G12: In game G12, we change how the random oracle H is simulated and
add a new abort. For every query of the form H(pki∗ , µ) the game independently
samples a bit b[µ] ∈ {0, 1} such that the probability that b[µ] = 1 is 1/(q + 1).
Whenever the game adds a value µ to the set L, it aborts if b[µ] = 1. Then, after
A returns its final output, the game determines µ∗ as in G11, adds arbitrary
values to L such that all values in L∪ {µ∗} are distinct and |L| = q and aborts if
b[µ∗] = 0 or there is a µ ∈ L such that b[µ] = 1. Otherwise it continues as before.
Note that unless the game aborts, A’s view does not change. As all bits b[µ] are
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independent, we derive

Pr [G12 ⇒ 1] = Pr [G11 ⇒ 1] · Pr [b[µ∗] = 1 ∧ ∀µ ∈ L : b[µ] = 0]

= Pr [G11 ⇒ 1] · 1
q + 1

(
1− 1

q + 1

)q
= Pr [G11 ⇒ 1] · 1

q

(
1− 1

q + 1

)q+1

≥ Pr [G11 ⇒ 1] · 1
4q ,

where the last inequality follows from (1− 1/x)x ≥ 1/4 for all x ≥ 2.
Finally, we construct a reduction B that solves CDH with running time t and

advantage εCDH such that

Pr [G12 ⇒ 1] ≤ εCDH.

Then, the statement follows by an easy calculation.
Reduction B works as follows:

– B gets as input bilinear group parameters G, g, p, e and group elements X =
gx, Y = gy. The goal of B is to compute gxy. First, B samples i∗←$ [K]. Then,
it defines pki∗ := X (which implicitly defines ski∗ := x) and ski←$ Zp, pki :=
gski for i ∈ [K] \ {i∗}.

– B runs adversary A on input pk := (G, g, p, e, pk1, . . . , pkK , ck) with oracle
access to a signer oracle and random oracles H,Hr,Hc,H′. To do so, it simulates
oracles Hr,Hc,H′ exactly as in G12. The other oracles are provided as follows:
• For a query of the form H(pki∗ , µ) for which the hash value is not yet
defined, it samples a bit b[µ] ∈ {0, 1} such that the probability that
b[µ] = 1 is 1/(q+ 1). Then, it defines the hash value as Y b[µ] · gt[i∗,µ] for a
randomly sampled t[i∗, µ]←$ Zp. For a query of the form H(pki, µ), i 6= i∗

for which the hash value is not yet defined it defines the hash value
as gt[i,µ] for a randomly sampled t[i, µ]←$ Zp. For all other queries it
simulates H honestly.

• When A starts an interaction with the signer oracle, B sends N to B as
in the protocol. When B sends its first message µ0, comr, comc as its first
message, B behaves as G12. In particular, it tries to extract r̄i,j , c̄i,j for
(i, j) ∈ [K]× [N ]. It then sends seedJ to A.
• When A sends its second message kJ, {ci,Ji , ηi}i∈[K], B aborts under the
same conditions as G12 does. In particular, if B does not abort and the
signer oracle does not abort then r̄i∗,Ji∗ = (α,ϕ, γ) is defined and B for
µ := Translate(ck, µ0, ϕ), B sets si∗,Ji∗ := Xt[i∗,µ]+α. As defined in G12,
B also inserts µ into the set L. It computes si,Ji for i 6= i∗ as game G12
does, which is possible as B holds the corresponding ski. Then, B sends
s̄ :=

∏K
i=1 si,Ji to A.

– When A returns its final output, B performs all verification steps in G12.
In particular, it searches for the first pair (m, σ) in A’s final output such
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that for σ = (σ̄, ϕ1, . . . , ϕK) and µ∗ := Com(ck,m;ϕi∗) we have µ∗ /∈ L. As
defined in G12, B aborts if b[µ∗] = 0. Finally, B defines µi := Com(ck,m;ϕi)
and returns

Z := σ̄ ·X−t[i
∗,µ∗] · g−

∑
i∈[K]\{i∗}

t[i,µi]ski

to its challenger.

We first argue that B perfectly simulates G12 for A. To see that, note that as the
t[i, µ] are sampled uniformly at random, the random oracle is simulated perfectly.
To see that si∗,Ji∗ is distributed correctly, note that if the signing oracle and G12
do not abort, then we have

cski∗
i∗,Ji∗ = (H(pki∗ , µ) · gα)ski∗ =

(
Y b[µ] · gt[i

∗,µ] · gα
)x

= Xt[i∗,µ]+α,

where the last equality follows from b[µ] = 0, as otherwise G12 would have
aborted.

It remains to show that if G12 outputs 1, then we have Z = gxy. This follows
directly from the verification equation and b[µ∗] = 1. To see this, note that

K∏
i=1

e (H(pki, µi), pki) = e
(
Y b[µ

∗] · gt[i
∗,µ∗], X

)
·

∏
i∈[K]\{i∗}

e
(
gt[i,µi], gski

)
= e (g, g)xy+t[i∗,µ∗]x · e (g, g)

∑
i∈[K]\{i∗}

t[i,µi]ski
.

Using the verification equation, this implies that

gxy = σ̄ · g
−
(
t[i∗,µ∗]x+

∑
i∈[K]\{i∗}

t[i,µi]ski
)

Concluded. ut

3.3 Concrete Parameters and Efficiency

Let us now discuss concrete parameters for our scheme BSCDH based on the CDH
assumption. Recall that the scheme uses parameters K,ϑ and p. Instantiating
the commitment scheme CMT with a Pedersen commitment we also have to set
a value for the order p′ of the group that is used in this commitment scheme. Say
that we aim for κ bits of security. In particular, we want to find appropriate values
for K,ϑ, |p| and |p′|. Consider an adversary with running time t and advantage ε
against the OMUF security of the scheme. If ε/t < 2−κ we are done. Otherwise
we have ε/t ≥ 2−κ and ε ≥ 2−κ, as t ≥ 1. Now, we want to use Theorem 2 to
end up with a contradiction. If we use Theorem 2 with δ := − ln(ε/2)/K, then
e−δK = ε/2 and the security bound becomes

ε ≤ 2
(
εCMT + K

p
+ 4qKεCDH + stat

)
.
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Assuming κCDH bits of security for the CDH instance and κCMT bits of security
for the commitment scheme CMT we obtain

ε ≤ 2
(

2−κCMT · t+ K

p
+ 4qK · 2−κCDH · t+ stat

)
.

We can now increase κCDH and κCMT (for a fixed combination of ε and t) until
this inequality does not hold anymore. Then the adversary could not have existed
in the first place. Using κCDH and κCMT, we can then determine an appropriate
choice for |p| = 2κCDH + 1 and |p′| = 2κCMT + 1, see [35].

However, note that we can only apply this approach, if (1− δ)ϑ > 1, due to
Theorem 2. By our choice of δ it is therefore sufficient to guarantee that(

1− ln(2κ+1)
K

)
ϑ > 1.

It is clear that for a decreasing K, we have to increase ϑ to satisfy this constraint.
Thus, our approach is as follows: For a few choices of K, we determine the
minimum ϑ > 0, such that the constraint holds. If there is no such ϑ, we throw
away this particular K. Then, we proceed as discussed above to find security
levels for the underlying instances and compute the signature sizes and key sizes.

Next, we focus on blindness. For simplicity, assume that NL = NR =: N .
We instantiate PRF using a GGM construction with a random oracle HPRF
(cf. Supplementary Material Section E) and know that εPRF ≤ (2 log(NK) −
1)KQHPRF/2nPRF , where nPRF is the output length of the pseudorandom function.
By applying Theorem 1 we obtain the security bound

(2 log(N) + 2 log(K)− 1)KQHPRF

2nPRF−2 + Q2
H′

2n−1 + QH′

2n−2 + QHx
2nPRF−2 + KQHr

2nPRF−2 ,

where nPRF denotes the output length of PRF. Thus, we only have to increase
nPRF until the security bound guarantees κ bit of security.

We implemented the entire approach discussed above in simple Python
script, see Supplementary Material Section J.2. To simplify a bit, we made the
conservative assumption that the number of hash queries for each random oracle
is equal to the running time of the adversary. Also, we set NL and NR in the
blindness bound to be equal to the maximum number q of signatures interactions
that the adversary starts. Results can be found in Table 1.

4 Scheme based on OGQ

In this section we construct a blind signature scheme based on the RSA assumption.
Our scheme is based on the Okamoto-Guillou-Quisquater (OGQ) [28] linear
function. The function is specified by public parameters par = (N, a, λ) where
p and q are distinct n-bit primes and N = pq, a←$ Z∗N is sampled uniformly at
random, and λ is a prime with gcd(N,λ) = gcd(ϕ(N), λ) = 1. Further, define a
trapdoor td := (p, q). Throughout this section, we assume that these parameters
are output by some setup algorithm RSAGen.
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Let D := Zλ × Z∗N . It can be shown [21] that D forms a group with respect
to the group operation

(x1, y1) ◦ (x2, y2) :=
(
x1 + x2 mod λ, y1 · y2 · ab

x1+x2
λ c mod N

)
.

We specify a linear function F as follows:

F : D → Z∗N , (x, y) 7→ axyλ mod N.

In addition, we specify a function

Ψ : Z∗N × Zλ × Zλ → D, (x, s, s′) 7→ (0, xb−
s+s′
λ c mod N).

These funcions satisfy

∀x, y ∈ D, s ∈ Zλ : F(xs ◦ y) = F(x)s · F(y),
∀y ∈ Z∗N , s, s′ ∈ Zλ : ys+s

′
= ys · ys

′
· F(Ψ(y, s, s′)).

The collision resistance and one-wayness of the function F is tightly implied
by the RSA assumption. For more details, see [21].

Further, we argue that the trapdoor can be used to sample uniform preimages
for F. To this end, we specify an algorithm Invert(td, z) for z ∈ Z∗N , which works
as follows:

– Use p and q to compute ρ ∈ Z such that ρλ mod ϕ(N) = 1.
– Sample x←$ Zλ and set y := (za−x)ρ mod N . Return (x, y).

We show that Invert outputs properly distributed preimages in Supplementary
Material Section G.1.

4.1 Construction

Here, we present our construction BSRSA = (Gen, S,U,Ver), which makes use of a
randomness homomorphic commitment scheme CMT with randomness space Rck
and a puncturable pseudorandom function PRF. It should be mentioned that we
can instantiate PRF using random oracles (cf. Supplementary Material Section E)
and CMT tightly based on the RSA assumption (cf. Supplementary Material
Section C). Furthermore, we need random oracles H : {0, 1}∗ → Zλ,H′ : {0, 1}∗ →
Z∗N ,H′′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ →
D × Zλ ×Rck × {0, 1}nPRF .

Key Generation. Algorithm BSRSA.Gen(1n) generates keys as follows:

1. Generate parameters par = (N, a, λ) and a trapdoor td = (p, q) as above.
2. Sample sk′←$D, set pk′ := F(sk′).
3. Generate a commitment key ck← CMT.Gen(1n).
4. Set the state of S to ctr := 1.
5. Return the public key pk := (par, pk′, ck) and the secret key sk := (td, sk′).
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Signature Issuing. The algorithms S,U of the signature issuing protocol are
formally presented in Figures 3 and 4.

We note that S keeps a state ctr, which is inititalized as ctr := 1.

Verification. A signature σ = (c′, s′, ϕ∗) is verified with respect to a message m
via algorithm BSRSA.Ver(pk = (par, pk′, ck),m, σ), which is as follows:

1. Compute the commitment µ∗ := Com(ck,m;ϕ∗)
2. Return 1 if c′ = H(µ∗,F(s′) · pk′−c

′
). Otherwise return 0.

Check(pk, N, seed, µ0, comr, comc, J, kJ , cJ , η)

1 : for j ∈ [N ] \ {J} :
2 : prerj := PRF.Eval(kJ , j), rj := Hx(prerj)
3 : parse rj = (αj , βj , ϕj , γj) ∈ D × Zλ ×Rck × {0, 1}nPRF

4 : Rj := H′(seed, j)
5 : µj := Translate(ck, µ0, ϕj)

6 : cj := H(µj , Rj · F(αj) · ·pk′βj ) + βj

7 : if comr 6= ptreeHr
I (r1, . . . , rJ−1, η, rJ+1, . . . , rN ) : return 0

8 : if comc 6= treeHc(c1, . . . , cN ) : return 0
9 : return 1

Fig. 3. The algorithm Check used in the issuing protocol of blind signature scheme
BSRSA, where H : {0, 1}∗ → Zλ,H′ : {0, 1}∗ → Z∗N and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx :
{0, 1}∗ → D × Zλ ×Rck × {0, 1}nPRF are random oracles.

4.2 Security Analysis

Completeness of the scheme is immediate. We show blindness and one-more
unforgeability.
Theorem 3. Let PRF be a puncturable pseudorandom function and CMT be
a randomness homomorphic commitment scheme. Let H : {0, 1}∗ → Zλ,H′ :
{0, 1}∗ → Z∗N ,H′′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx :
{0, 1}∗ → D × Zλ × Rck × {0, 1}nPRF be random oracles. Then BSRSA satisfies
blindness.

In particular, for any adversary who uses NL and NR as the counters in
its executions with the user and queries H,Hr,Hx,H′′ at most QH, QHr , QHx , QH′′

times, respectively, the blindness advantage can be bounded by

4εPRF + Q2
H′′

2n−1 + QH′′

2n−2 + QHx
2nPRF−2 + QHr

2nPRF−2 + 2QH
|Z∗N |

,
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S(sk = (td, sk′)); state ctr U(pk = (par, pk′, ck),m)

ctr := ctr + 1, N := ctr k ← PRF.Gen(1nPRF , 1log(N))
J←$ [N ], salt←$ {0, 1}n ϕ0←$Rck

comJ := H′′(J, salt) N, comJ µ0 := Com(ck,m;ϕ0)

for j ∈ [N ] :
prerj := PRF.Eval(k, j)
rj := Hx(prerj)
parse rj = (αj , βj , ϕj , γj)

seed←$ {0, 1}n µj := Translate(ck, µ0, ϕj)

for j ∈ [N ] : comr := treeHr (r1, . . . , rN )

Rj := H′(seed, j) comr, µ0

rj ← LF.Invert(td, Rj) seed for j ∈ [N ] :

Rj := H′(seed, j)

R′j := Rj · F(αj) · pk′βj

c′j := H(µj , R′j)
cj := c′j + βj

comc comc := treeHc(c1, . . . , cN )

J, salt if comJ 6= H′′(J, salt) : abort

kJ ← PRF.Puncture(k, J)

kJ , cJ , η η := Hr(αJ , βJ , ϕJ , γJ)

if Check = 0 : abort

sJ := rJ ◦ sk′cJ sJ if F(sJ) 6= RJ · pk′cJ : abort

s′J := sJ ◦ αJ ◦ Ψ(pk′, cJ ,−c′J)
ϕ∗ := ϕ0 + ϕJ

return σ := (c′J , s′J , ϕ∗)

Fig. 4. The signature issuing protocol of the blind signature scheme BSRSA, where
H : {0, 1}∗ → Zλ,H′ : {0, 1}∗ → Z∗N ,H′′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ →
{0, 1}n,Hx : {0, 1}∗ → D × Zλ ×Rck × {0, 1}nPRF are random oracles. The algorithm
Check is defined in Figure 3. The state ctr of S is atomically incremented at the beginning
of every interaction.



26 B. Wagner, L. Hanzlik, J. Loss

where εPRF is the advantage of an adversary against the security of PRF with
input length max{log(NL), log(NR)} puncturing at one point.

Due to space limitation, we postpone the proof to Supplementary Material
Section G.4.

Theorem 4. Let PRF be a puncturable pseudorandom function and CMT be a
randomness homomorphic commitment scheme. Further, let H : {0, 1}∗ → Zλ,H′ :
{0, 1}∗ → Z∗N ,H′′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ → {0, 1}n be random
oracles. Then BSRSA satisfies one-more unforgeability.

Specifically, for any adversary against the OMUF security of BSRSA that
has advantage ε and makes at most QHr , QHc , QH′ , QH′′ , QH queries to oracles
Hr,Hc,H′,H′′,H, respectively, and starts at most p interactions with his signer
oracle and runs in time t, there exists an adversary against the OMUF security
of CCBS[CMT] (cf. Supplementary Material Section G.2) that makes at most QH
queries to H, starts at most p interactions with his signer oracle, makes at most
p2 queries to his oracle Ĥ, runs in time t and has advantage εCCBS[CMT] such that

ε ≤
Q2

Hr

2n−1 +
Q2

Hc
2n−1 + pQHr

2n + pQHc
2n + pQH′

2n + pQH′′

2n + εCCBS[CMT].

We postpone the formal proof to Supplementary Material Section G.3. On a high
level, it mimics the proof of Theorem 2 with K = 1 and a reduction from the
original boosting transform.

4.3 Concrete Parameters and Efficiency

To derive concrete parameters for our scheme BSRSA based on the RSA assump-
tion in a theoretically sound way, we recall the concrete security bounds from
Theorems 4 and 5. Let ε, t denote the advantage and running time of an adversary
against the one-more unforgeability of BSRSA initiating at most p interactions
with the signing oracle and querying the random oracle at most QH many times.
Then there is an adversary against the one-more unforgeability CCBS[CMT] with
advantage εCCBS and running time t. Also, there are three algorithms solving
two instances of the RSA problem with probability εRSA, εRSA′ , εRSA′′ and running
time 2t, t, t, respectively. Here, the third adversary against RSA comes from the
binding property of the commitment scheme we use.

Concretely, by combining the concrete bounds given in Theorems 4 and 5 we
obtain that

ε ≤ 2 3
√
Q2

H`
3εRSA + (QH(p− `))`+1

λ
+ 2εRSA′′ + 2pεRSA′ + 2T1 + T2,

where T1, T2 are statistically negligible terms and ` = 3 ln(p+ 1) + ln(2/εCCBS).
To simplify further, we assume κ bit of security for the instance related to εRSA
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and εRSA′ and κ′′ bit of security for the instance related to εRSA′′ . By definition,
this means that

εRSA < 2 · t · 2−κ, εRSA′ < t · 2−κ, εRSA′′ < t · 2−κ
′′
.

Next, we use

` = 3 ln(p+ 1) + ln
(

2
εCCBS

)
≤ 3 ln(p+ 1) + ln

(
2

ε− T2

)
=: `ε.

Pluggin in, we get

ε ≤ 2 3
√
Q2

H`
3
ε · 2 · t · 2−κ + (QHp)`ε+1

λ
+ 2t · 2−κ

′′
+ 2pt · 2−κ + 2T1 + T2,

which must hold for any adversary with running time t and advantage ε and any
λ we choose. Note that we can set the bitlength of the prime λ independently of
the RSA modulus length.

To get k bit of security for BSRSA, we consider any fix choice of ε, t such that
t/ε = 2k and increase κ, κ′′ until the above inequality leads to a contradiction.
Then, we choose the maximum values for κ, κ′′. We note that we have to take
this two-step approach and iterate over all combinations of ε, t, as `ε depends on
ε which leads to a non-linear inequality. Also, we note that we can set κ′′ to be
much less than κ as the relation between k and κ′′ is tight. Once the appropriate
security levels κ and κ′′ are found, we determine the modulus lengths len, len′′
following an estimation for the sub-exponential complexity of the general number
field sieve algorithm [10], which is similar to [21]. Using the modulus length and
the bitlength of λ, we can compute the sizes of signatures and keys.

Next, we consider blindness. For simplicity, assume that NL = NR =: N . Also,
we can make the assumption3 that |Z∗N | ≥ 2n. If we want to achieve blindness
with k bits of security, we have to make sure that the blindness advantage is
at most 2−k · t. As for our CDH-based scheme, we instantiate PRF using the
GGM construction (cf. Supplementary Material Section E). Using Theorem 3,
the blindness advantage can be upper bounded by

(2 log(N)− 1)QHPRF

2nPRF−2 + Q2
H′′

2n−1 + QH′′

2n−2 + QHx
2nPRF−2 + QHr

2nPRF−2 + QH
2n−1 .

Thus, we only have to choose nPRF large enough.
We implemented the approach in a simple Python script (cf. Supplementary

Material Section J.1). Example instantiations of our parameters can be found in
Table 1.
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Supplementary Material

A Standard Computational Assumptions

Definition 6 (RSA assumption). Let RSAGen be an algorithm that on input
1n outputs (N, p, q, e), where N = pq for distinct n-bit primes p, q and e ∈ N
such that gcd(e, ϕ(N)) = 1.

We say that the RSA assumption holds relative to RSAGen if for all PPT
algorithms A the following advantage is negligible:

Pr [xe = y | (N, p, q, e)← RSAGen(1n), x̄←$ Z∗N , y := x̄e, x← A(N, e, y)] .

Definition 7 (CDH assumption). Let PGGen be an algorithm that on input
1n outputs (G, g, p, e), where G is the description of a cyclic group with generator
g and prime order p, and e : G×G→ GT is a non-degenerate bilinear map into
some target group GT .
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We say that the CDH assumption holds relative to PGGen if for all PPT
algorithms A the following advantage is negligible:

Pr [z = xy | (G, g, p, e)← PGGen(1n), a, b←$ Zp, gz ← A(G, g, p, e, gx, gy)] .

B Merkle Trees

Our construction makes use of Merkle hash trees [26] instantiated with a random
oracle.

Definition 8 (Merkle Tree Evaluation). For a random oracle H : {0, 1}∗ →
{0, 1}n we define Merkle tree evaluation as follows:

treeH(x1) := H(x1),
treeH(x1, . . . , x`) := H(tree(x1, . . . , xd`/2e), tree(xd`/2e+1, . . . , x`)),

where ` ∈ N and x1, . . . , x` ∈ {0, 1}∗.

We also define the pruned evaluation of a Merkle hash tree. That is, the evaluation
if for one leaf xI only the hash H(xI) is given.

Definition 9 (Pruned Merkle Tree). Let H : {0, 1}∗ → {0, 1}n be a ran-
dom oracle. For h ∈ {0, 1}n we define ptreeH

1 (h) := h. Further, let ` ≥ 2 and
x1, . . . , x` ∈ {0, 1}∗. For I ≤ d`/2e we define

ptreeH
I (x1, . . . , x`) := H(ptreeH

I (x1, . . . , xd`/2e), treeH(xd`/2e+1, . . . , x`))

and for d`/2e < I ≤ ` we define

ptreeH
I (x1, . . . , x`) := H(treeH(x1, . . . , xd`/2e), ptreeH

I−d`/2e(xd`/2e+1, . . . , x`)).

From these definitions, the following statement follows directly by inspection.
Looking ahead, it will imply completeness of our constructions.

Lemma 1. Let H : {0, 1}∗ → {0, 1}n be a random oracle, ` ∈ N and x1, . . . , x` ∈
{0, 1}∗ be arbitrary strings. Then for each I ∈ [`] the following holds:

treeH(x1, . . . , x`) = ptreeH
I (x1, . . . , xI−1,H(xI), xI+1, . . . , x`).

We show how to extract from Merkle commitments. That is, suppose a
reduction can observe the random oracle that is used to commit to a set of
values using Merkle trees. Then we show that the reduction can (almost) always
extract the values from their commitment. In Figure 5 we define an algorithm
ExtLeafs that realizes this extraction. We now present a sequence of lemmas that
capture the basic properties of this extraction. The first lemma follows trivially
by inspection and the definition of Merkle trees. It says that ExtLeafs is the
inverse operation for treeH, provided that it successfully extracts all leafs.
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ExtLeafs(com, `)

1 : if h−1[com] = ⊥:
2 : (pre1, . . . , pre`) := (⊥, . . . ,⊥)
3 : return (pre1, . . . , pre`)
4 : if ` = 1 : return h−1[com]
5 : parse h−1[com] = (com0, com1)
6 : pre0 := ExtLeafs(com0, d`/2e)
7 : pre1 := ExtLeafs(com1, `− d`/2e)
8 : return (pre0, pre1)

H(x)

1 : if h[x] = ⊥:
2 : y←$ {0, 1}n

3 : if ∃x′ : h[x′] = y :
4 : return ⊥
5 : if h[y] 6= ⊥:
6 : return ⊥

7 : h[x] := y, h−1[y] := x

8 : return h[x]

Fig. 5. Algorithm ExtLeafs and random oracle H : {0, 1}∗ → {0, 1}n. In the proof of
Theorems 2 and 4, the random oracles Hr,Hc are simulates as it is presented here.

Lemma 2. Let N = poly(n) be a natural number. Consider an oracle H :
{0, 1}∗ → {0, 1}n and algorithm ExtLeafs as defined in Figure 5. Let com ∈
{0, 1}n and assume that the output (pre1, . . . , preN ) of ExtLeafs(com, N) satisfies
that there is no i ∈ [N ] such that prei = ⊥. Then treeH(pre1, . . . , preN ) = com.

Next, we show the following two simple lemmas, which state that if the algorithm
ExtLeafs can not extract all leafs from a given Merkle commitment, then it is
statistically hard for an adversary to open it afterwards.

Lemma 3. Let N = poly(n) be a natural number. Consider an oracle H :
{0, 1}∗ → {0, 1}n and algorithm ExtLeafs as defined in Figure 5. Further, for any
adversary A consider the following game:

1. Run (com, St)← AH(1n).
2. Run (pre1, . . . , preN )← ExtLeafs(com, N) and let

L := {i ∈ [N ] | prei = ⊥}

be the set of indices of leafs that cannot be extracted from com.
3. Run (x1, . . . , xN )← AH(St).
4. Output 1 if and only if L 6= ∅ and com = treeH(x1, . . . , xN ).

Denote the number of queries to H made by A by Q. Then the probability that
the game outputs 1 is at most Q/2n.

Proof. We prove the statement via (strong) induction over N . For N = 1, the
game outputs 1 if and only if H(x1) = com, but in step 2 we have h−1(com) = ⊥.
As com is fixed after step 1, for each of the following queries to H the resulting
image is equal to com with probability at most 2−n. A union bound leads to the
desired bound.

Now, let N > 1. The induction hypothesis is that the statement holds for all
N ′ < N . We distinguish two cases.



Pika ! 33

In the first case, we assume that h−1(com) = ⊥ in step 2. Here an analogous
argument as above is sufficient.

In the second case, we have h−1(com) = (com0, com1) and L 6= ∅ in step 2.
Define

L0 := L ∩ [dN2 e], L1 := L \ L0.

Clearly, at least one of these two sets is not empty. Without loss of generality,
assume that L0 6= ∅. Denote the event that we are in this case and the game
outputs 1 by bad. Then we can apply the induction hypothesis to dN/2e, com0, L0
and x1, . . . , xdN/2e to bound the probability of bad. The claim follows.

To be more precise, we can construct a reduction that wins the game for
N ′ := dN/2e if the game outputs 1 in the case specified above. The reduction is
as follows: It gets as input the parameter 1n and access to an oracle H. It runs A
with access to H and obtains a commitment com. Note that the reduction forwards
queries H(x) from A to its own game and can keep track of the associative array
h−1[·] that its own game holds. Then, A outputs x1, . . . , xN , and the reduction
retrieves h−1(com) = (com0, com1), which is defined by assumption. It outputs
com0 to its own game. Then, it outputs x1, . . . , xdN/2e to its own game. Clearly, if
bad occurs, then the reduction wins its own game. Thus, the induction hypothesis
implies that the probability of bad is at most Q/2n. ut

Lemma 4. Let N = poly(n) be a natural number. Consider an oracle H :
{0, 1}∗ → {0, 1}n and algorithm ExtLeafs as defined in Figure 5. Further, for any
adversary A consider the following game:

1. Run (com, St)← AH(1n).
2. Run (pre1, . . . , preN )← ExtLeafs(com, N) and let

L := {i ∈ [N ] | prei = ⊥}

be the set of indices of leafs that cannot be extracted from com.
3. Sample J←$ [N ] and run (x1, . . . , xJ−1, η, xJ+1, xN )← AH(St, J).
4. Output 1 if and only if L \ {J} 6= ∅ and com = ptreeH

J (x1, . . . , xJ−1, η, xI+1,
. . . , xN ).

Denote the number of queries to H made by A by Q. Then the probability that
the game outputs 1 is at most Q/2n.

Proof. We prove the statement via (strong) induction over N . For N = 1, the
statement holds trivially, as L \ {J} is always the empty set.

For N > 1 we distinguish two cases. The induction hypothesis is that the
statement holds for all N ′ < N .

First, if h−1(com) = ⊥ in step 2, then for each of the the queries H(x) made
by A after step 1 the probability that the hash value is equal to com is at most
2−n. Hence, a union bound leads to the desired upper bound.

The second case we consider is that h−1(com) = (com0, com1). Define

L0 := L ∩ [dN2 e], L1 := L \ L0.
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Without loss of generality, we assume J ∈ [dN/2e]. Then, if L1 6= ∅, the claim
follows by applying Lemma 3 to N − dN/2e, com1, L1 and xdN/2e+1, . . . , xN . To
be more precise, we construct a reduction that wins the game in Lemma 3 for
N ′ := N − dN/2e. The reduction has access to an oracle H and runs A by
forwarding queries from A to H. Thereby it can also keep track of the associative
array h−1[·]. When A outputs com, it retrieves h−1(com) = (com0, com1) and
outputs com1 to its own game. Then, when A outputs x1, . . . , XN , it outputs
xdN/2e+1, . . . , xN to its own game.

Otherwise, if L1 = ∅, then L0 = L and L0 \ {J} 6= ∅. Thus, we can apply the
induction hypothesis to dN/2e, com0, L0 and x1, . . . , xJ−1, η, xJ+1, . . . , xdN/2e.
Again, this can be done more formally by providing a reduction similar to the
one discussed above. ut

C Randomness Homomorphic Commitment from RSA

To instantiate the randomness homomorphic commitment scheme, we show that
a folklore commitment scheme based on the RSA assumption is randomness
homomorphic. From another point of view, this scheme can be obtained from the
Guillou-Quisquater identification scheme [20]. The commitment key ck contains
public parameters (N, e) such that N = pq for two distinct n-bit primes, e is
prime and gcd(e, ϕ(N)) = 1 as well as an element y := xe mod N , where x←$ Z∗N .
Commitment and Translation algorithms for m ∈ Ze, r ∈ Z∗N , µ ∈ Z∗N are defined
as follows:

Com(ck,m; r) := reym mod N

Translate(ck, µ, r) := reµ mod N.

It is easy to observe that translation is complete and the commitment is perfectly
hiding. To see that it is computationally binding, note that given two pairs
(m0, r0), (m1, r1) ∈ Ze×Z∗N with m0 6= m1 and Com(ck,m0; r0) = Com(ck,m1; r1)
we have

re0y
m0 ≡ re1ym1 (mod N).

Without loss of generality we have m0 > m1 and as e is prime we have gcd(e,m0−
m1) = 1. Thus, we can apply Shamir’s trick to

(r−1
0 r1)e ≡ ym0−m1 (mod N)

and derive an e-th root of y.

D Randomness Homomorphic Commitment from DLOG

We also show that the standard Pedersen commitment scheme [31] is randomness
homomorphic. Recall that in this scheme, the commitment key is a pair of
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group elements g, h, where (G, g, p)← GGen(1n). Commitment and Translation
algorithms for m ∈ Zp, r ∈ Zp, µ ∈ G are defined as follows:

Com(ck,m; r) := gr · hm

Translate(ck, µ, r) := gr · µ.

It is well-known (and easy to see) that the scheme is perfectly hiding and
computationally binding under the DLOG assumption relative to GGen. Also,
completeness of translation is easy to see.

E Puncturable Pseudorandom Function

We instantiate the puncturable pseudorandom function PRF using the classical
GGM construction [18]. As our framework is defined in the random oracle model,
we also instantiate the GGM construction using random oracles. The construction
is as follows. Let H : {0, 1}∗ → {0, 1}2n be a random oracle. For simplicity, we
write H(x) = (H0(x),H1(x)) for any x to separate the output of H into two n-bit
strings. Keys are random strings of length n and for ` ∈ N, x ∈ {0, 1}`, k ∈ {0, 1}n
we define

GGM0,k() := k, GGM`,k(b ‖ x) := GGM`−1,Hb(k)(x)

Then the evaluation of the pseudorandom function with key k ∈ {0, 1}n on input
x ∈ {0, 1}d(n) is PRF.Eval(k, x) := GGMd(n),k(x). We also define an algorithm
Puncture`(k,X) to puncture keys at a set of points ∅ 6= X ⊆ {0, 1}` as follows:
We set Puncture0(k,X) := ∅ and

– Set kX := ∅ and (k0, k1) := H(k).
– Define sets Xb := {x | (x1, x) ∈ X ∧ x1 = b} for b ∈ {0, 1}.
– If X0 = ∅, set kX := kX ∪ {k0}. Else set kX := kX ∪ {Puncture`−1(k0, X0)}.
– If X1 = ∅, set kX := kX ∪ {k1}. Else set kX := kX ∪ {Puncture`−1(k1, X1)}.
– Return kX .

Note that this algorithm always terminates. We set PRF.Puncture(k,X) :=
Punctured(n)(k,X). Also, note that punctured a punctured key contains all
information needed to evaluate the pseudorandom function at inputs that are
not in X. Using a proof by induction over d(n) and |X|, one can easily show that
the number of elements in kX is at most (d(n)− 1)|X|+ 1.

It remains to show pseudorandomness on punctured points.
Lemma 5. Let H : {0, 1}∗ → {0, 1}2n be a random oracle and consider the
puncturable pseudorandom function PRF as defined above. Let A be a PPT
algorithm that makes at most Q queries to H. Then the advantage of A in the
pseudorandomness game for PRF is at most

(2d(n)− 1)Q|X|
2n

where X is the set of points that A outputs and d(n) is the input length.
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Proof. A simple hybrid argument shows that we only have to argue that we
have pseudorandomness for keys which are punctured at one point. Then we can
show the claim by induction over the input length d = d(n). In particular, we
show that for any PPT algorithm making at most Q random oracle queries the
advantage can be bounded by (2d − 1)Q/2n. We start with the case of d = 1.
Let A be a PPT algorithm and assume it outputs X ⊆ {0, 1}, |X| = 1. Let
k←$ {0, 1}n be a random key. Let X = {x}. Conditioned on kX = {H1−x(k)}
the value PRF.Eval(k, x) = Hx(k) is uniformly random unless A queries H(k). As
k is sampled uniformly at random and A can only make a polynomial number
of random oracle queries, a union bound shows that the probability that this
happens is negligible. In more detail the distinguishing advantage can be upper
bounded by Q/2n. Now consider d > 1, let k←$ {0, 1}n be a random key and
let X = {x}, x ∈ {0, 1}d be A’s initial output. Let kX , r be the values that A
gets as input after outputting X. Write x = x1 ‖ x̄ for x1 ∈ {0, 1}, x̄ ∈ {0, 1}d−1.
We show indistinguishability via a sequence of four games. In the first game,
we let kX be the honestly punctured key kX = {s1−x1 = H1−x1(k), k{x̄}} and
r = Eval(k, x) be the real evaluation at input x. In the second game, we set
s1−x1←$ {0, 1}n. Note that similarly to the argument for d = 1, the adversary A
can only distinguish between these two games, if it queries H(k), which happens
with probability at most Q/2n. In the third game, we sample r←$ {0, 1}n. Note
that any distinguisher between the second and the third game can be turned
into a distinguisher for input length d− 1 with the same advantage by a straight
forward reduction. Hence, using the induction hypothesis, the advantage of
A in distinguishing the second and the third game can be upper bounded by
(2(d− 1)− 1)Q/2n. Finally, we undo the change we did in the second game. That
is, we set s1−x1 = H1−x1(k). Again, the advantage of distinguishing between the
third and fourth game is at most Q/2n. In total, we obtain that the advantage
of A in distinguishing between the real value of the pseudorandom function at
input x and a random string is at most (2d− 1)Q/2n. ut

F Ommitted Chernoff Bound

Lemma 6. For a sum X of independent {0, 1}-random variables and any s >
µ := E [X] it holds that

Pr [X ≥ s] ≤ exp(3E [X]− s).

Proof. The proof is similar to [25]. Recall the standard Chernoff bound for all
δ > 0:

Pr [X ≥ (1 + δ) · E [X]] ≤ exp
(
−E [X] δ2

2 + δ

)
.
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Using x2 > (x+ 2)(x− 2) for all x ≥ 0 we obtain

Pr [X ≥ s] = Pr
[
X ≥

(
1 +

(
s

E [X] − 1
))
· E [X]

]
≤ exp

(
−E [X] (s/E [X]− 1)2

2 + (s/E [X]− 1)

)
≤ exp

(
−E [X]

(
s

E [X] − 3
))

= exp (3E [X]− s) .

ut

G Ommitted Analysis of Our Scheme from RSA

In this section we formaly analyze our RSA-based Scheme, which we ommitted
in the main body.

G.1 Invertibility of the OGQ Linear Function

Recall the definition of algorithm Invert(td, z) for z ∈ Z∗N :

– Use p and q to compute ρ ∈ Z such that ρλ mod ϕ(N) = 1.
– Sample x←$ Zλ and set y := (za−x)ρ mod N . Return (x, y).

Here, we show that Invert outputs properly distributed preimages.
It is clear that for (x, y)← Invert(td, z) we have

F(x, y) = axyλ = ax(za−x)λρ mod ϕ(N) = z (mod N).

Thus, it remains to show that the distributions

D1 :=
{

((x, y), z)
∣∣(x, y)←$ Zλ × Z∗N , z := axyλ mod N

}
and

D2 :=
{

((x, y), z)
∣∣z←$ Z∗N , x←$ Zλ, y := (za−x)ρ mod N

}
are the same. Fix (x0, y0, z0) ∈ Zλ × Z∗N × Z∗N . As a is invertible and y 7→ yλ

defines a permutation on Z∗N , we have

Pr
(x,y,z)←D1

[z = z0] = 1
ϕ(N) = Pr

(x,y,z)←D2
[z = z0].

By conditioning on z = z0 we see that it remains to show that

Pr
(x,y,z)←D1

[(x, y) = (x0, y0) | z = z0] = Pr
(x,y,z)←D2

[(x, y) = (x0, y0) | z = z0].

Here, the left-hand side is equal to 1/λ if z0 = ax0yλ0 mod N and 0 otherwise.
The right-hand side is equal to 1/λ if y0 = (z0a

−x0)ρ mod N and 0 otherwise.
As both conditions are equivalent, we can conclude the analysis.
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G.2 The Boosting Transform

We revisit the boosting transform introduced in [25] for the special case of the
OGQ linear function. The boosting transform defines a blind signature scheme
CCBS as follows.

Key Generation. Algorithm CCBS.Gen(1n) generates keys as:

1. Generate parameters par = (N, a, λ) as above.
2. Sample sk′←$D, set pk′ := F(sk′).
3. Return the public key pk := (par, pk′) and the secret key sk := sk′.

Signature Issuing. The signature issuing protocol of the scheme is presented in
Figure 6. Here, the signer is stateful and its state ctr is intitialized as ctr := 1.

Verification. A signature σ = (c′, s′, ϕ∗) is verified with respect to a message m
via algorithm CCBS.Ver(pk = (par, pk′),m, σ), which is as follows:

1. Compute the commitment µ∗ := Ĥ(m, ϕ∗)
2. Return 1 if c′ = H(µ∗,F(s′) · pk′−c

′
). Otherwise return 0.

We highlight that for the proof of one-more unforgeability in [25] it is not
important that the commitments µi are computed using a random oracle. In
fact, what it needed is only that this commitment is binding. Indeed, it is easy
to see that the proof goes through using any binding commitment scheme. We
denote this modified scheme using a commitment scheme CMT by CCBS[CMT].
We summarize the one-more unforgeability bounds of the scheme CCBS[CMT] in
the following theorem. The concrete bounds can easily be derived from [21,25].

Theorem 5. Let CMT be a randomness homomorphic commitment scheme.
Further, let H : {0, 1}∗ → Zλ, Ĥ : {0, 1}∗ → {0, 1}n be random oracles. Then
CCBS[CMT] satisfies one-more unforgeability, if the RSA assumption holds relative
to RSAGen.

Precisely, for every adversary against the OMUF security of CCBS[CMT] that
has advantage ε and makes at most QH, QĤ queries to oracles H, Ĥ, respectively,
starts at most p interactions with his signer oracle, and runs in time t, there
exists an adversary against the binding property of CMT with running time t and
success probability εCMT and two algorithms solving the RSA assumptions in time
2t, t with success probability εRSA, εRSA′ , respectively, such that

εRSA ≥
1

Q2
H`

3

(
ε

4 −
stat
2 − εCMT

2 − pεRSA′

2 − (QH(p− `))`+1

λ

)3

,

where stat =
(
Q2

Ĥ + pQĤ + p4 + p2QH

)
/2n and ` = 3 ln(p+ 1) + ln(2/ε).
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S(sk); state ctr U(pk,m)

ctr := ctr + 1, N := ctr N for j ∈ [N ] :

αj←$D, βj←$ Z∗N
γj←$ {0, 1}n

ϕj←$ {0, 1}n

µj := Ĥ(m, ϕj)
ϕj←$Rck

µj := Com(m;ϕj)

for j ∈ [N ] : com1, . . . , comN comj := Ĥ(αj , βj , µj , γj)

rj←$D, Rj := F(rj) R1, . . . , RN for i ∈ [N ] :

R′j := Rj · F(αj) · pk′βj

c′j := H(µj , R′j)

J←$ [N ] c1, . . . , cN cj := c′j + βj

for j ∈ [N ] \ {J} : J

if comj 6= Ĥ(αj , βj , µj , γj) : {(αj , βj , µj , γj)}j 6=J

abort

R′j := Rj · F(αj) · pk′βj

if cj 6= H(µj , R′j) + βj :
abort

sJ := rJ ◦ sk′cJ sJ if F(sJ) 6= RJ · pk′cJ :

abort
s′J := sJ ◦ αJ

◦ Ψ(pk′, cJ ,−c′J)
return σ := (c′J , s′J , ϕJ)

Fig. 6. The signature issuing protocol of the blind signature scheme CCBS obtained via
the boosting construction, where H : {0, 1}∗ → Zλ, Ĥ : {0, 1}∗ → {0, 1}n are random
oracles. The state ctr of S is atomically incremented at the beginning of every interaction.
Instead of generating the commitments µi via a random oracle, we can also generate it
via a commitment scheme (highlighted line). As long as it is binding, one can easily
verify that the proof goes through.
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G.3 One-More Unforgeability

Proof (of Theorem 4). Set BS := BSRSA. Let A be an adversary against the
OMUF security of BS. We denote its advantage in the one-more unforgeability
game by ε. We prove the statement via a sequence of games. Parts of the proof
are taken verbatim from the proof of Theorem 2.

Game G0: We start with game G0 := OMUFABS, which is the one-more unforge-
ability game. We briefly recall this game. First, a key pair (pk, sk)← Gen(1n) is
sampled and A is run with concurrent access to an interactive oracle O simulating
the signer S(sk). We denote the number of completed interactions between A
and O after A’s execution by `. As we consider the random oracle model, A also
gets access to random oracles H,H′,Hr and Hc, which are provided by the game
in the standard lazy manner. When A finishes its execution, it outputs tuples
(m1, σ1), . . . , (mk, σk) and wins, if all mi are distinct, k > ` and all signatures σi
verify with respect to pk and mi.

Game G1: This game is as G0, but we rule out collisions for oracles Ht, t ∈ {r, c}.
To be more precise, we change the simulation of oracles Ht, t ∈ {r, c} in the fol-
lowing way. If A queries Ht(x) and this value is not yet defined, the game samples
an image y←$ {0, 1}n. However, if there exists an x′ 6= x with Ht(x′) = y, the
game returns ⊥. Otherwise it behaves as before. Note that A can only distinguish
between G0 and G1 if such a collision happens, i.e. Ht returns ⊥. We can apply
a union bound over all Q2

Ht pairs of random oracle queries and obtain

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤
Q2

Hr

2n +
Q2

Hc
2n .

Game G2: In game G2 we add another change to the random oracles Ht, t ∈
{r, c}. We again sample y←$ {0, 1}n if Ht(x) is not yet defined. This time, we
also check if Ht(y) is already defined and return ⊥ if this is the case. The detailed
behavior of oracle Ht can be found in Figure 5. Note that the adversary A can
only distinguish between G1 and G2 if such a chain happens, i.e. Ht returns ⊥
because Ht(y) was already defined. Again, we can apply a union bound over all
Q2

Ht pairs of random oracle queries and obtain

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤
Q2

Hr

2n +
Q2

Hc
2n .

To summarize the changes we did so far, we ruled out two patterns for random
oracle queries:

1. Collisions: ∃x 6= x′ : Ht(x) = Ht(x′).
2. Chains: ∃x : query Ht(Ht(x)) was made before query Ht(x).

In particular, this implies that at each point of the execution of the game and for
each image y ∈ {0, 1}n, there is at most one preimage H−1

t (y) under Ht. Further,
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note that for any x0 ∈ {0, 1}n the sequence (xi)i with xi := H−1
t (xi−1) for i ∈ N

does contain any repeating value. Indeed, such a cycle could only be produced
if the adversary managed to form a chain, which was ruled out. Note that this
implies that algorithm ExtLeafst given in Figure 5 always terminates.

Game G3: In game G3, we change the way the signing oracle is executed.
Whenever A sends comr, µ0 as its first message, the game tries to extract the
messages from this commitment using algorithm ExtLeafsr, i.e. it runs

(̄r1, . . . , r̄N )← ExtLeafsr(comr, N).

If there is a session j ∈ [N ] such that r̄j = ⊥, i.e. the algorithm ExtLeafsr could
not extract the randomness for that session, and later in that execution J 6= j
but algorithm Check outputs 1, the game aborts. Denote this event by bad1.
The probability of bad1 is an upper bound on the distinguishing advantage of A
between G2 and G3. For each fixed interaction, we can bound the probability of
this event (with respect to that interaction) by a straight forward reduction from
the game in Lemma 4. By a union bound we obtain

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ Pr [bad1] ≤ pQHr

2n .

Game G4: Again, we change the signing oracle by introducing an additional
abort. Namely, whenever the adversary sends the commitment comc as its second
message, the game runs

(c̄1, . . . , c̄N )← ExtLeafsc(comc, N).

That is, it tries to extract the leafs from the commitment comc using the random
oracle Hc via algorithm ExtLeafsc. Then, if there is an index j ∈ [N ] such that
c̄j = ⊥, i.e. the game was not able to extract, but later algorithm Check outputs
1, the game aborts and we say that the event bad2 occurs. Note that algorithm
Check internally checks if

comc 6= treeHc(c1, . . . , cN ).

Thus, it is possible to construct a straight forward reduction from the game in
Lemma 3 to bound the probability of bad2 in a fix interaction and hence the
distinguishing advantage of A between G3 and G4. We obtain

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ Pr [bad2] ≤ pQHc
2n .

Game G5: This game aborts whenever the following bad event occurs. The
event is defined as follows: The game samples seed after A sends its first message
of an interaction with the signer oracle and at this point there exists an index
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j ∈ [N ] such that H′(seed, j) is already defined. As seed is sampled uniformly at
random from {0, 1}n and hidden from A until the point of the potential abort, a
union bound over all hash queries and interactions shows that

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ pQH′

2n .

Game G6: In G6, the signer oracle sends a random comJ in the beginning of
each interaction. Later, before it has to send J, salt, it samples J←$ [N ] and
salt←$ {0, 1}n and aborts if H′′(J, salt) is already defined. If it is not yet defined,
it defines it as H′′(J, salt) := comJ . The adversary A can only distinguish between
G5 and G6 if H′′(J, salt) is already defined. By a union bound over all QH′′ hash
queries and p interactions we obtain

|Pr [G5 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ pQH′′

2n .

Let us summarize what we have so far. We changed the game step by step
and ruled out the following types of bad events:

1. The adversary sends some commitment for which the game can not extract
some of the committed values, but later the adversary can open it successfully.

2. The game samples a random seed such that the random oracle values of
interest are already defined for that seed.

In particular, from the first property we can derive that whenever the game
does not abort, it could successfully extract values all of the values c̄1, . . . , c̄N .
Additionally, we know by the collision freeness of Hc that we must have cj = c̄j
for all j ∈ [N ]. A similar statement holds for the r̄j . Here, it can only be the
case that the game can not extract a single r̄j but later J = j. On the other
hand, the second property tells us that a potential reduction simulating G6 can
program the random oracle before sending the seed or the cut-and-choose index
J to the adversary. We will use these properties to construct a (tight) reduction
B that breaks the one-more unforgeability of CCBS[CMT] whenever G6 outputs
1. Reduction B works as follows:

– B gets as input pk = (par, pk′, ck) and oracle access to a signer oracle Ô
and random oracles H, Ĥ for blind signature scheme CCBS[CMT]. It runs A
with input pk and oracle access to random oracles H,H′,H′′,Hr and Hc and a
signer oracle O. The oracles H′,H′′ are simulated honestly by B and oracles
Hr,Hc are simulated exactly as in game G6.

– When adversary A queries oracle O to start an interaction, the reduction B
behaves as follows:
• It starts an interaction with oracle Ô and obtains a parameter N as the

first message. It forwards N, comJ to A, where comJ←$ {0, 1}n.
• When A sends its first message comr, µ0, B extracts via (̄r1, . . . , r̄N )←

ExtLeafsr( ¯comr,i, N). For each such j ∈ [N ] for which r̄j is defined, it
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parses r̄j = (ᾱj , β̄j , ϕ̄j , γ̄j) and sets µ̄j := Translate(ck, µ0, ϕ̄j). Then
it defines comj := Ĥ(ᾱj , β̄j , µ̄j , γ̄j). For the remaining j, it samples
comj←$ {0, 1}n. Finally, it sends com1, . . . , comN to its oracle Ô.

• The oracle Ô returns R1, . . . , RN . Then, B samples seed←$ {0, 1}n. It
aborts, if there exists an index j ∈ [N ] such that H′(seed, j) is already
defined. Otherwise, it programs H′(seedR, j) := Rj for all j ∈ [N ] and
sends seed to A.

• When A sends its second message comc, the game extracts values c̄i
via (c̄1, . . . , c̄N )← ExtLeafsc(comc, N). For each j ∈ [N ] for which c̄j is
defined, it sets c′j := c̄j . For the remaining j, it sets c′j←$S. It sends
c′1, . . . , c

′
N to Ô.

• The oracle Ô returns an index J ∈ [N ], whereupon reduction B samples
salt←$ {0, 1}n and aborts if H′′(J, salt) is already defined. Otherwise it
sets H′′(J, salt) := comJ and sends J, salt to A.

• When adversary sends its third message kJ , cJ , η, algorithm B runs
algorithm Check. If this algorithm returns 0, B aborts this interaction.
If it outputs 1 it aborts the entire execution if one of the following two
conditions hold

∗ There is some index j ∈ [N ] such that cj = ⊥.
∗ There is some index j ∈ [N ] such that j 6= J and r̄j = ⊥.

Otherwise, B sends {(ᾱj , β̄j , µ̄j , γ̄j)}j 6=J to Ô. Note that these values are
defined by the second condition that has been checked before.

• The oracle Ô returns sJ and B forwards it to A.
– When A outputs (m1, σ1), . . . , (mk, σk), B outputs (m1, σ1), . . . , (mk, σk).

It is easy to see that the values R1, . . . , RN are distributed uniformly over Z∗N 4

and therefore the programming of the random oracle H′ is done correctly. Further,
we claim that whenever B does not abort during the interaction, the signing oracle
Ô will also not abort. From this claim it follows that the simulation provided by
B is perfect. To see that the claim is true, note that Ô could abort the signing
interaction for two reasons: First, it may abort as there exists some j ∈ [N ] such
that j 6= J and comj 6= Ĥ(ᾱj , β̄j , µ̄j , γ̄j). However, this can not happen due to the
way B defines comj . The second reason for an abort is that there exists a j ∈ [N ]
such that j 6= J and c′j 6= H(µ̄j , Rj · F(ᾱj) · pk′β̄j ) + β̄j . However, as we already
noticed above, if G6 does not abort, then we have c′j = cj , µ̄j = µj , ᾱj = αj and
β̄j = βj and thus the B itself would have aborted as Check returns 0. Finally, it
is clear that B wins the one-more unforgeability game whenever G6 outputs 1,
as B outputs A’s output and completes as many interactions with oracle Ô as A
completes with O. The statement follows by an easy calculation. ut

G.4 Blindness

Lemma 7. For any algorithm A and bit b ∈ {0, 1}, we consider the following
game Gb:

4 This property is called smoothness in [21].
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1. Sample parameters par = (N, a, λ) and a trapdoor td = (p, q) as above. Sample
sk′←$D, set pk′ := F(sk′). Let H : {0, 1}∗ → Zλ be a random oracle. Run
(m0,m1, St)← AH(par, pk′, td, sk′).

2. Let Ob′ for b′ ∈ {0, 1} be an interactive oracle. Upon termination, it locally
outputs σb⊕b′ to the game. The oracle is defined as follows:
(a) Receive R from A, sample (α, β)←$D×Zλ, set R′ := R · F(α) · pk′β. Set

c′ := H(mb⊕b′ , R
′) and c := c′ + β. Send c to A.

(b) Receive s from A. If F(s) 6= R · pk′c, define the local output of this oracle
to be σb⊕b′ := ⊥. Otherwise, set s′ := s ◦ α ◦ Ψ(pk′, c,−c′) and define
the local output of this oracle to be σb⊕b′ := (c′, s′).

3. Run A on input St with arbitrary interleaved one-time access to each of these
oracles, i.e.

St′ ← AO0,O1,H(St).

4. If σ0 = ⊥ or σ1 = ⊥, then run b∗ ← A(St′,⊥,⊥). Else, run b∗ ←
A(St′, σ0, σ1). Output b∗.

Then, for each algorithm A that makes at most QH many queries to H we have

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ 2QH
Z∗N

.

Proof. This is a direct application of Theorem 5.8 in the full version of [21]. To
be more precise, [21] show that the distinguishing advantage of any adversary is
zero as long as it never queries H(·, R′), where R′ is the value that the oracle Ob′

inputs into H in step 2a. Note that R′ is uniform over Z∗N as F(α) is. Therefore,
a union bound implies that the probability that the adversary queries H(·, R′) is
at most QH/Z∗N per oracle. ut

Proof (of Theorem 3). Set BS := BSRSA. Let A be a PPT algorithm and denote
its advantage with respect to blindness by ε. In terms

ε :=
∣∣∣Pr
[
BLINDA0,BS(n)⇒ 1

]
− Pr

[
BLINDA1,BS(n)⇒ 1

]∣∣∣ .
We will show the statement via a sequence of games. Unless otherwise stated,
random oracles are simulated honestly via lazy sampling.

Game G0,b: GameG0,b is defined as the real blindness game BLINDAb,BS. Recall
that the game first samples (pk, sk)← Gen(1n) and obtains two messages m0,m1
from the adversary A. Afterwards, A will interact with two oracles O0 and
O1, simulating U(pk,mb) and U(pk,m1−b), respectively. We will reference to the
variables used in these execution using superscripts L and R, respectively. For
example, JL refers to the index J sent by A in the interaction with oracle O0. If
we omit the superscript, we mean that our description applies to both oracles.
According to this, NL and NR denote the cut-and-choose parameters sent by
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A in the first message of the interaction with oracles O0,O1, respectively. By
definition, we have

ε = |Pr [G0,0 ⇒ 1]− Pr [G0,1 ⇒ 1]| .

Game G1,b: Game G1,b is exactly as game G0,b, except that it aborts whenever
there is a collision for random oracle H′′. That is, whenever there are queries
H′′(x) = H′′(x′) for x 6= x′. Clearly, the distinguishing advantage between games
G1,b and G0,b can be bounded by the probability of such a collision, which leads
to

|Pr [G0,b ⇒ 1]− Pr [G1,b ⇒ 1]| ≤ Q2
H′′

2n .

Game G2,b: Game G2,b is exactly as game G1,b, except that we introduce
another abort. In this game, whenever the adversary sends N, comJ as its first
message, the game searches for a query H′′(Ĵ , ˆsalt) = comJ . Note that the
game can find at most one such query due to the previous change. If the game
does not find such a query, but later the user does not abort, as the adversary
successfully opens comJ by sending J, salt, the game aborts. It is easy to see that
the probability of this event is at most QH′′/2n for fixed comJ and thus a union
bound over {L,R} leads to

|Pr [G1,b ⇒ 1]− Pr [G2,b ⇒ 1]| ≤ QH′′

2n−1 .

Note that from now on, we can focus on the case where the game is able to
find the query H′′(Ĵ , ˆsalt) = comJ , as otherwise the user oracle does abort. In
particular, this implies that Ĵ = J . If the user oracle does abort, the adversary
does not learn anything about the bit b as CMT is perfectly hiding and no
information about the randomness ϕ0 is ever revealed to A. For the rest of the
proof, Ĵ denotes the cut-and-choose index that is extracted by the game from
the commitment comJ and J is the cut-and-choose index that is later sent by A
to open comJ . As said, we focus on the case where these are equal.

Game G3,b: Game G3,b is defined exactly as G2,b, except that we change the
way the randomness seeds prerj are generated. Recall that before, these values
were generated as in the real scheme, i.e.

prerj := PRF.Eval(k, j) for all j ∈ [N ].

Instead, we now generate these values using a punctured key kĴ for j 6= Ĵ ,
and as before for j = Ĵ . To be precise, at the beginning of the interaction,
we sample k ← PRF.Gen(1nPRF , 1log(N)) as before, but additionally generate
kĴ ← PRF.Puncture(k, Ĵ). Then we sample

prerĴ := PRF.Eval(k, Ĵ)



46 B. Wagner, L. Hanzlik, J. Loss

and
prerj := PRF.Eval(kĴ , j) for all j ∈ [N ] \ {Ĵ}.

Clearly, by the completeness of PRF this is only a syntactical change, and hence

Pr [G3,b ⇒ 1] = Pr [G2,b ⇒ 1].

Game G4,b: In game G4,b, we change the way we generate the values prerL
ĴL

.
Namely, we sample prerL

ĴL
←$ {0, 1}nPRF. The difference between G3,b and G4,b

can now be bounded using the security of the puncturable pseudorandom function
PRF. To be precise, we construct a reduction B as follows:

– Sample (pk, sk)← Gen(1n) and run (m0,m1, St)← A(pk, sk).
– Run A on input St with access to random oracles and interactive oracles

O0,O1, i.e. St′ ← AO0,O1(St). The oracle O1 is provided as in game G3,b
and oracle O0 is provided as follows:
• When A sends NL, comL

J , extract ĴL from comL
J as game G3,b does and

output ĴL to the PRF challenger. Obtain the punctured key kĴL and
value prerL

ĴL
.

• Use kĴL to sample prerLj for j ∈ [NL] \ {ĴL} as in G3,b. Continue the
oracle simulation as in G3,b. According to this, if the simulation does not
abort, send the key kĴL in the sixth message of the interaction.

– Let σb, σ1−b be the local outputs of O0,O1, respectively. If σ0 = ⊥ or
σ1 = ⊥, then run b′ ← A(St′,⊥,⊥). Else, run b′ ← A(St′, σ0, σ1) and
output b′.

Note that if prerL
ĴL
i

is random, then B perfectly simulatesG4,b, whereas if prerL
ĴL
i

=
Eval(k, Ĵ), B perfectly simulates G3,b. By the security of PRF with input length
log(NL) we obtain

|Pr [G3,b ⇒ 1]− Pr [G4,b ⇒ 1]| ≤ εPRF.

Game G5,b: In game G5,b, we change the way we generate prerR
ĴR

. Namely, we
sample prerR

ĴR
←$ {0, 1}nPRF . Note that we can repeat the argument we used from

G3,b to G4,b and obtain

|Pr [G4,b ⇒ 1]− Pr [G5,b ⇒ 1]| ≤ εPRF.

Game G6,b: In game G6,b, we change the way we compute rĴ . Note that in G5,b
this was computed as rĴ := Hx(prerĴ). Now, we sample it randomly as

rĴ = (αĴ , βĴ , ϕĴ , γĴ)←$D × Zλ ×Rck × {0, 1}nPRF .
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Note that the adversary can only distinguish between games G5,b and G6,b if
it queries Hx(prerĴ). However, A obtains no information about prerĴ , which is
sampled uniformly at random. By a union bound over all hash queries and {L,R}
we obtain

|Pr [G5,b ⇒ 1]− Pr [G6,b ⇒ 1]| ≤ 2QHx
2nPRF

.

Game G7,b: Game G7,b is as G6,b, except that it computes comr in different
way. In detail, it samples η←$ {0, 1}n and computes the comr in a pruned way,
i.e.

comr := ptreeHr
Ĵ

(r1, . . . , rĴ−1, η, rĴ+1, . . . , rN )

Later it returns η as part of its third message. Note that A can only see the
difference between G6,b and G7,b if it queries Hr(rXĴX ) for an X ∈ {L,R}. Note
that A obtains no information about γĴ and γĴ is sampled uniformly at random.
We can apply a union bound over all QHr random oracle queries and X ∈ {L,R}
and obtain

|Pr [G6,b ⇒ 1]− Pr [G7,b ⇒ 1]| ≤ 2QHr

2nPRF
.

Game G8,b: In game G8,b we change the way the commitment µĴ is generated.
Recall that in G7,b, this is generated as

µĴ := Translate(ck, µ0, ϕĴ) = Com(ck,m;ϕ0 + ϕĴ).

Note that if the game does not stop, then especially Ĵ = J and ϕ∗ = ϕ0 + ϕĴ .
In game G8,b, we sample ϕ∗←$Rck and set µĴ := Com(ck,m;ϕ∗). We can argue
that the view of A is unchanged as follows. Note that due to the previous changes,
A gets no information about ϕĴ . Thus, we have to consider the distribution of
the value ϕ∗ = ϕ0 +ϕĴ conditioned on kĴ , (ϕ0 +ϕj)j 6=Ĵ and ϕ0. This distribution
is uniformly random as ϕĴ is uniformly random. Hence we have

Pr [G8,b ⇒ 1] = Pr [G7,b ⇒ 1].

Game G9,b: In game G9,b, we change the way µ0 is generated. In particular, we
sample a random message m̄L (resp. m̄R) and set µ0 := Com(ck, m̄;ϕ0). Note that
in G9,b the value ϕ0 is only needed to compute µ0. Especially, it is not needed to
compute the value ϕ∗ due to the previous changes. It follows from the security
of CMT that Com(ck, m̄;ϕ0) and Com(ck,m;ϕ0) are identically distributed given
ck. Therefore, the view of A is not affected by this change and we obtain

Pr [G9,b ⇒ 1] = Pr [G8,b ⇒ 1].
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Note that in G9,b, the only part of the oracles O0,O1 that depends on bit b
is the Ĵ-th session. Also, note that each session by itself corresponds to the user
algorithm of the linear blind signature scheme [21], which is statistically blind.
We showed this in Lemma 7. Thus, we can reduce from the games in Lemma 7
to bound A’s advantage in distinguishing between G9,0 and G9,1. To do so, we
construct an unbounded reduction B′ as follows:

– B′ obtains (par, pk′, td, sk′) from its own challenger and samples a commitment
key ck← CMT.Gen(1n). It invokes (m0,m1, St)← A((par, pk′, ck), (td, sk′)).
Then, B′ samples ϕ∗0, ϕ∗1←$Rck and sets

µ∗0 := Com(ck,m0;ϕ∗0), µ∗1 := Com(ck,m1;ϕ∗1).

It outputs µ∗0, µ∗1 and its state to its challenger.
– B′ is executed with access to oracles O′0 and O′1, which simulate the user of

the protocol BSlin. Also, B′ has access to a random oracle H. B′ simulates
all random oracles except H′′ honestly for A, which involves appropriately
forwarding queries fromA to its challenger for oracle H. Oracle H′′ is simulated
as in game G9,b, b ∈ {0, 1}, i.e. it is simulated honestly but the simulation
is aborted whenever a collision occurs. It runs A on input St with access to
random oracles and interactive oracles O0,O1, i.e. St′ ← AO0,O1(St). We
describe the simulation of oracle O0. Oracle O1 is simulated analogously by
using O′1 instead of O′0:
• When A sends N, comJ , extract Ĵ from comJ as G9,b, b ∈ {0, 1} does.
Sample k ← PRF.Gen(1nPRF , 1log(N)), kĴ ← PRF.Puncture(k, Ĵ). Sample
randomness rj := PRF.Eval(kĴ , j) for all j ∈ [N ] \ {Ĵ}. Sample ϕ0←$Rck
and a random message m̄ and set µ0 := Com(ck, m̄;ϕ0). Set µj :=
Translate(ck, µ0, ϕj) for j ∈ [N ]\{Ĵ}. . Sample η←$ {0, 1}n and compute
comr := ptreeHr

Ĵ
(r1, . . . , rĴ−1, η, rĴ+1, . . . , rN ). Send µ0 and comr to A.

• Obtain seed from adversary and compute all cj for j ∈ [N ] \ {Ĵ} as in
the scheme using the values µj . For session Ĵ , compute RĴ := H′(seed, Ĵ)
and send RĴ to oracle O′0. Obtain a value cĴ and compute comc :=
treeHc(c1, . . . , cN ). Send comc to A.

• Obtain J, salt from A. If comJ 6= H′′(J, salt) abort the execution of this
oracle. Otherwise it must holds that Ĵ = J . Continue by sending kĴ , cĴ
and η to A.

• Obtain sJ from A and forward it to oracle O′0.
– Obtain signatures σ′0 = (c′0, s′0) and σ′1 = (c′1, s′1) from the challenger and set

σ0 := (c′0, s′0, ϕ∗0), σ1 := (c′1, s′1, ϕ∗1).

Run b′ ← A(St′, σ0, σ1) and return b′ to the challenger.

It is easy to see that if B′ runs in game G0 from Lemma 7, then it perfectly
simulates game G9,0 for A, and if it runs in game G1 from Lemma 7 it perfectly
simulates game G9,1 for A. Also, B′’s output is the output of A and B′ makes as
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many random oracle queries as A does (with respect to random oracle H). We
know by Lemma 7 that B′ has advantage in distinguishing the games G0 and
G1 at most 2QH/|Z∗N |. Hence we have

|Pr [G9,0 ⇒ 1]− Pr [G9,1 ⇒ 1]| ≤ 2QH
|Z∗N |

.

The statement follows from an easy calculation. ut

H Ommitted Analysis of Our Scheme from CDH

Here, we give the remaining parts formal analysis of our scheme from CDH.

Proof (of Theorem 1). This can be proven in an analogous way to Theorem 3.
The only difference is that we puncture the key at K points (one per instance)
and apply the perfect blindness of the underlying blind signature scheme [4,5] K
times. ut

I Concrete Parameters of the Original Boosting Transform

Here we explain how we estimated the concrete efficiency for the boosting
transform [25]. Concretely, we consider the Okamoto-Schnorr instantiation [28] of
it. For simplicity, we ignore statistically negligible terms in the security loss. Also,
we only focus on one-more unforgeability and not on blindness. In comparison
with our schemes, this clearly favors [25].

With this in mind, we combine the concrete bounds given in [25] and obtain
the following. For each adversary against the one-more unforgeability of the
scheme that runs in time t, initiates at most q signature interactions, makes at
most QH hash queries, and has success probability ε, there are algorithms solving
the discrete logarithm problem in time 2t, t with success probability εDLOG, ε

′
DLOG

such that
ε ≤ 4

(
3
√
εDLOGQ2

H`
3 + q

2ε
′
DLOG + q`+1

|Zp|

)
,

where p is the order of the group and ` = 3 ln(q + 1) + ln(2/ε). Assuming κ bits
of security for the underlying discrete logarithm problem, this becomes

ε ≤ 4
(

3
√

2t2−κQ2
H`

3 + q

2 t2
−κ + q`+1

2κ

)
.

To compute a sufficiently large level κ, we consider every combination of ε and
t such that ε/t = 2128 and find the minimum κ such that the above inequality
leads to a contradiction. Then, we take the maximal of these.

We implemented the approach in a Python script, see Supplementary Material
Section J.3.
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J Scripts for Parameter Computation

Here, we present three Python scripts computing paramters of our schemes and
a scheme obtained from the boosting transform. The scripts follow the high
level approaches outlined in Sections 3.3 and 4.3 and Supplementary Material
Section I.

J.1 Parameter Script for Our RSA-based Scheme

Listing 1.1. Python Script to compute the parameters for our RSA-based scheme. A
discussion can be found in Section 4.3.
#!/ usr/bin/env python

import math
from tabulate import tabulate

# ######################################################
# Functions to determine the RSA modulus length for a #
# given hardness , Formulas are taken from #
# eprint .iacr.org ./2019/260 , Section 8.1 #
# ######################################################
def heuristic_nfs_complexity (n, c, a):

exponent = a*( math.log(n)**c)*(( math.log(math.log(n)))**(1.0 -c))
return math.exp( exponent )

def tau( kappa ):
t = 1
while 2** kappa > heuristic_nfs_complexity (2**(2* kappa *t), 1.0/3.0 , (64/9.0) **(1.0/3.0) ):

t = t+1
return t

def security_level_to_RSA_modulus_length ( level ):
return 2* level *tau( level )

# ##########################################################
# Functions to compute the bit sizes of signatures , #
# keys and communication for given modulus , scalar space , #
# commitment modulus and statistical security parameters #
# ##########################################################

def size_pk ( main_modulus_length , commitment_modulus_length , plambda_length ):
#size of parameters : main_modulus ,
# invertible element modulo main_modulus , plambda
par_size = main_modulus_length + main_modulus_length + plambda_length

#size of pk ’: range element , where range is Z_N^x
#and N is the main_modulus
pk_prime_size = main_modulus_length

#size of commitment key: commitment_modulus ,
# element modulo commitment modulus , prime e
# we assume e = 2^16+1
ck_size = commitment_modulus_length + commitment_modulus_length + 17

return par_size + pk_prime_size + ck_size

def size_sig ( main_modulus_length , commitment_modulus_length , plambda_length ):
# signature consists of scalar , domain element and commitment randomness
return plambda_length + ( plambda_length + main_modulus_length ) + commitment_modulus_length

#this returns coefficient of log(N) in the part of
#the communication that grows with log(N).
def size_communication_growing ( main_modulus_length , commitment_modulus_length , plambda_length , secpar ,

↪→ secpar_prf ):
return 2 + secpar_prf

#this returns the part of
#the communication that does not grow with log(N).
def size_communication_constant ( main_modulus_length , commitment_modulus_length , plambda_length , secpar ,

↪→ secpar_prf ):
return 4* secpar + plambda_length + main_modulus_length + commitment_modulus_length
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# #################################################
# Main part of the script , computes level of RSA #
# needed to satisfy a given security level for #
# the scheme for a given number of signatures #
# #################################################

# Notation :
# epsilon : Success probability of adversary
# t : running time of adversary
# p : number of initiated interactions with signer oracle
# q_hash , q_hash_r , ... : number of queries for the respective hash function
# plambda_length : minumum bitlength of the prime lambda
# defining the scalar space of the underlying linear function
# level_main_rsa : security level of the main RSA instance
# level_commitment_rsa : security level of the RSA instance used for the commitment scheme

# Compute the right -hand side of the inequality upper bounding the success probability
# for an adversary against the omuf security of the scheme
def success_probability_upper_bound_omuf ( log_epsilon , log_t , secpar , log_p , log_q_hash , log_q_hash_r ,

↪→ log_q_hash_c , log_q_hash_prime , log_q_hash_prime_prime ,plambda_length , level_main_rsa ,
↪→ level_commitment_rsa ):

p = 2** log_p
q_hash = 2** log_q_hash
q_hash_r = 2** log_q_hash_r
q_hash_c = 2** log_q_hash_c
q_hash_prime = 2** log_q_hash_prime

# statistical terms in the reductions from BS to CCBS and from CCBS to EBS
stat_term_1 = 2**(4* log_p - secpar ) + 2**(3* log_p - secpar ) + 2**(4* log_p - secpar ) + 2**(3* log_p - secpar )
stat_term_2 = 2**(2* log_q_hash_r - secpar +1) + 2**(2* log_q_hash_c - secpar +1) + 2**( log_p + log_q_hash_r -

↪→ secpar ) + 2**( log_p + log_q_hash_c - secpar ) + 2**( log_p + log_q_hash_prime - secpar ) + 2**( log_p +
↪→ log_q_hash_prime_prime - secpar )

# ell_BS : upper bound on the number of finished signature interactions of the linear BS scheme
ell_BS = 3* math.log(p+1) + math.log (2) - math.log (2** log_epsilon - stat_term_2 )
log_ell_BS = math.log(ell_BS ,2)

log_term_a = 1+(2* log_q_hash +3* log_ell_BS +1+ log_t - level_main_rsa )/3.0
log_term_b = 1+(1+ ell_BS )*( log_p + log_q_hash )-plambda_length
log_term_c = 1+ log_t - level_commitment_rsa
log_term_d = 1+ log_p +log_t - level_main_rsa

total = 2** log_term_a + 2** log_term_b + 2** log_term_c + 2** log_term_d + 2* stat_term_1 + stat_term_2
return total

# Compute an RSA level large enough such that
# epsilon <= success_probabilty_upper_bound_omuf ... leads to contradiction .
def rsa_level_from_epsilon_t_combination (level , log_epsilon , secpar , log_p , plambda_length ):

log_t = level + log_epsilon
epsilon = 2** log_epsilon

rhs = epsilon
level_main_rsa = level
level_commitment_rsa = level +10
while rhs >= epsilon :

level_main_rsa = level_main_rsa + 1
#for simplicity , we set all hash query parameters to be the running time
rhs = success_probability_upper_bound_omuf ( log_epsilon , log_t , secpar , log_p , log_t , log_t ,

↪→ log_t , log_t , log_t , plambda_length , level_main_rsa , level_commitment_rsa )

return level_main_rsa

# Compute an RSA level large enough s.t. level bits of security are provided for omuf
def rsa_level_from_security_level (level , secpar , log_p , plambda_length ):

level_main_rsa = level

# we consider every possible combination of epsilon and t and use the highest rsa level .
for minus_log_epsilon in range ( level +1):

log_epsilon = -minus_log_epsilon
l = rsa_level_from_epsilon_t_combination (level , log_epsilon , secpar , log_p , plambda_length )
if l > level_main_rsa :

level_main_rsa = l

return level_main_rsa

# Compute a secpar for prf large enough such that the blindness security bound leads to a contradiction .
def secpar_prf_from_epsilon_t_combination (level , log_epsilon , main_modulus_length , commitment_modulus_length ,

↪→ log_N_LR , secpar ):
log_t = level + log_epsilon
epsilon = 2** log_epsilon

rhs = epsilon
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secpar_prf = level
while rhs >= epsilon :

secpar_prf = secpar_prf + 1
#for simplicity , we set all hash query parameters to be the running time
rhs_term_1 = (2* log_N_LR -1)* 2**( log_t - secpar_prf +2)
rhs_term_2 = 2**(2* log_t - secpar +1)
rhs_term_3 = 2**( log_t - secpar +2)
rhs_term_4 = 2**( log_t - secpar_prf +2)
rhs_term_5 = 2**( log_t - secpar_prf +2)
rhs_term_6 = 2**( log_t - secpar +1)
rhs = rhs_term_1 + rhs_term_2 + rhs_term_3 + rhs_term_4 + rhs_term_5 + rhs_term_6

return secpar_prf

# Compute a secpar for prf large enough s.t. level bits of security are provided for blindness
def secpar_prf_from_security_level (level , main_modulus_length , commitment_modulus_length ,log_N_LR , secpar ):

secpar_prf = level

# we consider every possible combination of epsilon and t and use the highest secpar_prf .
for minus_log_epsilon in range ( level +1):

log_epsilon = -minus_log_epsilon
l = secpar_prf_from_epsilon_t_combination (level , log_epsilon , main_modulus_length ,

↪→ commitment_modulus_length ,log_N_LR , secpar )
if l > secpar_prf :

secpar_prf = l

return secpar_prf

# returns one row of the final table
def table_row (level ,log_p , plambda_length ):

secpar = 3* level
# compute the level of RSA we need for omuf
level_main_rsa = rsa_level_from_security_level (level ,secpar ,log_p , plambda_length )
level_commitment_rsa = level +10

# compute the modulus lengths for this level
main_modulus_length = security_level_to_RSA_modulus_length ( level_main_rsa )
commitment_modulus_length = security_level_to_RSA_modulus_length ( level_commitment_rsa )

# compute the PRF security parameter we need for blindness
# for simplicity , we upper bound N^L and N^R by the number of interactions p
secpar_prf = secpar_prf_from_security_level (level , main_modulus_length , commitment_modulus_length ,

↪→ log_p , secpar )

# compute key sizes , signature sizes and communication complexity
pk = size_pk ( main_modulus_length , commitment_modulus_length , plambda_length )
sigma = size_sig ( main_modulus_length , commitment_modulus_length , plambda_length )
comm_grow = size_communication_growing ( main_modulus_length , commitment_modulus_length ,

↪→ plambda_length , secpar , secpar_prf )
comm_const = size_communication_constant ( main_modulus_length , commitment_modulus_length ,

↪→ plambda_length , secpar , secpar_prf )

# add this set of parameters to the table
row = [level ,log_p ,secpar , secpar_prf , plambda_length , level_main_rsa , level_commitment_rsa ,pk /8000.0 ,

↪→ sigma /8000.0 , comm_grow /8000.0 , comm_const /8000.0]
return row

# tabulate preparation
data = [[" Level ", "log p", "n", " n_PRF ", "| lambda |", " Level RSA (main)", " Level RSA (com)", "|pk|", "| sigma |

↪→ ", "Comm. a", "Comm. b"]]

#HERE you can insert the combinations you want to try.
levels = [80 ,128]
log_ps_class_a = [9]
plambda_lengths_class_a = [5000]
log_ps_class_b = [20]
plambda_lengths_class_b = [8000]
log_ps_class_c = [32]
plambda_lengths_class_c = [12000]

for level in levels :
for log_p in log_ps_class_a :

for plambda_length in plambda_lengths_class_a :
row = table_row (level ,log_p , plambda_length )
data. append (row)
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for log_p in log_ps_class_b :
for plambda_length in plambda_lengths_class_b :

row = table_row (level ,log_p , plambda_length )
data. append (row)

for log_p in log_ps_class_c :
for plambda_length in plambda_lengths_class_c :

row = table_row (level ,log_p , plambda_length )
data. append (row)

print ( tabulate (data , headers =’firstrow ’,tablefmt =’fancy_grid ’))

J.2 Parameter Script for Our CDH-based Scheme

Listing 1.2. Python Script to compute the parameters for our CDH-based scheme. A
discussion can be found in Section 3.3.
#!/ usr/bin/env python

import math
from tabulate import tabulate

# #####################################################################
# Functions to determine the (log of) group size for given hardness #
# Formulas are taken from eprint .iacr.org ./2019/260 , Section 8.1 #
# #####################################################################

def security_level_to_group_size_length ( level ):
return 2* level +1

# ######################################################################
# Functions to compute the bit sizes of signatures and keys and #
# communication complexity for given group size , repetition parameter #
# K, commitment group size and statistical security parameters #
# ######################################################################

def size_pk (K, main_group_size_length , commitment_group_size_length ):
# group generator , K public keys ( group elements ), 2 group elements for the commitment
return (K+1)* main_group_size_length + 2* commitment_group_size_length

def size_sig (K, main_group_size_length , commitment_group_size_length ):
# signature contains one aggregated group element and K times a commitment randomness
return main_group_size_length + K * commitment_group_size_length

#this returns coefficient of log(N) in the part of the communication that grows with log(N).
def size_communication_growing (K, main_group_size_length , commitment_group_size_length , secpar , secpar_prf ):

return (1+K* secpar_prf )

#this returns the part of the communication that does not grow with log(N).
def size_communication_constant (K, main_group_size_length , commitment_group_size_length , secpar , secpar_prf )

↪→ :
return (K+5)* secpar + (K+1)* main_group_size_length + commitment_group_size_length + (K*math.log(K ,2)

↪→ +1-K)* secpar_prf

# #######################################################################
# Main part of the script , computes level of security for DLOG needed #
# to satisfy a given security level for the scheme for a given number #
# of signatures #
# #######################################################################

# Notation :
# epsilon : Success probability of adversary
# t : running time of adversary
# q : number of initiated interactions with signer oracle
# q_hash , q_hash_r , ... : number of queries for the respective hash function
# level_main_dlog : security level of the main DLOG/CDH instance
# level_commitment_dlog : security level of the DLOG/CDH instance used for the commitment scheme

# Compute the right -hand side of the inequality upper bounding the success probability
# for an adversary against the omuf security of the scheme
def success_probability_upper_bound (log_t , secpar , K, log_q , log_q_hash , log_q_hash_r , log_q_hash_c ,

↪→ log_q_hash_prime , level_main_dlog , level_commitment_dlog ):

# statistical term
stat_term_a = 2**(2* log_q_hash_r - secpar +1)
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stat_term_b = 2**(2* log_q_hash_c - secpar +1)
stat_term_c = 2**( log_q + log_q_hash_r - secpar )
stat_term_d = K* 2**( log_q + log_q_hash_r - secpar )
stat_term_e = 2**( log_q + log_q_hash_c - secpar )
stat_term_f = 2**( log_q + log_q_hash_prime - secpar +1)
stat_term = stat_term_a + stat_term_b + stat_term_c + stat_term_d + stat_term_e + stat_term_f

term_a = 2**( - level_commitment_dlog + log_t )
term_b = K*2**( -(2* level_main_dlog +1))
term_c = 4*K *2**( log_q - level_main_dlog + log_t )
term_d = stat_term

total = 2*( term_a + term_b + term_c + term_d )
return total

# Compute an dlog level large enough such that
# epsilon <= success_probability_upper_bound_ ... leads to contradiction .
def dlog_level_from_epsilon_t_combination (level , log_epsilon , secpar , log_q , K):

log_t = level + log_epsilon
epsilon = 2** log_epsilon

rhs = epsilon
level_main_dlog = level +10
level_commitment_dlog = level +10
while rhs >= epsilon :

level_main_dlog = level_main_dlog + 1
#for simplicity , we set all hash query parameters to be the running time
rhs = success_probability_upper_bound (log_t , secpar , K, log_q , log_t , log_t , log_t , log_t ,

↪→ level_main_dlog , level_commitment_dlog )

return level_main_dlog

# Compute an DLOG level large enough s.t. level bits of security are provided
def dlog_level_from_security_level (level , secpar , log_q , K):

level_main_dlog = level

# we consider every possible combination of epsilon and t and use the highest dlog level .
for minus_log_epsilon in range ( level +1):

log_epsilon = -minus_log_epsilon
l = dlog_level_from_epsilon_t_combination (level , log_epsilon , secpar , log_q , K)
if l > level_main_dlog :

level_main_dlog = l

return level_main_dlog

# Compute a secpar for prf large enough such that the
# blindness security bound leads to a contradiction .
def secpar_prf_from_epsilon_t_combination (level , log_epsilon ,log_N_LR ,K, secpar ):

log_t = level + log_epsilon
epsilon = 2** log_epsilon

rhs = epsilon
secpar_prf = level
while rhs *2**( log_t ) >= epsilon :

secpar_prf = secpar_prf + 1
#for simplicity , we set all hash query parameters to be the running time
rhs_term_1 = (2* log_N_LR + 2* math.log(K ,2) -1)*K *2**( log_t - secpar_prf +2)
rhs_term_2 = 2**(2* log_t - secpar +1)
rhs_term_3 = 2**( log_t - secpar +2)
rhs_term_4 = K* 2**( log_t - secpar_prf +2)
rhs_term_5 = K* 2**( log_t - secpar_prf +2)
rhs = rhs_term_1 + rhs_term_2 + rhs_term_3 + rhs_term_4 + rhs_term_5

return secpar_prf

# Compute a secpar for prf large enough s.t. level bits of security are provided for blindness
def secpar_prf_from_security_level (level ,log_N_LR ,K, secpar ):

secpar_prf = level

# we consider every possible combination of epsilon and t and use the highest secpar_prf .
for minus_log_epsilon in range ( level +1):

log_epsilon = -minus_log_epsilon
l = secpar_prf_from_epsilon_t_combination (level , log_epsilon ,log_N_LR ,K, secpar )
if l > secpar_prf :

secpar_prf = l

return secpar_prf
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# checks the condition that vartheta and K have to satisfy in order to apply the OMUF theorem
# for the security level we aim to achieve
def vartheta_from_constraint (level ,K):

denom = 1.0 - (math.log (2**( level +1))/ float (K))
return (1.0/ denom ) + 0.1

# returns the minimum integer K such that there even exists a positive vartheta
def minimum_plausible_K ( level ):

return int(math.log (2**( level +1))+1)
return int(math.log (2**( level +1)) /2.0+1)

# returns one row of the final table
def table_row (level ,log_q ,K):

secpar = 4* level

# compute the vartheta we need to satisfy the constraint
vartheta = vartheta_from_constraint (level ,K)
if vartheta <= 0:

return []

# compute the level of DLOG we need
level_main_dlog = dlog_level_from_security_level (level ,secpar ,log_q ,K)
level_commitment_dlog = level +10

# compute the group elements lengths for this level
main_group_size_length = security_level_to_group_size_length ( level_main_dlog )
commitment_group_size_length = security_level_to_group_size_length ( level_commitment_dlog )

# compute the PRF security parameter we need for blindness
# for simplicity , we upper bound N^L and N^R by the number of interactions q
secpar_prf = secpar_prf_from_security_level (level ,log_q ,K, secpar )

# compute key sizes , signature sizes and communication complexity
pk = size_pk (K, main_group_size_length , commitment_group_size_length )
sigma = size_sig (K, main_group_size_length , commitment_group_size_length )
comm_grow = size_communication_growing (K, main_group_size_length , commitment_group_size_length ,

↪→ secpar , secpar_prf )
comm_const = size_communication_constant (K, main_group_size_length , commitment_group_size_length ,

↪→ secpar , secpar_prf )

# add this set of parameters to the table
row = [level ,log_q ,secpar , secpar_prf ,vartheta ,K, level_main_dlog , level_commitment_dlog ,pk /8000.0 ,

↪→ sigma /8000.0 , comm_grow /8000.0 , comm_const /8000.0]
return row

#HERE you can insert the combinations you want to try.
levels = [80 ,128]
log_qs = [20 ,40]

# tabulate preparation
data = [[" Level ", " log_q ", "n", " n_PRF ", " vartheta ", "K", " Level DLOG (main)", " Level DLOG (com)", "|pk|", "

↪→ | sigma |", "Comm. a", "Comm. b"]]
print ("")

for level in levels :
for log_q in log_qs :

K_init = minimum_plausible_K ( level )
for K_off in range (0 ,30 ,10):

K = K_init + K_off
row = table_row (level ,log_q ,K)
data. append (row)

print ( tabulate (data , headers =’firstrow ’,tablefmt =’fancy_grid ’))

J.3 Parameter Script for the Boosting Transform

Listing 1.3. Python Script to compute the parameters for the Okamoto-Schnorr
instantiation of the boosting transform. A discussion can be found in Supplementary
Material Section I.
#!/ usr/bin/env python

import math
from tabulate import tabulate
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# #####################################################################
# Functions to determine the (log of) group size for given hardness #
# Formulas are taken from eprint .iacr.org ./2019/260 , Section 8.1 #
# #####################################################################

def security_level_to_group_size_length ( level ):
return 2* level +1

# ######################################################################
# Functions to compute the bit sizes of signatures and keys and #
# communication complexity for given group size , repetition parameter #
# K, commitment group size and statistical security parameters #
# ######################################################################

def size_pk ( group_size_length ):
# group generator , public key ( group element )
return 2* group_size_length

def size_sig_schnorr ( group_size_length , commitment_randomness_length ):
# signature contains c’,s’, and a commitment randomness
return 2* group_size_length + commitment_randomness_length

def size_sig_okamoto_schnorr ( group_size_length , commitment_randomness_length ):
# signature contains c’,s_1 ’,s_2 ’, and a commitment randomness
return 3* group_size_length + commitment_randomness_length

# #######################################################################
# Main part of the script , computes level of security for DLOG needed #
# to satisfy a given security level for the scheme for a given number #
# of signatures #
# #######################################################################

# Notation :
# epsilon : Success probability of adversary
# t : running time of adversary
# q : number of initiated interactions with signer oracle
# level_dlog : security level of the underlying DLOG instance

# Compute the right -hand side of the inequality upper bounding the success probability
# for an adversary against the omuf security of the scheme
def success_probability_upper_bound_omuf ( log_epsilon , log_t , log_q , level_dlog ):

q = 2** log_q

# ell_BS : upper bound on the number of finished signature interactions of the linear BS scheme
ell_BS = 3* math.log(q+1) + math.log (2) - math.log (2** log_epsilon )

term1 = ell_BS * 2**(2+(1+ log_t - level_dlog +2* log_t ) /3.0)
term2 = 2**( log_q + 1 + log_t - level_dlog )
term3 = 2**( log_q *( ell_BS +1) -level_dlog )

return term1 + term2 + term3

# Compute a DLOG level large enough such that
# epsilon <= success_probabilty_upper_bound_omuf ... leads to contradiction .
def dlog_level_from_epsilon_t_combination (level , log_epsilon , log_q ):

log_t = level + log_epsilon
epsilon = 2** log_epsilon

rhs = epsilon
# if we started from level , we would result in overflows as the RHS is too large .
level_dlog = 47* level
while rhs >= epsilon :

level_dlog = level_dlog + 1
rhs = success_probability_upper_bound_omuf ( log_epsilon , log_t , log_q , level_dlog )

return level_dlog

# Compute a DLOG level large enough s.t. level bits of security are provided for omuf
def dlog_level_from_security_level (level , log_q ):

level_dlog = level

# we consider every possible combination of epsilon and t and use the highest rsa level .
for minus_log_epsilon in range ( level +1):

log_epsilon = -minus_log_epsilon
l = dlog_level_from_epsilon_t_combination (level , log_epsilon , log_q )
if l > level_dlog :

level_dlog = l

return level_dlog
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level = 128
log_q = 40

commitment_randomness_length = 128
level_dlog = dlog_level_from_security_level (level , log_q )
group_size_length = security_level_to_group_size_length ( level_dlog )
size_pk = size_pk ( group_size_length )
size_sig_schnorr = size_sig_schnorr ( group_size_length , commitment_randomness_length )
size_sig_okamoto_schnorr = size_sig_okamoto_schnorr ( group_size_length , commitment_randomness_length )

print ("Want to support q = 2^" + str( log_q ) + " signatures .")
print ("==> Need level for DLOG >= " + str( level_dlog ))
print ("==> Public Key Size (in KB) >= " + str( size_pk /8000.0) )
print ("==> Schnorr Signature Size (in KB) >= " + str( size_sig_schnorr /8000.0) )
print ("==> Okamoto - Schnorr Signature Size (in KB) >= " + str( size_sig_okamoto_schnorr /8000.0) )
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