
Keyed-Fully Homomorphic Encryption without

Indistinguishability Obfuscation∗

Shingo Sato† Keita Emura‡ Atsushi Takayasu§

January 6, 2022

Abstract

(Fully) homomorphic encryption ((F)HE) allows users to publicly evaluate circuits on en-
crypted data. Although public homomorphic evaluation property has various applications,
(F)HE cannot achieve security against chosen ciphertext attacks (CCA2) due to its nature.
To achieve both the CCA2 security and homomorphic evaluation property, Emura et al. (PKC
2013) introduced keyed-homomorphic public key encryption (KH-PKE) and formalized its se-
curity denoted by KH-CCA security. KH-PKE has a homomorphic evaluation key that enables
users to perform homomorphic operations. Intuitively, KH-PKE achieves the CCA2 security un-
less adversaries have a homomorphic evaluation key. Although Lai et al. (PKC 2016) proposed
the first keyed-fully homomorphic encryption (keyed-FHE) scheme, its security relies on the in-
distinguishability obfuscation (iO), and this scheme satisfies a weak variant of KH-CCA security.
Here, we propose a generic construction of a KH-CCA secure keyed-FHE scheme from an FHE
scheme secure against non-adaptive chosen ciphertext attack (CCA1) and a strong dual-system
simulation-sound non-interactive zero-knowledge (strong DSS-NIZK) argument system by us-
ing the Naor-Yung paradigm. We show that there are a strong DSS-NIZK and an IND-CCA1
secure FHE scheme that are suitable for our generic construction. This shows that there exists
a keyed-FHE scheme from simpler primitives than iO.

1 Introduction

1.1 Background

Homomorphic encryption (HE) allows users to convert encryptions of messages m1, . . . ,mℓ into
an encryption of C(m1, . . . ,mℓ) publicly for some circuit C. In particular, fully homomorphic en-
cryption (FHE) can be used to handle arbitrary circuits. The public homomorphic evaluation
property is applied to various applications. For example, suppose encryptions of private data are
stored in a remote server, delegating computations on the encrypted data to the server without
revealing the private data is possible. Thus, users leverage the results of computations on other
devices without compromising data privacy. Since Gentry proposed the first FHE scheme [23], the
research area has gained widespread attention and many schemes have been proposed (e.g., FHE
schemes [5, 7–11, 23, 24, 37], identity-based FHE (IBFHE) schemes [15, 24], and attribute-based
FHE schemes [6, 24]), where most schemes are secure under the learning with errors (LWE) as-
sumption. Although the public evaluation property is useful, one downside is that (F)HE schemes
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are vulnerable against adaptive chosen ciphertext attacks (CCA). (In this paper, we use IND-CCA2
or IND-CCA, IND-CCA1, and IND-CPA as indistinguishability against adaptive chosen ciphertext
attacks, non-adaptive chosen ciphertext (i.e., lunchtime) attacks, and chosen-plaintext attacks, re-
spectively). Therefore, several IND-CCA1 secure (F)HE schemes have been proposed. For example,
Canetti et al. [11] proposed a generic construction of IND-CCA1 secure FHE from the LWE as-
sumption or a zero-knowledge succinct non-interactive argument of knowledge (zk-SNARK) [3, 4]
and IND-CPA secure FHE. However, IND-CCA1 security can be inadequate for FHE since Loftus
et al. [32] showed that an IND-CCA1 secure FHE scheme is vulnerable against ciphertext validity
attacks.

To achieve both CCA2-like security and homomorphic evaluation property, Emura et al. [20,
21] introduced keyed-homomorphic public-key encryption (KH-PKE). Contrary to traditional HE,
the homomorphic evaluation property of KH-PKE is not public. Specifically, KH-PKE has a
homomorphic evaluation key. Thus, only users with the homomorphic evaluation key can perform
homomorphic operations. Due to its nature, KH-PKE can achieve CCA2-like security.1 Suppose
adversaries do not have the homomorphic evaluation key, then, KH-PKE satisfies the IND-CCA2
security. Moreover, KH-PKE satisfies stronger security than HE even if adversaries receive a
homomorphic evaluation key. Suppose adversaries receive the homomorphic evaluation key before
the challenge query, then the strongest security that KH-PKE can satisfy is the IND-CCA1 security
as the case of HE. In contrast, KH-PKE can satisfy stronger securities than the IND-CCA1 security
if adversaries receive the homomorphic evaluation key after the challenge query since they continue
making decryption queries until they receive the homomorphic evaluation key. Moreover, KH-PKE
is secure against ciphertext validity attacks [19].

Emura et al. [21] proposed the notion of KH-PKE but their security proofs contain bugs (which
have been corrected in [20] and they gave the KH-PKE schemes under the decisional Diffie-Hellman
(DDH) assumption or the decisional composite residuosity (DCR) assumption). Libert et al. [31]
proposed the first KH-PKE schemes secure in the model given in [21] using the Decision Linear
(DLIN) assumption or the symmetric external Diffie-Hellman (SXDH) assumption. Jutla and
Roy [28] proposed a KH-PKE scheme based on SXDH assumption. All KH-PKE schemes support
either multiplicative or additive homomorphisms. Maeda and Nuida [34] proposed a two-level KH-
PKE scheme that supports one multiplication and any number of additions. Lai et al. [29] proposed
the first keyed-fully homomorphic encryption (keyed-FHE)2 scheme, which is secure under lattice
assumptions and the indistinguishability obfuscation (iO) [1]. However, known candidates of iO [1]
remain arguable.Therefore, constructing keyed-FHE schemes without iO has to be an interesting
open problem. We remark that the keyed-FHE scheme of [29] satisfies only weaker security than
the KH-PKE’s security (called KH-CCA security) formalized in [20]. In the case where an adversary
receives a homomorphic evaluation key before the challenge query, the security considered in [29]
corresponds to the IND-CPA security of (F)HE, while in that case, KH-CCA security corresponds
to the IND-CCA1 security of (F)HE.

1.2 Contribution

In this work, we propose a generic construction of the keyed-FHE without iO. This construction
uses IND-CCA1 secure FHE and a strong dual-system unbounded simulation-sound NIZK (strong
DSS-NIZK) introduced by Jutla and Roy [28] as building blocks, where the strong DSS-NIZK is used
for FHE ciphertext. In our security proof, we employ the Naor-Yung paradigm [35, 36] to achieve

1Although Desmedt et al. [18] proposed a HE scheme with a designated evaluation called controlled HE, no CCA
security was considered unlike the KH-PKE.

2In this paper, keyed-FHE is a public key setting.
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IND-CCA2-like security. Since no strong DSS-NIZK scheme exists for NP, we have to construct the
desired scheme. For this purpose, we show that a modification of Jutla and Roy’s strong DSS-
NIZK scheme [28] satisfies the requirement of our generic construction of keyed-FHE, where the
construction of the strong DSS-NIZK scheme uses a smooth projective hash proof system (PHPS)
and an unbounded simulation-sound NIZK scheme. We note that there are smooth PHPS [2] secure
statistically and unbounded simulation-sound NIZK schemes [12,25,30] whose security depends on
lattice assumptions or the security of the commitment schemes used in [12,25]. We remark that for
adopting the strong DSS-NIZK scheme above we need to assume that the underlying IND-CCA1
secure FHE schemes are publicly verifiable (but these exists such a scheme [11]). To sum up,
we obtain the first keyed-FHE scheme without iO. Note that even if an IND-CPA secure FHE
scheme under (a variant of) the approximate GCD assumption (e.g., [13, 16, 37]) is employed to
construct an IND-CCA1 secure FHE scheme, our generic construction gives no keyed-FHE scheme
based solely on that assumption because there is no existing HPS for approximate GCD-based
ciphertexts. Furthermore, another advantage of our result is that our keyed-FHE scheme satisfies
stronger security (i.e., KH-CCA security) than the existing keyed-FHE scheme [29].

1.3 Technical Overview

We give a brief overview of our results. Since Lai et al. [29] constructed the keyed-FHE scheme using
iO, the most convincing way to achieve the goal is to remove the iO from the construction. However,
completing the task seems technically difficult. Thus, we focus on Jutla and Roy’s KH-PKE
scheme [28] under the SXDH assumption. Their construction used an ElGamal encryption scheme
and a stronger version of the dual-system unbounded simulation-sound NIZK (DSS-NIZK) for the
Diffie-Hellman language. Due to the nature of one-time simulation-sound NIZK for the Diffie-
Hellman language, their construction satisfies IND-CCA2-like security as noted in [26]. Therefore,
the remaining task to prove the security is how to simulate the homomorphic key reveal oracle
(RevHK) and how to prove the IND-CCA1 security even after the RevHK query. Here, the properties
of strong DSS-NIZK resolve the problems. The homomorphic evaluation key of the KH-PKE scheme
is a trapdoor of the strong DSS-NIZK. In particular, one-time full zero-knowledge ensures that the
strong DSS-NIZK is trapdoor leakage resilient. Moreover, unbounded partial simulation-soundness
ensures that their KH-PKE scheme satisfies the IND-CCA1 security even after the RevHK query.
To satisfy the required properties, Jutla and Roy constructed the strong DSS-NIZK scheme for the
Diffie-Hellman language using quasi-adaptive NIZK for the same language [27] and a hash proof
system (HPS) [17] that is smooth projective and universal2.

Using a similar approach, we construct the keyed-FHE without iO by replacing (a variant of)
the ElGamal encryption scheme with FHE schemes. For this purpose, we have to overcome three
issues. First, Jutla and Roy’s KH-PKE scheme used strong DSS-NIZK for the Diffie-Hellman
language that is not suitable for FHE. Therefore, we construct strong DSS-NIZK for another
language that handles FHE ciphertexts. Thus, we construct the strong DSS-NIZK for NP. Second,
Jutla and Roy’s KH-PKE scheme satisfies IND-CCA2-like security based on simulation-sound NIZK
for the Diffie-Hellman language. That is, just replacing the ElGamal encryption scheme with FHE
schemes does not satisfy IND-CCA2-like security. Here, we resolve the issue by employing the Naor-
Yung paradigm [35, 36]. For simplicity, these modifications enable us to construct a keyed-FHE
scheme without iO. We observe whether we can construct strong DSS-NIZK for NP following a
similar approach as Jutla and Roy. Jutla and Roy used quasi-adaptive NIZK for the Diffie-Hellman
language and an HPS [17] that is smooth projective and universal2. In this step, the last issue occurs
since there is no known lattice-based universal2 HPS. We construct the desired strong DSS-NIZK
for NP by replacing the universal2 HPS of Jutla-Roy’s construction with unbounded simulation-
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sound NIZK and modifying slightly the construction. Therefore, this completes a brief overview of
our generic keyed-FHE scheme.

All building blocks of our generic construction of keyed-FHE do not require iO. We remark that
our generic construction of keyed-FHE requires only the IND-CCA1 security for the underlying FHE
scheme, but our strong DSS-NIZK system requires public verifiability for the IND-CCA1 secure FHE
scheme. There is an IND-CCA1 secure publicly verifiable FHE scheme [11] under zk-SNARK [3,4].
It is known that there exist zk-SNARK systems in the quantum random oracle model [14]. Hence,
there exists an IND-CCA1 secure FHE scheme in the quantum random oracle model. In addition,
we can also obtain an IND-CCA1 secure FHE scheme without random oracles if the underlying
zk-SNARK is based on a strong assumption such as knowledge assumptions. We can construct
strong DSS-NIZK using the following building blocks: (1) the NIZK system for NP in the random
oracle model from Σ-protocols (ZKBoo) [25] using the Fiat-Shamir transformation [22], the NIZK
system secure in the quantum random oracle model [12], or the NIZK system secure in the standard
model [30], and (2) the smooth projective HPS [2] for lattice-based ciphertexts. Therefore, we can
obtain a keyed-FHE scheme secure in the standard model or the quantum random oracle model.
Notice that Libert et al. proposed a simulation-sound NIZK system for LWE-like relations in the
standard model [30], they do not give a security proof that it satisfies the zero-knowledge property
after the trapdoor is revealed. Nevertheless, since their zero-knowledge property is statistical, it
can be applied to our construction. However, their scheme is not very efficient, and thus it would
be interesting to see that the efficiency of their NIZKs could be improved in future work.

1.4 Differences from the Proceedings Version

In the proceedings version, we implicitly assumed that the evaluation algorithms (denoted by
EvalF,1 and EvalF,2) of the underlying FHE of our keyed-FHE scheme were probabilistic. If EvalF,1
or EvalF,2 is deterministic, the security game Game2 in the proof of Theorem 1 is distinguishable
from the previous security game. Concretely, for the first and the second components (denoted by
ĉt1 and ĉt2) of an evaluated ciphertext, an adversary can distinguish those games by comparing
ĉt1 and ĉt2 received from the evaluation oracle, with these components computed by itself. Thus,
we had to assume that both EvalF,1 and EvalF,2 were probabilistic. However, even though EvalF,1
or EvalF,2 is deterministic, it is possible to rerandomize ĉt1 and ĉt2 by using EvalF,1 and EvalF,2.
Thus, without loss of generality, we can assume that EvalF,1 and EvalF,2 are probabilistic.

In order to clarify the procedure of our keyed-FHE scheme, we explicitly write that the eval-
uation algorithm of the keyed-FHE scheme (in Section 3) in the current version rerandomizes ĉt1
and ĉt2 if EvalF,1 or EvalF,2 is deterministic. Furthermore, in the current version, we give the secu-
rity proofs of our keyed-FHE scheme and DSS-NIZK system, while in the proceedings version, we
omitted these security proofs, due to the page-limitation.

2 Preliminaries

We use the following notation: For a positive integer n, let [n] := {1, 2, . . . , n}. For n values
x1, x2, . . . , xn and a subset I ⊆ [n] of indexes, let {xi}i∈I be a set of values whose indexes are
included in I, and let (xi)i∈I be a sequence of values whose indexes are included in I. Probabilistic
polynomial-time is abbreviated as PPT. If a function f : N → R fulfills f(λ) = o(λ−c) for every
constant c > 0 and sufficiently large λ ∈ N, then we say that f is negligible in λ and write
f(λ) = negl(λ). A probability is overwhelming if it is 1 − negl(λ). For a probabilistic algorithm
A, y ← A(x; r) means that A takes as input x and a picked randomness r, and it outputs y. For
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algorithms A and BA, (y; z) ← (A∥BA)(x) means that A on input x outputs y, BA on the same
input x including randomness outputs z, and (y; z) is the concatenation of y and z.

In addition, we describe the definitions of several cryptographic primitives.

2.1 Non-Interactive Zero-Knowledge Argument

Definition 1. A non-interactive zero-knowledge argument (NIZK) system for a relation R ⊆
{0, 1}∗ × {0, 1}∗ consists of three polynomial-time algorithms (Gen,P,V): Let L(R) = {x |
∃w s.t. (x,w) ∈ R} be the language defined by R.

• crs← Gen(1λ): The randomized algorithm Gen takes as input a security parameter 1λ, and it
outputs a common reference string (CRS) crs.

• π ← P(crs, x, w): The randomized algorithm P takes as input a CRS crs, a statement x, and
a witness w, and it outputs a proof π.

• 1/0 ← V(crs, x, π): The deterministic algorithm V takes as input a CRS crs, a statement x,
and a proof π, and it outputs 1 or 0.

We describe the definition of the properties of traditional NIZKs.

Definition 2. It is required that a NIZK system (Gen,P,V) satisfies the following properties,
completeness, soundness, and zero-knowledge:

Completeness. For every (x,w) ∈ R, it holds that

Pr[crs← Gen(1λ);π ← P(crs, x, w) : V(crs, x, π) = 1] ≥ 1− negl(λ).

Soundness. For any PPT algorithm A, it holds that

Pr[crs← Gen(1λ); (x, π)← A(crs) : V(crs, x, π) = 1 ∧ x /∈ L(R)] ≤ negl(λ).

(Computational) Zero-Knowledge. There exists a PPT simulator Sim = (Sim0, Sim1) such
that for every PPT algorithm A, it holds that∣∣∣Pr[crs← Gen(1λ) : 1← AP(crs,·,·)(crs)]

− Pr[(crs, td)← Sim0(1
λ) : 1← ASim∗(crs,td,·,·)(crs)]

∣∣∣ ≤ negl(λ),

where Sim0(1
λ) generates a CRS crs and a trapdoor td, and Sim1(crs, td, x) generates a

simulated proof π. Sim∗ oracle on input (x,w) returns ⊥ if (x,w) /∈ R, and returns
π ← Sim1(crs, td, x) otherwise.

We define several properties of NIZKs which are required for constructing strong DSS-NIZK.
For removing universal2 property of PHPS, the adversary is allowed to query x such that x /∈ L(R)
in the definition of unbounded simulation-soundness. For considering trapdoor leakage in strong
DSS-NIZK, the adversary is allowed to obtain a trapdoor td in the definition of composable zero-
knowledge.

Definition 3. In this paper, it is required that a NIZK system (Gen,P,V) with a PPT simula-
tor Sim = (Sim0, Sim1) satisfies completeness, unbounded simulation-soundness, and (composable)
zero-knowledge:
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Completeness. For every (x,w) ∈ R, it holds that

Pr[crs← Gen(1λ);π ← P(crs, x, w) : V(crs, x, π) = 1] ≥ 1− negl(λ).

Unbounded Simulation-Soundness. For any PPT adversary A, it holds that

Pr

 (crs, td)← Sim0(1
λ);Q ← ∅;

(x∗, π∗)← ASim1(crs,td,·)(crs)
:

(x∗, π∗) /∈ Q∧
x∗ /∈ L(R)∧
V(crs, x∗, π∗) = 1

 ≤ negl(λ),

where the Sim1 oracle on input x returns π ← Sim1(crs, td, x) and sets Q ← Q ∪ {(x, π)}.
Notice that A is allowed to query x such that x /∈ L(R).

Composable Zero-Knowledge. For any PPT adversaries A1 and A2, it holds that∣∣∣Pr [crs← Gen(1λ) : 1← A1(crs)
]
− Pr

[
(crs, td)← Sim0(1

λ) : 1← A1(crs)
]∣∣∣ ≤ negl(λ), and∣∣∣Pr[(crs, td)← Sim0(1

λ) : 1← A
P(crs,·,·)
2 (crs, td)]

− Pr[(crs, td)← Sim0(1
λ) : 1← A

Sim∗(crs,td,·)
2 (crs, td)]

∣∣∣ ≤ negl(λ),

where the Sim∗ oracle on input (x,w) /∈ R returns ⊥ if (x,w) /∈ R, and returns π ←
Sim1(crs, td, x) otherwise.

2.2 Dual-System Simulation-Sound NIZK

Following [28], we describe the definition of dual-system (unbounded) simulation-sound NIZK (DSS-
NIZK).

Definition 4. A DSS-NIZK system for a relation R ⊆ {0, 1}∗×{0, 1}∗ consists of polynomial-time
algorithms in three worlds, as follows: Let L(R) = {x | ∃w s.t. (x,w) ∈ R} be the language defined
by R. We remark that the witness relation parameter ρ is introduced in [28] because it considers
quasi-adaptive NIZK. We omit the parameter in this paper.

Real World. A DSS-NIZK in real world consists of three polynomial-time algorithms (Gen,P,V):

• crs ← Gen(1λ): The randomized algorithm Gen, called a generator, takes as input a security
parameter 1λ, and it outputs a common reference string (CRS) crs.

• π ← P(crs, x, w, lbl): The randomized algorithm P, called a prover, takes as input a CRS crs,
a statement x, a witness w, and a label lbl ∈ {0, 1}∗, and it outputs a proof π.

• 1/0← V(crs, x, π, lbl): The deterministic algorithm V, called a verifier, takes as input a CRS
crs, a statement x, a proof π, and a label lbl ∈ {0, 1}∗, and it outputs 1 or 0.

Partial-Simulation World. A DSS-NIZK in partial-simulation world consists of three
polynomial-time algorithms (sfGen, sfSim, pV):

• (crs, tds, tdv) ← sfGen(1λ): The randomized algorithm sfGen, called a semi-functional gener-
ator, takes as input a security parameter 1λ, and it outputs a semi-functional CRS crs, and
two trapdoors tds and tdv.
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• π ← sfSim(crs, tds, x, β, lbl): The randomized algorithm sfSim, called a semi-functional simu-
lator, takes as input a CRS crs, a trapdoor tds, a statement x, a membership-bit β ∈ {0, 1},
and a label lbl ∈ {0, 1}∗, and it outputs a proof π.

• 1/0 ← pV(crs, tdv, x, π, lbl): The deterministic algorithm pV, called a private verifier, takes
as input a CRS crs, a trapdoor tdv, a statement x, a proof π, and a label lbl ∈ {0, 1}∗, and it
outputs 1 or 0.

One-time Full Simulation World. A DSS-NIZK in one-time full simulation world consists
of three polynomial-time algorithms (otfGen, otfSim, sfV):

• (crs, tds, tds,1, tdv) ← otfGen(1λ): The randomized algorithm otfGen, called a one-time full
generator, takes as input a security parameter 1λ, and it outputs a CRS crs and three trapdoors
tds, tds,1, and tdv.

• π ← otfSim(crs, tds,1, x, lbl): The randomized algorithm otfSim, called a one-time full simula-
tor, takes as input a CRS crs, a trapdoor tds,1, a statement x, and a label lbl ∈ {0, 1}∗, and
it outputs a proof π.

• 1/0← sfV(crs, tdv, x, π, lbl): The deterministic algorithm sfV, called a semi-functional verifier,
takes as input a CRS crs, a trapdoor tdv, a statement x, a proof π, and a label lbl ∈ {0, 1}∗,
and it outputs 1 or 0.

Definition 5. It is required that a DSS-NIZK system for a relation R satisfies completeness, partial
zero-knowledge, unbounded partial simulation-soundness, and one-time full zero-knowledge:

Completeness. For every (x,w) ∈ R and every lbl ∈ {0, 1}∗, it holds that

Pr[crs← Gen(1λ);π ← P(crs, x, w, lbl) : V(crs, x, π, lbl) = 1] ≥ 1− negl(λ).

(Composable) Partial Zero-Knowledge. For any PPT algorithms A0 and A1, it holds that∣∣∣Pr[crs← Gen(1λ) : 1← A0(crs)]− Pr[(crs, tds, tdv)← sfGen(1λ) : 1← A0(crs)]
∣∣∣ ≤ negl(λ), and∣∣∣Pr[(crs, tds, tdv)← sfGen(1λ) : 1← A

P(crs,·,·,·),sfSim∗(crs,tds,·,·,·),V(crs,·,·,·)
1 (crs)]

− Pr[(crs, tds, tdv)← sfGen(1λ) : 1← A
sfSim∗(crs,tds,·,·,·),sfSim∗(crs,tds,·,·,·),pV(crs,tdv ,·,·,·)
1 (crs)]

∣∣∣
≤ negl(λ),

where sfSim∗(crs, tds, x, w, lbl) oracle returns sfSim(crs, tds, x, β = 1, lbl), the challenger aborts
if either (x,w, lbl) such that (x,w) /∈ R is queried to the first oracle (sfSim∗ or P), or the
second oracle sfSim∗ receives a query (x, β, lbl) such that β = 0 or x /∈ L(R).

Unbounded Partial Simulation-Soundness. For any PPT algorithm A, it holds that

Pr

[
(crs, tds, tdv)← sfGen(1λ);

(x, π, lbl)← AsfSim(crs,tds,·,·,·),pV(crs,tdv ,·,·,·)(crs)
:

((x /∈ L(R) ∨ V(crs, x, π, lbl) = 0)∧
pV(crs, tdv, x, π, lbl) = 1

]
≤ negl(λ).
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One-time Full Zero-Knowledge. For any PPT algorithm A = (A0,A1), it holds that

|Pr[(crs, tds, tdv)← sfGen(λ); (x∗, β∗, lbl∗, st)← A
sfSim∗(crs,tds,··,·),pV(crs,tdv ,·,·,·)
0 (crs);

π∗ ← sfSim(crs, tds, x
∗, β∗, lbl∗) : 1← A

sfSim∗(crs,tds,·,·,·),pV(crs,tdv ,·,·,·)
1 (π∗, st)]

− Pr[(crs, tds, tds,1, tdv)← otfGen(λ); (x∗, β∗, lbl∗, st)← A
sfSim∗(crs,tds,·,·,·),sfV(crs,tdv ,·,·,·)
0 (crs);

π∗ ← otfSim(crs, tds,1, x
∗, lbl∗) : 1← A

sfSim∗(crs,tds,·,·,·),sfV(crs,tdv ,·,·,·)
1 (π∗, st)]

∣∣∣
≤ negl(λ),

where st is state-information, and the challenger aborts if one of the following conditions
holds:

• The generated (x∗, β∗) is not correct for the language L(R).3

• (x, β, lbl) such that the membership-bit β is not correct for L(R) is queried to the first
oracle sfSim∗.

• The generated (x∗, π∗, lbl∗) is queried to sfV/pV.

Propositions 1 and 2 were proven in [28]. Here, for a DSS-NIZK system ΠDN, let AdvpzkΠDN
(λ)

be the maximum probability that any PPT adversary breaks the partial zero-knowledge of ΠDN,
let AdvupssΠDN

(λ) be the maximum probability that any PPT adversary breaks the unbounded partial

simulation-soundness of ΠDN, and let AdvotzkΠDN
(λ) be the maximum probability that any PPT adver-

sary breaks the one-time full zero-knowledge of ΠDN.

Proposition 1 ( [28], Lemma 4 (true simulation-soundness)). If a DSS-NIZK ΠDN fulfills both
of properties partial zero-knowledge and unbounded partial simulation-soundness, then for any PPT
adversary A, it holds that

Pr

[
(crs, tds, tdv)← sfGen(1λ);

(x, π, lbl)← AsfSim∗(crs,tds,·,·,·)(crs)
: V(crs, x, π, lbl) = 1 ∧ x /∈ L(R)

]
≤ AdvpzkΠDN

(λ) + AdvupssΠDN
(λ),

where the challenger aborts if A issues a query (y, β, lbl) such that y /∈ L(R) or β = 0, to the sfSim∗

oracle.

Proposition 2 ( [28], Lemma 12 (simulation-soundness of semi-functional verifier)). If a
DSS-NIZK ΠDN fulfills both of properties one-time full zero-knowledge and unbounded partial
simulation-soundness, then, for any PPT algorithm A = (A0,A1), it holds that

Pr


(crs, tds, tds,1, tdv)← otfGen(1λ);

(x∗, lbl∗, β∗, st)← A
sfSim∗(crs,tds,·,·,·),sfV(crs,tdv ,·,·,·)
0 (crs);

π∗ ← otfSim(crs, tds,1, x
∗, lbl∗);

(x, lbl, π)← A
sfSim∗(crs,tds,·,·,·),sfV(crs,tdv ,·,·,·)
1 (π∗, st)

:
sfV(crs, tdv, x, π, lbl) = 1
∧x /∈ L(R)


≤ AdvotzkΠDN

(λ) + AdvupssΠDN
(λ),

where the challenger aborts if at least one of the following conditions hold:

3(x, β) is correct for a language L(R) (or β is correct for x) if x ∈ L(R) ∧ β = 1, or x /∈ L(R) ∧ β = 0. (x, β) is
not correct for L(R) (or β is not correct for x) otherwise.
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• For (x, β, lbl) queried to the sfSim∗ oracle, (x, β) is not correct for L(R).

• β∗ is not the correct membership-bit of L(R).

• (x∗, lbl∗, π∗) is queried to sfV.

• The output of A is the same as (x∗, lbl∗, π∗).

Furthermore, a stronger notion of DSS-NIZK is defined as follows. We call reveal event when
tds is revealed to adversaries where (crs, tds, tdv)← sfGen(1λ) or (crs, tds, tds,1, tdv)← otfGen(1λ).

Definition 6 (Strong DSS-NIZK [28]). A DSS-NIZK system with partial simulation trapdoor reveal
oracle is a strong DSS-NIZK system with the following changes to the DSS-NIZK definition:

• The first part of the composable partial zero-knowledge continues to hold.

• The second part of the composable partial zero-knowledge holds under the additional restriction
that the adversary cannot invoke the third oracle (i.e., V or pV oracle) after the reveal event.

• The unbounded partial simulation-soundness continues to hold.

• The trapdoors tds and tds,1 generated by otfGen are same and statistically indistinguishable
from tds generated by sfGen.

• The one-time full zero-knowledge holds under the additional restriction that (x∗, β∗, lbl∗) is
such that x∗ ∈ L(R) and β∗ = 1 and the second oracle (i.e., pV or sfV oracle) is not invoked
after the reveal event.

• The simulation-soundness of sfV (Proposition 2) holds under the additional restriction that sfV
oracle is not invoked after the reveal event. Notice that there is no restriction that (x∗, β∗, lbl∗)
is such that x∗ ∈ L(R) and β∗ = 1.

2.3 (Keyed-)Fully Homomorphic Encryption

Definition 7. A fully homomorphic encryption (FHE) scheme consists of four polynomial-time
algorithms (KGen,Enc,Dec,Eval): For a security parameter λ, let M =M(λ) be a message space.

• (pk, sk) ← KGen(1λ): The randomized algorithm KGen takes as input a security parameter
1λ, and it outputs a public key pk and a secret key sk.

• ct← Enc(pk,m): The randomized algorithm Enc takes as input a public key pk and a message
m ∈M, and it outputs a ciphertext ct.

• m/⊥ ← Dec(sk, ct): The deterministic algorithm Dec takes as input a secret key sk and a
ciphertext ct, and it outputs a message m ∈M or a rejection symbol ⊥.

• ĉt← Eval(C, (ct(1), ct(2), . . . , ct(ℓ))): The deterministic or randomized algorithm Eval takes as
input a circuit C :Mℓ →M and a tuple of ciphertexts (ct(1), ct(2), . . . , ct(ℓ)), and it outputs
a new ciphertext ĉt.

We require that an FHE scheme meets both correctness and compactness.

Definition 8 (Correctness). An FHE scheme (KGen,Enc,Dec,Eval) satisfies correctness if the fol-
lowing conditions hold:
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• For every (pk, sk) ← KGen(1λ) and every m ∈ M, it holds that Dec(sk, ct) = m with over-
whelming probability, where ct← Enc(pk,m).

• For every (pk, sk) ← KGen(1λ), every circuit C, and every (m(1), . . . ,m(ℓ)) ∈ Mℓ, it
holds that Dec(sk, ĉt) = C(m(1), . . . ,m(ℓ)) with overwhelming probability, where ĉt ←
Eval(C, (ct(1), . . . , ct(ℓ))) and for every i ∈ [ℓ], ct(i) ← Enc(pk,m(i)).

Definition 9 (Compactness). An FHE scheme satisfies compactness if there exists a polynomial
poly such that the output-size of Eval(·, ·) is at most poly(λ) for every security parameter λ.

The IND-CCA1 security of FHE is defined as follows.

Definition 10 (IND-CCA1 security). An FHE scheme ΠFHE = (KGen,Enc,Dec,Eval) is IND-CCA1
secure if for any PPT adversary A = (A0,A1) against ΠFHE, the advantage

Advind-cca1ΠFHE,A
(λ) :=

∣∣∣∣∣∣∣∣∣Pr


(pk, sk)← KGen(1λ);

(m0,m1, st)← A
Dec(skd,·)
0 (pk);

b
$← {0, 1}; ct∗ ← Enc(pk,mb);

b′ ← A1(ct
∗, st)

: b = b′

− 1

2

∣∣∣∣∣∣∣∣∣ ,
is negligible in λ, where st is state information.

In addition, IND-CPA security is defined in the same way as IND-CCA1 security except that the
adversary is not given access to the decryption oracle Dec.

Following the definition of KH-PKE in [20], we describe the definition of keyed-fully homomor-
phic encryption (keyed-FHE) given by Lai et al. [29], except that the adversaries are allowed to
access the decryption oracle until the homomorphic evaluation key is revealed.

Definition 11. A keyed-FHE scheme consists of four polynomial-time algorithms (KGen,Enc,Dec,
Eval): For a security parameter λ, let M =M(λ) be a message space.

• (pk, skd, skh)← KGen(1λ): The randomized algorithm KGen takes as input a security param-
eter 1λ, and it outputs a public key pk, a decryption key skd, and a homomorphic evaluation
key skh.

• ct← Enc(pk,m): The randomized algorithm Enc takes as input a public key pk and a message
m ∈M, and it outputs a ciphertext ct.

• m/⊥ ← Dec(skd, ct): The deterministic algorithm Dec takes as input a decryption key skd
and a ciphertext ct, and it outputs a message m ∈M or a rejection symbol ⊥.

• ĉt/⊥ ← Eval(skh,C, (ct
(1), ct(2), . . . , ct(ℓ))): The deterministic or randomized algorithm Eval

takes as input a homomorphic evaluation key skh, a circuit C : Mℓ → M, and a tuple of
ciphertexts (ct(1), ct(2), . . . , ct(ℓ)), and it outputs a new ciphertext ĉt or a rejection symbol ⊥.

We require that a keyed-FHE scheme satisfies both correctness and compactness.

Definition 12 (Correctness). A keyed-FHE scheme (KGen,Enc,Dec,Eval) satisfies correctness if
the following conditions hold:

• For every (pk, skd, skh) ← KGen(1λ) and every m ∈ M, it holds that Dec(skd, ct) = m with
overwhelming probability, where ct← Enc(pk,m).
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• For every (pk, skd, skh)← KGen(1λ), every circuit C :Mℓ →M, and every (m(1), . . . ,m(ℓ)) ∈
Mℓ, it holds that Dec(skd, ĉt) = C(m(1), . . . ,m(ℓ)) with overwhelming probability, where ct ←
Eval(skh,C, (ct

(1), . . . , ct(ℓ))) and for every i ∈ [ℓ], ct(i) ← Enc(pk,m(i)).

Definition 13 (Compactness). A keyed-FHE scheme satisfies compactness if there exists a polyno-
mial poly such that the output-size of Eval(skh, ·, ·, ·) is at most poly(λ) for every security parameter
λ.

Regarding the security of keyed-FHE, KH-CCA security is defined as follows.

Definition 14 (KH-CCA security). A keyed-FHE scheme ΠKFHE = (KGen,Enc,Dec,Eval) is
KH-CCA secure if for any PPT adversary A = (A0,A1) against ΠKFHE, the advantage

Advkh-ccaΠKFHE,A
(λ) :=

∣∣∣∣∣∣∣∣∣Pr


(pk, skd, skh)← KGen(1λ);

(m0,m1, st)← A
Eval(skh,·,·),RevHK(·),Dec(skd,·)
0 (pk);

b
$← {0, 1}; ct∗ ← Enc(pk,mb);

b′ ← A
Eval(skh,·,·),RevHK(·),Dec(skd,·)
1 (ct∗, st)

: b = b′

− 1

2

∣∣∣∣∣∣∣∣∣ ,
is negligible in λ, where st is state information, and let D be a list which is set as D ← {ct∗} in
Challenge phase, and the oracles above are defined as follows:

• Homomorphic key reveal oracle RevHK: Given a request, the RevHK oracle returns skh.

• Evaluation oracle Eval(skh, ·): Given an Eval query (C, (ct(1), . . . , ct(ℓ))), the Eval oracle checks
whether the RevHK oracle has been queried before. If so, it returns ⊥. Otherwise, it re-
turns ĉt/⊥ ← Eval(skh,C, (ct

(1), . . . , ct(ℓ))). In addition, if ĉt ̸= ⊥ and one of ciphertexts
ct(1), . . . , ct(ℓ) is in D, it sets D ← D ∪ {ĉt}.

• Decryption oracle Dec(skd, ·): This oracle is not available if A has accessed the RevHK oracle
and obtained the challenge ciphertext ct∗. Given a Dec query ct, the Dec oracle returns
Dec(skd, ct) if ct /∈ D, and returns ⊥ otherwise.

3 Generic Construction of keyed-FHE

3.1 Our Construction

We propose a generic construction of a keyed-FHE scheme ΠKFHE from two IND-CCA1 secure FHE
schemes ΠFHE,1,ΠFHE,2 and a (strong) DSS-NIZK system ΠDN. We briefly explain an overview of
the construction whose spirit is similar to Jutla and Roy’s KH-PKE scheme [28] except that we
use the Naor-Yung paradigm [35]. Let (pk1, sk1) and (pk2, sk2) denote two pairs of public/secret
keys of ΠFHE,1 and ΠFHE,2. A public key pk = (pk1, pk2, crs) of ΠKFHE consists of two public keys
(pk1, pk2) of schemes ΠFHE,1,ΠFHE,2 and the CRS crs of ΠDN, while the secret key skd = sk1 is the
secret key of ΠFHE,1. The ciphertext ct = (ct1, ct2, π) consists of two FHE ciphertexts (ct1, ct2)
both of which are encryptions of m and π is a proof such that (ct1, ct2) are encryptions of the
same message. The decryption algorithm first checks the validity of π by using the real world
verification algorithm VN , then decrypt ct1 by using skd = sk1. To complete the overview, we show
how to evaluate keyed-FHE ciphertexts ct(1), . . . , ct(ℓ) for a circuit C and obtain ĉt. A point to
note is that we should create a proof π̂ without the knowledge of the message C(m(1), . . . ,m(ℓ)) of
ĉt. For this purpose, we use the DSS-NIZK system ΠDN in partial-simulation world as the case of
Jutla and Roy’s KH-PKE scheme [28]. Then, we set the homomorphic evaluation key skh = tds
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as the trapdoor of ΠDN. Therefore, the (composable) partial zero-knowledge ensures that π̂ can be
computed correctly by using the sfSimN algorithm. Here, we note that the verification algorithm
VN can correctly verify the proof created by the sfSimN algorithm owing to partial zero-knowledge.

To sum up, we use the following primitives: An FHE scheme ΠFHE,i = (KGenF,i, EncF,i,
DecF,i, EvalF,i) for i ∈ {1, 2}, and a DSS-NIZK system ΠDN in partial-simulation world
(sfGenN , sfSimN , pVN ) for a relation RN = {(ct1, ct2), (m, r1, r2) | ct1 = EncF,1(pk1,m; r1) ∧ ct2 =
EncF,2(pk2,m; r2)}, where (pk1, sk1)← KGenF,1(1

λ) and (pk2, sk2)← KGenF,2(1
λ). We also remark

that a proof generated by the sfSimN algorithm can be verified by the real world verification al-
gorithm VN owing to the partial zero-knowledge property. Thus, we use the VN algorithm in our
construction.

Our scheme ΠKFHE = (KGen,Enc,Dec,Eval) is constructed as follows:

• (pk, skd, skh)← KGen(1λ):

1. (pk1, sk1)← KGenF,1(1
λ), (pk2, sk2)← KGenF,2(1

λ).

2. (crs, tds, tdv)← sfGenN (1λ).

3. Output pk = (pk1, pk2, crs), skd = sk1, and skh = tds.

• ct← Enc(pk,m):

1. ct1 ← EncF,1(pk1,m; r1), ct2 ← EncF,2(pk2,m; r2).

2. π ← PN (crs, (ct1, ct2), (m, r1, r2), ∅).
3. Output ct = (ct1, ct2, π).

• m/⊥ ← Dec(skd, ct): Let ct = (ct1, ct2, π).

1. If VN (crs, (ct1, ct2), π, ∅) = 1, output m← DecF,1(sk1, ct1). Otherwise, output ⊥.

• ĉt/⊥ ← Eval(skh,C, (ct
(1), . . . , ct(ℓ))): Let ct(i) = (ct

(i)
1 , ct

(i)
2 , π(i)) for i ∈ [ℓ].

1. Output ⊥ if VN (crs, (ct
(i)
1 , ct

(i)
2 ), π(i), ∅) = 0 for some i ∈ [ℓ].

2. ĉt1 ← EvalF,1(C, (ct
(1)
1 , . . . , ct

(ℓ)
1 )), ĉt2 ← EvalF,2(C, (ct

(1)
2 , . . . , ct

(ℓ)
2 )). Rerandomize ĉt1

and ĉt2 by using EvalF,1 and EvalF,2 if EvalF,1 or EvalF,2 is deterministic.

3. π̂ ← sfSimN (crs, tds, (ĉt1, ĉt2), 1, ∅).
4. Output ĉt = (ĉt1, ĉt2, π̂).

The correctness of ΠKFHE follows the correctness of ΠFHE,1 and ΠFHE,2, and the completeness of
ΠDN. The first condition of the correctness holds since the completeness of ΠDN ensures that VN

outputs 1 and the correctness of ΠFHE,1 ensures that DecF,1 correctly outputs m with overwhelming
probability. Similarly, the second condition of the correctness also holds since the composable partial
zero-knowledge of ΠDN ensures that VN outputs 1 even if the proof π̂ is computed by the semi-
functional simulator sfSimN . In addition, the output-size of sfSimN used in Eval is equal to that of
PN since the semi-functional simulator sfSimN simulates the prover PN . Thus, the compactness of
ΠKFHE follows the compactness of ΠFHE,1 and ΠFHE,2.

Remark 1. Canetti et al. [11] showed that IND-CCA1 secure FHE can be constructed from IND-CPA
secure FHE and zk-SNARK via the Naor-Yung transformation. Here, circuit C to be evaluated is
a witness and thus the underlying NIZK system needs to be succinct. On the other hand, in our
evaluation algorithm first ciphertexts are evaluated by the evaluation algorithm of the underlying
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Table 1: Summary of Games in the Proof of Theorem 1

C(m1, . . . ,mℓ)
Game Components of ct∗ computed for Verification of Msg-Rec. of

ct∗2 π∗ Dep. Eval Indep. Eval Dec Dec

Game0 EncF,2(mb) P∗
N Ordinary VN VN DecF,1

Game1 EncF,2(mb) sfSim∗
N Ordinary pVN pVN DecF,1

Game2 EncF,2(mb) sfSim∗
N Random pVN pVN DecF,1

Game3 EncF,2(mb) otfSim∗
N Random sfVN sfVN DecF,1

Game4 EncF,2(0
|mb|) otfSim∗

N Random sfVN sfVN DecF,1
Game5 EncF,2(0

|mb|) otfSim∗
N Random sfVN sfVN DecF,2

“C(m1, . . . ,mℓ) computed for Dep. Eval” denotes a message C(m1, . . . ,mℓ) for ĉt generated by the Eval
oracle on input a dependent Eval query. “Ordinary” (resp. “Random”) means that C(m1, . . . ,mℓ) is
a message whose encryption is generated by the Eval algorithm on input encryptions queried by the
adversary A (resp. encryptions of random messages). “Verification of Indep. Eval” denotes a verification
algorithm in the Eval algorithm run by the Eval oracle on input an independent Eval query. “Verification
of Dec” denotes a verification algorithm in the Dec algorithm run by the Dec oracle on input a Dec
query. “Msg-Rec. of Dec” denotes an algorithm which recovers a message in the Dec algorithm run
by Dec oracle on input a Dec query. For i ∈ {1, 2}, let EncF,i(·) = EncF,i(pki, ·) and DecF,i(·) =
DecF,i(ski, ·). Let P∗

N = PN (crs, (ct∗1, ct
∗
2), (mb, r

∗
1 , r

∗
2), ∅), sfSim∗

N = sfSimN (crs, tds, (ct
∗
1, ct

∗
2), 1, ∅), and

otfSim∗
N = otfSimN (crs, tds,1, (ct

∗
1, ct

∗
2), ∅).

IND-CCA1 secure FHE schemes, and then the underlying NIZK system proves that two ciphertexts
ĉt1 and ĉt2 have the same plaintext using the trapdoor. So, C is not a witness here, and we do not
have to directly employ zk-SNARK in our construction.

3.2 Security Analysis

Theorem 1 (KH-CCA security). If both ΠFHE,1 and ΠFHE,2 are IND-CCA1 secure, and ΠDN is a
strong DSS-NIZK system, then the resulting keyed-FHE scheme ΠKFHE is KH-CCA secure.

Overview of Proof of Theorem 1. Theorem 1 shows the security of our keyed-FHE scheme.
For simplicity, we explain that our scheme satisfies KH-CCA security if the underlying NIZK sys-
tem ΠDN meets the properties of strong DSS-NIZKs. We first give the intuitive explanation. To
guarantee security against adaptive chosen ciphertext attacks before a homomorphic evaluation key
(a trapdoor of ΠDN) is revealed by RevHK oracle access, the underlying DSS-NIZK system must
satisfy (one-time) simulation-soundness so that we can return the non-malleable challenge cipher-
text correctly. In addition, if the ciphertexts generated by the evaluation oracle are malleable, it
is possible to break KH-CCA security by querying such ciphertexts to the decryption oracle. Thus,
unbounded (partial) simulation-soundness is required for ΠDN in order to return non-malleable
ciphertexts for evaluation queries. Moreover, our scheme needs the partial zero-knowledge and
one-time full zero-knowledge properties of strong DSS-NIZKs, so that the challenge message can be
hidden even if a simulation trapdoor of ΠDN is revealed. Since we can assume that the underlying
FHE schemes are IND-CCA1 secure, we can simulate decryption queries until the challenge phase.

Remark 2. Although we assume that the underlying FHE schemes are IND-CCA1 secure in The-
orem 1, we can prove KH-CCA security even when the underlying FHE schemes are IND-CPA
secure. For this purpose, we follow Canetti et al. generic construction [11] and additionally use
a zk-SNARK (this construction is concretely described in Appendix A). Nevertheless, we assume
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Table 2: Outline of the Proof of Theorem 1

Game Property

Game0 ≈ Game1
partial zero-knowledge of ΠDN,

true simulation-soundness of ΠDN

Game1 ≈ Game2

one-time full zero-knowledge of ΠDN,
unbounded partial simulation-soundness of ΠDN,

IND-CCA1 security of ΠFHE,1 and ΠFHE,2

Game2 ≈ Game3
one-time full zero-knowledge of ΠDN,

simulation-soundness of sfVN

Game3 ≈ Game4
simulation-soundness of sfVN ,
IND-CCA1 security of ΠFHE,2

Game4 ≈ Game5
one-time full zero-knowledge of ΠDN,

unbounded partial simulation-soundness of ΠDN

Game5 IND-CCA1 security of ΠFHE,1

IND-CCA1 security of the underlying FHE schemes since it enables us to obtain a much simpler
proof.

Next, we give the more concrete explanation. Let a dependent Eval query be a query
(C, (ct(1), . . . , ct(ℓ))) issued to the Eval oracle, such that at least one of ct(1), . . . , ct(ℓ) are in D,
and let an independent Eval query be a query issued to the Eval oracle, such that all ct(1), . . . , ct(ℓ)

are not in D. In order to prove Theorem 1, we consider security games Game0, . . . ,Game5 (Ta-
ble 1 shows the summary of these games). The proof of the indistinguishability between Game0
and Game3 is similar to a part of the security proof of the Jutla and Roy’s scheme [28] because
this indistinguishability mainly follows the properties of the underlying strong DSS-NIZK (see also
Table 2). The remaining proofs are different from the security proof of [28], because our scheme
employs the Naor-Yung paradigm while the Jutla and Roy’s scheme uses a variant of ElGamal
encryption. Furthermore, we describe the important point of our security proof. In Game4, the
challenge ciphertext is replaced by an invalid one due to a reduction from the security of the under-
lying primitives, in the same way as the security proof of the Naor-Yung paradigm [35]. However,
when an adversary issues the challenge ciphertext (or derivatives of the challenge ciphertext) to the
Eval oracle, this oracle must return a valid ciphertext. In order to simulate the Eval oracle correctly
even in this case, the Eval oracle on input a dependent Eval query returns a random and valid
ciphertext instead of an ordinary evaluated ciphertext, in Game2. If Game2 is indistinguishable
from the previous game, it is possible to replace the ordinary challenge ciphertext by an invalid one
in the security games after Game2.

3.2.1 Proof of Theorem 1

We give the proof of Theorem 1 as follows. In this proof, we consider the properties of strong
DSS-NIZKs rather than the ordinary DSS-NIZKs. Let A be a PPT adversary against ΠKFHE. We
define

• a dependent Eval query as a query (C, (ct(1), . . . , ct(ℓ))) issued to the Eval oracle, such that at
least one of ct(1), . . . , ct(ℓ) are in D, and

• an independent Eval query as a query issued to the Eval oracle, such that all ct(1), . . . , ct(ℓ)

are not in D.
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By definition, we can immediately detect whether A’s Eval queries are dependent or independent.
Let Qdep be the number of dependent Eval queries. Let AdvpzkΠDN,B1

, AdvupssΠDN,B2
(λ), and AdvotzkΠDN,B3

be
the maximum probabilities that any PPT adversaries B1, B2, and B3 break the partial zero-knowledge
in the second part, the unbounded partial simulation-soundness, and the one-time full zero-knowledge
properties of ΠDN, respectively. Let reveal event be the event that the homomorphic evaluation key
(resp. the partial simulation trapdoor) is revealed by accessing the reveal oracle in the KH-CCA
security game (resp. a security game of strong DSS-NIZKs).

We consider security games Game0,Game1, . . . ,Game5. Regarding the summary of these games,
see Table 1. For i ∈ {0, 1, . . . , 5}, let Wi be the event that A outputs b′ ∈ {0, 1} such that b = b′ in
Gamei.
Game0: The same game as the ordinary KH-CCA game. Then, we have Advkh-ccaΠKFHE,A

(λ) =
|Pr[W0]− 1/2|.

Game1: The same game as Game0 except that

• the Dec oracle uses the private verifier pVN instead of the verifier VN when running the Dec
algorithm,

• for all independent Eval queries, the Eval oracle uses the private verifier pVN instead of the
verifier VN when running the Eval algorithm, and

• in Challenge phase, the challenger generates a proof π∗N by using the semi-functional simu-
lator sfSimN with the membership-bit β = 1, instead of the prover PN .

Intuitively, the partial zero-knowledge property of ΠDN guarantees the indistinguishability be-
tween Game0 and Game1. Notice that the reduction algorithm against this property does not issue
statements (ĉt1, ĉt2) /∈ L(RN ) to the given prover oracle of the partial zero-knowledge game, due to
Proposition 1, that is, the true simulation-soundness of ΠDN.

We define Fail as the event that A issues a (dependent or independent) Eval query
(C, (ct(1), . . . , ct(ℓ))) such that DecF,1(sk1, ĉt1) ̸= DecF,2(sk2, ĉt2) and VN (crs, (ĉt1, ĉt2), π̂, ∅) = 1,

where ct(i) = (ct
(i)
1 , ct

(i)
2 , π(i)) for i ∈ [ℓ], ĉtj ← EvalF,j(C, (ct

(1)
j , . . . , ct

(ℓ)
j )) for j ∈ {1, 2}, and

π̂ ← sfSimN (crs, tds, (ĉt1, ĉt2), 1, ∅). Then, we have

|Pr[W0]− Pr[W1]| = |Pr[Fail ∧W0] + Pr[¬Fail ∧W0]− Pr[Fail ∧W1]− Pr[¬Fail ∧W1]|
= |Pr[¬Fail] · (Pr[W0 | ¬Fail]− Pr[W1 | ¬Fail])

+ Pr[Fail] · (Pr[W0 | Fail]− Pr[W1 | Fail])|
≤ |Pr[W0 | ¬Fail]− Pr[W1 | ¬Fail]|+ Pr[Fail].

In order to show that |Pr[W0 | ¬Fail]− Pr[W1 | ¬Fail]| is negligible, we construct a PPT algo-
rithm Dpzk against the partial zero-knowledge property of ΠDN, as follows: At the beginning of the
KH-CCA game, Dpzk takes as input the CRS crs of ΠDN and generates (pk1, sk1) ← KGenF,1(1

λ)
and (pk2, sk2)← KGenF,2(1

λ). It gives pk = (pk1, pk2, crs) to A. The RevHK, Eval, and Dec oracles
are simulated as follows:

• RevHK(): Given a request, obtain the simulation trapdoor tds by invoking the reveal oracle
of the partial zero-knowledge game. Return skh = tds.

• Eval(skh, ·): Given (C, (ct(1), . . . , ct(ℓ))) (where ct(i) = (ct
(i)
1 , ct

(i)
2 , π(i)) for every i ∈ [ℓ]), do

the following:

1. If the RevHK oracle has been called, then return ⊥.
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2. If ct(i) ∈ D for some i ∈ [ℓ], then verify ct(1), . . . , ct(ℓ) by using VN algorithm. If ct(i) /∈ D
for all i ∈ [ℓ], then verify ct(1), . . . , ct(ℓ) by using the given verifier oracle Vpzk

N .

3. Compute ĉt1 and ĉt2 in the same way as the Eval algorithm, if all ct(1), . . . , ct(ℓ) pass the
verification above. Return ⊥ otherwise

4. Obtain π̂ by issuing ((ĉt1, ĉt2), 1, ∅) to the given semi-functional simulator oracle sfSimpzk
N .

5. Return ĉt = (ĉt1, ĉt2, π̂).

6. Set D ← D ∪ {ĉt} if ct(i) ∈ D for some i ∈ [ℓ].

• Dec(skd, ·): Given ct = (ct1, ct2, π), return ⊥ if the RevHK oracle has been invoked, or ct ∈ D
holds. Return m← DecF,1(sk1, ct1) if the verifier oracle Vpzk

N on input ((ct1, ct2), π, ∅) returns
1, and return ⊥ otherwise.

When A submits (m0,m1), D
pzk samples b

$← {0, 1}, computes ct∗1 ← EncF,1(pk1,mb; r
∗
1) and ct∗2 ←

EncF,2(pk2,mb; r
∗
2), and obtains π∗ by querying ((ct∗1, ct

∗
2), 1, ∅) to the given prover or semi-functional

simulator oracle Ppzk
N . Then, Dpzk returns ct∗ = (ct∗1, ct

∗
2, π

∗) and sets D ← {ct∗}.
When A outputs b′ ∈ {0, 1}, Dpzk outputs 1 if b = b′, and outputs 0 otherwise.
If the algorithm Dpzk simulating the Eval oracle submits ((ĉt1, ĉt2), 1, ∅) such that (ĉt1, ĉt2) /∈

L(RN ), to sfSimpzk
N oracle, then Dpzk fails the simulation above. This event does not occur due

to the condition [¬Fail]. In addition, although it is forbidden for Dpzk to access the given verifier
oracle in the partial zero-knowledge game after the simulation trapdoor tds is revealed, both of the
oracles Eval and Dec do not have to verify given ciphertexts in the KH-CCA security game. Thus,
Dpzk simulates the environment of A correctly even after A invokes the RevHK oracle. Hence, we
have |Pr[W0 | ¬Fail]− Pr[W1 | ¬Fail]| ≤ Advpzk

ΠDN,Dpzk(λ).

In order to show that Pr[Fail] is negligible, we construct a PPT algorithm Ftss against the true
simulation-soundness (see Proposition 1) of ΠDN, as follows: Given the CRS crs of ΠDN, F

tss gives
(pk1, pk2, crs) to A by computing (pk1, sk1) ← KGenF,1(1

λ) and (pk2, sk2) ← KGenF,2(1
λ). Ftss can

simulate the RevHK, Eval, and Dec oracles by using the decryption key skd = sk1 and the sfSimN

oracle of the true simulation-soundness game. Then, Ftss can check whether the event Fail occurs,
since it has the secret keys sk1 and sk2. If Fail happens, Ftss outputs the evaluated ciphertext
(ĉt1, ĉt2, π̂, ∅) and halts. If Fail does not happen, and A halts, then Ftss aborts. The output of Ftss

satisfies the winning condition of the true simulation-soundness game since the statement (ĉt1, ĉt2)
such that DecF,1(sk1, ĉt1) ̸= DecF,2(sk2, ĉt2) is not in L(RN ), but VN accepts (ĉt1, ĉt2, π̂, ∅). Hence,
the probability Pr[Fail] is negligible due to the true simulation-soundness of ΠDN. From Proposition

1,4 this probability is at most AdvpzkΠDN,D
(λ) + AdvupssΠDN,F

(λ).

From the above, it holds that |Pr[W0]− Pr[W1]| ≤ Advpzk
ΠDN,Dpzk(λ)+AdvpzkΠDN,D

(λ)+AdvupssΠDN,F
(λ).

Game2: The same game as Game1 except that the Eval oracle on input a dependent Eval

query computes a proof on random ciphertexts ĉt1 ← EvalF,1(C, (c̄t
(1)
1 , . . . , c̄t

(ℓ)
1 )) and ĉt2 ←

EvalF,2(C, (c̄t
(1)
2 , . . . , c̄t

(ℓ)
2 )), where for every i ∈ [ℓ], m̄(i) $← M, c̄t

(i)
1 ← EncF,1(pk1, m̄

(i); r
(i)
1 ), and

c̄t
(i)
2 ← EncF,2(pk2, m̄

(i); r
(i)
2 ).

Lemma 1 shows the indistinguishability between Game1 and Game2, and the proof of this lemma
is given in Section 3.2.2.

Lemma 1. Assuming that all statements (ĉt1, ĉt2) generated by the Eval algorithm are language
members of L(RN ), then any PPT adversary A cannot distinguish the two games Game1 and Game2.

4Even in the case of strong DSS-NIZKs, Propositions 1 and 2 hold.
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The probability of distinguishing the two games is at most

O(Qdep) · (AdvotzkΠDN,D1
(λ) + AdvupssΠDN,F1

(λ)) +O(Qdep · ℓ) · (Advind-cca1ΠFHE,1,D2
(λ) + Advind-cca1ΠFHE,2,D

′
2
(λ)).

Game3: Let (otfGenN , otfSimN , sfVN ) be a DSS-NIZK system ΠDN in one-time full simulation world.
The same game as Game2 except that

• the one-time full simulation generator otfGenN of ΠDN is used to generate crsN , instead of
the semi-functional generator sfGenN ,

• for Dec and independent Eval queries, the semi-functional verifier sfVN is used to check given
ciphertexts, instead of the private verifier pVN , when running the Dec and Eval algorithms,
respectively, and

• in Challenge phase, the proof of ΠDN is generated by using the one-time full simulator
otfSimN , instead of the semi-functional simulator sfSimN .

Intuitively, the indistinguishability between Game2 and Game3 is guaranteed by the one-time
full zero-knowledge property of ΠDN. In addition, since the simulation-soundness of sfVN holds by
Proposition 2, the reduction algorithm which breaks the one-time full zero-knowledge of ΠDN does
not call the semi-functional simulator oracle with ((ĉt1, ĉt2), 1, ∅) such that (ĉt1, ĉt2) /∈ L(RN ).

We construct a PPT algorithm Dotzk against the one-time full zero-knowledge property of ΠDN,
as follows: At the beginning of the game, Dotzk takes as input crs, and generates (pk1, sk1) ←
KGenF,1(1

λ) and (pk2, sk2) ← KGenF,2(1
λ). It gives pk = (pk1, pk2, crs) to A. Dotzk simulates the

RevHK, Eval, and Dec oracles, as follows:

• RevHK(): Given a request, obtain the simulation trapdoor tds by invoking the reveal oracle
of the one-time full zero-knowledge game. Return skh = tds.

• Eval(skh, ·): Given (C, (ct(1), . . . , ct(ℓ))) (where ct(i) = (ct
(i)
1 , ct

(i)
2 , π(i)) for every i ∈ [ℓ]), simu-

late the Eval oracle, as follows:

– If the RevHK oracle has been called, then return ⊥.
– If ct(i) ∈ D for some i ∈ [ℓ], do the following:

1. Verify ct(1), . . . , ct(ℓ) by using VN (crs, ·, ·, ·).
2. If all ct(1), . . . , ct(ℓ) pass the verification above, then

∗ compute (c̄t
(i)
1 , c̄t

(i)
2 ) by encrypting a random message m̄(i) $←M for each i ∈ [ℓ],

∗ compute ĉt1 ← EvalF,1(C, (c̄t
(1)
1 , . . . , c̄t

(ℓ)
1 )), ĉt2 ← EvalF,2(C, (c̄t

(1)
2 , . . . , c̄t

(ℓ)
2 )),

and

∗ rerandomize ĉt1 and ĉt2 if EvalF,1 or EvalF,2 is deterministic.

3. Obtain π̂ by issuing ((ĉt1, ĉt2), 1, ∅) to the given semi-functional simulator oracle
sfSimotzk

N .

4. Return ĉt = (ĉt1, ĉt2, π̂) and set D ← D ∪ {ĉt}.
– If ct(i) /∈ D for all i ∈ [ℓ], do the following:

1. Verify ct(1), . . . , ct(ℓ) by using the given private or semi-functional verifier oracle
Votzk
N .

2. Compute ĉt1 and ĉt2 in the same way as the Eval algorithm, if all ct(1), . . . , ct(ℓ) pass
the verification above. Return ⊥ otherwise.
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3. Obtain π̂ by issuing ((ĉt1, ĉt2), 1, ∅) to the semi-functional simulator oracle sfSimotzk
N .

4. Return ĉt = (ĉt1, ĉt2, π̂).

• Dec(skd, ·): Given ct = (ct1, ct2, π), Dotzk returns ⊥ if ct ∈ D holds, the RevHK oracle
has been invoked, or the oracle Votzk

N given a query ((ct1, ct2), π, ∅) returns 0. It returns
m← DecF,1(sk1, ct1) otherwise.

When A submits (m0,m1), D
otzk chooses b

$← {0, 1}, computes ct∗1 ← EncF,1(pk1,mb; r
∗
1) and

ct∗2 ← EncF,2(pk2,mb; r
∗
2), and obtains π∗ by querying ((ct∗1, ct

∗
2), 1, ∅) to the one-time full simulator

oracle otfSimotzk
N . Then Dotzk returns ct∗ = (ct∗1, ct

∗
2, π

∗) and sets D ← {ct∗}.
When A finally outputs b′ ∈ {0, 1}, Dotzk outputs 1 if b = b′ holds, and outputs 0 otherwise.
If for all Eval queries, Dotzk invokes the sfSimotzk

N oracle with ((ĉt1, ĉt2), 1, ∅) such that (ĉt1, ĉt2) /∈
L(RN ) and sfVN accepts, then the simulation above fails. In the same way as the proof that
|Pr[W0]− Pr[W1]| is negligible, the probability that this event occurs is at most AdvotzkΠDN,D

(λ) +

AdvupssΠDN,F
(λ) due to Proposition 2. In addition, if A wins in the KH-CCA security game, then Dotzk

breaks the one-time full zero-knowledge property of ΠDN, in the straightforward way. Notice that in
the same way as Dpzk, Dotzk correctly simulates the environment of A even after the reveal event
of the KH-CCA security game.

The probability of distinguishing the two games Game2 and Game3 is at most AdvotzkΠDN,Dotzk(λ)+

AdvotzkΠDN,D
(λ) + AdvupssΠDN,F

(λ).

Game4: The same game as Game3 except that in Challenge phase, a ciphertext ct∗2 ←
EncF,2(pk2,mb; r

∗
2) is replaced by ct∗2 ← EncF,2(pk2, 0

|mb|; r∗2).
By using A, it is possible to construct a PPT algorithm Dcca1 against the IND-CCA1 security

of ΠFHE,2, which distinguishes between Game3 and Game4, in the straightforward way. Regarding
this reduction algorithm Dcca1, if A can issue a Dec query (ct1, ct2, π) such that (ct1, ct2) /∈ L(RN )
and sfVN accepts this query, then Dcca1 fails to simulate the environment of A. The probabil-
ity that A issues such a query is at most AdvotzkΠDN,D

(λ) + AdvupssΠDN,F
(λ), by Proposition 2. Hence,

|Pr[W3]− Pr[W4]| ≤ Advind-cca1ΠFHE,2,Dcca1(λ) + AdvotzkΠDN,D
(λ) + AdvupssΠDN,F

(λ) holds.

Game5: The same game as Game4 except that the Dec oracle returns m ← DecF,2(sk2, ct2) if
sfVN (crs, tdv, (ct1, ct2), π, ∅) = 1 holds.

We have |Pr[W5]− 1/2| ≤ Advind-cca1ΠFHE,1,D
(λ) by constructing a PPT algorithm against the

IND-CCA1 security of ΠFHE,1 in the straightforward way. Furthermore, Lemma 2 below shows the
indistinguishability of games Game4 and Game5. The proof of this lemma is given in Section 3.2.3.

Lemma 2. If ΠDN meets both of properties one-time full zero-knowledge and unbounded partial
simulation-soundness, then the probability of distinguishing between Game4 and Game5 is negligible
in λ. This probability is at most

2 · AdvotzkΠDN,Dotzk(λ) + 2 · AdvupssΠDN,Fupss(λ).

From the discussion above, we obtain

Advkh-ccaΠKFHE,A
(λ) ≤ 2 · Advpzk

ΠDN,Dpzk(λ) +O(Qdep) · (AdvupssΠDN,Fss(λ) + AdvotzkΠDN,Dotzk(λ))

+O(Qdep · ℓ) · (Advind-cca1ΠFHE,1,D
cca1
1

(λ) + Advind-cca1ΠFHE,2,D
cca1
2

(λ))

and complete the proof.
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3.2.2 Proof of Lemma 1

For j ∈ {0, 1, . . . , Qdep}, we consider security games Game1,j , as follows: Game1,0 is the same game
as Game1. For j ∈ {0, 1, . . . , Qdep − 1}, let Game1,j+1 be Game1,j except that for the (Qdep − j)-th
dependent Eval query, the Eval oracle computes (ĉt1, ĉt2), as follows: Let (C, (ct(1), . . . , ct(ℓ))) be

the (Qdep − j)-th Eval query, where ct(i) = (ct
(i)
1 , ct

(i)
2 , π(i)) for i ∈ [ℓ].

1. For each i ∈ [ℓ], choose m̄(i) $← M and compute c̄t
(i)
1 ← EncF,1(pk1, m̄

(i); r̄
(i)
1 ) and c̄t

(i)
2 ←

EncF,2(pk2, m̄
(i); r̄

(i)
2 ).

2. Compute ĉt1 ← EvalF,1(C, (c̄t
(1)
1 , . . . , c̄t

(ℓ)
1 )) and ĉt2 ← EvalF,2(C, (c̄t

(1)
2 , . . . , c̄t

(ℓ)
2 )). Rerandom-

ize ĉt1 and ĉt2 by using EvalF,1 and EvalF,2 if EvalF,1 or EvalF,2 is deterministic.

Notice that Game1,Qdep
is identical to Game2.

We show that A cannot distinguish two games Game1,j and Game1,j+1, computationally (j ∈
{0, 1, . . . , Qdep − 1}).

Game′0: The same game as Game1,j .

Game′1: The same game as Game′0 except that

• otfGenN is used to generate a CRS and trapdoors of ΠDN,

• for Dec and independent Eval queries, pVN is replaced by sfVN when running the Dec and
Eval algorithms, respectively, and

• for the (Qdep− j)-th dependent Eval query, the Eval oracle generates a proof of ΠDN by using
otfSimN instead of sfSimN .

A PPT algorithm Dotzk
j breaking the one-time full zero-knowledge property of ΠDN can be con-

structed in the straightforward way.
If Dotzk

j issues membership-bits β which are not correct, to the given semi-functional simula-

tor oracle sfSimotzk
N and one-time simulator oracle otfSimotzk

N , then it fails the simulation. During
the simulation of the Eval oracle, Dotzk

j issues language members (ĉt1, ĉt2) of L(RN ), due to the
correctness of ΠFHE and Proposition 2, namely the simulation-soundness of the semi-functional ver-
ifier. In Challenge phase, it also submits a language member, due to the correctness of ΠFHE.
Hence, membership-bits β issued to sfSimotzk

N are correct. In the same way as the proof of Theorem
1 (concretely, the proof that |Pr[W0]− Pr[W1]| is negligible), the probability that Dotzk

j fails the

simulation of the oracles is at most AdvotzkΠDN,D
(λ) + AdvupssΠDN,F

(λ).

Therefore, the probability of distinguishing between Game′0 and Game′1 is at most
Advotzk

ΠDN,D
otzk
j

(λ) + AdvotzkΠDN,D
(λ) + AdvupssΠDN,F

(λ).

Game′2: The same game as Game′1 except that given the (Qdep − j)-th dependent Eval query,

the Eval oracle computes ĉt2 ← EvalF,2(C, (c̄t
(1)
2 , . . . , c̄t

(ℓ)
2 )), where for all i ∈ [ℓ], m̄(i) $← M and

c̄t
(i)
2 ← EncF,2(pk2, m̄

(i); r̄
(i)
2 ).

The indistinguishability between Game′1 and Game′2 follows the IND-CCA1 security of ΠFHE,2.
In this reduction, if A issues a Dec query (ct1, ct2, π) such that (ct1, ct2) /∈ L(RN ) and the semi-
functional verifier sfVN accepts this query, then it can distinguish the two games. Due to Proposition
2, the probability that this event occurs is at most AdvotzkΠDN,D

(λ) + AdvupssΠDN,F
(λ).
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The probability of distinguishing the two games is at most probability ℓ · Advind-cca1ΠFHE,2,Dcca1(λ) +

AdvotzkΠDN,D
(λ) + AdvupssΠDN,F

(λ).

Game′3: The same game as Game′2 except that the Dec oracle returns m ← DecF,2(sk2, ct2) if
sfVN (crs, tdv, (ct1, ct2), π, ∅) = 1 holds.

The indistinguishability between Game′2 and Game′3 is proven in the same way as the proof of
Lemma 2. Then, the probability of distinguishing the two games is at most 2 · AdvotzkΠDN,D

(λ) + 2 ·
AdvupssΠDN,F

(λ).

Game′4: The same game as Game′3 except that given the (Qdep − j)-th dependent Eval query, the

Eval oracle computes ĉt1 ← EvalF,1(C, (c̄t
(1)
1 , . . . , c̄t

(ℓ)
1 )) and ĉt2 ← EvalF,2(C, (c̄t

(1)
2 , . . . , c̄t

(ℓ)
2 )), where

m̄(i) $←M, ct
(i)
1 ← EncF,1(pk1, m̄

(i); r̄
(i)
1 ), and ct

(i)
2 ← EncF,2(pk2, m̄

(i); r̄
(i)
2 ) for every i ∈ [ℓ].

It is possible to construct a PPT algorithm which breaks IND-CCA1 security in the straight-
forward way since it can simulate the environment of A by generating secret keys by itself. Thus,
the IND-CCA1 security of ΠFHE,1 guarantees the indistinguishability of the two games, and the
simulation-soundness of sfVN guarantees the correctness of the simulation by the reduction algo-
rithm against the IND-CCA1 security. Thus, the probability of distinguishing the two games is at
most ℓ · Advind-cca1ΠFHE,1,Dcca1(λ) + AdvotzkΠDN,D

(λ) + AdvupssΠDN,F
(λ).

We consider security games Game′5 and Game′6 which are similar to the above security games
except for how to generate ciphertexts ĉt1, ĉt2 for the (Qdep− j)-th dependent Eval query. Namely,
the security games are defined as follows:

• Let Game′5 be the same game as Game′4 except that the Dec oracle returns m← DecF,1(sk1, ct1)
instead of m← DecF,2(sk2, ct2), when running the Dec algorithm.

• Let Game′6 be the same game as Game′5 except that

– sfGenN is used to generate a CRS and trapdoors of ΠDN,

– for Dec and independent Eval queries, sfVN is replaced by pVN when running the Dec
and Eval algorithms, respectively, and

– for the (Qdep − j)-th dependent Eval query, the Eval oracle generates a proof of ΠDN by
using sfSimN instead of otfSimN .

From the proofs above,

• the indistinguishability between Game′4 and Game′5 is proved in the same way as the proof of
the indistinguishability between Game′3 and Game′2, and

• Game′6 is indistinguishable from Game′5 with at most probability AdvotzkΠDN,D
(λ)+AdvotzkΠDN,D

(λ)+
AdvupssΠDN,F

(λ), due to the one-time full zero-knowledge and the unbounded partial simulation-
soundness of ΠDN.

In addition, Game′6 is identical to Game1,j+1.
From the discussion above, the probability of distinguishing between Game1,j+1 and Game1,j is

at most 10 · AdvotzkΠDN,D1
(λ) + 8 · AdvupssΠDN,F1

(λ) + ℓ · Advind-cca1ΠFHE,1,D2
(λ) + ℓ · Advind-cca1ΠFHE,2,D

′
2
(λ). Therefore, A

distinguishes the two games Game1 and Game2 with at most probability O(Qdep) · (AdvotzkΠDN,D1
(λ) +

AdvupssΠDN,F1
(λ)) +O(Qdep · ℓ) · (Advind-cca1ΠFHE,1,D2

(λ) + Advind-cca1ΠFHE,2,D
′
2
(λ)), and the proof is completed.
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3.2.3 Proof of Lemma 2

Let Bad be the event that A submits a decryption query (ct1, ct2, π) such that
sfVN (crs, (ct1, ct2), π, ∅) = 1 and DecF,1(sk1, ct1) ̸= DecF,2(sk2, ct2). For i ∈ [5], let Badi be the
event that Bad occurs in Gamei.

Unless Bad occurs, Game4 and Game5 are identical. Thus, we have

|Pr[W4]− Pr[W5]| ≤ Pr[Bad4]

≤ |Pr[Bad4]− Pr[Bad3]|+ |Pr[Bad3]− Pr[Bad2]|+ Pr[Bad2].

Pr[Bad4] = Pr[Bad3] holds because the difference between Game3 and Game4 does not affect
whether a Dec query meets the condition of the Bad event, or not.

The indistinguishability between Bad3 and Bad2 follows the one-time full zero-knowledge property
of ΠDN. It is possible to construct a PPT algorithm Dotzk

Bad which breaks the security of ΠDN. This
one is the same as Dotzk in the proof of Theorem 1, except that it aborts if Bad occurs. Thus, we
have |Pr[Bad3]− Pr[Bad2]| ≤ Advotzk

ΠDN,D
otzk
Bad

(λ) + AdvotzkΠDN,D
(λ) + AdvupssΠDN,F

(λ).

Finally, we show that Pr[Bad2] is negligible. We can construct a PPT algorithm FupssBad
against the unbounded partial simulation-soundness of ΠDN, as follows: By using the given or-
acles, it can simulate the environment of A in Game2. If A submits a Dec query such that
DecF,1(sk1, ct1) ̸= DecF,2(sk2, ct2) and the given private verifier oracle pVupss

N accepts, then FupssBad
outputs ((ct1, ct2), π, ∅) and halts. This output of FupssBad fulfills the winning condition in the partial
unbounded simulation-soundness game since in the Bad event, the private verifier of ΠDN accepts
((ct1, ct2), π, ∅), and (ct1, ct2) is not in the language L(RN ). Hence, the probability that Bad2
occurs is at most Advupss

ΠDN,F
upss
Bad

(λ).

From the discussion above, we obtain

|Pr[W4]− Pr[W5]| ≤ 2 · AdvotzkΠDN,Dotzk(λ) + 2 · AdvupssΠDN,Fupss(λ),

and the proof is completed.

4 Strong DSS-NIZK from Smooth PHPS and Unbounded
Simulation-Sound NIZK

In this section, we show that there exists a strong DSS-NIZK system for NP, constructed from
a smooth PHPS and an unbounded simulation-sound NIZK. Although our construction is similar
to the generic construction [28] of strong DSS-NIZKs for linear subspaces, the properties of the
underlying primitives are different from those of the primitives used in ours. As mentioned in
Section 1.2, the previous construction assumes the underlying PHPS to be universal2 and uses a
true simulation-sound quasi-adaptive NIZK while we assume that the underlying PHPS does not
have to satisfy universal2, and the underlying NIZK satisfies the unbounded simulation-soundness
(Definition 3).

Furthermore, we modify the generic construction [28] under our assumption, slightly. This is
because the languages of existing PHPSs for lattice-based ciphertexts are not necessarily identical
to those of existing unbounded simulation-sound NIZKs based on lattice assumptions.

Following [17], we define smooth PHPSs to describe our DSS-NIZK scheme.

Definition 15 (Projective Hash Family [17]). Let X and Π be finite sets. Let H = {Hk}k∈K be
a collection of functions indexed by K so that Hk : X → Π is a hash function for every k ∈ K.
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Then, (H,K,X,Π) is called a hash family. Let L be a non-empty proper subset of X. Let S be a
finite set, and α : K → S be a function. H = (H,K,X,Π, L, S, α) is called a projective hash family
(PHF) if for every k ∈ K, the action of Hk on L is determined by α(k).

Definition 16 ((Smooth) Projective Hash Proof System [17]). For languages defined by a relation
R ⊆ {0, 1}∗ × {0, 1}∗, the PHF H = (H,K,X,Π, L, S, α) constitutes a projective hash proof system
(PHPS) if α, Hk, and a public evaluation function Ĥ are efficiently computable, where Ĥ takes as
input the projection key α(k), a statement x ∈ L = L(R) = {x | ∃w s.t. (x,w) ∈ R}, and a witness
w such that (x,w) ∈ R, and it computes Hk(x).

Furthermore, a PHPS constituted by a PHF H = (H,K,X,Π, L, S, α) is called a labeled PHPS
if the public evaluation function takes an additional input lbl ∈ {0, 1}∗ which is called a label.
A labeled PHPS is ϵ-smooth if the statistical distance between U(H) = (x, α(k), π′) and V (H) =
(x, α(k),Hk(x, lbl)) is at most ϵ for all k ∈ K, all x ∈ X\L, all lbl ∈ {0, 1}∗, and all π′ ∈ Π.

In order to construct our DSS-NIZK system ΠDN, we assume that the following primitives are
used: An ϵ-smooth labeled PHPS ΠPHPS with a public evaluation function Ĥ, which is constituted
by a PHFH = (H,K,XH , LH ,Π, S, α), and a NIZK system ΠN = (GenN ,PN ,VN ) for an augmented
relation RN = {((x, xH , πH , lbl), (w,wH)) | (x,w) ∈ R ∧ πH = Ĥ(α(k), (xH , x∥lbl), wH)}, with a
PPT simulator (SimN,0, SimN,1) (where R ⊆ X ×W is the relation of ΠDN).

In addition, we assume that there exist polynomial-time algorithms E1, E2, E3, G, and EG ,
which are defined as follows: E1 samples auxiliary information ψ of R, which can be regarded
as witness of R, E2 given ψ decides whether x is in L(R), E3 samples a uniformly random value
from Π, and we write (xH ;wH) ← (G∥EG)(x, lbl;w) when G given (x, lbl) ∈ X × {0, 1}∗ outputs
xH ∈ XH (then, we write xH ← G(x, lbl)), and EG given w outputs a witness wH by using the
internal information of G(x, lbl). (G∥EG)(x, lbl;w) outputs (xH ;wH) such that xH is in the language
LH of ΠPHPS (and (xH , wH) is in the relation RH of ΠPHPS) if x is in L(R), but xH is not in LH

(and (xH , wH) /∈ RH) otherwise.
Furthermore, there is a gap between the two languages L(R) and LH (e.g., L(R) ⊂ LH) in

general. This may be a problem to construct G. Thus, we assume that a statement x is publicly
verifiable for a language LX such that L(R) = LH ∩ LX .

We explain that assuming the algorithms E1, E2, E3, G, EG , and the public verifiability for
LX is reasonable. The algorithms E1, E2, and E3 are the same as the ones assumed in the DSS-
NIZK construction of [28]. Thus, we explain that the remaining assumptions are reasonable in
some cases (in particular, a case where we apply our DSS-NIZK to our keyed-FHE scheme). For
example, we consider the language of the PHPS of [2], which can be simply defined as LH =
{ct | ∃w,Encpk(0;w) = ct}, where Encpk(·) is an encryption algorithm of public key encryption. In
addition, we suppose that this public key encryption scheme for LH is an IND-CCA1 secure FHE
scheme from IND-CPA secure FHE schemes and a zk-SNARK [11]. Let LX be the language for the
zk-SNARK used in this IND-CCA1 secure FHE scheme [11]. First, assuming the public verifiability
for LX is reasonable because the FHE scheme [11] is based on the Naor-Yung paradigm, and it is
clear that the ciphertexts are publicly verifiable for LX . Next, we show that assuming G algorithm
is reasonable. G checks whether two FHE ciphertexts are in LX . If so, G transforms this pair
into a statement in LH by using the technique of the generic construction [33] of multi-key FHE,
starting from an FHE scheme.5 Otherwise, it samples xH /∈ LH and outputs this. Hence, if two
ciphertexts are in L(R), then this pair is also in LH . Otherwise, it is not in LH due to the public

5Concretely, two FHE ciphertexts Enc(pk1,m1) and Enc(pk2,m2) can be transformed into a ciphertext
Enc(pk1,Enc(pk2,m1 − m2)). If for two FHE ciphertexts Enc(pk1,m1; r1) and Enc(pk2,m2; r2), (m, r1, r2) where
m = m1 = m2 is a witness of the Naor-Yung language, then Enc(pk1,Enc(pk2,m1 −m2)) is a statement in LH .
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verifiability of the IND-CCA1 secure FHE scheme. Hence, the algorithm G fulfills the required
property. Accordingly, there exits an algorithm which generates the corresponding witness by
using the algorithm of this transformation. Hence, there exist algorithms G and EG .

Our DSS-NIZK system ΠDN for a relation R is described as follows:

Real World consists of

• crs ← Gen(1λ): Sample k
$← K and compute crsN ← GenN (λ). Output crs =

(α(k), crsN ).

• π ← P(crs, x, w, lbl): Compute (xH ;wH)← (G∥EG)(x, lbl;w), πH ← Ĥ(α(k), (xH , x∥lbl),
wH) and πN ← PN (crsN , (x, xH , πH , lbl), (w,wH)). Output π = (xH , πH , πN )

• 1/0 ← V(crs, x, π, lbl): Output 1 if VN (crsN , (x, xH , πH , lbl), πN ) = 1. Output 0 other-
wise.

Partial Simulation World consists of

• (crs, tds, tdv) ← sfGen(1λ): Sample ψ by using E1. Sample k
$← K and compute

(crsN , tdN )← SimN,0(1
λ). Output crs = (α(k), crsN ), tds = (k, tdN ), and tdv = (ψ, k).

• π ← sfSim(crs, tds, x, β, lbl):

– If β = 1, then compute xH ← G(x, lbl), πH ← Hk(xH , x∥lbl) and πN ←
SimN,1(crsN , tdN , (x, xH , πH , lbl)).

– If β = 0, then sample πH
$← Π by using E3 and compute xH ← G(x, lbl) and

πN ← SimN,1(crsN , tdN , (x, xH , πH , lbl)).

Output π = (xH , πH , πN ).

• 1/0 ← pV(crs, tdv, x, π, lbl): Output 1 if it holds that x ∈ L(RN ) by using E2 given ψ,
Hk(xH , x∥lbl) = πH , and VN (crsN , (x, xH , πH , lbl), πN ) = 1. Output 0 otherwise.

One-time Full Simulation World consists of

• (crs, tds, tds,1, tdv) ← otfGen(1λ): Sample k
$← K and compute (crsN , tdN ) ←

SimN,0(1
λ). Output crs = (α(k), crsN ), tds = tds,1 = (k, tdN ), and tdv = k.

• π ← otfSim(crs, tds,1, x, lbl): Compute xH ← G(x, lbl), πH ← Hk(xH , x∥lbl), and πN ←
SimN,1(crsN , tdN , (x, xH , πH , lbl)). Output π = (xH , πH , πN ).

• 1/0 ← sfV(crs, tdv, x, π, lbl): Output 1 if it holds that Hk(xH , x∥lbl) = πH and
VN (crsN , (x, xH , πH , lbl), πN ) = 1. Output 0 otherwise.

Theorem 2. If ΠPHPS is ϵ-smooth, and ΠN is an unbounded simulation-sound NIZK, then the
resulting NIZK system ΠDN is a strong DSS-NIZK system.

Theorem 2 shows the properties of ΠDN. The proof of this theorem appears in Section 4.1. The
overview of our proof is as follows: The partial zero-knowledge and unbounded partial simulation-
soundness of ΠDN can be proven in the same way as the proof of [28]. In the one-time full zero-
knowledge game, an adversary is allowed to submit (x∗, β∗, lbl∗) such that x∗ /∈ L(R) in order to
get a proof π∗ generated by sfSim or otfSim. The difference between pV and sfV is the verification
of x ∈ L(R) with E2. Thus, the outputs of pV and sfV may be different if the adversary issues
(x, π, lbl) to the given verifier oracle, such that x /∈ L(R), (x, π, lbl) ̸= (x∗, π∗, lbl∗), and the verifier
oracle accepts. In the proof of [28], it is proven that this event does not occur due to the universal2
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property of ΠPHPS and a special property of the underlying NIZK. In our proof, the event oc-
curs with negligible probability, due to the unbounded simulation-soundness of Definition 3. This
is because ((x∗, x∗H , π

∗
H , lbl

∗), π∗) is included in the list Q of the unbounded simulation-soundness
game of ΠN, and issuing the query above (x, π = (xH , πH , πN ), lbl) corresponds to the adversary’s
winning condition in Definition 3 (i.e., (x, xH , πH , lbl) /∈ L(RN ), ((x, xH , πH , lbl), πN ) /∈ Q, and
VN (crsN , (x, xH , πH , lbl), πN ) = 1). Therefore, ΠPHPS does not need to satisfy universal2 property,
and ΠN must fulfill the unbounded simulation-soundness.

4.1 Proof of Theorem 2

We show that ΠDN satisfies completeness. If the public evaluation function Ĥ of the underlying
PHPS correctly computes πH = Ĥ(α(k), (xH , x∥lbl), wH), and x is in L(R), then the prover algo-
rithm PN computes a correct proof πN since (x, xH , πH , lbl) is in the language L(RN ). Thus, the
completeness of ΠDN follows the completeness of the underlying NIZK.

The partial zero-knowledge and unbounded partial simulation-soundness of ΠDN are proven in the
same way as the proof of Theorem 6 in [28]. Namely, the partial zero-knowledge property follows the
composable zero-knowledge and unbounded simulation-soundness of ΠN, and the unbounded partial
simulation-soundness follows the failure probability of E2.

We prove that ΠDN satisfies one-time full zero-knowledge. We consider a sequence of security
games. Game0 is identical to the one-time full zero-knowledge game in the partial simulation world.
Let Game1 be the same game as Game0 except that the proof of (x∗, β∗, lbl∗) is generated by otfSim
instead of sfSim. If β∗ is not correct for x∗, then the challenger aborts in both of the two games.
Thus, we assume that β∗ is correct for x∗. In the case β∗ = 1, sfSim and otfSim are identical. In
the case β∗ = 0, πH generated by sfSim is uniformly at random while πH generated by otfSim is
Hk(xH , x∥lbl). Due to the ϵ-smoothness of ΠPHPS, the statistical distance between the distributions
of the two proofs is at most ϵ. Hence, the adversary distinguishes between Game0 and Game1 with
at most probability ϵ.

Game2 is the same game as Game1 except that the private verifier oracle pV is replaced by
the semi-functional verifier oracle sfV. Let N be the number of queries issued to the private or
semi-functional verifier oracle. Let Game1,0 and Game1,N be the same games as Game1 and Game2,
respectively. For each i ∈ {0, 1, . . . , N − 1}, we consider a security game Game1,i+1 in which the
verifier oracle returns the output of sfV for the (N − i)-th query issued to the verifier oracle, and it
returns that of pV for the j-th query (j ∈ {1, . . . , N − i− 1}). We prove that A cannot distinguish
between Game1,i and Game1,i+1 due to the unbounded simulation-soundness of the underlying
NIZK. To do this, it is sufficient to consider the event in which A issues the (N − i)-th query
(x, π = (xH , πH , πN ), lbl) to the given verifier oracle, such that (x, π, lbl) ̸= (x∗, π∗, lbl∗), x /∈ L(R),
and the sfV oracle accepts (i.e., Hk(xH , x∥lbl) = πH and VN (crsN , (x, xH , πH , lbl), πN ) = 1 hold).
The reasons for this are as follows:

• In the case (x, π, lbl) = (x∗, π∗, lbl∗), both of the two games are aborted.

• In the case x ∈ L(R), both of the verifier oracles in Game1,i and Game1,i+1 return the same
output since the difference between pV and sfV is only the verification by E2.

• In the case Hk(xH , x∥lbl) ̸= πH , both pV and sfV return 0.

• In the case VN (crsN , (x, xH , πH , lbl), πN ) = 0, both pV and sfV return 0.

Hence, Game1,i and Game1,i+1 are identical unless A submits that query. Then, we show that
it is possible to break the unbounded simulation-soundness of ΠN if A issues the (N − i)-th query
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above. Let Q be the list of queries and responses in the unbounded simulation-soundness game of ΠN.
Notice that, in the reduction from the property of ΠN, ((x

∗, x∗H , π
∗
H , lbl

∗), π∗N ) is included in Q. If A
issues the query meeting the additional condition ((x, xH , πH , lbl), πN ) /∈ Q, then this query clearly
fulfills the winning condition of the simulation-soundness game of ΠN. Thus, we consider the ad-
ditional condition ((x, xH , πH , lbl), πN ) ∈ Q. If ((x, xH , πH , lbl), πN ) ∈ Q\{((x∗, x∗H , π∗H , lbl

∗), π∗N )},
then there does not exist the query meeting the condition x /∈ L(R), Hk(xH , x∥lbl) = πH ,
and VN (crsN , (x, xH , πH , lbl), πN ) = 1. The reason for this is as follows: If x ∈ L(R), this
contradicts the assumption x /∈ L(R) of the (N − i)-th query. If x /∈ L(R), then the proof
π = (xH , πH , πN ) is invalid since the sfSimN oracle samples πH uniformly at random, and
Hk(xH , x∥lbl) ̸= πH holds with overwhelming probability. Hence, the (N − i)-th query such that
((x, xH , πH , lbl), πN ) ∈ Q\{((x∗, x∗H , π∗H , lbl

∗), π∗N )} does not meet the above condition x /∈ L(R),
Hk(xH , x∥lbl) = πH , and VN (crsN , (x, xH , πH , lbl), πN ) = 1. Hence, A must issue the (N − i)-th
query such that ((x, xH , πH , lbl), πN ) /∈ Q, x /∈ L(R), and the sfV oracle accepts in order to distin-
guish the two games. That is, if A issues the (N − i)-th query such that (x, π, lbl) ̸= (x∗, π∗, lbl∗),
x /∈ L(R), Hk(xH , x∥lbl) = πH , and VN (crsN , (x, xH , πH , lbl), πN ) = 1, then this query satisfies the
winning condition of the unbounded simulation-soundness game of ΠN (i.e., ((x, xH , πH , lbl), πN ) /∈ Q,
(x, xH , πH , lbl) /∈ L(RN ), and VN (crsN , (x, xH , πH , lbl), πN ) = 1). Therefore, the indistinguishabil-
ity between Game1,i and Game1,i+1 follows the property of ΠN, and the difference between success
probabilities in Game1 and Game2 is at most N ·AdvussΠN

(λ), where AdvussΠN
(λ) is the maximum prob-

ability that any PPT algorithm breaks the unbounded simulation-soundness of ΠN.
Game3 is identical to Game2 except that sfGen is replaced by otfGen at the beginning of the one-

time full zero-knowledge game. The difference between the two generators is whether ψ is generated
or not. Game2 and Game3 are identical since ψ is not used in both of the two games.

From the discussion above, the adversary breaks the one-time full zero knowledge property of
ΠDN with at most probability ϵ+N · AdvussΠN

(λ), and the proof is completed.

5 Feasibility of Our Construction

We show that a keyed-FHE scheme without iO can be constructed from existing schemes. For
the FHE used in our generic construction, IND-CCA1 security is required. However, our generic
construction of strong DSS-NIZKs requires not only IND-CCA1 security but also public verifiability
of ciphertexts (see Section 4). Canetti et al. [11] proposed generic constructions of IND-CCA1 secure
FHE. They employed the Naor-Yung paradigm [35] with two IND-CPA secure FHE schemes and
zk-SNARK [3, 4]. This construction satisfies both IND-CCA1 security and public verifiability of
ciphertexts, since it is possible to check the validity of ciphertexts owing to the public verifiability
of the underlying zk-SNARK. Although they also showed that multi-key IBFHE can be used for
constructing IND-CCA1 secure FHE, this IND-CCA1 secure scheme does not necessarily satisfy
public verifiability. Thus, we cannot apply this one to our generic construction of keyed-FHE.
Although a generic construction of IND-CCA1 secure FHE from iO was also proposed in [11], we
emphasis that no iO is required for constructing IND-CCA1 secure FHE from the viewpoint of
feasibility.

The remaining part is strong DSS-NIZK. As described in Section 1.2, NIZKs used to obtain
a strong DSS-NIZK for NP can be constructed from Σ-protocols [25] by using the Fiat-Shamir
transformation [22], and there exists such a NIZK in the quantum random oracle model [12] or the
standard model [30]. There exist smooth (approximate) PHPSs [2]. Hence, we can obtain a strong
DSS-NIZK for NP by using existing schemes.
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A Keyed-FHE from IND-CPA secure FHE, zk-SNARK, and
Strong DSS-NIZK

When replacing IND-CCA1 secure FHE schemes used in the keyed-FHE scheme in Section 3, with
IND-CPA secure FHE schemes, we can construct a keyed-FHE scheme by adding a zk-SNARK
system. Namely, we can obtain a generic construction starting from IND-CPA secure FHE, zk-
SNARK, and strong DSS-NIZK. We show this keyed-FHE scheme concretely. To do this, following
[3], we describe the definition of zk-SNARKs.

Definition 17 (zk-SNARK). A zk-SNARK system for a relation R ⊆ {0, 1}∗ × {0, 1}∗ consists of
three polynomial-time algorithms (Gen,P,V): Let L(R) = {x | ∃w s.t. (x,w) ∈ R} be the language
defined by R.

• (crs, vrs) ← Gen(1λ): The randomized algorithm Gen takes as input a security parameter 1λ,
and it outputs a CRS crs and a verification key vrs.

• π ← P(crs, x, w): The randomized algorithm P takes as input a CRS crs, a statement x, and
a witness w, and it outputs a proof π.

• 1/0 ← V(vrs, x, π): The deterministic algorithm V takes as input a verification key vrs, a
statement x, and a proof π, and it outputs 1 or 0.

It is required that a zk-SNARK satisfies completeness, knowledge-soundness, zero-knowledge, and
succinctness:

Completeness. For every (x,w) ∈ R, it holds that

Pr[(crs, vrs)← Gen(1λ);π ← P(crs, x, w) : V(vrs, x, π) = 1] ≥ 1− negl(λ).

Knowledge-Soundness. For any PPT algorithm A, there exists a polynomial-time extractor ExtA
such that

Pr

[
(crs, vrs)← Gen(1λ);

(x, π;w)← (A∥ExtA)V(vrs,·,·)(crs)
: V(vrs, x, π) = 1 ∧ (x,w) /∈ R

]
≤ negl(λ).
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Zero-Knowledge. There exists a PPT simulator Sim = (Sim0, Sim1) such that for any PPT
algorithm A, it holds that∣∣∣Pr[(crs, vrs)← Gen(1λ) : 1← AP(crs,·,·)(crs)]

−Pr[(crs, vrs, td)← Sim0(1
λ) : 1← ASim∗(crs,td,·,·)(crs)]

∣∣∣ ≤ negl(λ),

where Sim0(1
λ) generates a CRS crs, a verification key vrs, and a trapdoor td, and

Sim1(crs, td, x) generates a simulated proof π. The Sim∗ oracle on input (x,w) returns ⊥
if (x,w) /∈ R, and returns π ← Sim1(crs, td, x) otherwise.

Succinctness. The length of the proof generated by P , as well as the running time of V, is bounded
by poly(λ + |x|), where x is a statement, and poly is a universal polynomial which does not
depend on R.

In addition, a zk-SNARK system is publicly verifiable if knowledge-soundness holds against the
adversary given vrs, and it is designated verifier otherwise.

To construct the keyed-FHE scheme, we assume the following primitives:

• an FHE scheme ΠFHE,i = (KGenF,i, EncF,i, DecF,i, EvalF,i) for i ∈ {1, 2},

• a publicly-verifiable zk-SNARK system ΠS = (GenS ,PS ,VS) for a relation

{(ct1, ct2), (m, r1, r2) | ct1 = EncF,1(pk1,m; r1) ∧ ct2 = EncF,2(pk2,m; r2)}∪

{(ct1, ct2), ({ct(i)1 , ct
(i)
2 , π

(i)
S }i∈[ℓ],C, r̂1, r̂2) |

ĉtj = EvalF,j(C, (ct
(1)
j , . . . , ct

(ℓ)
j ); r̂j) for j ∈ {1, 2}

VS(vrsS , (ct
(i)
1 , ct

(i)
2 ), π

(i)
S ) = 1 for i ∈ [ℓ]},

• a DSS-NIZK system ΠDN in partial-simulation world (sfGenN , sfSimN , pVN ) for a relation
{(ct1, ct2), (m, r1, r2) | ct1 = EncF,1(pk1,m; r1) ∧ ct2 = EncF,2(pk2,m; r2)},

where (pk1, sk1) ← KGenF,1(1
λ), (pk2, sk2) ← KGenF,2(1

λ), and (crsS , vrsS) ← GenS(1
λ). Notice

that regarding the DSS-NIZK system ΠDN, we also use the real world prover and verifier algorithms
PN and VN , in the same way as the keyed-FHE scheme in Section 3.

By using these primitives, we describe the generic construction Π′
KFHE = (KGen,Enc,Dec,Eval),

as follows:

• (pk, skd, skh)← KGen(1λ):

1. (pk1, sk1)← KGenF,1(1
λ), (pk2, sk2)← KGenF,2(1

λ).

2. (crsS , vrsS)← GenS(1
λ).

3. (crsN , tdN,s, tdN,v)← sfGenN (1λ).

4. Output pk = (pk1, pk2, crsS , vrsS , crsN ), skd = sk1, and skh = tdN,s.

• ct← Enc(pk,m):

1. ct1 ← EncF,1(pk1,m; r1), ct2 ← EncF,2(pk2,m; r2).

2. πS ← PS(crsS , (ct1, ct2), (m, r1, r2)).
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3. πN ← PN (crsN , (ct1, ct2), (m, r1, r2), lbl), where lbl = πS .

4. Output ct = (ct1, ct2, πS , πN ).

• m/⊥ ← Dec(sk, ct): ct = (ct1, ct2, πS , πN ).

1. If VS(vrsS , (ct1, crs2), πS) = 1 and VN (crsN , (ct1, ct2), πN , πS) = 1, output m ←
DecF,1(sk1, ct1). Otherwise, output ⊥.

• ĉt/⊥ ← Eval(skh,C, (ct
(1), . . . , ct(ℓ))): Let ct(i) = (ct

(i)
1 , ct

(i)
2 , π

(i)
S , π

(i)
N ) for i ∈ [ℓ].

1. Output ⊥ if VS(vrsS , (ct
(i)
1 , ct

(i)
2 ), π

(i)
S ) = 0 for some i ∈ [ℓ],

or VN (crsN , (ct
(i)
1 , ct

(i)
2 ), π

(i)
N , π

(i)
S ) = 0 for some i ∈ [ℓ].

2. ĉt1 ← EvalF,1(C, (ct
(1)
1 , . . . , ct

(ℓ)
1 ); r̂1), ĉt2 ← EvalF,2(C, (ct

(1)
2 , . . . , ct

(ℓ)
2 ); r̂2). Rerandomize

ĉt1 and ĉt2 by using EvalF,1 and EvalF,2 if EvalF,1 or EvalF,2 is deterministic.

3. π̂S ← PS(crsS , (ĉt1, ĉt2), ({ct(i)1 , ct
(i)
2 , π

(i)
S }i∈[ℓ],C, r̂1, r̂2)):

This is a proof for the witness ({ct(i)1 , ct
(i)
2 , π

(i)
S }i∈[ℓ],C, r̂1, r̂2) such that

– ĉtj = EvalF,j(C, (ct
(1)
j , . . . , ct

(ℓ)
j ); r̂j) for j ∈ {1, 2}, and

– VS(vrsS , (ct
(i)
1 , ct

(i)
2 ), π

(i)
S ) = 1 for every i ∈ [ℓ].

4. π̂N ← sfSimN (crsN , tdN,s, (ĉt1, ĉt2), 1, π̂S).

5. Output ĉt = (ĉt1, ĉt2, π̂S , π̂N ).

The correctness of Π′
KFHE holds in the same way as the keyed-FHE scheme in Section 3. Namely,

the first condition of the correctness follows the correctness of ΠFHE,1, and the completeness of ΠS and
ΠDN. The second condition of the correctness also holds due to the composable partial zero-knowledge
of ΠDN in addition to the correctness and completeness of the underlying primitives. In addition,
it is clear that the compactness of Π′

KFHE follows the compactness of the two FHE schemes ΠFHE,1

and ΠFHE,2, and the succinctness of ΠS.

Theorem 3. If both ΠFHE,1 and ΠFHE,2 are IND-CPA secure, ΠS is a zk-SNARK system, and ΠDN

is a strong DSS-NIZK system, then the resulting Π′
KFHE is KH-CCA secure.

The proof of this theorem is similar to that of Theorem 1. Even though a homomorphic
evaluation key is revealed, we have to ensure the confidentiality of the challenge message. To this
end, Π′

KFHE needs the knowledge-soundness and zero-knowledge of the underlying zk-SNARK, while
the keyed-FHE scheme in Section 3 employs the IND-CCA1 security of the underlying FHE schemes.
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